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Abstract

In this paper, we propose new non-monotonic attribute-based encryption schemes with com-
pact parameters. The first three schemes are key-policy attribute-based encryption (KP-ABE)
and the fourth scheme is ciphertext-policy attribute-based encryption (CP-ABE) scheme.

• Our first scheme has very compact ciphertexts. The ciphertext overhead only consists of
two group elements and this is the shortest in the literature. Compared to the scheme by
Attrapadung et al. (PKC2011), which is the best scheme in terms of the ciphertext overhead,
our scheme shortens ciphertext overhead by 33%. The scheme also reduces the size of the
master public key to about half.

• Our second scheme is proven secure under the decisional bilinear Diffie-Hellman (DBDH)
assumption, which is one of the most standard assumptions in bilinear groups. Compared to
the non-monotonic KP-ABE scheme from the same assumption by Ostrovsky et al. (ACM-
CCS’07), our scheme achieves more compact parameters. The master public key and the
ciphertext size is about the half that of their scheme.

• Our third scheme is the first non-monotonic KP-ABE scheme that can deal with unbounded
size of set and access policies. That is, there is no restriction on the size of attribute sets and
the number of allowed repetition of the same attributes which appear in an access policy.
The master public key of our scheme is very compact: it consists of only constant number
of group elements.

• Our fourth scheme is the first non-monotonic CP-ABE scheme that can deal with unbounded
size of set and access policies. The master public key of the scheme consists of only constant
number of group elements.

We construct our KP-ABE schemes in a modular manner. We first introduce special type of
predicate encryption that we call two-mode identity based broadcast encryption (TIBBE). Then,
we show that any TIBBE scheme that satisfies certain condition can be generically converted into
non-monotonic KP-ABE scheme. Finally, we construct efficient TIBBE schemes and apply this
conversion to obtain the above new non-monotonic KP-ABE schemes.
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1 Introduction

In many systems, a server monitors access to sensitive data so that only certain users can access
it. If the server is not fully trusted, the data must be encrypted. However, a standard public key
encryption scheme is not appropriate, because it severely limits the users who can access the contents.

To solve this problem, Sahai and Waters [31] were the first to study attribute-based encryption
(ABE). In ABE, one can encrypt data for a set of receivers that satisfy certain condition. In Sahai and
Waters’ scheme, a ciphertext and a private key are associated with a set of attributes, and the key can
decrypt the ciphertext if and only if these sets overlap more than certain threshold. Goyal, Pandey,
Sahai, and Waters [16] further extended their result and proposed schemes that support finer-grained
access control. In their scheme, a ciphertext is associated with a set of attributes, and a private key
is associated with an access structure that is specified by a Boolean formula. Decryption is possible
when the set satisfies this Boolean formula. Their schemes are called key-policy ABE (KP-ABE),
because the key specifies the access structure. Ciphertext-policy ABE (CP-ABE) is complementary
form to KP-ABE in the sense that a ciphertext specifies an access structure while a key is associated
with a set of attributes. The first studies of CP-ABE appear in [5, 12].

The above schemes can express a wide class of access structures, but they are still limited because
they only support a monotonic access structure. In particular, they cannot deal with an access
structure that is associated with a Boolean formula that includes the negation of attributes. This
is not convenient for real world applications. One possible solution to this problem is to explicitly
include attributes that express absence of attributes in the attribute space, as suggested in [16].
For example, in the KP-ABE case, to encrypt a message for an attribute x1, one should encrypt the
message for a set that includes x1 and attributes “Not xj” for all attribute xj such that xj 6= x1, using
the underlying monotonic KP-ABE system. Then, a key with the attribute “Not x2” can decrypt
the ciphertext and recover the message as desired, because “Not x2” ∈ {x1, “Not x2”, “Not x3”,
. . . , }. This solution is not appropriate for many applications, because the scheme becomes inefficient
as the total number of attributes increase. Furthermore, it does not work in the setting where
attribute space is exponentially large. Ostrovsky, Sahai, and Waters [28] addressed this problem
and constructed the first KP-ABE scheme that supports a non-monotonic access structure by using
an idea from the Naor-Pinkas revocation scheme [25]. Following their work, several non-monotonic
KP/CP-ABE schemes have been proposed [21, 26, 3, 27].

Our Contributions. In this paper, we propose new non-monotonic ABE schemes. Our new schemes
either improve efficiency or achieve a new functionality that was previously not possible. We propose
the following four schemes. The first three schemes are KP-ABE schemes and the last one is CP-ABE
scheme.
• The first scheme has very compact ciphertexts. The ciphertext overhead of our scheme consists

of only two group elements, which is even shorter than the currently shortest scheme of [3].
Furthermore, the scheme also reduces the size of master public key to about half while the
private key size is slightly larger.

• The second scheme is proven secure under the decisional bilinear Diffie-Hellman (DBDH) as-
sumption, which is one of the weakest number theoretic assumptions in bilinear groups. The
public key and the ciphertext size of our scheme are about half the size of the scheme in [28],
which is secure under the same assumption. The encryption algorithm of our scheme is at least
two times faster than the existing scheme, but our decryption algorithm is somewhat slower.

• The third scheme is the first non-monotonic KP-ABE scheme in the standard model that
supports fully unbounded attribute sets and access policies. That is, there is no restriction
on the size of the attribute set, or on the number of times the same attributes can appear in
an access policy. The master public key of the scheme is very compact: it consists of only
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constant number of group elements. Such a construction has previously only been possible in
the random oracle model [21]. ∗

• The fourth scheme is the first non-monotonic CP-ABE scheme that supports fully unbounded
size of attribute sets and access policies. The master public key of our scheme consists of only
constant number of group elements.

We construct the above KP-ABE schemes in a modular way. First, we define a new predicate encryp-
tion that we call two mode identity based broadcast encryption (TIBBE). In TIBBE, a ciphertext is
associated with a set of identities. A private key is associated with an identity and certain “type”.
There are two types of keys in the system. First type keys can decrypt the ciphertext iff the identity
is included in the set, while the second type keys can iff the identity is not included. The notion of
TIBBE is an extension of identity based broadcast encryption (IBBE) and identity based revocation
(IBR). We show that any TIBBE scheme with a certain property can be generically converted into a
non-monotonic KP-ABE scheme. This can be seen as an extension of the previous result in [3] that
converts any IBBE scheme with certain properties into a (monotonic) KP-ABE scheme. Finally, we
construct efficient TIBBE schemes. By applying our conversion to these schemes, we obtain our new
non-monotonic KP-ABE schemes.

While we construct KP-ABE schemes in a modular way, our construction of the above non-
monotonic CP-ABE scheme is more direct. Our construction is based on the (monotonic) CP-ABE
scheme recently proposed by [30]. We extend their scheme to support a non-monotonic access
structure by applying an idea from the IBR scheme in [21] to the CP-ABE setting.

Finally, we remark that all our schemes are selectively secure. Constructing adaptively secure
schemes with similar property is left open for future research.

Other Related Works. After the work of Sahai and Waters [31], many CP/KP-ABE schemes
have been proposed [16, 15, 32, 17]. The first adaptively secure ABE schemes were proposed in [20]
using composite order groups. Later, schemes on prime order groups were proposed [26, 27, 19, 24].
The settings with multiple-authorities are investigated in several works [10, 1, 11, 22]. To construct
a scheme with even more general access structure is an important direction of research. Recently,
there are significant progress toward this direction [33, 13, 14].

2 Preliminaries

2.1 Notation

We will treat a vector as a row vector, unless stated otherwise. For any vector a = (a1, . . . , an) ∈ Znp ,

ga = (ga1 , . . . , gan). For a, z ∈ Znp , we denote their inner product as 〈a, z〉 = a · z> =
∑n

i=1 aizi. We
denote by ei the i-th unit vector: its i-th component is one, all others are zero. We also denote by [n]
a set {1, . . . , n} for an integer n > 0 and [n1, . . . , nm] = [n1]× · · · × [nm] for integers n1, . . . , nm > 0.
For a set U , we define 2U = {S|S ⊆ U} and

(
U
<k

)
= {S|S ⊆ U, |S| < k} for k ≤ |U |.

2.2 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do not consider attribute
hiding in this paper†.

Syntax. Let R = {RN : AN × BN → {0, 1} | N ∈ Nc} be a relation family where AN and BN
denote “key attribute” and “ciphertext attribute” spaces and c is some fixed constant. The index

∗Unbounded non-monotonic schemes were recently mentioned in [23, 30], but only monotonic constructions were
given.
†This is called “public-index” predicate encryption, categorized in [9].
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N = (n1, n2, . . . , nc) of RN denotes the numbers of bounds for corresponding parameters. If an index
N is not required, we say that R is an unbounded relation. A predicate encryption (PE) scheme for
R consists of the following algorithms:
Setup(λ,N)→ (mpk,msk): The setup algorithm takes as input a security parameter λ and a index

N of the relation RN and outputs a master public key mpk and a master secret key msk.
KeyGen(msk,mpk, X)→ skX : The key generation algorithm takes as input the master secret key

msk, the master public key mpk, and a key attribute X ∈ AN . It outputs a private key skX .
We assume X is included in skX implicitly.

Encrypt(mpk,M, Y )→ C: The encryption algorithm takes as input a master public key mpk, the
message M, and a ciphertext attribute Y ∈ BN . It will output a ciphertext C.

Decrypt(mpk, C, Y, skX)→ M or ⊥: We assume that the decryption algorithm is deterministic. The
decryption algorithm takes as input the public parameters mpk, a ciphertext C, ciphertext
attribute Y ∈ BN and a private key skX . It outputs the message M or ⊥ which represents that
the ciphertext is not in a valid form.

We require correctness of decryption: that is, for all λ, N , all (mpk,msk) produced by Setup(λ,N),
all X ∈ AN , Y ∈ BN such that R(X,Y ) = 1, and all skX returned by KeyGen(msk,mpk, X),
Decrypt(mpk,Encrypt(mpk,M, Y ), Y, skX) = M holds.

Security. We now define the security for an PE scheme Π. This security notion is defined by the
following game between a challenger and an attacker A.

At first, the challenger runs the setup algorithm and gives mpk to A. Then A may adaptively
make key-extraction queries. We denote this phase Phase1. In this phase, if A submits X to
the challenger, the challenger returns skX ← KeyGen(msk,mpk, X). At some point, A outputs two
equal length messages M0 and M1 and challenge ciphertext attribute Y ? ∈ BN . Y ? cannot satisfy
R(X,Y ?) = 1 for any attribute X such that A already queried private key for X. Then the challenger
flips a random coin β ∈ {0, 1}, runs Encrypt(mpk,Mβ, Y

?) → C? and gives challenge ciphertext C?

to A. In Phase2, A may adaptively make queries as in Phase1 with following added restriction:
A cannot make a key-extraction query for X such that R(X,Y ?) = 1. At last, A outputs a guess
β′ for β. We say that A succeeds if β′ = β and denote the probability of this event by PrPEA,Π. The

advantage of an attacker A is defined as AdvPEA,Π = |PrPEA,Π−1
2 |. We say that Π is fully secure if

AdvPEA,Π is negligible for all probabilistic polynomial time (PPT) adversary A.

A weaker notion called selective security can be defined as in the above game with the exception
that the adversary A has to choose the challenge ciphertext index Y ? before the setup phase but
private key queries X1, . . . , Xq can still be adaptive. All schemes proposed in this paper are selectively
secure.

2.3 Linear Secret Sharing Scheme and Attribute-Based Encryption

Here, we first define linear secret sharing scheme (LSSS) following [4] and then define key/ciphertext-
policy atrribute based encryption scheme as an instance of PE.

Definition 1 (Access Structure). Let P = {P1, . . . ,Pn} be a set of parties. A collection A ⊂ 2P is
said to be monotone if, for all B,C, if B ∈ A and B ⊂ C, then C ∈ A holds. An access structure
(resp., monotonic access structure) is a collection (resp., monotone collection) A ⊂ 2P\{∅}. The
sets in A are called the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret Sharing Scheme). Let P be a set of parties. Let L be an `×m matrix.
Let π : {1, . . . , `} → P be a function that maps a row to a party for labeling. A secret sharing scheme
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π for access structure A over a set of parties P is a linear secret-sharing scheme (LSSS) in Zp and
is represented by (L, π) if it consists of two efficient algorithms:
ShareL,π There exists an efficient algorithm which takes as input s ∈ Zp which is to be shared. It

chooses s2, . . . , sm
$← Zp and let s = (s, s2, . . . , sm). It outputs L · s as the vector of ` shares.

The share λi = 〈Li, s〉 belongs to party π(i), where Li denotes the i-th row of L.
ReconL,π The algorithm takes as input an access set S ∈ A. Let I = {i|π(i) ∈ S}. It outputs a set

of constants {(i, µi)}i∈I which has a linear reconstruction property:
∑

i∈I µi · λi = s.

Terminology for Non-Monotonic Access Structure. We recall a technique by Ostrovsky
Sahai, and Waters [28] to move from monotonic access structures to non-monotonic access structure.
They assume a family {ΠA}A∈AS of linear secret sharing schemes for a set of monotonic access
structures A. For each such access structure A ∈ AS, the set P of underlying parties has the
following properties: The names of the parties in P may be of two types: either the name is normal
(like x) or it is primed (like x′), and if x ∈ P then x′ ∈ P and vice versa. Conceptually, prime
attributes are associated with negation of unprimed attributes.

A family AS of non-monotone access structures can be defined as follows. For each access
structure A ∈ AS over a set of parties P, one defines a possibly non-monotonic access structure
NM(A) over the set P̃ of all unprimed parties in P. For every set S̃ ⊂ P̃, N(S̃) is defined as
N(S̃) = S̃ ∪ {x′|x ∈ P̃\S̃}. Then, NM(A) is defined by saying that S̃ is authorized in NM(A) if
and only if N(S̃) is authorized in A. For each access set X ∈ NM(A), there is a set in A containing
the elements in X and primed elements for each party not in X.

Key-(Ciphertext) Policy Attribute-Based Encrypion. Let U = {0, 1}∗ be an attribute space
and N = (n, ϕ) specify the corresponding bounds (the maximum numbers) on the size of attribute
sets, the number of allowed repetition of same attributes which appear in a policy, respectively.
Let ASϕ be a collection of access structures over U such that every access structure in ASϕ is
specified by an access formula in which same attributes do not appear more than ϕ times. A
bounded key (resp. ciphertext)-policy attribute-based encryption for ASϕ is a predicate encryption
for RKP

(n,ϕ) : ASϕ ×
( U
<n

)
→ {0, 1} (resp. RCP

(n,ϕ) :
( U
<n

)
× ASϕ → {0, 1}) defined by RKP

(n,ϕ)(A, ω) = 1

(resp. RCP
(n,ϕ)(ω,A) = 1) iff ω ∈ A (for ω ⊆ U such that |ω| < n and A ∈ ASϕ). Let AS be a collection

of access structure over U . An unbounded key (resp., ciphertext)-policy attribute-based encryption
scheme is a predicate encryption for RKP : AS×2U → {0, 1} (resp., RCP : 2U ×AS → {0, 1}) defined
by RKP(A, ω) = 1 (resp. RCP(ω,A) = 1 ) iff ω ∈ A (for ω ⊆ U and A ∈ AS).

We note that the scheme of [27] (which was called unbounded ABE) can achieve the unbounded
attribute set size, but it is still limited to the number of allowed repetition. Currently, only few
KP-ABE schemes that are unbounded in full sence are known [21, 23, 30]. Note that the scheme in
[21] uses random oracle model. In the CP-ABE setting, only scheme that is unbounded in full sense
is recently proposed [30].

2.4 Number Theoretic Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable mapping e : G×G→ GT s.t.
e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and e(g, h) 6= 1GT whenever g, h 6= 1G.
Decisional Bilinear Diffie-Hellman (DBDH) Assumption. We say that an adversary A breaks
the DBDH assumption on (G,GT ) if A runs in polynomial time and 1

2 |Pr[A(g, ga, gb, gs, e(g, g)abs)→
0]− Pr[A(g, ga, gb, gs, T )→ 0]| is negligible where g

$← G, T
$← GT , a, b, s

$← Zp.
n-Decisional Bilinear Diffie-Hellman Exponent (n-DBDHE) Assumption [7]. We say that
an adversary A breaks the n-DBDHE assumption on (G,GT ) if A runs in polynomial time and
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1
2 |Pr[A(g, {gai}i∈[2n]\{n+1}, g

s, e(g, g)s·a
n+1

) → 0] − 1
2 |Pr[A(g, {gai}i∈[2n]\{n+1}, g

s, T ) → 0]| is negli-

gible where g
$← G, T

$← GT , a, s
$← Zp.

3 Linear Two-Mode Identity Based Broadcast Encryption and Con-
version to Non-monotonic KP-ABE

In this section, we first introduce the two mode inner product encryption scheme (TIPE) and two
mode identity based broadcast encryption schemes (TIBBE) and explain how the latter can be
derived from the former. Then, we propose a general transformation that transforms any TIBBE
scheme that satisfies a certain condition into a non-monotonic KP-ABE scheme. Our transformation
is an extension of the generic transformation proposed in [3], which converts any IBBE scheme with
certain conditions into (monotonic) KP-ABE scheme.

3.1 Definition of TIPE and TIBBE

In a TIPE scheme, a ciphertext is associated with a vector y. A private key is associated with
type ∈ {ZIPE,NIPE} and a vector x. Decryption is possible iff type = ZIPE and 〈x,y〉 = 0, or
type = NIPE and 〈x,y〉 6= 0. In a TIBBE scheme, a ciphertext is associated with a set of identities
S. A private key is associated with type ∈ {IBBE, IBR} and an identity ID. Decryption is possible iff
type = IBBE and ID ∈ S, or type = IBR and ID 6∈ S.

Here, we formally define TIPE and TIBBE as instances of PE as follows.

Two-Mode Inner Product Encryption scheme. TIPE is a predicate encryption for RTIPE
(n,p) :

(Znp × {ZIPE,NIPE}) × Znp → {0, 1} defined by RTIPE
(n,p)((x, type),y) = 1 iff (〈x,y〉 = 0 ∧ type =

ZIPE) ∨ (〈x,y〉 6= 0 ∧ type = NIPE).

Two-Mode Identity Based Broadcast Encryption scheme. TIBBE is a predicate encryption
for RTIBBE

n : (I×{IBBE, IBR})×
( I
<n

)
→ {0, 1} defined by RTIBBE

n ((ID, type), S) = 1 iff (ID ∈ S∧type =
IBBE) ∨ (ID 6∈ S ∧ type = IBR).

In later sections, we construct TIPE schemes instead of TIBBE schemes when it is simpler to
describe. TIBBE scheme can be derived from TIPE scheme by the following technique due to [18].
The setup algorithm of the TIBBE scheme is the same as TIPE scheme. To generate a private key for
(ID, IBBE) (resp. (ID, IBR)), one runs key generation algorithm of TIPE scheme to obtain a private
key for (x,ZIPE) (resp. (x,NIPE)) where x = (1, ID, . . . , IDn−1). To encrypt a message M for a set
S = (ID1, . . . , IDk), one defines y = (y1, . . . , yn) as a coefficient vector from

PS [Z] =

k+1∑
i=1

yiZ
i−1 =

∏
IDj∈S

(Z − IDj)

where, if k + 1 < n, the coordinates yk+1, . . . , yn are all set to 0. Then, one runs encryption
algorithm of TIPE scheme to encrypt M for a vector y. To decrypt a ciphertext, one first defines x
and y as above and runs the decryption algorithm of the TIPE scheme. Since ID ∈ S ⇔ PS(ID) =
0 ⇔ 〈x,y〉 = 0, the correctness of the resulting TIBBE scheme follows from the correctness of the
underlying TIPE scheme. Furthermore, by the embedding lemma [8], the resulting TIBBE scheme
is selectively secure if the underlying TIPE scheme is selectively secure.

3.2 Linear Two-Mode Identity Based Broadcast Encryption Template

We define a template for two-mode IBBE schemes that ensures that they give rise to selective
secure non-monotonic KP-ABE schemes. We call this a linear TIBBE template. Let G,GT be
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underlying bilinear groups of order p. The identity space of the scheme is I = Zp. A linear TIBBE
scheme is determined by parameters n, n1, n2, n̄1,∈ N, a distribution G on vectors of functions, and
functions DIBBE, DIBR. G’s output is tuple of functions (f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F ) where f IBBE1 :
I → G, f IBBE2 : I → Gn1 , f IBR1 : I → G, f IBR2 : I → Gn̄1 , F : (I)≤n−1 × Zp → G≤n2 . Here, we allow F
to be probabilistic whereas all other functions are assumed to be deterministic. DIBBE and DIBR are
functions such that DIBBE : Gn1+1 × I ×Gn2 ×

( I
<n

)
→ GT , DIBR : Gn̄1+1 × I ×Gn2 ×

( I
<n

)
→ GT .

Setup(λ, n) : Given a security parameter λ ∈ N and a bound n ∈ Z on the number of identi-
ties per ciphertext, the algorithm selects bilinear groups (G,GT ) of prime order p > 2λ

and a generator g
$← G. It computes e(g, g)α for a random α

$← Zp and chooses functions

(f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F )
$← G. The master secret key consists of msk = α while the master

public key is mpk = (g, e(g, g)α, {f type1 , f type2 }type∈{IBBE,IBR}, F, n, n1, n2, n̄1).

KeyGen(msk,mpk, (ID, type)) : To generate a private key for ID of type type ∈ {IBBE, IBR}, it chooses

r
$← Zp. Then, it computes the private key as

sk(ID,type) = (d1, d2) =
(
gα · f type1 (ID)r, f type2 (ID)r

)
.

Encrypt(mpk,M, S) : To encrypt M ∈ GT for a set of identities S = (ID1, . . . , IDk) where k < n, it

chooses s
$← Zp and computes the ciphertext as

C = (C0, C1) = (M · e(g, g)αs, F (ID1, . . . , IDk, s)).

Decrypt(mpk, C, S, sk(ID,type)) : It parses sk(ID,type) = (d1, d2) and C = (C0, C1) then runs

Dtype
(
(d1, d2), ID, C1, S

)
→ e(g, g)α·s,

and obtains M = C0/e(g, g)α.

We also require that for all (f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F )
$← G, the following property must hold. ‡

Correctness. For all α, r, s ∈ Zp, randomness for F , (ID, type) ∈ I×{IBBE, IBR}, S = {ID1, . . . , IDk} ∈( I
<n

)
such that (type = IBBE ∧ ID ∈ S) ∨ (type = IBR ∧ ID 6∈ S) and randomness for F , we have

Dtype
((
gα · f type1 (ID)r, f type2 (ID)r

)
, ID, F (ID1, . . . , IDk, s), S

)
= e(g, g)α·s.

3.3 Generic Conversion from Linear TIBBE to Non-monotonic KP-ABE

Let ΠTIBBE = (Setup′,Keygen′,Encrypt′,Decrypt′) be a linear TIBBE system. We construct a non-
monotonic KP-ABE scheme from ΠTIBBE as follows.

Setup(λ, n) : It simply outputs Setup′(λ, n)→ (mpk,msk).

KeyGen(msk,mpk, Ã) : The input to the algorithm is the master secret key msk, the master public
key mpk, and a non-monotonic access structure Ã such that we have Ã = NM(A) for some
monotonic access structure A over a set P of attributes and associated with a linear secret
sharing scheme (L, π). Let L be an ` ×m matrix. First, it generates shares of α with (L, π).

Namely, it chooses a vector s = (s1, . . . , sm) such that s1 = α and s2, . . . , sm
$← Zp and

calculates λi = 〈Li, s〉 for each i = 1, . . . , `. The party corresponds to share λi is π(i) = x̆i,

‡In [3], the authors also assume a property called linearity. However, we do not need this property.
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where xi is underlying attribute, and can be primed (i.e., negated) or unprimed (non-negated).

Then for each i = 1, . . . , `, it picks ri
$← Zp and sets Di for each i = 1, . . . , ` as follows.

Di =

{ (
d′i,1 = gλi · f IBBE1 (xi)

ri , d′i,2 = f IBBE2 (xi)
ri
)

if π(i) = xi(
d′i,1 = gλi · f IBR1 (xi)

ri , d′i,2 = f IBR2 (xi)
ri
)

if π(i) = x′i.

It then outputs the private key as skÃ = {Di}`i=1

Encrypt(mpk,M, ω) : It simply outputs Encrypt′(mpk,M, ω).

Decrypt(mpk, C, ω, skÃ) : Assume first that the policy Ã is satisfied by the attribute set ω, so that

decryption is possible. Since Ã = NM(A) for some access structure A associated with a
linear secret sharing scheme (L, π), we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute reconstruction coefficients
{(i, µi)}i∈I = ReconL,π(ω′) such that

∑
i∈I µiλi = α. It parses C = (C0, C1), skÃ = {Di}`i=1

where Di = (d′i,1, d
′
i,2) and computes e(g, g)s·λi for each i ∈ I as follows. (The correctness is

shown later.) {
DIBBE

(
(d′i,1, d

′
i,2), xi, C1, ω

)
→ e(g, g)s·λi if π(i) = xi (1a)

DIBR
(
(d′i,1, d

′
i,2), xi, C1, ω

)
→ e(g, g)s·λi if π(i) = x′i. (1b)

Finally, it recovers message by C0 ·
∏
i∈I
(
e(g, g)s·λi

)−µi = M.

Correctness. We now verify that equations (1a) and (1b) are correct. (1a) and (1b) follow from
the correctness of the underlying TIBBE scheme by seeing Di as a private key for

(
ID = xi, type ∈

{IBBE, IBR}
)

that is derived from msk = λi using randomness ri.

The security of the resulting scheme is established by the following Theorem. We prove it in
Appendix B.

Theorem 1. If the underlying TIBBE scheme is selectively secure, then the resulting KP-ABE
system above is also selectively secure.

Remark. We have described the conversion for TIBBE scheme with a restriction that the number
of identities per ciphertext is bounded by n. However, the same conversion also applies to a TIBBE
scheme without such a restriction. In particular, we can apply the above conversion to our TIBBE
scheme in Sec. 6.

4 TIPE Scheme with Compact Ciphertexts

In this section, we propose a TIPE scheme with compact ciphertext size. As we explained in Sec. 3.1,
we can obtain a TIBBE scheme from the TIPE scheme. By applying the conversion in Sec. 3 to this
TIBBE scheme, we obtain a new non-monotonic KP-ABE scheme with very short ciphertexts. We
give a concrete description of the resulting scheme in Appendix C. The ciphertext overhead is 33%
shorter than the non-monotonic KP-ABE ciphertext in [3] (the shortest in the literature). It also
reduces the number of pairing operations in the decryption algorithm from 3 to 2. The public key
size of our scheme is about half that of the existing scheme, but the private key of our scheme is
slightly longer.
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Setup(λ, n) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

v, α
$← Zp and u = (u1, . . . , un)

$← Znp . Then it sets V = gv and U = (U1, . . . , Un) = gu. It
finally outputs the master public key mpk = (g, U1, . . . , Un, V, e(g, g)α) and the master secret
key msk = α.

KeyGen(msk,mpk, (x, type)) : To generate a private key for
(
x = (x1 6= 0, . . . , xn) ∈ Z∗p×Zn−1

p , type ∈
{ZIPE,NIPE}

)
, it chooses r

$← Zp and computes
sk(x,ZIPE) =

(
D1 = gαV r, D2 = gr, {Ki = (U

− xi
x1

1 Ui)
r}i=2,...,n

)
if type = ZIPE

sk(x,NIPE) =
(
D1 = gαU r1 , D2 = gr, D3 = V r, {Ki = (U

− xi
x1

1 Ui)
r}i=2,...,n

)
if type = NIPE.

Encrypt(mpk,M,y) : To encrypt M ∈ GT for the vector y = (y1, . . . , yn) ∈ Znp , it picks s
$← Zp and

computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, C2 = (V Uy11 · · ·U

yn
n )−s

)
.

Decrypt(mpk, C,y, sk(x,type)): It computes
e(C1, D1 ·

n∏
i=2

Kyi
i ) · e(C2, D2) = e(g, g)sα if type = ZIPE

e(C1, D1) ·
(
e(C1, D3

n∏
i=2

Kyi
i ) · e(C2, D2)

) x1
〈x,y〉

= e(g, g)sα if type = NIPE

and recovers the message by C0/e(g, g)sα = M.

The correctness of the scheme is proven in Appendix D.
We construct the above scheme by combining the IPE scheme derived from the spatial encryption

scheme in [8, 2] and a variant of the NIPE scheme proposed in [3] so that they share the master
public key and the ciphertext. The non-monotonic KP-ABE scheme derived from the above TIPE
scheme has compact parameters, because of this share of parameters. The main technical challenge
in the proof of the security of the scheme is to simulate the key generation oracle for two different
types (i.e., ZIPE and NIPE) of keys simultaneously. To achieve this, we use a significantly different
strategy to simulate NIPE keys than the security proof in [3]. The following theorem addresses the
security of the scheme.

Theorem 2. The above TIPE scheme is selectively secure under the n-DBDHE assumption.

Before proving the theorem, we recall following useful lemma that is implicit in [8]. We prove
the lemma in Appendix A.

Lemma 1. ([8]) Let G be a multiplicative group with prime order p and g be its generator. Let
n,m be some integer bounded by polynomial of λ, a be a = (a, a2, . . . , an) ∈ Znp , α̃, {wi}mi=0 be
elements in Zp, {zi}mi=0 be vectors in Znp . We also assume that h = (h1, . . . , hn) ∈ Znp satis-
fies 〈h, z0〉 6= 0 and 〈h, zi〉 = 0 for i ∈ [m]. Then, there exists an PPT BHSim which takes
(α̃, {zi}mi=0, {wi}mi=0,h, {ga

i}i∈[2n]\{n+1}) as input and outputs (ga
n+1+α̃·(g〈z0,a〉+w0)r, {(g〈zi,a〉+wi)r}mi=1)

where r
$← Zp.
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Proof. (of Theorem 2.) We construct an algorithm B that receives (g, {gai}i∈[2n]\{n+1}, g
s, T ) ∈

G2n+1 ×GT and decides if T = e(g, g)a
n+1s using the selective adversary A against our scheme. We

denote by a a vector (a, a2, . . . , an).

Setup of master public key. At the outset of the game, the adversary A declares the challenge
vector y? = (y?1, . . . , y

?
n) ∈ Znp . B picks α̃, ṽ

$← Zp, ũ = (ũ1, . . . , ũn)
$← Znp and sets mpk as

mpk =
(
g = g, e(g, g)α = e(ga, ga

n
) · e(g, g)α̃,U = ga · gũ, V = g−〈a,y

?〉 · gṽ
)
,

and gives it to A. Here, we implicitly set α = α̃+ an+1, u = a + ũ, and v = −〈a,y?〉+ ṽ.

Phase1 and 2. When A queries private key for (x = (x1, . . . , xn), type) ∈ Z∗p×Zn−1
p ×{ZIPE,NIPE},

B answers as follows.

• If type = ZIPE, we have 〈x,y?〉 6= 0. In this case, B first sets z0 = −y?, z1 = 0, zi = − xi
x1

e1 + ei
for i = 2, . . . , n, w0 = ṽ, w1 = 1, and wi = − xi

x1
ũ1 + ũi for i = 2, . . . , n. Then B runs

BHSim(α̃, {zi}ni=0, {wi}ni=0,x, {ga
i}i∈[2n]\{n+1})→ (Z0, {Zi}ni=1) and returns (D1, D2, {Ki}ni=2) =

(Z0, Z1, {Zi}ni=2). We claim that (D1, D2, {Ki}ni=2) is distributed the same as real private key.
At first, we check that the input to BHSim is in a valid form. To see this, it suffices to check that
〈x, z0〉 = 〈x,−y?〉 6= 0, 〈x, z1〉 = 〈x,0〉 = 0, and 〈x, zi〉 = 〈x,− xi

x1
e1 +ei〉 = −x1 · xix1 +xi = 0 for

i = 2, . . . , n. Since the input to BHSim is in a valid form, D1 = Z0 = gα̃+an+1
(g−〈a,y

?〉 · gṽ)r =
gαV r, D2 = Z1 = (g〈0,a〉+1)r = gr, and

Ki = Zi = (g
〈− xi

x1
e1+ei,a〉−

xi
x1
ũ1+ũi)r = (g

− xi
x1

(a+ũ1) · gai+ũi)r = (U
− xi
x1

1 · Ui)r

for i ∈ {2, . . . , n} where r
$← Zp as desired.

• If type = NIPE, we have 〈x,y?〉 = 0. In this case, B first sets z0 = e1, z1 = 0, zi = − xi
x1

e1 + ei
for i = 2, . . . , n, zn+1 = −y?, w0 = ũ1, w1 = 1, wi = − xi

x1
ũ1 + ũi for i = 2, . . . , n, and

wn+1 = ṽ. Then B runs BHSim(α̃, {zi}n+1
i=0 , {wi}

n+1
i=0 ,x, {ga

i}i∈[2n]\{n+1}) → (Z0, {Zi}n+1
i=1 ) and

returns (D1, D2, D3, {Ki}ni=2) = (Z0, Z1, Zn+1, {Zi}ni=2). We claim that (D1, D2, D3, {Ki}ni=2)
is distributed the same as real private key. At first, we check that the input to BHSim is in a
valid form. To see this, it suffices to check that 〈x, z0〉 = 〈x, e1〉 = x1 6= 0, 〈x, z1〉 = 〈x,0〉 = 0,
〈x, zi〉 = 〈x,− xi

x1
e1 + ei〉 = 0 for i = 2, . . . , n, and 〈x, zn+1〉 = 〈x,−y?〉 = 0 . Since the input

to BHSim is in a valid form, we have

D1 = Z0 = gα̃+an+1 · (g〈a,e1〉 · gũ1)r = gα · (ga+ũ1)r = gαU r1

where r
$← Zp. We can also check that D2 = gr and {Ki}ni=2 = {(U

− xi
x1

1 · Ui)r}ni=2 by exactly
the same computation as in the case of type = ZIPE. Finally, we have that D3 = Zn+1 =
(g−〈a,y

?〉+ṽ)r = V r as desired.

Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1) to B. B flips a

random coin β
$← {0, 1} and returns (C0, C1, C2) = (Mβ · e(gs, gα̃) · T, gs, (gs)−(〈y?,ũ〉+ṽ)) to A. Since

(gs)−(〈y?,ũ〉+ṽ) = (g〈−a,y
?〉+ṽ · g〈a+ũ,y?〉)−s = (V U

y?1
1 · · ·U

y?

n )−s

and e(gs, gα̃) · e(g, g)a
n+1s = e(g, g)sα, the ciphertext is in a valid form if T = e(g, g)a

n+1s.
Guess. Finally, A outputs its guess β′ for β. If β′ = β, A outputs 1 for its guess. Otherwise,
it outputs 0. If T = e(g, g)sa

n+1
, the above simulation is perfect and thus A has non-negligible

advantage. On the other hand, If T is a random element in GT , A’s advantage is 0. Therefore, if
A breaks our scheme with non-negligible advantage, B has a non-negligible advantage against the
n-DBDHE assumption. ut
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5 TIPE Scheme from the DBDH assumption

In this section, we propose a TIPE scheme from the DBDH assumption, which is one of the weakest
assumptions in bilinear groups. By sequentially applying the conversions from TIPE to TIBBE in
Sec. 3.1 and from TIBBE to non-monotonic KP-ABE in Sec. 3 to the scheme, we obtain a new
non-monotonic KP-ABE scheme from the DBDH assumption. We give a concrete description of the
resulting scheme in Appendix C. Compared to the Non-monotonic KP-ABE scheme from the same
assumption in [28], the public key and ciphertext size of our scheme are approximately half the size
of theirs, and the private key size is comparable.

Setup(λ, n) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

u, α
$← Zp and v = (v1, . . . , vn)

$← Znp . Then it sets U = gu and V = (V1, . . . , Vn) = gv. It
finally outputs the master public key mpk = (g, U, V1, . . . , Vn, e(g, g)α) and the master secret
key msk = α.

Encrypt(mpk,M,y) : To encrypt M ∈ GT for the vector y = (y1, . . . , yn) ∈ Znp , it picks s
$← Zp and

computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, {Ei = (UyiVi)

−s}i=1,...n

)
.

KeyGen(msk,mpk, (x, type)) : To generate a private key for
(
x = (x1, . . . , xn) ∈ Znp , type ∈ {ZIPE,

NIPE}
)
, it chooses r

$← Zp and computes sk(x,ZIPE) =
(
D1 = gα · (V x1

1 · · ·V
xn
n )r, D2 = gr

)
if type = ZIPE

sk(x,NIPE) =
(
D1 = gαU r, D2 = (V x1

1 · · ·V
xn
n )r, D3 = gr

)
if type = NIPE.

Decrypt(mpk, C,y, sk(x,type)): It computes
e(C1, D1) · e(

n∏
i=1

Exii , D2) = e(g, g)sα if type = ZIPE

e(C1, D1) ·
(
e(

n∏
i=1

Exii , D3) · e(C1, D2)
) 1
〈x,y〉

= e(g, g)sα if type = NIPE

and recovers the message by C0/e(g, g)sα = M.

The correctness of the scheme is proven in Appendix D. The following theorem addresses the security
of the scheme.

Theorem 3. The above TIPE scheme is selectively secure under the DBDH assumption.

Before proving the theorem, we recall following useful lemma that is implicit in [6]. We prove
the lemma in Appendix A.

Lemma 2. ([6]) Let G be a multiplicative group with prime order p and g be its generator. There
exists an PPT BBSim which takes as (A,B, z 6= 0, w) ∈ G2 × Z∗p × Zp where (A,B) = (ga, gb) and

outputs (gab · (Azgw)r, gr) where r
$← Zp.
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Proof. (of Theorem 3.) We construct an algorithm B that receives (g, ga, gb, gs, T ) ∈ G4 × GT and
decides if T = e(g, g)abs using the selective adversary A against our scheme.

Setup of master public key. At the outset of the game, the adversary A declares challenge vector
y? = (y?1, . . . , y

?
n) ∈ Znp . B picks ṽ = (ṽ1, . . . , ṽn)

$← Znp , sets mpk as

mpk =
(
g = g, e(g, g)α = e(ga, gb), U = ga,V = (ga)−y

? · gṽ
)
,

and gives it to A. Here, we implicitly set α = ab, u = a, and v = −ay? + ṽ.

Phase1 and 2. When A queries private key for (x = (x1, . . . , xn), type) ∈ Znp × {ZIPE,NIPE}, B
answers as follows.

• If type = ZIPE, B runs BBSim(ga, gb,−〈x,y?〉, 〈x, ṽ〉) → (D1, D2) and returns (D1, D2) as a
secret key for (x,ZIPE). Since type = ZIPE, 〈x,y?〉 6= 0 holds, the input to BBSim is in a valid

form. The output of BBSim is (D1, D2) = (gab · ((ga)−〈x,y?〉 · g〈x,ṽ〉)r, gr) for r
$← Zp. Since

D1 = gab · ((ga)−〈x,y?〉 · g〈x,ṽ〉)r = gab ·
( n∏
i=1

((ga)−y
?
i · gṽi)xi

)r
= gα(V x1

1 · · ·V
xn
n )r

holds, (D1, D2) is distributed exactly the same as real private key.

• If type = NIPE, B first runs BBSim(ga, gb, 1, 0)→ (D1, D3). Then B computes D2 = D
〈x,ṽ〉
3 and

returns (D1, D2, D3) as a secret key for (x,NIPE). Since the input to BBSim is in a valid form,

the output of BBSim is (D1, D3) = (gab · (ga)r, gr) = (gα · U r, gr) for r
$← Zp. We can see that

D2 = (gr)〈x,ṽ〉 =
(

(ga)−〈x,y
?〉 · g〈x,ṽ〉

)r
=
( n∏
i=1

(
(ga)−y

?
i · gṽi

)xi)r =
(
V x1

1 · · ·V
xn
n

)r
holds and thus (D1, D2, D3) is distributed exactly the same as real private key. In the second
equality above, we used the fact that 〈x,y?〉 = 0.

Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1) to B. B flips a

random coin β
$← {0, 1} and returns (C0, C1, {Ei}ni=1) = (Mβ · T, gs, {(gs)−ṽi}ni=1) to A. Since

(gs)−ṽi =
(

(ga)y
?
i · (ga)−y?i · gṽi

)−s
= (Uy

?
i · Vi)−s

for i = 1, . . . , n, it can be seen that the ciphertext is in a valid form if T = e(g, g)abs.

Finally, A outputs its guess β′ for β. If β′ = β, A outputs 1 for its guess. Otherwise, it outputs
0. If T = e(g, g)abs, the above simulation is perfect and thus A has non-negligible advantage. On the
other hand, if T is a random element in GT , A’s advantage is 0. Therefore, if A breaks our scheme
with non-negligible advantage, B has a non-negligible advantage against the DBDH assumption. ut

6 Unbounded TIBBE Scheme

In the TIBBE schemes derived from the TIPE schemes in Sec. 4 and 5, the number of identities per
ciphertext is bounded by a parameter n. In this section, we propose a TIBBE scheme without such
a restriction. The structure of the construction can be seen as a combination of the IBBE scheme
implicit in KP-ABE scheme in [30] and the IBR scheme in [21]. By applying the conversion in Sec. 3
to the scheme, we obtain the first non-monotonic KP-ABE scheme in the standard model that does
not restrict the number of attributes per ciphertext or the number of times the same attribute can
be used in an access formula associated with a private key. We give a concrete description of the
resulting scheme in Appendix C.
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Setup(λ) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

H,U, V,W
$← G and b, α

$← Znp . Then it sets B = gb, B′ = gb
2
, V ′ = V b. It finally outputs the

master public key mpk = (g,H,U,W,B,B′, V, V ′, e(g, g)α) and the master secret key msk = α.

Encrypt(mpk,M, S) : To encrypt M ∈ GT for the set of identities S = (ID1, . . . , IDk) ⊂ Zp, it chooses

s, t1, . . . , tk
$← Zp and random s1, . . . , sk ∈ Zp such that s1 + . . . + sk = s and computes the

ciphertext as

C =

C0 = M · e(g, g)αs, C1 = gs,

{
Ci,1 = W−s(U IDiH)−ti , Ci,2 = gti

C ′i,1 = (B′IDiV ′)−si , C ′i,2 = Bsi

}
i∈[k]

 .

KeyGen(msk,mpk, (ID, type)) : To generate a private key for ID ∈ Zp, it chooses r
$← Zp and computes

the private key as sk(ID,IBBE) =
(
D1 = gα ·W r, D2 = (U IDH)r, D3 = gr

)
if type = IBBE

sk(ID,IBR) =
(
D1 = gα · (B′)r, D2 = (BIDV )r, D3 = gr

)
if type = IBR.

Decrypt(mpk, C, S, sk(ID,type)): We assume that in the case of type = IBBE, ID is contained in ID ∈
S = {ID1, . . . , IDk}, so that decryption is possible. Therefore, there is an τ ∈ [k] such that
ID = IDτ . It computes

e(C1, D1) · e(Cτ,1, D3) · e(Cτ,2, D2) = e(g, g)sα if type = IBBE

e(C1, D1) ·
k∏
i=1

(
e(C ′i,1, D3) · e(C ′i,2, D2)

)1/(IDi−ID)
= e(g, g)sα if type = IBR

and recovers the message by C0/e(g, g)sα = M.

The correctness of the scheme is proven in Appendix D. We can prove selective security of the scheme
under the new assumption that we call n-(A) assumption which is secure in the generic group model.
The definition of the assumption and the proof appear in Appendix E.

7 Unbounded Non-monotonic CP-ABE Scheme

In this section, we propose the first non-monotonic CP-ABE scheme that does not restrict the size of
the attributes set or the number of times the same attribute can be used in an access formula. Our
starting point for the construction of the scheme is the unbounded (monotonic) CP-ABE scheme
in [30]. To support the non-monotonic access structure, we first construct a suitable revocation
mechanism, which can be seen as a ciphertext-policy version of the IBR scheme in [21]. Then, we
combine this with the CP-ABE scheme in [30] to obtain our new scheme. Because some parameters
are shared between the two schemes, the public key of our scheme is only one group element longer
than that of the scheme in [30], while our scheme supports a more general access structure.

Setup(λ) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

b, α
$← Zp and H,U, V,W

$← G. Then it sets V ′ = U b and outputs the master public key
mpk = (g,H,U, V, V ′,W, e(g, g)α) and the master secret key msk = (α, b).
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KeyGen(msk,mpk, ω) : To generate a private key for a set of attributes ω = {ω1, . . . ωk} ⊂ Zp, it

chooses r, r1, . . . , rk
$← Zp and random r′1, . . . , r

′
k ∈ Zp such that r′1 + . . . + r′k = r. It then

outputs the private key as

skω =

D1 = gαW r, D2 = gr,

{
Ki,1 = V −r(UωiH)ri , Ki,2 = gri

K ′i,1 = (U bωiHb)r
′
i , K ′i,2 = gbr

′
i

}
i∈[k]

 .

Encrypt(mpk,M, Ã) : The input to the algorithm is the master public key mpk, the message M ∈ GT

and a non-monotonic access structure Ã such that we have Ã = NM(A) for some monotonic
access structure A over a set P of attributes and associated with a linear secret sharing scheme
(L, π). Let L be an `×m matrix. First, it picks random s = (s, s2, . . . , sm)

$← Zmp and computes
share of s for π(i) by λi = 〈Li ·s〉 for i = 1, . . . , `. It then computes C0 = M ·e(g, g)α·s, C1 = gs.
It also computes (Ci,1, Ci,2, Ci,3) for every i = 1, . . . , ` as follows.{

Ci,1 = W λiV ti , Ci,2 = (UxiH)−ti , Ci,3 = gti if π(i) = xi

Ci,1 = W λi(V ′)ti , Ci,2 = (UxiH)−ti , Ci,3 = gti if π(i) = x′i

where ti
$← Zp. The final output is C = (C0, C1, {Ci,1, Ci,2, Ci,3}i∈[`]).

Decrypt(mpk, C, ω, skÃ) : Assume first that the policy Ã is satisfied by the attribute set ω, so that

decryption is possible. Since Ã = NM(A) for some access structure A associated with a linear
secret sharing scheme (L, π), we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}. Since ω′ is
authorized in A, the receiver can efficiently compute reconstruction coefficients {(i, µi)}i∈I =
ReconL,π(ω′) such that

∑
i∈I µiλi = s. It parses C = (C0, C1, {Ci,1, Ci,2, Ci,3}i∈[`]), skω =(

D1, D2, {Ki,1,Ki,2,K
′
i,1,K

′
i,2}i∈[k]

)
and computes e(g, g)r·λi for each i ∈ I as

e(Ci,1, D2) · e(Ci,2,Kτ,2) · e(Ci,3,Kτ,1)→ e(g,W )rλi if π(i) = xi

e(Ci,1, D2) ·
∏
j∈[k]

(
e(Ci,3,K

′
j,1) · e(Ci,2,K ′j,2)

) 1
xi−ωj = e(g,W )rλi if π(i) = x′i

where τ is the index such that ωτ = xi. Such τ exists if i ∈ I and π(i) is non-negated attribute.

Next, it computes e(C1, D1) ·
∏
i∈I
(
e(g,W )rλi

)−µi = e(gs, gα)e(g,W )sre(g,W )−r
∑
i∈I µiλi =

e(g, g)α·s. Finally, it recovers the message by C0/e(g, g)sα = M.

The correctness of the scheme is proven in Appendix D. We can prove selective security of the scheme
under the new assumption that we call n-(B) assumption which is secure in the generic group model.
The definition of the assumption and the proof appear in Appendix F.

8 Comparisons

Here, we compare our schemes with existing schemes. In Table 1, we compare non-monotonic KP-
ABE schemes with compact ciphertexts. In Table 2, we compare non-monotonic KP-ABE schemes
from the DBDH assumption. In Table 3 (resp., 4), we compare the KP (resp., CP)-ABE schemes
which allow unbounded size for set of attributes associated with ciphertext (resp., private key). In
these tables, n̄ = |attribute set| = |ω|, n is the maximum bound of n̄ (i.e., |ω| < n), ϕ is the number
of allowed repetition of the same attributes which appear in a policy, and t1 and t2 are the number of
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non-negated and negated attributes that apper in an access policy. We also let t = t1 +t2. The terms
“reg-exp.” and “mult-exp.” refer to regular and multi-exponentiation in G and GT . The Pippenger
algorithm [29] can efficiently compute the latter. The term “pair” refers to pairing computation.
The columun “unbounded set” in Table 3 (resp., 4) states whether unbounded attribute set size is
allowed for ciphertext (resp., for key) or not. The columun “unbounded multi-use” states whether
unboudned reuse of the same policy for a key (resp., ciphertext) is allowed or not.

In Table 2, we only highlight the encryption cost. As for the efficiency of the decryption algorithm,
our scheme in Sec. 5 is somewhat slower than [28], because of the additional exponentiations. Note
that the schemes in [27] achieve adaptive security, whereas all the other schemes achieve only selective
security.

Table 1: Comparison of non-monotonic KP-ABE with compact ciphertexts

Schemes Master public Ciphertext Private Computational cost for Assumption
key size overhead key size encryption decryption

(|G|, |GT |) |G| |G| (reg,mult)-exp (pair,mult-exp)

ALP [3] (2n + 2, 1) 3 (n + 1)t (2, 2) (3, 3∗) n-DBDHE
Ours in Sec. 4. (n + 2, 1) 2 (n + 1)t + t2 (2, 1) (2, 2∗) n-DBDHE

∗ These multi-exponentiation is heavier than that needed in the encryption algorithm.

Table 2: Comparison of non-monotonic KP-ABE schemes from the DBDH

Schemes Master public key size Ciphertext overhead Private key size Encryption cost
(|G|, |GT |) |G| |G| reg-exp. mult-exp.

OSW [28] (2n + 2, 0) 2n− 1 2t1 + 3t2 2 2n‡

Ours in Sec. 5 (n + 2, 1) n + 1 2t1 + 3t2 2 n

† For simplicity, we compare these schemes in a most basic form. However, we can modify the schemes so that the
ciphertext size only depends on n̄ instead of n, which might be preferable in many case, by the technique in [28].
As a result, master public key and the private key becomes larger, whereas it makes ciphertext size smaller and
encryption/decryption cost lower.
‡ These multi-exponentiations are heavier than that of our scheme in Sec. 5.

Table 3: Comparison of KP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption
structure

overhead (|G|) unbounded
size(G)

unbounded
set multi-use

LSW[21] non-monotone 3n̄+1 Yes 2t + t2 Yes RO+n-MEBDH
OT[27] non-monotone 14n̄ϕ + 5 Yes 14t + 5 No DLIN
RW[30] monotone 2n̄ + 1 Yes 3t1 Yes n-1assumption
LW[23] monotone 3n̄ + 1 Yes 4t1 Yes assumption 1-4
Ours in Sec. 6 non-monotone 4n̄ + 1 Yes 3t Yes n-(A) assumption

§ LW scheme [23] is constructed in composite order group.

Table 4: Comparison of CP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption
structure

overhead (|G|) unbounded
size(G)

unbounded
multi-use set

OT[27] non-monotone 14t + 5 No 14n̄ϕ + 5 Yes DLIN
RW[30] monotone 3t1 + 1 Yes 2n̄ + 2 Yes n-2 assumption
Ours in Sec. 7 non-monotone 3t + 1 Yes 4n̄ + 2 Yes n-(B) assumption
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A Proof of Lemmas

Proof. (of Lemma 1.) We define h′ as h′ = (hn, . . . , h1). It holds that for all z ∈ Znp , the coefficient
of an+1 in 〈a,h′〉〈a, z〉 seen as a polynomial in a is 〈h, z〉.

BHSim samples r′
$← Zp and implicitly sets r = r′ − 〈a,h

′〉
〈h,z0〉 . r is distributed uniformly random

over Zp as desired. In the following, we show that it is possible to efficiently compute (ga
n+1+α′ ·

(g〈z0,a〉+w0)r, {(g〈zi,a〉+wi)r}mi=1).
We first show that (g〈zi,a〉+wi)r can be computed efficiently for i ∈ [m]. To see this, it is enough

to show that

r(〈zi,a〉+ wi) = r′〈a, zi〉 −
〈a,h′〉〈a, zi〉
〈h, z0〉

+ wir
′ − wi〈a,h′〉

〈h, z0〉
is a polynomial in a with degree at most 2n and the coefficient of an+1 is 0. It is straightforward to
check that the degree of the polynomial is at most 2n. We can also see that the coefficient of an+1

is − 〈h,zi〉〈h,z0〉 = 0. We next show that ga
n+1+α̃ · (g〈z0,a〉+w0)r can be computed efficiently. To see this, it

is enough to show that

an+1 + α̃+ r(〈z0,a〉+ w0) = an+1 + α̃+ r′〈z0,a〉 −
〈a,h′〉〈a, z0〉
〈h, z0〉

+ w0r
′ − w0〈a,h′〉

〈h, z0〉

is a polynomial in a with degree at most 2n and the coefficient of an+1 is 0. It is straightforward to
check that the degree of the polynomial is at most 2n. We can also see that the coefficient of an+1

is 1− 〈h,z0〉〈h,z0〉 = 0. ut

Proof. (of Lemma 2.) We define BBSim as follows: It chooses r′
$← Zp, and outputs (Azr

′
B−

w
z gwr

′
, B−

1
z gr

′
).

We claim that the output is correctly distributed. To see this, let r = r′ − b
z . We can see that

B−
1
z gr

′
= gr and

Azr
′ ·B−

w
z gwr

′
= gab+(az+w)·(− b

z
+r′) = gab · (Azgw)r

holds as desired. ut

B Proof of Theorem 1

Proof. We construct an adversary B against selective security of TIBBE ΠIBBE scheme assuming that
an adversary A against selective security of the KP-ABE system has non-negligible advantage.
Setup of master public key. At the outset of the game, the adversary A declares attribute set
ω? that it intends to attack. Then, the TIBBE adverasary B announces S? = ω? as its challenge set.
The master public key mpk is generated by the challenger and given to B. B gives mpk to A as the
master public key of the KP-ABE scheme.

Phase1 and 2. Throughout the game, A may ask for a private key of any access structure Ã such
that ω? 6∈ Ã. By assumption, Ã = NM(A) for some monotonic access structure A, defined over a
set of parties, associated with a liner secret sharing scheme Π = (L, π). Let L be an ` ×m matrix.
Since ω? 6∈ Ã = NM(A), we have ω′ = N(ω) 6∈ A. Therefore 1 = (1, 0, . . . , 0) does not lie in the row
space of Lω′ , which is the submatrix of L formed by rows corresponding to attributes in ω′. Hence,
due to the proposition 11 in [16], we have that there must exists an efficiently computable vector

z ∈ Zmp such that 〈1, z〉 = 1 and Lω′ · z> = 0. Now B picks w2, . . . , wm
$← Zp and implicitly defines

v = (v1, . . . , vm) = αz + w where w = (0, w2, . . . , wm). Note that we have that v1 = α and that
v2, . . . , vm ∈ Zp are uniformly distributed, as required in Definition 2. Next B implicitly defines each
share of α as λi = 〈Li,v〉, corresponding to a party named π(i) = x̆i ∈ P where xi is the underlying
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attribute (x̆i being primed or unprimed). Although B cannot compute λi = 〈Li,v〉 for all i ∈ [`], it
can compute Di = (d′i,1, d

′
i,2) for all i ∈ [`] as follows.

• For non-negated parties π(i) = xi, B proceeds as follows.

– If xi ∈ ω?, λi = 〈Li,v〉 = 〈Li,w〉 holds since 〈Li, z〉 = 0 and thus λi can be efficiently

computed by B. In this case, B picks ri
$← Zp and computes

Di = (d′i,1, d
′
i,2) =

(
gλi ·

(
f IBBE1 (xi)

)ri , (f IBBE2 (xi)
)ri).

– If xi 6∈ ω?, B is allowed to query its challenger to extract (d1, d2)← KeyGen′(msk, (xi, IBBE)).
Also, we have λi = 〈Li,v〉 = µ1 ·α+µ2 where the coefficients µ1 = 〈Li, z〉 and µ2 = 〈Li,w〉
are both efficiently computable. B can compute well formed Di = (d′i,1, d

′
i,2) by setting

Di = (dµ11 · g
µ2 ·

(
f IBBE1 (xi)

)r̃i , dµ12 ·
(
f IBBE2 (xi)

)r̃i)
where r̃i

$← Zp.

• For negated parties π(i) = x′i, B proceeds as follows.

– If xi ∈ ω?, B is allowed to query its challenger to extract (d1, d2)← KeyGen′(msk, (xi, IBR)).
Also, we have λi = 〈Li,v〉 = µ1 ·α+µ2 where the coefficients µ1 = 〈Li, z〉 and µ2 = 〈Li,w〉
are both efficiently computable. B can compute well formed Di = (d′i,1, d

′
i,2) by setting

Di = (dµ11 · g
µ2 ·

(
f IBR1 (xi)

)r̃i , dµ12 ·
(
f IBR2 (xi)

)r̃i)
where r̃i

$← Zp.
– If xi 6∈ ω?, λi = 〈Li,v〉 = 〈Li,w〉 holds since 〈Li, z〉 = 0 and thus λi can be efficiently

computed by B. In this case, B picks ri
$← Zp and computes

Di = (d′i,1, d
′
i,2) =

(
gλi ·

(
f IBR1 (xi)

)ri , (f IBR2 (xi)
)ri).

Finally, B returns private key skÃ = {Di}`i=1 to A.
Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1) to B. Then B
declares the same message for its challenger. B is given a challenge ciphertext and relays it to A.
Guess. Finally, A outputs its guess β′ for β. Then B outputs β′ as its guess. It is easy to see that
B is successful whenever A is so, and thus B has the same advantage as A. ut

C Concrete Descriptions of Our KP-ABE Schemes

Here, we give concrete descriptions of our KP-ABE schemes obtained by applying our conversion in
section 3 to our TIPE schemes in Sec. 4, 5 and TIBBE scheme in Sec. 6.

C.1 The KP-ABE Scheme Derived from the TIPE Scheme in Section 4

We can derive a TIBBE scheme from the TIPE scheme proposed in Sec. 4 as we explained in Sec. 3.1.
Then we can apply the conversion in Sec. 3 to this TIBBE, by setting (f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F ) as

f IBBE1 (ID) = V, f IBBE2 (ID) =
(
g, {U

− xi
x1

1 Ui}i=2...,n

)
,
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f IBR1 (ID) = U1, f IBR2 (ID) =
(
g, V, {U

− xi
x1

1 Ui}i=2,...,n

)
F (ID1, . . . , IDk) =

(
gs, (V Uy11 · · ·U

yn
n )−s

)
where x = (x1, . . . , xn) = (1, ID, . . . , IDn−1) and y = (y1, . . . , yn) is a vector whose first k + 1
coordinates are the coefficients of the polynomial P [Z] =

∑k+1
i=1 yiZ

i−1 =
∏
j∈[k](Z − IDj). As a

result, we obtain a new non-monotonic KP-ABE scheme with very short ciphertext. We give the
concrete description of the resulting scheme below.

Setup(λ, n) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

v, α
$← Zp and u = (u1, . . . , un)

$← Znp . Then it sets V = gv and U = (U1, . . . , Un) = gu. It
finally outputs the master public key mpk = (g, U1, . . . , Un, V, e(g, g)α) and the master secret
key msk = α.

KeyGen(msk,mpk, Ã) : The input to the algorithm is the master secret key msk, the master public
key mpk, and a non-monotonic access structure Ã such that we have Ã = NM(A) for some
monotonic access structure A over a set P of attributes and associated with a linear secret
sharing scheme (L, π). Let L be an ` ×m matrix. First, it generates shares of α with (L, π).

Namely, it chooses a vector s = (α, s2, . . . , sm) where s2, . . . , sm
$← Zp and calculates λi =

〈Li, s〉 for each i = 1, . . . , `. The party corresponds to share λi is π(i) ∈ P, where π(i) = xi
(i.e., non-negated) or π(i) = x′i (negated). Then for each i = 1, . . . , `, it picks ri

$← Zp and

defines ρi = (ρi,1, . . . , ρi,n) = (1, xi, x
2
i , . . . , x

n−1
i ). That is ρi,j = xj−1

i . It computes Di for each
i = 1, . . . , ` as follows.

• If π(i) = xi, it computes

Di = (D
(1)
i,1 , D

(1)
i,2 , {K

(1)
i,j }

n
j=2) =

(
gλi · V ri , gri , {

(
U
−
ρi,j
ρi,1

1 · Uj
)ri}nj=2

)
.

• If π(i) = x′i where xi is underlying attribute, it computes

Di = (D
(2)
i,1 , D

(2)
i,2 , D

(2)
i,3 , {K

(2)
i,j }

n
j=2) =

(
gλi · U ri1 , g

ri , V ri , {(U
−
ρi,j
ρi,1

1 Uj)
ri}nj=2

)
.

It then outputs the private key as skÃ = {Di}`i=1

Encrypt(mpk,M, ω) : To encrypt M ∈ GT for the set of attributes ω (with |ω| < n), it first defines
y = (y1, . . . , yn) as the vector whose first |ω|+1 coordinates are the coefficients of the polynomial

Pω[Z] =
∑|ω|+1

i=1 yiZ
i−1 =

∏
j∈ω(Z − j). If |ω|+ 1 < n, set yj = 0 for |ω|+ 2 ≤ j ≤ n. Then it

picks s
$← Zp and computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, C2 = (V Uy11 · · ·U

yn
n )−s

)
.

Decrypt(mpk, C, ω, skÃ): Assume first that the policy Ã is satisfied by the attribute set ω, so that

decryption is possible. Since Ã = NM(A) for some access structure A associated with a
linear secret sharing scheme (L, π), we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute reconstruction coefficients
{(i, µi)}i∈I = ReconL,π(ω′) such that

∑
i∈I µiλi = α (although the shares are not known to

the receiver). Let y = (y1, . . . , yn) be the vector containing the coefficients of the polynomial
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Pω[Z] =
∏
j∈ω(Z − j) =

∑|ω|+1
i=1 yiZ

i−1. Then, it parses C = (C0, C1, C2), skÃ = {Di}`i=1 and

retrieves e(g, g)λis for each i ∈ I as follows.
e(C1, D

(1)
i,1 ·

n∏
j=2

K
(1)yj
i,j ) · e(C2, D

(1)
i,2 ) = e(g, g)sλi if π(i) = xi

e(C1, D
(2)
i,1 ) ·

(
e(C1, D

(2)
i,3

n∏
j=2

K
(2)yj
i,j ) · e(C2, D

(2)
i,2 )
) ρi,1
〈ρi,y〉 = e(g, g)sλi if π(i) = x′i.

Finally, it recovers the message by M = C0 ·
∏
i∈I
(
e(g, g)λis

)−µi .
If we split I into I0∪I1, where I0 and I1 correspond to unprimed and primed attributes, respectively,
decryption can more efficiently compute

e
(
C1,

∏
i∈I0

(
D

(1)µi
i,1 K

(1)µi
i

)
·
∏
i∈I1

D
(2)µi
i,1 ·

(
D

(2)
i,3 ·K

(2)
i

)µi·ρi,1
〈ρi,y〉

)
·e
(
C2,

∏
i∈I0

D
(1)µi
i,2 ·

∏
i∈I1

D
(2)
i,2

µi·ρi,1
〈ρi,y〉

)
= e(g, g)sα

where K
(1)
i =

∏n
j=2K

(1)yj
i,j ,K

(2)
i =

∏n
j=2K

(2)yj
i,j in the above. Thus, we need only two pairing

evaluations in the decryption algorithm.

C.2 The KP-ABE Scheme Derived from the TIPE Scheme in Section 5

We can derive a TIBBE scheme from the TIPE scheme proposed in Sec. 5 as we explained in Sec. 3.1.
Then we can apply the conversion in Sec. 3 to this TIBBE, by setting (f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F ) as

f IBBE1 (ID) = V x1
1 · · ·V

xn
n , f IBBE2 (ID) = g,

f IBR1 (ID) = U, f IBR2 (ID) =
(
V x1

1 · · ·V
xn
n , g

)
F (ID1, . . . , IDk) =

(
gs, {(UyiVi)−s}i∈[n]

)
where x = (x1, . . . , xn) = (1, ID, . . . , IDn−1) and y = (y1, . . . , yn) is a vector whose first k + 1

coordinates are the coefficients of the polynomial P [Z] =
∑k+1

i=1 yiZ
i−1 =

∏
j∈[k](Z − IDj). As a

result, we obtain a new non-monotonic KP-ABE scheme from the DBDH assumption. We give the
concrete description of the resulting scheme below.

Setup(λ, n) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

u, α
$← Zp and v = (v1, . . . , vn)

$← Znp . Then it sets U = gu and V = (V1, . . . , Vn) = gv. It
finally outputs the master public key mpk = (g, U, V1, . . . , Vn, e(g, g)α) and the master secret
key msk = α.

Encrypt(mpk,M, ω) : To encrypt M ∈ GT for the set of attributes ω (with |ω| < n), it first defines
y = (y1, . . . , yn) as the vector whose first |ω|+1 coordinates are the coefficients of the polynomial

Pω[Z] =
∑|ω|+1

i=1 yiZ
i−1 =

∏
j∈ω(Z − j). If |ω|+ 1 < n, set yj = 0 for |ω|+ 2 ≤ j ≤ n. Then it

picks s
$← Zp and computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, {Ei = (UyiVi)

−s}i=1,...n

)
.
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KeyGen(msk,mpk, Ã) : The input to the algorithm is the master secret key msk, the master public
key mpk, and a non-monotonic access structure Ã such that we have Ã = NM(A) for some
monotonic access structure A over a set P of attributes and associated with a linear secret
sharing scheme (L, π). Let L be an ` ×m matrix. First, it generates shares of {λi}i∈[`] of α.
The party corresponds to share λi is π(i) ∈ P, where π(i) = xi (i.e., non-negated) or π(i) = x′i
(negated). Then for each i = 1, . . . , `, it picks ri

$← Zp and defines ρi = (ρi,1, . . . , ρi,n) =
(1, xi, x

2
i , . . . , x

n−1
i ). It computes Di for each i = 1, . . . , ` as follows.

Di =


(
D

(1)
i,1 = gλi · (V ρi,1

1 · · ·V ρi,n
n )ri , D

(1)
i,2 = gri

)
if π(i) = xi(

D
(2)
i,1 = gλiU ri , D

(2)
i,2 = (V

ρi,1
1 · · ·V ρi,n

n )ri , D
(2)
i,3 = gri

)
if π(i) = x′i.

It then outputs the private key as skÃ = {Di}`i=1

Decrypt(mpk, C, ω, skÃ): Assume first that the policy Ã is satisfied by the attribute set ω, so that

decryption is possible. Since Ã = NM(A) for some access structure A associated with a
linear secret sharing scheme (L, π), we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute reconstruction coefficients
{(i, µi)}i∈I = ReconL,π(ω′) such that

∑
i∈I µiλi = α. Let y = (y1, . . . , yn) be the vector

containing the coefficients of the polynomial Pω[Z] =
∏
j∈ω(Z − j) =

∑|ω|+1
i=1 yiZ

i−1. Then, it

parses C = (C0, C1, {Ei}ni=1), skÃ = {Di}`i=1 and retrieve e(g, g)λis for each i ∈ I as follows.
e(C1, D

(1)
i,1 ) · e(

n∏
j=1

E
ρi,j
j , D

(1)
i,2 ) = e(g, g)sλi if π(i) = xi

e(C1, D
(2)
i,1 )
(
e(

n∏
j=1

E
ρi,j
j , D

(2)
i,3 ) · e(C1, D

(2)
i,2 )
) 1
〈ρi,y〉 = e(g, g)sλi if π(i) = x′i.

Finally, it recovers the message by M = C0 ·
∏
i∈I
(
e(g, g)λis

)−µi .
C.3 The KP-ABE scheme Derived from the TIBBE scheme in Section 6

We can apply the conversion in Sec. 3 to a TIBBE scheme in Sec. 6, by setting (f IBBE1 , f IBBE2 , f IBR1 , f IBR2 , F )
as

f IBBE1 (ID) = W, f IBBE2 (ID) = (U IDH, g)

f IBR1 (ID) = B′, f IBR2 (ID) = (BIDV, g)

and

F (s, ID1, . . . , IDk) =

C1 = gs,

{
Ci,1 = W−s(U IDiH)−ti , Ci,2 = gti

C ′i,1 = (B′IDiV ′)−si , C ′i,2 = Bsi

}
i∈[k]

 .

where t1 . . . , tk
$← Zp and s1, . . . , sk are random elements in Zp such that s1 + · · · + sk = s. As a

result, we obtain a first non-monotonic unbounded KP-ABE scheme in the standard model. We give
the concrete description of the resulting scheme below.
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Setup(λ) : It chooses bilinear groups (G,GT ) of prime order p > 2λ with g
$← G. It also picks

H,U, V,W
$← G and b, α

$← Znp . Then it sets B = gb, B′ = gb
2
, V ′ = V b. It finally outputs the

master public key mpk = (g,H,U,W,B,B′, V, V ′, e(g, g)α) and the master secret key msk = α.

Encrypt(mpk,M, ω) : To encrypt M ∈ GT for the set of attributes ω = (ω1, . . . , ωk), it chooses

s, t1, . . . , tk
$← Zp and random s1, . . . , sk such that s1 + . . .+sk = s and computes the ciphertext

as

C =

C0 = M · e(g, g)αs, C1 = gs,

{
Ci,1 = W−s(UωiH)−ti , Ci,2 = gti

C ′i,1 = (B′ωiV ′)−si , C ′i,2 = Bsi

}
i∈[k]

 .

KeyGen(msk,mpk, Ã) : The input to the algorithm is the master secret key msk, the master public
key mpk, and a non-monotonic access structure Ã such that we have Ã = NM(A) for some
monotonic access structure A over a set P of attributes and associated with a linear secret
sharing scheme (L, π). Let L be an ` ×m matrix. First, it generates shares of {λi}i∈[`] of α.
The party corresponds to share λi is π(i) ∈ P, where π(i) = xi (i.e., non-negated) or π(i) = x′i
(negated). Then for each i = 1, . . . , `, it picks ri

$← Zp and computes Di as follows.

Di =


(
D

(1)
i,1 = gλi ·W ri , D

(1)
i,2 = (UxiH)ri , D

(1)
i,3 = gri

)
if π(i) = xi(

D
(2)
i,1 = gλi · (B′)ri , D(2)

i,2 = (BxiV )ri , D
(2)
i,3 = gri

)
if π(i) = x′i.

It then outputs the private key as skÃ = {Di}`i=1

Decrypt(mpk, C, ω, skÃ): Assume first that the policy Ã is satisfied by the attribute set ω, so that

decryption is possible. Since Ã = NM(A) for some access structure A associated with a
linear secret sharing scheme (L, π), we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute reconstruction coefficients
{(i, µi)}i∈I = ReconL,π(ω′) such that

∑
i∈I µiλi = α.

Then, it parses C = (C0, C1, {Ei}ni=1), skÃ = {Di}`i=1 and retrieves e(g, g)λis for each i ∈ I as
follows.

e(C1, D
(1)
i,1 ) · e(Cτ,1, D(1)

i,3 ) · e(Cτ,2, D(1)
i,2 ) = e(g, g)sλi if π(i) = xi

e(C1, D
(2)
i,1 ) ·

k∏
j=1

(
e(C ′j,1, D

(2)
i,3 ) · e(C ′j,2, D

(2)
i,2 )
)1/(ωj−xi) = e(g, g)sλi if π(i) = x′i.

In the above, τ is a index such that ωτ = xi = π(i). Such τ exists if i ∈ I and π(i) is

non-negated attribute. Finally, it recovers the message by M = C0 ·
∏
i∈I
(
e(g, g)λis

)−µi .
D Proof of Correctness

Correctness of the Scheme in Section 4. In the case of 〈x,y〉 = 0 and type = ZIPE, we have

D1 ·
n∏
i=2

Kyi
i = gαV r ·

(
U

x1y1−〈x,y〉
x1

1 ·
n∏
i=2

Uyii
)r

= gα · (V
n∏
i=1

Uyii )r

and thus

e(C1, D1 ·
n∏
i=2

Kyi
i ) · e(C2, D2) = e(gs, gα · (V ·

n∏
i=1

Uyii )r) · e((V ·
n∏
i=1

Uyii )−s, gr) = e(g, g)sα.
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In the case of 〈x,y〉 6= 0 and type = NIPE, we have

D1 ·
n∏
i=2

Kyi
i = V r ·

(
U

x1y1−〈x,y〉
x1

1 ·
n∏
i=2

Uyii
)r

= U
−r〈x,y〉
x1

1 · (V
n∏
i=1

Uyii )r

and thus

e(C1, D1) ·
(
e(C1, D3

n∏
i=2

Kyi
i ) · e(C2, D2)

) x1
〈x,y〉

= e(gs, gα · U r1 ) ·
(
e
(
gs, U

−r〈x,y〉
x1

1 · (V ·
n∏
i=1

Uyii )r
)
· e
(
(V ·

n∏
i=1

Uyii )−s, gr
)) x1
〈x,y〉

= e(g, g)α·s · e(g, U1)sr · e(g, U1)−sr = e(g, g)α·s.

Correctness of the Scheme in Section 5. We first observe that
∏n
i=1E

xi
i =

(
U 〈x,y〉·

∏n
i=1 V

xi
i

)−s
.

In the case of 〈x,y〉 = 0 and type = ZIPE, we have

e(C1, D1) · e(
n∏
i=1

Exii , D2) = e
(
gs, gα(

n∏
i=1

V xi
i )r

)
· e
(
(

n∏
i=1

V xi
i )−s, gr

)
= e(g, g)sα.

In the case of 〈x,y〉 6= 0 and type = NIPE, we have

e(C1, D1)
(
e(

n∏
i=1

Exii , D3) · e(C1, D2)
) 1
〈x,y〉

= e
(
gs, gα · U r

)
·
(
e
(
(U 〈x,y〉 ·

n∏
i=1

V xi
i )−s, gr

)
· e(gs,

n∏
i=1

V xi
i )
) 1
〈x,y〉

= e(g, g)sα · e(g, U)sr · e(g, U)−sr = e(g, g)sα.

Correctness of the Scheme in Section 6. In the case of ID ∈ S and type = IBBE, we have

e(C1, D1) · e(Cτ,1, D3) · e(Cτ,2, D2) = e(gs, gαW r) · e(W−s(U IDτH)−tτ , gr) · e(gtτ , (U IDτH)r)

= e(g, g)sα · e(g,W )sr · e(g,W )−sr = e(g, g)sα.

In the case of ID 6∈ S and type = IBR, we have

e(C1, D1) ·
k∏
i=1

(
e(C ′i,1, D3) · e(C ′i,2, D2)

)1/(ID−IDi)
= e(gs, gα · gb2r)

∏
i∈[k]

(
e
(
(gb

2IDiV b)−si , gr
)
· e
(
gbsi , (gbIDV )r

))1/(IDi−ID)

= e(g, g)sα · e(g, g)sb
2r ·

∏
i∈[k]

e(g, g)−sib
2r = e(g, g)sα.

Correctness of the Scheme in Section 7. It suffices to show that the decryption algorithm
correctly recovers e(g,W )rλi for each row i ∈ I. In the case of π(i) = xi, we have
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e(Ci,1, D2) · e(Ci,2,Kτ,2) · e(Ci,3,Kτ,1) = e(W λiV ti , gr) · e((UxiH)−ti , grτ ) · e(gti , V −r · (UωτH)−rτ )

= e(g,W )rλτ · e(g, V )rti · e(g, V )−rti

= e(g,W )rλτ .

In the case of π(i) = x′i, we have

e(Ci,1, D2) ·
∏
j∈[k]

(
e(Ci,3,K

′
j,1) · e(Ci,2,K ′j,2)

) 1
xi−ωj

= e(W λi · U bti , gr) ·
∏
j∈[k]

(
e
(
(UxiH)−ti , gbr

′
j
)
· e
(
gti , (U bωjHb)r

′
j
)) 1

xi−ωj

= e(g,W )rλi · e(g, U)rbti ·
∏
j∈[k]

e(g, U)−r
′
jbti = e(g,W )rλi .

E Proof of Security of Our TIBBE Scheme in Section 6

In this section, we first introduce a new assumption that we call the n-(A) assumption. Then we
show the assumption to hold in the generic bilinear group model. Finally, we show that our scheme
in Sec. 6 is secure under the n-(A) assumption.

E.1 Definition of the n-(A) Assumption

n-(A) Assumption. Let x, y, z, a1, . . . , an, b1, . . . , bn
$← Zp and g

$← G∗. We define Ψ as Ψ =

g, gx, gy, gz

g(xz)2

gai , gxzai , gxz/ai , gx
2zai , gy/a

2
i , gy

2/a2i ∀i ∈ [n]

gxzai/aj , gyai/a
2
j , gxyzai/a

2
j , g(xz)2ai/aj ∀(i, j) ∈ [n, n], i 6= j

gbi , gzbi , gbibj , gxy/b
2
i ∀(i, j) ∈ [n, n]

gzbibj , gxybj/b
2
i , gxybibj/b

2
k , gxyb

2
i /b

2
j ∀(i, j, k) ∈ [n, n, n], i 6= j.

We say that an adversary A breaks n-(A) assumption on (G,GT ) if A runs in polynomial time

and 1
2 |Pr[A(Ψ, e(g, g)xyz)→ 0]− Pr[A(Ψ, T )→ 0]| is negligible where T

$← GT .
One can think that terms in Ψ comes from the q-MEDDH assumption in [21] and the q-1 ssump-

tion in [30].

E.2 Generic Security of the n-(A) Assumption

Here, we briefly show that the assumption to hold in the generic group model. Actually, the assump-
tion can be seen as an instance of GT -monomial assumption introduced in [30]. Thus, by the corollary
D.4 in [30], it suffices to show that pairing result of any two elements from Ψ is not (symbolically)
equivalent to e(g, g)xyz. We can divide Ψ into theree parts as

Ψ1 = {g, gx, gy, gz},
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Ψ2 =


g(xz)2

gai , gxzai , gxz/ai , gx
2zai , gy/a

2
i , gy

2/a2i ∀i ∈ [n]

gxzai/aj , gyai/a
2
j , gxyzai/a

2
j , g(xz)2ai/aj ∀(i, j) ∈ [n, n], i 6= j}

 ,

Ψ3 =

{
gbi , gzbi , gbibj , gxy/b

2
i ∀(i, j) ∈ [n, n]

gzbibj , gxybj/b
2
i , gxybibj/b

2
k , gxyb

2
i /b

2
j ∀(i, j, k) ∈ [n, n, n], i 6= j

}
.

One can think that the terms in Ψ1 and Ψ2 comes from the q-1 ssumption in [30] while Ψ1 and Ψ3

comes from the q-MEDDH assumption in [21]. We can show that the pairing computation of any
two elements within Ψ1 ∪ Ψ2 (resp., Ψ1 ∪ Ψ3) does not give rise to the element e(g, g)xyz as in [30]
(resp., [21]). It is easy to see that the paring computation of any two elements within Ψ2 ∪Ψ3 does
not give rise to the element either, since ai and bj in the exponent never cancel out. Therefore, the
assumption is secure in the generic group model.

E.3 Proof of Security for Our TIBBE Scheme in Section 6

Theorem 4. Suppose the n-(A) assumption holds. Then, no PPT adversary can break the selective
security of our scheme with non-negligible advantage with a challenge set of size k ≤ n.

Our proof proceeds similarly to that of the IBR scheme in [21] and that of KP-ABE scheme in
[30].

Proof. We construct an algorithm B that receives problem instance of the n-(A) assumption and
decides if T = e(g, g)xyz using the selective adversary A against our scheme.
Setup of master public key. At the outset of the game, the adversary A declares challenge set
S? = (ID?1, . . . , ID

?
k) where k ≤ n. B then picks ũ, h̃, ṽ

$← Zp and computes

g = g, U = gũ ·
∏
i∈[k]

gy/a
2
i , H = gh̃ ·

∏
i∈[k]

gxz/ai ·
∏
i∈[k]

(gy/a
2
i )−ID

?
i , e(g, g)α = e(gx, gy)

W = gx, B =
∏
i∈[k]

gbi , V = gṽ ·
∏
i∈[k]

(gbi)−ID
?
i .

In the above, B implicitly sets α = xy and b =
∑

i∈[k] bi. B also computes B′ = gb
2

=
∏

(i,j)∈[k,k] g
bibj

and

V ′ = V b =
(
gṽ ·

∏
i∈[k]

(gbi)−ID
?
i

)∑
j∈[k] bj

=
(∏
j∈[k]

gbj
)ṽ · ∏

(i,j)∈[k,k]

(gbibj )−ID
?
i .

Then B gives master public key mpk = (g,H,U,W,B,B′, V, V ′, e(g, g)α) to A.
Phase1 and 2. When A queries private key for (ID, type), B proceeds as follows. There are two
cases to distinguish.

• In the case of type = IBBE and ID 6∈ S?, B chooses r̃
$← Zp and implicitly sets r as

r = r̃ − y +
∑
i∈[k]

xzai
ID− ID?i

.

We remark that r is well-defined because ID 6∈ S? = {ID?1 . . . , ID?k} and thus the denominators
{ID− ID?i }i∈[k] are non zero. Furthermore, r is properly distributed due to r̃. B then computes
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the private key sk(ID,IBBE) =
(
D1 = gα ·W r, D2 = (U IDH)r, D3 = gr

)
as follows:

D1 = gα ·W r = gxy · (gx)−y+
∑
i∈[k] xzai/(ID−ID

?
i )+r̃ =

∏
i∈[k]

(gx
2zai)1/(ID−ID?i ) · (gx)r̃

D2 = (U IDH)r

= (U IDH)r̃ ·
(
gũID+h̃ ·

∏
i∈[k]

gxz/ai ·
∏
i∈[k]

g(ID−ID?i )y/a2i

)−y+
∑
j∈[k] xzaj/(ID−ID

?
j )

= (U IDH)r̃ ·
(

(gy)−1 ·
∏
j∈[k]

(gxzaj )1/ID−ID?j
)ũID+h̃

︸ ︷︷ ︸
Φ1

·
∏
i∈[k]

g−xyz/ai

·
∏
i∈[k]

(gy
2/a2i )ID

?
i−ID ·

∏
(i,j)∈[k,k]

(g(xz)2aj/ai)1/(ID−ID?j )

︸ ︷︷ ︸
Φ2

·
∏

(i,j)∈[k,k]

(gxyzaj/a
2
i )(ID−ID?i )/(ID−ID?j )

= Φ1 · Φ2 ·
∏

(i,j)∈[k,k]
i 6=j

(gxyzaj/a
2
i )(ID−ID?i )/(ID−ID?j )

D3 = gr = (gy)−1 ·
∏
i∈[k]

(gxzai)1/(ID−ID?i ) · gr̃.

Finally, B gives skID,IBBE = (D1, D2, D3) to A.

• In the case of type = IBR and ID ∈ S?, we have ID = ID?τ for some τ ∈ [k]. In this case, B
chooses r̃

$← Zp and implicitly sets r as

r = r̃ − xy/b2τ .

We have that r is properly distributed due to r̃. B then computes the private key sk(ID,IBR) =(
D1 = gα ·B′r, D2 = (BIDV )r, D3 = gr

)
as follows:

D1 = gα · (B′)r = gxy ·
( ∏

(i,j)∈[k,k]

gbibj
)−xy/b2τ · (B′)r̃

=
∏

(i,j)∈[k,k]
(i,j)6=(τ,τ)

g−xybibj/b
2
τ · (B′)r̃ =

∏
(i,j)∈[k,k]

i 6=j

(gxybibj/b
2
τ )−1 ·

∏
i∈[k]\{τ}

(gxyb
2
i /b

2
τ )−1 · (B′)r̃

D2 = (BIDV )r = (BIDV )r̃ ·
(
gṽ ·

∏
i∈[k]

(gbi)ID
?
τ−ID?i

)−xy/b2τ
= (BIDV )r̃ · (gxy/b2τ )−ṽ ·

∏
i∈[k]\{τ}

(gxybi/b
2
τ )ID

?
i−ID?τ

D3 = gr̃ · (gxy/b2τ )−1.

Finally, B gives sk(ID,IBR) = (D1, D2, D3) to A.

Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1) to B. B flips a

random coin β
$← {0, 1} and sets (C0, C1) = (Mβ · T, gz) where T is the challenge term and gz is
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the corresponding term of the assumption. Additionally, it has to compute {Ci,1, Ci,2, C ′i,1, C ′i,2} for
i ∈ [k].

• B chooses t̃τ
$← Zp and implicitly sets tτ = t̃τ − aτ . Then B can compute Cτ,1 and Cτ,2 for all

τ ∈ [k] as follows.

Cτ,1 = W−s(U ID?τH)−tτ

= g−xz ·
(
gũID

?
τ+h̃ ·

∏
i∈[k]

gxz/ai ·
∏
i∈[k]

(gy/a
2
i )ID

?
τ−ID?i

)aτ
· (U ID?τH)−t̃τ

= g−xz · (gaτ )ũID
?
τ+h̃ ·

∏
i∈[k]

gxzaτ/ai ·
∏
i∈[k]

(gyaτ/a
2
i )ID

?
τ−ID?i · (U ID?τH)−t̃τ

= (gaτ )ũID
?
τ+h̃ ·

∏
i∈[k]\{τ}

gxzaτ/ai ·
∏

i∈[k]\{τ}

(gyaτ/a
2
i )ID

?
τ−ID?i · (U ID?iH)−t̃τ

Cτ,2 = gt̃τ · (gaτ )−1.

• B chooses random s̃1, . . . , s̃k such that
∑

i∈[k] s̃i = 0 and implicitly sets si as si = s̃i + biz/b for
all i ∈ [k]. We have

∑
i∈[k] si =

∑
i∈[k](s̃i + biz/b) = 0 + bz/b = z and {si}i∈[k] are properly

distributed. B can compute C ′τ,1 and C ′τ,2 for all τ ∈ [k] as follows.

C ′τ,1 =
(
B′ID

?
τV ′
)−sτ =

(
gb

2ID?τV b
)−zbτ/b · (B′ID?τV ′)−s̃τ

=
(
gṽ ·

∏
i∈[k]

(gbi)ID
?
τ−ID?i

)−zbτ · (B′ID?τV ′)−s̃τ
= (gzbτ )−ṽ ·

( ∏
i∈[k]\{τ}

(gzbibτ )ID
?
i−ID?τ

)
·
(
B′ID

?
τV ′
)−s̃τ

C ′τ,2 = Bsτ = Bs̃τ · gzbτ .

After all the above steps, B gives the challenge ciphertext (C0, C1, {Ci,1, Ci,2, C ′i,1, C ′i,2}i∈[k]) to A.

Guess. Finally, A outputs its guess β′ for β. If β′ = β, A outputs 1 for its guess. Otherwise,
it outputs 0. If T = e(g, g)xyz, the above simulation is perfect and thus A has non-negligible
advantage. On the other hand, If T is a random element in GT , A’s advantage is 0. Therefore, if A
breaks our scheme with non-negligible advantage, B has a non-negligible advantage in breaking the
n-(A) assumption. ut

F Proof of Security for Our CP-ABE Scheme in Section 7

In this section, we first introduce a new assumption that we call the n-(B) assumption. Then we
show the assumption to hold in the generic bilinear group model. Finally, we show that our scheme
in Sec. 7 is secure under the n-(B) assumption.

F.1 Definition of the n-(B) Assumption

n-(B) Assumption. Let s, a, b1 . . . , bn
$← Zp and g

$← G∗. We define Ψ as Ψ =

g, gs

ga
i
, gbj , gsbj , gsbibj , ga

ibj , ga
i/b2j ∀(i, j) ∈ [n, n]
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ga
i/bj ∀(i, j) ∈ [2n, n], i 6= n+ 1

g
aibj/b

2
j′ ∀(i, j, j′) ∈ [2n, n, n], j 6= j′

gsa
ibj/bj′ , g

saibj/b
2
j′ ∀(i, j, j′) ∈ [n, n, n], j 6= j′

g
saibjbj′/b

2
j′′ ∀(i, j, j′, j′′) ∈ [n, n, n, n], j 6= j′′, j′ 6= j′′

We say that an adversary A breaks n-(B) assumption on (G,GT ) if A runs in polynomial time and
1
2 |Pr[A(Ψ, e(g, g)sa

n+1
)→ 0]− Pr[A(Ψ, T )→ 0]| is negligible where T

$← GT .
The assumption is very similar to q-1 assumption introduced in [30]. The difference is that in

the n-(B) assumption above, we have some additional terms in the problem instance.

F.2 Generic Security of the n-(B) Assumption

Here, we briefly show that the assumption to hold in the generic group model. Actually, the assump-
tion can be seen as an instance of GT -monomial assumption introduced in [30]. Thus, by the corollary
D.4 in [30], it suffices to show that pairing result of any two elements from Φ is not (symbolically)
equivalent to e(g, g)a

n+1s. Note that our assumption is the same as q-1 assumption in [30], which is

proven secure in the generic group model, except that there is additional terms gsbibj and g
saibjbj′/b

2
j′′

in the problem instance. These additional terms does not harm the security of the assumption since

there is no term as ga
n+1/bibj nor g

aib2
j′′/bjbj′ for any i, j, j′, j′′ such that j 6= j′′∧j′ 6= j′′ in the problem

instace. Therefore, n-(B) assumption is secure in the generic group model.

F.3 Proof of Security for Our CP-ABE Scheme in Section 7

Theorem 5. Suppose the n-(B) assumption holds. Then, no PPT adversary can break the selective
security of our CP-ABE scheme in Sec. 7 with non-negligible advantage with a challenge matrix of
size `×m where `,m ≤ n.

Since our scheme is an extension of the CP-ABE scheme proposed in [30], the basic strategy
for the security proof is similar. The difference is that we have to simulate components related to
negation of attribute. This can be done by extending the proof technique in [21] to our setting.

Proof. We construct an algorithm B that receives problem instance of the n-(B) assumption and
decides if T = e(g, g)a

n+1s using the selective adversary A against our scheme.

Setup of master public key. At the outset of the game, the adversary A declares challenge
policy Ã? where Ã? = NM(A?) and A? is specified by (L?, π?). We have that L? is an ` × m
matrix, where `,m ≤ n. We divide [`] into two sets. We define posi = {i|i ∈ [`] ∧ π?(i) = xi} and
nega = {i|i ∈ [`] ∧ π?(i) = x′i}. That is, posi (resp., nega) is a set of indices that is associated with
non-negated (resp., negated) attribute by π?.

B then picks α̃, ũ, ṽ, h̃
$← Zp and computes

g = g, H = gh̃ ·
∏

(j,k)∈[`,m]

(
ga

k/b2j
)−π?(j)L?j,k , U = gũ ·

∏
(j,k)∈[`,m]

(
ga

k/b2j
)L?j,k

W = ga, V = gṽ ·
∏

(j,k)∈posi×[m]

(
ga

k/bj
)L?j,k , e(g, g)α = e(g, g)α̃ · e(ga, gan).

We remark that in the computation of H above, we treat primed (i.e., negated) attributes in expo-
nents as elements in Zp. That is, for a group element A ∈ G and a primed attribute x′i, we defne
Ax
′
i := Axi .

28



Here, B implicitly sets α = α̃+ an+1. B also implicitly sets b =
∑

i∈nega bi and computes

V ′ =
(
gũ ·

∏
(j,k)∈[`,m]

(ga
k/b2j )L

?
j,k

)∑
i∈nega bi

=
( ∏
i∈nega

gbi
)ũ
·

∏
(i,j,k)∈nega×[`,m]

(
ga

kbi/b
2
j
)L?j,k

=
( ∏
i∈nega

gbi
)ũ
·

∏
(i,j,k)∈nega×[`,m]

i 6=j

(
ga

kbi/b
2
j
)L?j,k · ∏

(j,k)∈nega×[m]

(
ga

k/bj
)L?j,k .

Then B gives mpk = (g,H,U, V, V ′,W, e(g, g)α) to A. One can easily verify that mpk computed as
above is properly distributed.

Phase1 and 2. When A queries private key for an attribute set ω = {ω1, . . . , ω|ω|}, B answers as
follows. In both phases, the treatment is the same.

Since ω 6∈ Ã?, we have that ω′ = N(ω) 6∈ A?. Therefore 1 = (1, 0, . . . , 0) does not lie in the row
space of L?ω′ , which is the submatrix of L? formed by rows corresponding to attributes in ω′. Hence,
due to the proposition 11 in [16], we have that there must exist an efficiently computable vector

z = (z1, . . . , zm) ∈ Zmp such that 〈1, z〉 = 1 and Lω′ · z> = 0. B chooses r̃
$← Zp and implicitly sets

r = r̃ − (z1a
n + z2a

n−1 + · · ·+ zma
n+1−m) = r̃ −

∑
i∈[m]

zia
n+1−i.

This is properly distributed due to r̃. Then using the suitable terms from the assumption it can
computes

D1 = gαW r = ga
n+1

gα̃gar̃
∏
i∈[m]

g−zia
n+2−i

= gα̃(ga)r̃
m∏
i=2

(
ga

n+2−i)−zi
D2 = gr = gr̃

∏
i∈[m]

(
ga

n+1−i)−zi .
Additionally, it has to compute {Ki,1,Ki,2,K

′
i,1,K

′
i,2} for i ∈ [|ω|].

• At first, we explain how to compute Kτ,1 = V −r(UωτH)rτ ,Kτ,2 = grτ for τ ∈ [|ω|]. The
common part V −r is as follows:

V −r = V −r̃ ·
(
gṽ ·

∏
(j,k)∈posi×[m]

gL
?
j,ka

k/bj
)∑

i∈[m] zia
n+1−i

= V −r̃ ·
∏
i∈[m]

(
ga

n+1−i)ṽzi · ∏
(i,j,k)∈[m]×posi×[m]

gziL
?
j,ka

n+1+k−i/bj

= V −r̃ ·
∏
i∈[m]

(
ga

n+1−i)ṽzi · ∏
(i,j,k)∈[m]×posi×[m]

i 6=k

(ga
n+1+k−i/bj )ziL

?
j,k ·

︸ ︷︷ ︸
Φ

∏
(i,j)∈[m]×posi

gziL
?
j,ia

n+1/bj

= Φ ·
∏
j∈posi

g〈L
?
j ,z〉an+1/bj

= Φ ·
∏
j∈posi
π(j)6∈ω

(ga
n+1/bj )〈L

?
j ,z〉
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The Φ part can be computed by the simulator using appropriate term, while the second term
has to be canceled by the (UωτH)rτ part. So for τ ∈ [|ω|], the simulator sets implicitly

rτ = r̃τ −
∑

(i,i′)∈[m]×posi
π?(i′)6∈ω

zibi′a
n+1−i

ωτ − π?(i′)

where r̃τ
$← Zp and therefore rτ is properly distributed. We remark that rτ is well-defined

because ωτ 6= π?(i′) for all i′ such that (i′ ∈ posi) ∧ (π?(i′) 6∈ ω) and thus the denominators
ωτ − π?(i′) are non zero. The second part of V −r(UωτH)rτ are as follows:

(UωτH)rτ = (UωτH)r̃τ ·
(
gũωτ+h̃ ·

∏
(j,k)∈[`,m]

g(ωτ−π?(j))L?j,ka
k/b2j
)−∑

(i,i′)∈[m]×posi
π?(i′)6∈ω

zibi′a
n+1−i

ωτ−π?(i′)

= (UωτH)r̃τ ·
( ∏

(i,i′)∈[m]×posi
π?(i′)6∈ω

(gbi′a
n+1−i

)−zi/(ωτ−π
?(i′))

)ũωτ+h̃

︸ ︷︷ ︸
Φ1

·
∏

(i′,i,j,k)∈posi×[m,`,m]
π?(i′) 6∈ω

g−(ωτ−π?(j))L?j,kzibi′a
n+1+k−i/(ωτ−π?(i′))b2j

= Φ1 ·
∏

(i′,i,j,k)∈posi×[m,`,m]
π?(i′)6∈ω,(j 6=i′)∨(i 6=k)

(
gbi′a

n+1+k−i/b2j
)−(ωτ−π?(j))L?j,kzi/(ωτ−π

?(i′))

︸ ︷︷ ︸
Φ2

·
∏

(i′,i,j,k)∈posi×[m,`,m]
π?(i′)6∈ω,(j=i′)∧(i=k)

(
gbi′a

n+1+k−i/b2j
)−(ωτ−π?(j))L?j,kzi/(ωτ−π

?(i′))

= Φ1 · Φ2 ·
∏

(j,k)∈posi×[m]
π?(j)6∈ω

(ga
n+1/bj )−L

?
j,kzk

= Φ1 · Φ2 ·
∏
j∈posi
π?(j)6∈ω

(ga
n+1/bj )−〈L

?
j ,z〉

One can verify that Φ1 and Φ2 are efficiently computable using appropriate terms given to B.
Since the problematic part of V −r cancels out with (UωτH)rτ , B can compute Kτ,1 = Φ ·Φ1 ·Φ2

for τ ∈ [|ω|] efficiently. B can also effciently compute Kτ,2 as follows.

grτ = gr̃τ ·
∏

(i,i′)∈[m]×posi
π?(i′)6∈ω

(gbi′a
n+1−i

)−zi/(ωτ−π
?(i′))

• Next, we explain how to computeK ′i,1 = (U bωiHb)r
′
i ,K ′i,2 = gbr

′
i for i ∈ [|ω|] (with the constraint

that
∑

i∈[|ω|] r
′
i = r). These terms are computed step-by-step. At first, B sets K ′i,1 = 1G,K

′
i,2 =

1G for i ∈ [|ω|] and updates these values as follows. For all τ ∈ nega, B executes the following
steps. There are two cases to distinguish:
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– In the case that there is ν ∈ [|ω|] such that π?(τ) = x′τ ∧xτ = ων ∈ ω (i.e., π?(τ) 6∈ N(ω)),
B updates K ′ν,1 and K ′ν,2 as

K ′ν,1 ← K ′ν,1 · (UωνH)bτ r, K ′ν,2 ← K ′ν,2 · gbτ r.

In the following, we show that (UωνH)bτ r and gbτ r can be computed efficiently. First, we
can see that

gbτ r = (gbτ )r̃ ·
∏
i∈[m]

(gbτa
n+1−i

)−zi

can be computed efficiently. Next, we see that

(UωνH)bτ r = (Uπ
?(τ)H)bτ r

= (gbτ r)π
?(τ)ũ+h̃ ·

( ∏
(j,k)∈[`,m]

g(π?(τ)−π?(j))L?j,ka
k/b2j
)bτ (r̃−

∑
i∈[m] zia

n+1−i)

= (gbτ r)π
?(τ)ũ+h̃ ·

∏
(j,k)∈[`,m]

(ga
kbτ/b2j )r̃(π

?(τ)−π?(j))L?j,k

︸ ︷︷ ︸
Φ

·
∏

(i,j,k)∈[m,`,m]

(ga
n+1+k−ibτ/b2j )−(π?(τ)−π?(j))L?j,kzi

= Φ ·
∏

(i,j,k)∈[m,`,m]
j 6=τ

(ga
n+1+k−ibτ/b2j )−(π?(τ)−π?(j))L?j,kzi .

In the last equation above, the terms ga
n+1+k−ibτ/b2τ = ga

n+1+k−i/bτ for (i, k) ∈ [m,m] (in
particular, the problematic term ga

n+1/bτ ) disappears. Thus, B can compute (UωνH)bτ r

efficiently.

– In the case that π?(τ) = x′τ ∧ xτ 6∈ ω (i.e., π?(τ) ∈ N(ω)), B updates K ′1,1 and K ′1,2
§ as

K ′1,1 ← K ′1,1 · (Uω1H)bτ r, K ′1,2 ← K ′1,2 · gbτ r.

In the following, we show that (Uω1H)bτ r and gbτ r can be computed efficiently. As previous
case, gbτ r can be computed efficiently using appropriate terms. Next, we see that

(Uω1H)bτ r = (gbτ r)ω1ũ+h̃ ·
( ∏

(j,k)∈[`,m]

g(ω1−π?(j))L?j,ka
k/b2j
)bτ (r̃−

∑
i∈[m] zia

n+1−i)

= (gbτ r)ω1ũ+h̃ ·
∏

(j,k)∈[`,m]

(ga
kbτ/b2j )r̃(ω1−π?(j))L?j,k

︸ ︷︷ ︸
Φ1

·
∏

(i,j,k)∈[m,`,m]

(ga
n+1+k−ibτ/b2j )−(ω1−π?(j))L?j,kzi

= Φ1 ·
∏

(i,j,k)∈[m,`,m]
(k 6=i)∨(j 6=τ)

(ga
n+1+k−ibτ/b2j )−(ω1−π?(j))L?j,kzi

︸ ︷︷ ︸
Φ2

§Here, the choice K′1,1,K
′
1,2 is rather arbitrary. One can update any (K′i,1,K

′
i,2) as K′i,1 ← K′i,1 · (UωiH)bτ r,K′i,2 ←

K′i,2 · gbτ r instead.
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·
∏

(i,j,k)∈[m,`,m]
(k=i)∧(j=τ)

(ga
n+1+k−ibτ/b2j )−(ω1−π?(j))L?j,kzi

= Φ1 · Φ2 ·
∏
i∈[m]

(ga
n+1/bτ )−(ω1−π?(τ))L?τ,izi

= Φ1 · Φ2 · (ga
n+1/bτ )−(ω1−π?(τ))〈L?τ ,z〉

= Φ1 · Φ2

Since π?(τ) ∈ N(ω), we have 〈L?τ , z〉 = 0 from the property of z and thus the problematic
term ga

n+1/bτ disappers in the last equality above. One can verify that Φ1 and Φ2 are
efficiently computable using appropriate terms.

After the above step, we have that (K ′i,1,K
′
i,2) for i ∈ [|ω|] is in the form of (K ′i,1,K

′
i,2) =

((UωiH)r̄
′
i , gr̄

′
i) for some r̄′i ∈ Zp such that

∑|ω|
i=1 r̄

′
i =

∑
τ∈nega bτr = br. By setting r̃′i = r̄′i/b,

we have
(K ′i,1,K

′
i,2) = ((U bωiHb)r̃

′
i , (gb)r̃

′
i)

and
∑|ω|

i=1 r̃
′
i = (

∑|ω|
i=1 r̄

′
i)/b = r. Thus, {K ′i,1,K ′i,2}

|ω|
i=1 can be seen as a part of private key

generated using randomness {r̃′i}
|ω|
i=1. However, {r̃′i}

|ω|
i=1 depend on {bi}i∈nega and thus B needs

to rerandomize {K ′i,1,K ′i,2}
|ω|
i=1 so that it is independent from {bi}i∈nega. To accomplish this, B

chooses random r̂′1, . . . , r̂
′
|ω| such that r̂′1 + · · ·+ r̂′|ω| = 0 and updates {K ′i,1,K ′i,2}

|ω|
i=1 as

K ′i,1 ← K ′i,1 · (UωiH)r̂
′
i , K ′i,2 ← K ′i,2 · gr̂

′
i .

Here, B implicitly sets r′i = r̃′i + r̂′i/b for i ∈ [|ω|].

After all the above steps, B gives private key skω =
(
D1, D2, {Ki,1,Ki,2,K

′
i,1,K

′
i,2}i∈[|ω|]

)
to A.

Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1) to B. B flips a

random coin β
$← {0, 1} and sets (C0, C1) = (Mβ · e(gs, gα̃) ·T, gs) where T is the challenge term and

gs is the corresponding term of the assumption.
B chooses s̃2 . . . , s̃m

$← Zp and implicitly sets s = (s, sa + s̃2, sa
2 + s̃3, . . . , sa

m−1 + s̃m). s is
properly distributed due to {s̃i}mi=2. We have that the share λτ for π?(τ) is

λτ = 〈L?τ , s〉 =
∑
i∈[m]

L?τ,isa
i−1 +

m∑
i=2

L?τ,is̃i =
∑
i∈[m]

L?τ,isa
i−1 + λ̃τ

for τ ∈ [`] where λ̃τ =
∑m

i=2 L
?
τ,is̃i is known to B. B then implicitly sets tτ = −sbτ + t̃τ and computes

(Cτ,1, Cτ,2, Cτ,3) for each τ ∈ [`] as follows. There are two cases to distinguish.

• In the case of τ ∈ posi (i.e., the τ -th row is associated with non-negated attribute), B computes
(Cτ,1, Cτ,2, Cτ,3) as follows:

Cτ,1 = W λτV tτ = W λ̃τ ·
∏
i∈[m]

gL
?
τ,isa

i

· V t̃τ ·
(
gṽ ·

∏
(j,k)∈posi×[m]

(
ga

k/bj
)L?j,k)−sbτ

= W λ̃τ · V t̃τ · (gsbτ )−ṽ ·
∏
i∈[m]

gL
?
τ,isa

i

·
∏

(j,k)∈posi×[m]

(
g−sa

kbτ/bj
)L?j,k
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= W λ̃τ · V t̃τ · (gsbτ )−ṽ ·
∏
i∈[m]

gL
?
τ,isa

i

·
∏
k∈[m]

g−L
?
τ,ksa

kbτ/bτ ·
∏

(j,k)∈(posi\{τ})×[m]

(
gsa

kbτ/bj
)−L?j,k

= W λ̃τ · V t̃τ · (gsbτ )−ṽ ·
∏

(j,k)∈(posi\{τ})×[m]

(
gsa

kbτ/bj
)−L?j,k

In the last equation above, the problematic terms {gsai}mi=1 cancel out.

Cτ,2 = (Uπ
?(τ)H)−tτ = (gsbτ )ũπ

?(τ)+h̃ · (Uπ?(τ)H)−t̃τ ·
∏

(j,k)∈[`,m]

(
g(π?(τ)−π?(j))L?j,ka

k/b2j
)sbτ

= (gsbτ )ũπ
?(τ)+h̃ · (Uπ?(τ)H)−t̃τ ·

∏
(j,k)∈[`,m]

j 6=τ

(
gsa

kbτ/b2j
)(π?(τ)−π?(j))L?j,k

In the equation above, the problematic terms {gsai/bτ }mi=1 cancel out. Finally, Cτ,3 can be
computed as

Cτ,3 = (gsbτ )−1 · gtτ .

• In the case of τ ∈ nega (i.e., the τ -th row is associated with negated attribute), B computes
(Cτ,1, Cτ,2, Cτ,3) as follows:

Cτ,1 = W λτ · (V ′)tτ

= W λ̃τ ·
∏
i∈[m]

gL
?
τ,isa

i

· (V ′)t̃τ

·
(( ∏

i∈nega
gbi
)ũ
·

∏
(i,j,k)∈nega×[`,m]

i 6=j

(
ga

kbi/b
2
j
)L?j,k · ∏

(j,k)∈nega×[m]

(
ga

k/bj
)L?j,k)−sbτ

= W λ̃τ · (V ′)t̃τ ·
( ∏
i∈nega

gsbτ bi
)−ũ

︸ ︷︷ ︸
Φ1

·
∏

(i,j,k)∈nega×[`,m]
i 6=j

(
gsa

kbτ bi/b
2
j
)−L?j,k

·
∏

(j,k)∈nega×[m]

(
gsa

kbτ/bj
)−L?j,k · ∏

i∈[m]

gL
?
τ,isa

i

= Φ1 ·
∏

(i,j,k)∈nega×[`,m]
i 6=j,j 6=τ

(
gsa

kbτ bi/b
2
j
)−L?j,k · ∏

(i,k)∈nega×[m]
i 6=τ

(
gsa

kbi/bτ
)−L?τ,k

︸ ︷︷ ︸
Φ2

·
∏

(j,k)∈nega×[m]

(
gsa

kbτ/bj
)−L?j,k · ∏

i∈[m]

gL
?
τ,isa

i

= Φ1 · Φ2 ·
∏

(j,k)∈(nega\{τ})×[m]

(
gsa

kbτ/bj
)−L?j,k · ∏

k∈[m]

(
gsa

kbτ/bτ
)−L?τ,k · ∏

i∈[m]

gL
?
τ,isa

i

= Φ1 · Φ2 ·
∏

(j,k)∈(nega\{τ})×[m]

(
gsa

kbτ/bj
)−L?j,k

In the last equation above, the problematic terms {gsai}mi=1 cancel out. Thus, B can compute
Cτ,1 efficiently using appropriate terms. B can also compute Cτ,2 and Cτ,3 by the same way as
in the previous case.
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Finally, B gives the challenge ciphertext C = (C0, C1, {Ci,1, Ci,2, Ci,3}i∈[`]) to A.
Guess. Finally, A outputs its guess β′ for β. If β′ = β, A outputs 1 for its guess. Otherwise,
it outputs 0. If T = e(g, g)sa

n+1
, the above simulation is perfect and thus A has non-negligible

advantage. On the other hand, If T is a random element in GT , A’s advantage is 0. Therefore, if A
breaks our scheme with non-negligible advantage, B has a non-negligible advantage in breaking the
n-(B) assumption. ut
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