
Pragmatism vs. Elegance: comparing two
approaches to Simple Power Attacks on AES

Valentina Banciu and Elisabeth Oswald

University of Bristol, Department of Computer Science
Merchant Venturers Building

Woodland Road, BS8 1UB, Bristol, UK
{valentina.banciu, elisabeth.oswald}@bristol.ac.uk

Abstract. Simple side-channel attacks trade off data complexity (i.e.
the number of side-channel observations needed for a successful attack)
with computational complexity (i.e. the number of operations applied to
the side-channel traces). In the specific example of Simple Power Anal-
ysis (SPA) attacks on the Advanced Encryption Standard (AES), two
approaches can be found in the literature, one which is a pragmatic ap-
proach that involves basic techniques such as efficient enumeration of
key candidates, and one that is seemingly more elegant and uses alge-
braic techniques. Both of these different techniques have been used in
complementary settings: the pragmatic attacks were solely applied to
the key schedule whereas the more elegant methods were only applied to
the encryption rounds. In this article, we investigate how these methods
compare in what we consider to be a more practical setting in which
adversaries gain access to erroneous information about both key sched-
ule and encryption rounds. We conclude that the pragmatic enumeration
technique better copes with erroneous information which makes it more
interesting in practice.

1 Introduction

Historically, simple side-channel analysis seems an under-researched area in the
context of implementations of symmetric schemes: after a short remark by [8],
initially only Mangard’s article [9] discusses an SPA-style attack on the key
schedule of the Advanced Encryption Standard (AES). Thereafter, interest was
only revived by the advent of algebraic side-channel analysis (ASCA) (see [13,14,
16]). In contrast to Mangard’s SPA attack, which used a pragmatic enumeration
technique applied to the AES key schedule, ASCA represent the whole block
cipher (encryption rounds and key schedule) as a system of equations (in the
input, output, and key) that explicitly includes side-channel information. Then
some standard solvers (e.g. SAT solver) are employed to (elegantly) solve this
system which leads to the extraction of the key.

In these early works little emphasis was put on the fact that, in practice, side-
channel information tends to be noisy. Consequently, all early methods implicitly
assumed an ideal measurement setup, or some (clever) trace processing, and the



use of templates. More recently this shortcoming was picked up in a series of
papers [10–12,17] which move away from simply using a standard SAT solver to
(e.g.) tools that can incorporate probability information about the side-channel
observations. This is a step towards making ASCA-style attacks potentially more
applicable to practice. However, approaches such as the one in [12] still assume
some form of template-based side-channel information extraction so do not move
away much from the afore mentioned implications for practice. Other recent
contributions in this area [2, 10] focus on how the algebraic representation of
AES (which can be written in more than one way) influences the computation
time/complexity.

By looking at this historical development, one might begin to wonder about
the seeming divergence of the ‘two’ different approaches to SPA. On the one
hand, there is the somewhat trivial technique described by Mangard, which
only takes key schedule information and extracts the key without much com-
putational effort. On the other hand, there is the elegant technique of algebraic
attacks, which only takes round information and extracts the key with consider-
able computational resources. From a practical perspective (different to the one
related to error tolerance above), one can hence wonder why nobody has looked
into the strategy of combining key schedule and round information with the aim
of using observations concentrated at the beginning or end of AES. This point
of staying ‘close to’ the extremes of AES is motivated by the practical aspect
of extracting the side-channel information from the acquired traces: the closer
to the beginning (or end) the information is located, the closer one is to the
trigger point which can imply a more robust process of finding and extracting
the required information. Naturally, practitioners would prefer methods which
are robust per se, but also incorporate some error tolerance.

In this article we compare and contrast the two main approaches to SPA on
AES in a setting that we consider more practical than what was considered in
previous work: we aim to exploit erroneous side-channel information from the
beginning of AES (including the key schedule) using an extension of Mangard’s
simple enumeration technique, as well as using an algebraic method focusing on
Hamming weight as leakage model.

Our paper1 is structured as follows. We briefly review AES in Sect. 2. We
explain our extension of Mangard’s attack including results in Sect. 3. Thereafter
we explain our implementation of algebraic attacks including results in Sect. 4.
We conclude in Sect. 5. Appendix A provides results of some more experiments
that we performed. These experiments use Hamming distance as power model
and show that our conclusion remains valid: the pragmatic approach copes better
with erroneous information and hence is more suitable for practice.

1 This paper has been accepted for publication at COSADE 2014 and will be available
at link.springer.com.



2 A Brief Recap of AES

The Advanced Encryption Standard (AES) is a symmetric block cipher, with
a fixed block size of 128 bits, and a variable key size of 128, 192, or 256 bits
corresponding to 10, 12 and 14 rounds respectively. We use the 128-bit variant
as an example in this article, to which we shall refer as simply AES throughout
this document. In this section, we give a brief overview of the encryption and
key schedule algorithms and explain what intermediate values we assume to be
leaking.

2.1 AES Encryption Round

At the start of the encryption process, the 16-byte plaintext block is copied to
a 4 × 4 array called state. The byte elements of the initial plaintext array are
copied in column order. Thereafter an encryption round consisting of four round
transformations is repeatedly applied to the state. The round transformations
are as follows:

1. AddRoundKey(state;RKi) performs a bitwise xor of the current round key
and state. One would expect that all memory transfers (i.e. loading of the
state as well as key bytes) and the output are leaking, although previous
work typically only takes the leakage of the output into account.

2. In the SubBytes(state) step, each byte in the state matrix is replaced ac-
cording to a look-up table. This operation provides non-linearity. We only
use the leakage of the output (as the input leakage is already being used
from the step before).

3. ShiftRows(state) operates on the rows of state, performing a cyclical left
shift of the bytes in each row by a certain offset: row n is shifted n − 1
positions. We assume that this is done implicitly via memory access and so
we do not use any leakage.

4. MixColumns(state) combines the four bytes of each column of the state.
An efficient implementation of this representation on an 8-bit microcontroller
is described in the original AES proposal [5], and we list it here to keep our
work self contained. Let ini, outi, i = 1 . . . 4 be the input, respectively output
bytes of a single column, and consider the index i modulo 4. Then, a single
column is computed as follows:

Tmp = in1 ⊕ in2 ⊕ in3 ⊕ in4

Tmi = ini ⊕ ini+1

Tmi = xtime(Tmi)
outi = ini ⊕ Tmi ⊕ Tmp

(1)

where xtime is the multiplication by 02 over GF(28). Given the target plat-
form that we have in mind, we would assume that only 2-operand instruc-
tions are available on the target platform and hence the exclusive-or of all
inputs ini is done in three steps and the computation of any outi takes two



steps. However, previous work such as [16] set a precedent of only consid-
ering leakage of the variables Tmp, Tmi and outi and so to keep our work
in this respect comparable to theirs we only take 13 out of the 19 leakage
points per column.

Adding up the leakage points as explained above amounts to 21 points per
column (4 from AddRoundKey, 4 from SubBytes, and 13 from MixColumns).

2.2 AES Key Schedule

For the key expansion, the secret key is represented as 4 concatenated words,
SK = W1 ‖ W2 ‖ W3 ‖ W4. Then, subsequent round keys RK1...10 are derived
in lexicographic order, each key depending on the previous. The operations used
the key expansion are as follows:

1. RotWord(W ) performs a cyclic shift to the left on a word by one byte. We
assume that each byte in the word will leak.

2. SubWord(W ) substitutes each of the 4 constituent bytes of W according to
the AES S-box, which can be implemented as a 256-bit lookup table. We
expect leakage for each S-box look-up.

3. Rcon, which is a predefined round constant, is exclusive-ored to a byte of the
key. We expect the result of exclusive-or to leak.

2.3 Further Implementation Aspects

SPA attacks are typically studied in the context of software implementations
on simple (i.e. serial) micro-processors. This implies that we expect to observe
leakages for all state bytes as and when they are processed. As explained before,
we adhere to this by-and-large and only deviate from this principle to keep our
work comparable with previous publications.

Typical power models that are found in practice (for small micro-processors)
are the Hamming weight (short HW, i.e. the number of non-zero bits) of a byte,
or the Hamming distance (short HD, i.e. the number of non-zero bits in the
exclusive-or of two bytes). Leakages of this kind are observed mainly because of
intermediate values being written to (and read from) memory, which causes bus
transfers. Obviously, for HD leakage one then needs to know precisely which two
intermediate values are processed in sequence.

Notice that for our attacks we did not use data from an actual device. This
is motivated by the fact that we are not interested in the problem of how to find
and best extract the available leakage from real traces. Our contribution is with
regards to how to best (i.e. mathematically) exploit the extracted leakage. So we
use simulations to generate (truly leaked) HW (and HD) values and then ‘embed’
them in sets of a given size to simulate noise (i.e. the fact that one might not
have certainty for the HW (or HD) of correct leakages). These sets are ordered
sequences with the correct leakage as centre value, e.g. if the correct leakage for
an intermediate value is 5, a set of size three is {4, 5, 6}. We assume a uniform
distribution for the ‘incorrect’ values within each set in our experiments.



Algorithm 1 An informal description of an enumeration attack aimed at re-
covering four bytes of the secret key SK using leakages of a single AES round.

1: for i = 1→ 4 do
2: generate KeySeti such that each key in KeySeti satisfies the observed leaks
L(PTi ⊕ SKi), L(SBi) and L(SKi).

3: end for
4: for all K1 ∈ KeySet1 do
5: for all K2 ∈ KeySet2 do
6: for all K3 ∈ KeySet3 do
7: for all K4 ∈ KeySet4 do
8: retain values that also match L(Tmi), L(Tmp), and L(outi)
9: end for

10: end for
11: end for
12: end for
13: return four sets {Ki} of 8-bit values that simultaneously satisfy all observed leak-

ages

3 Pragmatic Attack on AES

Like [9], we assume that the attacker is able to extract the relevant information
from the power traces and assign it to the respective intermediate value in both
the encryption round and the key schedule. Differently to [9], we assume, how-
ever, that the extracted information is possibly erroneous. Consequently, each
leakage point translates into a set of leakage values (rather than a single value).
A necessary condition for our attack to produce meaningful results is then that
each set includes the correct leakage value.

Whilst we did not aim for the most efficient implementation that is con-
ceivable, we paid some attention to choosing strategies that speed up testing
keys against leakages. The basic strategy of an SPA attack such as [9] is that
by observing leakages relating to different intermediate (key dependent) values,
one learns something about the involved key bytes and hence reduces the overall
search space for the key. Illustrating this on a simple example that is the starting
point for an SPA attack, we note that by observing leakages on (e.g.) a plaintext
byte PT (we denote this with L(PT )) and on the key addition with this byte
PT ⊕ SK (i.e. we see a leakage L(PT ⊕ SK)), we can enumerate and in fact
precompute all those values of SK which satisfy the observed leakages (we hence
enumerate the set Kv,w = {k|L(PT⊕k) = w,L(PT ) = v}). It is in fact sufficient
to fix the Hamming weight leakage of the plaintext to an arbitrary value (we
chose 0) because (PT ⊕ k) = ((0⊕ k)⊕PT ), which means that the possible key
set corresponding to any nonzero plaintext byte can be easily derived by adding
PT as offset to the key set corresponding to the null value byte. We hence can
optimise and store only one such table for PT = 0.

Just observing such a single leak reduces hence the key space and we use this
reduced key space to further process and incorporate leakages from our traces,
i.e. for each possible key resulting from only looking at the first key addition,



we can also check the leakage from the SubBytes operation, which then reduces
our key space further. One can again build (precompute) tables that enumerate
possible key byte values for given input and output leakages, so this step in a
practical attack corresponds to a table lookup.

Advancing further into the AES round means that after ShiftRows, which
we assumed would give no explicit leakages because it would be done as part
of writing the byte back into the state, we work with intermediate values that
arise from the MixColumns operation. Here, we choose not to attempt further
precomputations, but rather took leakages ‘on the fly’ to further prune the key
space, see Alg. 1 for an informal algorithmic description of this process as applied
to a single column in one round.

3.1 Attack Results

We performed all our analysis using noisy Hamming weight leakages, i.e. we chose
sets of different sizes that contain the correct leakage (ranging from set size 1,
which corresponds to no noise, to set size 5, which corresponds to tolerating 2
bits of noise).

All computations that we now discuss were performed by using a single node
on a high-performance computing facility. Such a single node is comprised of two
2.8 GHz 4-core Intel Harpertown E5462 processors, with one GB RAM per core.
Our code ran in Matlab on this platform. We terminated attacks after 48 hrs or
if they ran out of RAM memory on the node. We give the percentage of attacks
that terminated successfully (i.e. that terminated within the 48hrs limit and did
not run out of memory) for each experiment. We provide ‘indicative execution
times’ for all experiments: these are mean values taken over the successfully
terminated experiments. We want to caution against making any inferences from
these times, because although we made some effort to produce ‘efficient’ attack
implementations, we by no means claim any optimality in any respect (recall that
we ran the attacks using Matlab). Consequently, these indicative execution times
are best understood along the lines of that some attacks terminate within the
order of several hours whereas others terminate within the order of seconds, etc.
We also note that the timings produced only refer to the effort of reducing the
key search space using the side channel information. The overall time required for
an attack, i.e. reducing the key search space and the performing the brute-force
search, would very much also depend on the brute-force search.

Attack using leaks from the first encryption round. By referring back to the
description of an AES round and the expected leaks that we gave in Sect. 2.1,
we note that we have 21 exploitable leakage points to attack 4 bytes of the first
round key (which corresponds to one column of the state). Consequently we
assume that we have 84 such points available to attack an entire round. The
attack strategy that we explained in the previous section, which works on one
column, can independently (and hence in parallel) be replicated and applied to
all four state bytes.



Table 1a shows that allowing for more noisy leakages increases the computa-
tional effort quickly, as one would expect. Clearly for noisy leaks the reduction
in key space size renders the attack actually impractical.

Attack using leaks from first encryption round and key schedule Rather than
making more complicated inferences to incorporate more information from the
second encryption round, it seems more natural now to incorporate the strategy
of [9] and draw on the information that is present in the key schedule. The
attack of Mangard requires, depending on how many key hypotheses one wishes
to brute force test at the end, 40 up to 81 intermediate values from the key
schedule to succeed. We chose, for the sake of consistency, to use leaks from the
first round of the key schedule only.

When faced with ‘merging’ the two attack strategies one has different options.
We decided to use the result of the attack on the round as a starting point to
the attack on the key schedule. In other words, we start the attack on the key
schedule with an already reduced key space.

Table 1c shows the results of the combined attack. The incorporation of the
noisy key schedule leakages has had a significant impact especially in the case
of set size five (i.e. 2 bits of noise). Now even this case leads to a final key space
size that can be searched through and hence leads to a practical attack.

Just for comparison we also give the numbers of Mangard’s attack on the key
schedule only in Tab. 1b (re-implemented and adapted to target a single round
with possibly noisy leaks). It should be obvious that by itself the strategy does
not tolerate noise very well. We can hence conclude that using leaks from both
encryption round and key schedule is indeed the most natural and promising
attack path.

4 Elegant Attack on AES

The elegant attacks that we now want to consider are essentially algebraic attacks
that incorporate additional information about the key bytes because of leakages.
The technique is viewed as elegant because one can (in theory) feed the system
of equations describing AES into some black box solver which returns the key
provided enough side-channel information is supplied.

As mentioned in the introduction, recent research has drawn attention to the
fact that it makes a significant difference (to the various black box solvers) how
and which equations are fed into them, and hence there is scope to optimise
attacks by rewriting the algebraic representation of a cipher—clearly the black
box solver is more of a grey box then.

From a practical perspective, anyone implementing an algebraic attack that
uses side-channel information needs to hence make two important choices. Firstly,
how to represent the cipher and secondly, which sort of solver to use. In our study
here we incorporated techniques that were published in previous work to ensure
we have a reasonably efficient representation. Of the many available solvers, we
used SAT solvers (we use state-of-the-art software, i.e. CryptoMiniSat 2, and
did not develop our own tools).



Table 1: Summary of results of attack on one round
(a) Encryption round only

Set size Approximate key space size Indicative execution time Successful termination

1 1 0.02 s 100%

2 220 2.9 s 100%

3 248 73.9 s 100%

4 264 27 mins 100%

5 2116 2.5 hrs 78%

(b) Key schedule only

Set size Approximate key space size Indicative execution time Successful termination

1 258 0.4 s 100%

2 274 5 s 100%

3 295 10 s 72%

4 2106 30 s 40%

5 2115 40 s 22%

(c) Round and key schedule

Set size Approximate key space size Indicative execution time Successful termination

1 1 0.03 s 100%

2 212 27 s 100%

3 213 4 mins 80%

4 252 35 mins 20%

5 260 12 hrs 10%

Whilst most side-channel attacks follow a divide-and-conquer strategy, when
performing an algebraic attack, the adversary aims for full key recovery in one go
and is able to make use of all available side-channel information at once. We as-
sumed that attackers would include leakages corresponding to round operations
and, in contrast to previous work, the key schedule.

4.1 Solver-Specific Requirements

To be able to make use of a standard solver, one needs to translate the high-level
description of a cipher into a format that the solver can work with. Essentially
this translation requires two steps. The first step is to linearise the system of
equations that represents the cryptographic algorithm. This can be done by
introducing a new variable for each higher degree monomial in the algorithm’s
representation (monomials might represent (e.g.) bits of intermediate values or
bytes). The second step is to translate this linear system into an appropriate
format, e.g. conjunctive normal form (CNF) for SAT solvers or a system of
Boolean inequalities for Pseudo-Boolean Optimizers.



Linear layers, such as AddRoundKey or MixColumns, give rise to relatively
simple equations. Non-linear layers, i.e. SubBytes, lead to fairly complex equa-
tions, and there is some scope for optimising them. Based on work by [3], an
expression for an 8-bit S-box in polynomials of maximal degree 8 was given in [6].
Still, it was shown in [4] that SAT solvers give best performances when the de-
gree of equations and the size of terms is limited to smaller values. Using some
specific algebraic properties of SubBytes, Courtois et al. also derive a system of
23 quadratic equations describing it, which is shown to be maximal. We used
this approach in our work.

Overall, we thus represented all intermediate values as variables with appro-
priate equations linking them to each other. An initial count of the expected
number of variables is consequently as follows. For the key schedule, 128 vari-
ables are required for each round key, and for the secret key. Auxiliary variables
can be used for the output of the S-box, but are not needed for xoring with
Rcon since this is fixed; this operation can be just as well modelled without in-
troducing any equations, since xoring with 1 is equivalent to negation. Thus, the
equations for each round key describe only the S-box (23 × 4) and the xoring
with temp. Additionally, 128 variables are required for each intermediate out-
put state of AddRoundKey, SubBytes and MixColumns during the encryption
process, and for the plaintext. The number of equations is calculated as follows:
23 × 16 for each of the 10 S-box layers, 128 for the 11 key addition layers and
the equations corresponding to the 9 rounds of MixColumns, which can be rep-
resented either as recommended in the Rijndael proposal [5], leading to 13 × 4
equations per round, or as in [7] as a direct bitslice implementation, leading to
128 equations per round. Of these, the equations corresponding to the S-box are
the only non-linear ones. When translating the system to CNF, dummy vari-
ables are necessary for linearisation and for keeping the size of each term up to 4
monomials (as recommended by [1,4]), in particular approximately 500 auxiliary
variables and 400 equations are required per S-box, which leads to a final form
consisting in approximately 100, 000 variables and 130, 000 equations.

Finally, equations representing side-channel information are added to the
system. We adopt the same strategy of [15], to explicitly list all possible values
corresponding to each leakage point. However, we do use the pre-computation
strategies described in Sect. 3, to build explicit values corresponding to the input
and output pairs of each S-box.

4.2 Attack Results

We ran several experiments with our implementation. In these experiments we
varied the number of encryption rounds from which we source information as
well as the amount of noise that we want to tolerate by varying the set size.
Table 2 gives an overview of the results for AES. Remember that our attack (in
contrast to previous work on algebraic attacks) uses key schedule information in
addition to round information. There is little difference between attacking only
one or many rounds (the timings have some variation and the reported means
are hence about equal) with regards to timings. We speculate that this is because



Table 2: Indicative solving time (in seconds) for AES, using encryption and key
schedule leakage

Attacked rounds 1 round 2 rounds 3 rounds 4 rounds 5 rounds

set=1 10.39 10.85 11.03 11.10 11.30
set=2 41.24 43.11 43.25 43.49 43.73

the complexity of the equations solved stays the same irrespective of how many
rounds are used. Obviously, the more rounds one includes the more interme-
diate values need to by extracted. For each encryption round, 84 intermediate
values are used, corresponding to 32 values for the output of AddRoundKey
and SubBytes and 4 × 13 values corresponding to the intermediate values of
MixColumns. Additionally, for each round key at most 21 intermediate values
can be exploited, out of which 16 correspond to the key bytes, 4 to the S-box
output and 1 to the xoring with the round constant.

As expected the set size is the main factor that influences the overall compu-
tation time. We limited any solver run to 48 hours (alike previous work). Given
this constraint, none of our attempts to solve instances of set size three or larger
was successful. However in contrast to previous work we could solve all instances
of set size two that terminated within the 48 hrs cut-off time. Clearly adding
some key schedule information helps the solver.

5 Conclusion

The research presented in this paper was based on the question of how elegant
(black box) solvers compare with a simple and reasonably efficient extension of
Mangard’s SPA attack, in a scenario where some erroneous side-channel infor-
mation is available. In contrast to previous work, we considered the scenario in
which an attacker has access to erroneous leakages from both the encryption
round and the key schedule (but limited to a single or a few rounds).

Our implementation of a pragmatic SPA attack shows that with very few
leakage points (we only use leakage points that occur within the first round of
AES and the key schedule) we can reduce the key space even with noisy leakages
to a size which can be searched through using today’s computing technology.
We speculate that with a more efficient implementation, this could be improved
further by taking more rounds (of the key schedule and the encryption) into
account. Including key schedule information in the elegant ASCA-style approach
helps, but we were not able to push beyond set size two. However, all our attacks
with set size two were successful, even when limited to using leaks from the first
round only, which is some practically relevant progress.

Our conclusion from the performed experiments is that the pragmatic ap-
proach seems to be more suited for actual practical attacks because of its ability
to better tolerate noisy leakages and its concrete result that allows to actually
rule out keys and provide a concrete reduction of the key space. This is in con-



trast to using algebraic solvers, which either terminate successfully, or leave you
with no further information.

Acknowledgments. Valentina Banciu has been supported by EPSRC via grant
EP/H049606/1. Elisabeth Oswald has been supported in part by EPSRC via
grant EP/I005226/1.

References

1. G.V. Bard, N. Courtois, and C. Jefferson. Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2)
via SAT-Solvers. IACR Cryptology ePrint Archive, 2007:24, 2007.

2. C. Carlet, J.-C. Faugère, C. Goyet, and G. Renault. Analysis of the Algebraic Side
Channel Attack. Journal of Cryptographic Engineering, 2(1):45–62, 2012.

3. N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. IACR Cryptology ePrint Archive, 2002:44, 2002.

4. N. Creignou and H. Daude. Satisfiability threshold for random XOR-CNF formu-
las. Discrete Applied Mathematics, 96:41–53, 1999.

5. J. Daemen and V. Rijmen. AES proposal: Rijndael. In First Advanced Encryption
Standard (AES) Conference, 1998.

6. D. Gligoroski and M.E. Moe. On deviations of the AES S-box when represented
as vector valued Boolean function. International Journal of Computer Science and
Network Security, 7(4):156–163, 2007.

7. E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. In
Workshop on Cryptographic Hardware and Embedded Systems (CHES 2009), pages
1–17, 2009.

8. P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

9. S. Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion. In ICISC, pages 343–358, 2002.

10. M.S.E. Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter, and J. Buchmann.
Improved Algebraic Side-Channel Attack on AES. In HOST, pages 146–151, 2012.

11. Y. Oren, M. Kirschbaum, T. Popp, and A. Wool. Algebraic Side-Channel Analysis
in the Presence of Errors. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2010), pages 428–442, 2010.

12. Y. Oren, M. Renauld, F.-X. Standaert, and A. Wool. Algebraic Side-Channel At-
tacks Beyond the Hamming Weight Leakage Model. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2012), pages 140–154, 2012.

13. M. Renauld and F.-X. Standaert. Algebraic Side-Channel Attacks. In Bao F. and
Yung, M. and Lin, D. and Jing, J., editor, Information Security and Cryptology
(INSCRYPT) 2009, volume 6151 of Lecture Notes in Computer Science, pages
393–410. Springer, 2009.

14. M. Renauld and F.-X. Standaert. Combining Algebraic and Side-Channel Crypt-
analysis against Block Ciphers. In 30-th Symposium on Information Theory in the
Benelux, 2009.

15. M. Renauld and F.-X. Standaert. Representation-, Leakage- and Cipher- Depen-
dencies in Algebraic Side-Channel Attacks. In Industrial track of ACNS 2010,
2010.



16. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon. Algebraic Side-Channel
Attacks on the AES: Why Time also Matters in DPA. In Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2009), volume 5747 of Lecture
Notes in Computer Science, pages 97–111. Springer, 2009.

17. X. Zhao, F. Zhang, S. Guo, T. Wang, Z. Shi, H. Liu, and K. Ji. MDASCA: an
enhanced algebraic side-channel attack for error tolerance and new leakage model
exploitation. Constructive Side-Channel Analysis and Secure Design (COSADE
2012), pages 231–248, 2012.

A More experimental results

Table 3: Summary of results with HD model
(a) Pragmatic attack on one round

Set size Final key space size Execution time Success rate

1 213 0.03 s 100%

2 248 7 mins 90%

3 258 4.5 hrs 32%

4 266 20 hrs 8%

5 N/A >24 h 0%

(b) Algebraic attack up to several rounds

Attacked rounds 1 round 2 rounds 3 rounds 4 rounds 5 rounds

set=1 20.13 20.08 20.13 19.88 19.68
set=2 641.52 601.46 600.33 609.30 640.31


	Pragmatism vs. Elegance: comparing two approaches to Simple Power Attacks on AES

