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Abstract. We study the security of key-alternating Feistel ciphers, a
class of key-alternating ciphers with a Feistel structure. Alternatively,
this may be viewed as the study of Feistel ciphers where the pseudoran-
dom round functions are of the form Fi(x⊕ ki), where ki is the (secret)
round key and Fi is a public random function that the adversary is al-
lowed to query in a black-box way. Interestingly, our results can be seen
as a generalization of traditional results à la Luby-Rackoff in the sense
that we can derive results for this model by simply letting the number of
queries of the adversary to the public random functions Fi be zero in our
general bounds. We make an extensive use of the coupling technique. In
particular (and as a result of independent interest), we improve the anal-
ysis of the coupling probability for balanced Feistel schemes previously
carried out by Hoang and Rogaway (CRYPTO 2010).

Keywords: block cipher, key-alternating cipher, Feistel cipher, coupling, prov-
able security

1 Introduction

Block Ciphers. Block cipher designs roughly fall in two main classes, namely
Feistel networks and substitution-permutation networks (SPNs). The primary
security notion when studying a block cipher is pseudorandomness: it should be
impossible except with negligible probability for any adversary with reasonable
resources which has black-box access to a permutation oracle (and potentially
its inverse) to distinguish whether it is interacting with the block cipher with a
uniformly random key, or with a truly random permutation. Since proving upper
bounds on the distinguishing advantage of a general adversary for a concrete
block cipher seems out of reach of current techniques, research has focused on
proving results by idealizing some components of the block cipher.
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For Feistel networks, most of the provable security work falls in what is usu-
ally named the Luby-Rackoff framework, in reference to the seminal work of
Luby and Rackoff [10]. In this setting, the round functions of the Feistel scheme
are idealized as being uniformly random (and secret). Such results can be di-
rectly transposed to the case where the round functions are pseudorandom via
a composition theorem (but again proving any lower bound for the pseudoran-
domness of some concrete function family is out of reach of current techniques).
Starting from the Luby-Rackoff result that the 3-round Feistel scheme is a pseu-
dorandom permutation [10], and the proof by Patarin [16] that four rounds yield
a strong pseudorandom permutation (where strong means that inverse queries
to the permutation oracle are allowed), a long series of work established refined
bounds for larger number of rounds [11, 12, 21, 17, 8, 18].

For SPN ciphers, provable security results were for a long time limited to
resistance to specific attacks such as differential and linear attacks [3]. Recently
though, a number of results have been obtained for the ideal key-alternating
cipher, a.k.a. iterated Even-Mansour cipher. An r-round key-alternating cipher
is specified by r public permutations on n bits P0, . . . , Pr−1, and encrypts a
plaintext x as

y = kr ⊕ Pr−1(kr−1 ⊕ Pr−2(· · ·P0(k0 ⊕ x) · · · )) ,

where (k0, . . . , kr) are r + 1 keys of n bits. When r = 1, this construction was
analyzed and its security established up to O(2n/2) queries by Even and Man-
sour [6] in the random permutation model for P0, i.e. when the permutation
P0 is a random permutation oracle to which the adversary can make direct and
inverse queries. Subsequently, a number of papers improved this seminal result
to larger numbers of rounds [1, 9, 20], culminating with the proof by Chen
and Steinberger [2] that the r-round ideal key-alternating cipher is secure up
to O(2

rn
r+1 ) adaptive, chosen plaintext and ciphertext queries (which is optimal

since it matches the best known attack).

Our Contribution. In this work, we study the security of Feistel networks in
a setting where the round functions are random and public (meaning that the
adversary can make oracle queries to these functions), and an independent round
key is xored before each round function. In other words, the state at round i is
updated according to (xL, xR) 7→ (xR, xL ⊕ Fi(xR ⊕ ki)), where xL and xR are
respectively the left and right n-bit halves of the state, and ki is an n-bit round
key. In a sense, this can be seen as transposing the setting of recent works on
the ideal key-alternating cipher (which uses the random permutation model) to
Feistel ciphers (in the random function model). For this reason, we call such a
design a key-alternating Feistel cipher (KAF cipher for short). In fact, one can
easily see that two rounds of a key-alternating Feistel cipher can be rewritten
as a (single-key) one-round Even-Mansour cipher, where the permutation P is a
two-round (public and un-keyed) Feistel scheme (see Figure 2). When we want
to insist that we consider the model where the round functions Fi are uniformly
random public functions, we talk of the ideal KAF cipher. Hence, the setting we
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consider departs from the usual Luby-Rackoff framework in two ways: on one
hand, we consider “complex” round functions (random function oracles), but on
the other hand we consider the simplest keying procedure, namely xoring.

In this setting, the resources of the adversary are measured by the maximal
number qe of queries to the permutation oracle (and its inverse for strong pseu-
dorandomness), and the maximal number qf of queries to each round function.
In the special case where qf = 0 (i.e. the adversary has not access to the random
round functions), one exactly recovers the more usual Luby-Rackoff setting, so
that our analysis allows to directly derive results for this framework as well by
letting qf be zero.

Our analysis is based on a coupling argument, a well-known tool from the
theory of Markov chains. Its use in cryptography has been pioneered by Mi-
ronov [14] for the analysis of the shuffle of the RC4 stream cipher, and later
by Morris et al. for the analysis of maximally unbalanced Feistel schemes [15].
Later use of this technique includes [8, 9]. The work of Hoang and Rogaway [8]
is particularly relevant to this paper since they analyzed (among other variants)
balanced Feistel schemes, although only in the traditional Luby-Rackoff setting.

Our bounds show that an ideal KAF cipher with r rounds ensures security
up to O(2

tn
t+1 ) queries of the adversary, where

– t = b r3c for non-adaptive chosen-plaintext (NCPA) adversaries;
– t = b r6c for adaptive chosen-plaintext and ciphertext (CCA) adversaries.

In the Luby-Rackoff setting (qf = 0), we improve on the previous work
of Hoang and Rogaway [8] thanks to a more careful analysis of the coupling
argument. Namely we show that the ideal LR cipher is CCA-secure up toO(2

tn
t+1 )

queries, where t = b r−1
4 c. The best proven security bound in the Luby-Rackoff

setting remains due to Patarin [18], who showed that the 6-round Feistel cipher
is secure up to O(2n) queries against CCA distinguishers. However his analysis
is much more complicated and does not seem to be directly transposable to the
case of KAF ciphers. We feel that the simplicity of the coupling argument is an
attractive feature in addition to being immediately applicable to KAF ciphers.

Other Related Work. We are only aware of two previous works in a setting
similar to ours. The first is a paper by Ramzan and Reyzin [19], who showed
that the 4-round Feistel construction remains (strongly) pseudorandom when the
adversary is given oracle access to the two middle round functions. This setting
is somehow intermediate between the Luby-Rackoff and the KAF setting. The
second paper is by Gentry and Ramzan [7], who showed that the public random
permutation of the Even-Mansour cipher x 7→ k1 ⊕ P (k0 ⊕ x) can be replaced
by a 4-round public Feistel scheme, and the resulting construction is still a
strong pseudorandom permutation. While their result shows how to construct
a strong pseudorandom permutation from only four public random functions
(while we need six rounds of Feistel and hence six random functions to get
the same result in this paper), their analysis only yields a O(2n/2) security
bound. On the contrary, our bounds improve asymptotically with the number of
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rounds, approaching the information-theoretic bound of O(2n) queries. In fact,
our results are the first ones beyond the birthday bound for KAF ciphers.

Organization. We start with some definitions and preliminaries in Section 2.
In Section 3, we prove a probabilistic lemma which will be useful later to study
the coupling probability for Feistel schemes. This result might be of independent
interest. Finally, Section 4 contains our main results about the security of ideal
KAF ciphers and Luby-Rackoff ciphers.

2 Preliminaries

2.1 General Notation

In all the following, we fix an integer n ≥ 1. Given an integer q ≥ 1 and a set
S, we denote (S)∗q the set of all q-tuples of pairwise distinct elements of S. We
denote [i; j] the set of integers k such that i ≤ k ≤ j.

The set of functions of n bits to n bits will be denoted Fn. Let F =
(F0, . . . , Fr−1) ∈ (Fn)r be a tuple of functions, and u = (u0, . . . , ur−1) and
v = (v0, . . . , vr−1) where for i = 0, . . . , r − 1, ui = (u1

i , . . . , u
q
i ) ∈ ({0, 1}n)q and

vi = (v1
i , . . . , v

q
i ) ∈ ({0, 1}n)q are q-tuples of n-bit strings. We write Fi(ui) = vi

as a shorthand to mean that Fi(uji ) = vji for all j = 1, . . . , q, and F (u) = v as a
shorthand to mean that Fi(ui) = vi for all i = 0, . . . , r − 1.

2.2 Definitions

Given a function F from {0, 1}n to {0, 1}n and a n-bit key k, the one-round
keyed Feistel permutation is the permutation on {0, 1}2n defined as:

ΨFk (xL, xR) = (xR, xL ⊕ F (xR ⊕ k)) ,

where xL and xR are respectively the left and right n-bit halves of the input.
A key-alternating Feistel cipher (KAF cipher for short) with r rounds is spec-

ified by r public round functions F0, . . . , Fr−1 from {0, 1}n to {0, 1}n, and will
be denoted KAFF0,...Fr−1 . It has key-space ({0, 1}n)r and message space {0, 1}2n.
It maps a key (k0, . . . , kr−1) and a plaintext x to the ciphertext defined as:

KAFF0,...Fr−1((k0, . . . , kr−1), x) = Ψ
Fr−1
kr−1

◦ · · · ◦ ΨF0
k0

(x) .

We will denote KAFF0,...Fr−1
k0,...,kr−1

the permutation on {0, 1}2n mapping a plaintext
x to KAFF1,...Fr ((k0, . . . , kr−1), x). When the number of rounds is clear, we sim-
ply denote F = (F0, . . . , Fr−1) and k = (k0, . . . , kr−1), and KAFF

k the 2n-bit
permutation specified by round functions F and round keys k.

As already noted in [4], a KAF cipher with an even number of rounds can
be seen as a special case of a (permutation-based) key-alternating cipher, also
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known as an iterated Even-Mansour cipher. Indeed, two rounds of a KAF cipher
can be rewritten as (see Figure 2):

Ψ
Fi+1
ki+1

◦ ΨFi

ki
(x) = (ki+1‖ki)⊕ ΨFi+1

0 ◦ ΨFi
0 ((ki+1‖ki)⊕ x) .

Here ΨFi+1
0 ◦ ΨFi

0 is the un-keyed two-round Feistel permutation with round
functions Fi and Fi+1. Hence this permutation is public since the two round
functions Fi and Fi+1 are public oracles. Recall that the (single-key) Even-
Mansour cipher on 2n bits is defined from a public permutation P on 2n bits as
E(k, x) = k ⊕ P (k ⊕ x), where k is the 2n-bit key and x the 2n-bit plaintext [6,
5]. Hence, a 2r′-round KAF cipher with round functions (F0, . . . , F2r′−1) and
round keys (k0, . . . , k2r′−1) can be seen as an r′-round key-alternating cipher,
where the i-th permutation, i = 0, . . . , r′−1, is the (un-keyed) two-round Feistel
scheme with round functions F2i and F2i+1, and the sequence of 2n-bit keys is
(k̃0, k̃0⊕k̃1, . . . , k̃r′−2⊕k̃r′−1, k̃r′−1) with k̃i = k2i+1‖k2i. (This is more accurately
described as the cascade of r′ single-key one-round Even-Mansour ciphers.)

As already mentioned in introduction, the iterated Even-Mansour cipher
has been subject to extensive security analysis recently (these works often con-
sider the case where all keys are independent, but virtually all the results, in
particular [2, 9], apply to the cascade of single-key one-round Even-Mansour
schemes). However, these results cannot be transposed to the case of KAF ci-
phers since they are a special sub-case of the general construction, and hence a
dedicated analysis is required. In particular, note that even though the single-key
one-round Even-Mansour cipher with a 2n-bit permutation is provably secure
up to O(2n) queries against CCA distinguishers, the two-round ideal KAF ci-
pher is easily distinguishable from a random permutation with only two cho-
sen plaintext queries (namely: query the encryption oracle on (xL, xR) and
(x′L, xR), and check whether the respective ciphertexts (yL, yR) and (y′L, y′R)
satisfy yL ⊕ y′L = xL ⊕ x′L).

2.3 Security Notions

In order to study the pseudorandomness of KAF ciphers, we will consider dis-
tinguishers D interacting with r function oracles F = (F0, . . . , Fr−1) from n bits
to n bits and a 2n-bit permutation oracle (and potentially its inverse) which
is either the KAF cipher KAFF

k specified by F with a uniformly random key
k = (k0, . . . , kr−1), or a perfectly random permutation P (independent from F ).
A (qe, qf )-distinguisher is a distinguisher that makes at most qe queries to the
permutation oracle and at most qf queries to each round function F0, . . . , Fr−1.
We will consider only computationally unbounded distinguishers. As usual we
restrict ourself wlog to deterministic distinguishers that never make redundant
queries and always make the maximal number of allowed queries to each oracle.

As in [9], we will define two types of distinguishers, depending on the way
it can make its queries to the oracles, namely non-adaptive chosen-plaintext
(NCPA) distinguishers, and (adaptive) chosen-plaintext and ciphertext (CCA)
distinguishers. We stress that the distinction adaptive/non-adaptive only refers
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F0

k0

F1

k1

x1

...

Fr−2

kr−2

xr−2

Fr−1

kr−1

xr−1

x−1 x0

xr−1 xr

Fig. 1. Notations used for a r-round KAF cipher.

to the queries to the permutation oracle. We now give the precise definitions of
these two classes of distinguishers.

Definition 1. A (qe, qf )-NCPA distinguisher runs in two phases:

1. in a first phase, it makes exactly qf queries to each round function Fi. These
queries can be adaptive.

2. in a second phase, it chooses a tuple of qe non-adaptive forward queries
x = (x1, . . . , xqe) to the permutation oracle, and receives the corresponding
answers. By non-adaptive queries, we mean that all queries must be cho-
sen before receiving any answer from the permutation oracle, however these
queries may depend on the answers received in the previous phase from the
round function oracles Fi.

A (qe, qf )-CCA distinguisher is the most general one: it makes adaptively qf
queries to each round function Fi and qe forward or backward queries to the
permutation oracle, in any order (in particular it may interleave queries to the
permutation oracle and to the round function oracles).

In all the following, the probability of an event E when D interacts with
(F , P ) where P is a random permutation independent from the uniformly ran-
dom round functions F will simply be denoted Pr∗[E], whereas the probability
of an event E when D interacts with (F , KAFF

k ), where the key k = (k0, . . . , kr−1)
is uniformly random, will simply be denoted Pr[E]. With these notations, the
advantage of a distinguisher D is defined as |Pr[D(1n) = 1] − Pr∗[D(1n) = 1]|
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Fi

ki

Fi+1

ki+1

Fi

Fi+1

ki+1 ki

ki+1 ki

Fig. 2. An alternative view of two rounds of a KAF cipher.

(we omit the oracles in this notation since they can be deduced from the notation
Pr[·] or Pr∗[·]). The maximum advantage of a (qe, qf )-ATK-distinguisher against
the ideal r-round KAF cipher with n-bit round functions (where ATK is NCPA
or CCA) will be denoted Advatk

KAF[n,r](qe, qf ).
When qf = 0, i.e. in the setting where the distinguisher is not allowed to

query the round functions, it is not hard to see that the round keys k0, . . . , kr−1
do not add any security, so that they can all be taken equal to zero. Hence we
are brought back to the usual security framework à la Luby-Rackoff, where the
round functions are uniformly random and play the role of the secret key (in
other words, the key space in this setting is (Fn)r, where Fn is the set of all
functions from n bits to n bits). In that case, our definitions of an NCPA and a
CCA distinguisher correspond to the usual definitions of pseudorandomness of a
blockcipher in the standard model (i.e. when no additional oracles are involved).
In order to emphasize that this setting is qualitatively different, we will denote
Advatk

LR[n,r](qe) the advantage of a (qe, qf = 0)-ATK-distinguisher against the
ideal r-round Luby-Rackoff cipher.

To sum up, we consider in a single framework two flavors of Feistel ciphers:
Luby-Rackoff ciphers, where the round functions are random and secret, and
key-alternating Feistel ciphers, where round functions are of the type Fi(x⊕ki),
where ki is a secret round key and Fi a public random function oracle.

2.4 Statistical Distance and Coupling

Given a finite event space Ω and two probability distributions µ and ν defined on
Ω, the statistical distance (or total variation distance) between µ and ν, denoted
‖µ− ν‖ is defined as:

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

A coupling of µ and ν is a distribution λ on Ω ×Ω such that for all x ∈ Ω,∑
y∈Ω λ(x, y) = µ(x) and for all y ∈ Ω,

∑
x∈Ω λ(x, y) = ν(y). In other words,

λ is a joint distribution whose marginal distributions are resp. µ and ν. The
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fundamental result of the coupling technique is the following one. See e.g. [9] for
a proof.

Lemma 1 (Coupling Lemma). Let µ and ν be probability distributions on
a finite event space Ω, let λ be a coupling of µ and ν, and let (X,Y ) ∼ λ
( i.e. (X,Y ) is a random variable sampled according to distribution λ). Then
‖µ− ν‖ ≤ Pr[X 6= Y ].

3 A Useful Probabilistic Lemma

Readers may skip this section at first reading and come back after Lemma 11.
In all the following, we interchangeably use the notation AiAj to denote the
intersection Ai ∩ Aj of two events, and more generally Ai1Ai2 · · ·Aik to denote
Ai1 ∩Ai2 ∩ · · · ∩Aik .

In this section, we consider the following problem: for r ≥ 2, let A1, . . . , Ar
be events defined over the same probability space Ω, satisfying the following
“negative dependence” condition:

Definition 2. Let p ∈]0, 1[. A sequence of events A1, . . . , Ar is said to be p-
negatively dependent if for any i ∈ [1; r] and any subset S ⊆ [1; i− 1], one has:

Pr

Ai∣∣∣∣ ⋂
j∈S

Aj

 ≤ p ,
with the convention that an empty intersection is the certain event Ω (hence, in
particular Pr[Ai] ≤ p for i ∈ [1; r]).

We denote Cr the event Cr = ∩r−1
i=1 (Ai ∪Ai+1), or in a more eloquent form:

Cr = (A1 ∪A2)(A2 ∪A3) · · · (Ar−2 ∪Ar−1)(Ar−1 ∪Ar) .

Our goal is to find an upper bound on the probability Pr [Cr] of this event. Note
that Cr is an event in conjunctive normal form, which is not directly amenable to
deriving an adequate upper bound. However, once written in disjunctive normal
form, one can easily upper bound its probability using the following simple fact:

Lemma 2. Let A1, . . . , Ar be p-negatively dependent events. Then for any k ∈
[1; r] and any distinct integers i1, . . . , ik in [1; r] one has:

Pr [Ai1 · · ·Aik ] ≤ pk .

Proof. By induction on k. ut

In the following, for a sequence α ∈ {0, 1}r−1, we denote αi the i-th bit of α.
By developing straightforwardly event Cr, one obtains the following expression.
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Lemma 3.
r−1⋂
i=1

(Ai ∪Ai+1) =
⋃

α∈{0,1}r−1

r−1⋂
i=1

Ai+αi
.

Proof. By induction on r. ut

For any sequence α ∈ {0, 1}r−1, we will denote Br,α = ∩r−1
i=1Ai+αi , so that

Cr = ∪α∈{0,1}r−1Br,α. Depending on α, Br,α may be the intersection of strictly
less than r−1 events (e.g. as soon as αi = 1 and αi+1 = 0 for some i). Moreover,
for two distinct sequences α and α′, it may happen that Br,α ⊂ Br,α′ . Consider
for example the simple case r = 3. Then B3,00 = A1 ∩ A2 and B3,10 = A2 ∩
A2 = A2, so that B3,00 ⊂ B3,10 (see Table 1 for the developed and “reduced”
disjunctive form of Cr for r up to 8). This motivates the following definition of
irreducible sequences, which informally characterize the “minimal” set of events
Br,α covering Cr.

Definition 3. We define the set of irreducible sequences as the following regular
language (λ denotes the empty string):

I = {λ, 0}{10, 100}∗{λ, 1} .

In other words, irreducible sequences are obtained by concatenating possibly a
single 0, then the two patterns 10 and 100 arbitrarily, and finally possibly a
single 1. Sequences in {0, 1}∗ \ I are called reducible. We denote Ir the set of
irreducible sequences of length r.

It is easy to see that irreducible sequences are exactly sequences α such that
0α does not contain three consecutive zeros or two consecutive ones, but we will
not need this characterization here.

The usefulness of irreducible sequences comes from the following lemma.

Lemma 4. Pr[Cr] ≤
∑
α∈Ir−1

Pr[Br,α].

Proof. We show by induction on r that Cr ⊆ ∪α∈Ir−1Br,α, from which the
lemma follows by the union bound. We first show it directly for r = 2, 3, 4. This
trivially holds for r = 2 since C2 = A1 ∪A2 = B2,0 ∪B2,1 and the two sequences
0 and 1 are irreducible. For r = 3, we have:

C3 = (A1 ∪A2)(A2 ∪A3) ⊆ A1A3 ∪A2 = B3,01 ∪B3,10 ,

from which the result follows since 01 and 10 are irreducible while 00 and 11 are
reducible. For r = 4, we have

C4 = (A1 ∪A2)(A2 ∪A3)(A3 ∪A4) ⊆ A1A3 ∪A2A3 ∪A2A4

⊆ B4,010 ∪B4,100 ∪B4,101 ,

from which the result follows since 010, 100, and 101 are the only irreducible
sequences of length 3.
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Let us now show the result for r ≥ 5, assuming that the result holds for r−1.
We have:

Cr = Cr−1 ∩ (Ar−1 ∪Ar) ⊆
(
∪α∈Ir−2Br−1,α

)
∩ (Ar−1 ∪Ar)

⊆
(
∪α∈Ir−2Br,α0

)
∪
(
∪α∈Ir−2Br,α1

)
Hence, it suffices to show that for any irreducible α ∈ Ir−2 such that α0, resp.
α1, is reducible, there is an irreducible ᾱ ∈ Ir−1 such that Br,α0 ⊆ Br,ᾱ, resp.
Br,α1 ⊆ Br,ᾱ. We distinguish three cases depending on the form of α ∈ Ir−2.
Note that since we assume r− 2 ≥ 3, α contains at least a pattern 10 or 100, so
that either α = α′10, or α = α′100, or α = α′1, with α′ ∈ {λ, 0}{10, 100}∗ in
each case.
– Case 1: α = α′10; in that case, we see that both α0 = α′100 and α1 = α′101

are irreducible, so there is nothing to prove.
– Case 2: α = α′100; in that case, α1 = α′1001 is irreducible, so there is

nothing to prove for α1. On the other hand, α0 = α′1000 is reducible. Let
ᾱ = α′1010. Note that ᾱ is irreducible. Moreover:

Br,α0 = Br,α′1000 = Br−4,α′ ∩Ar−3Ar−2Ar−1

Br,ᾱ = Br,α′1010 = Br−4,α′ ∩Ar−3Ar−1 ,

so that Br,α0 ⊆ Br,ᾱ.
– Case 3: α = α′1; in that case, α0 = α′10 is irreducible, so there is nothing

to prove for α0. On the other hand, α1 = α′11 is reducible. Let ᾱ = α′10.
Note that ᾱ is irreducible. Moreover:

Br,α1 = Br,α′11 = Br−2,α′ ∩Ar−1Ar

Br,ᾱ = Br,α′10 = Br−2,α′ ∩Ar−1 ,

so that Br,α1 ⊆ Br,ᾱ.
Hence Cr ⊆ ∪α∈Ir−1Br,α, which concludes the proof. ut

We now give an upper bound for the probability of events Br,α for irreducible
sequences α. For this, we introduce the following definition.

Definition 4. The weight of a sequence α ∈ {0, 1}∗, denoted w(α), is the num-
ber of patterns 10 it contains ( i.e. the number of integers i such that αi = 1 and
αi+1 = 0).

Lemma 5. Let α ∈ {0, 1}r−1 be an irreducible sequence. Then:

Pr[Br,α] ≤ pr−1−w(α) .

Proof. Let k = w(α). By definition, there are exactly k distinct integers i1 <
. . . < ik such that for each i ∈ {i1, . . . , ik} we have αi = 1 and αi+1 = 0, which
implies Ai+αi

Ai+1+αi+1 = Ai+1 = Ai+αi
. Hence we see that:

Br,α ⊆
r−1⋂
i=1

i 6=i1+1,...,ik+1

Ai+αi ,
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which implies the result by Lemma 2 since the event on the right hand side is
the intersection of exactly r − 1− k distinct events Aj . ut

It remains to count the number of irreducible sequences of a given weight.

Lemma 6. The number of irreducible sequences of length r and weight k is(
k+2
r−2k

)
. Moreover the minimal and maximal weights of an irreducible sequence

are respectively kmin = d r−2
3 e and kmax = b r2c.

Proof. Let a and b denote respectively the number of patterns 10 and 100 in an
irreducible sequence. Clearly the weight k of the sequence satisfies k = a + b.
Moreover, depending on whether the sequence starts with a single 0 and ends
with a single 1, we have the following relation between a and b and the length r
of the sequence:

– for sequences of the form λ{10, 100}∗λ, one has 2a+ 3b = r
– for sequences of the form 0{10, 100}∗λ or λ{10, 100}∗1, one has 2a+3b = r−1
– for sequences of the form 0{10, 100}∗1, one has 2a+ 3b = r − 2

Denoting r′ = r, r−1 or r−2 depending on the case, we always have 2a+3b = r′,
which combined with a + b = k yields b = r′ − 2k. For each case the number
of possible sequences is

(
a+b
b

)
=
(

k
r′−2k

)
. Hence the total number of irreducible

sequences of length r and weight k is:(
k

r − 2k

)
+ 2
(

k

r − 1− 2k

)
+
(

k

r − 2− 2k

)
=
(
k + 2
r − 2k

)
.

The minimal and maximal weights of an irreducible sequence directly follows
from the condition 0 ≤ r− 2k ≤ k+ 2 for

(
k+2
r−2k

)
to be non-zero. This concludes

the proof. ut

We are now ready to state and prove the main result of this section, namely
the following upper bound for Pr[Cr].

Lemma 7. Let A1, . . . , Ar be p-negatively dependent events. Then:

Pr
[
r−1⋂
i=1

(Ai ∪Ai+1)
]
≤
b 2r

3 c∑
k=b r

2 c

(
r + 1− k
2r − 3k

)
pk .

Proof. Combining Lemmas 4, 5, and 6 (note that we apply this last lemma to
sequences of length r − 1), we have:

Pr[Cr] ≤
b r−1

2 c∑
k=d r−3

3 e

(
k + 2

r − 1− 2k

)
pr−1−k .

which after the change of variable r − 1− k ← k′ yields the desired bound. ut

We checked Lemma 7 by directly expanding and reducing the conjunctive
normal form of Cr for small values of r (see Table 1 for the upper bound obtained
for values of r up to 8).
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Table 1. Disjunctive normal form of event Cr and upper bound on Pr [Cr] for r up
to 8.

r Cr (developed and reduced) Pr[Cr] upper bound
2 A1 ∪A2 2p

3 A1A3 ∪A2 p + p2

4 A1A3 ∪A2A3 ∪A2A4 3p2

5 A1A3A4 ∪A1A3A5 ∪A2A3A5 ∪A2A4 p2 + 3p3

6 A1A3A4A6 ∪A1A3A5 ∪A2A3A5 ∪A2A4A5 ∪A2A4A6 4p3 + p4

7 A1A3A4A6 ∪A1A3A5A6 ∪A1A3A5A7 ∪A2A3A5A6∪
A2A3A5A7 ∪A2A4A5A7 ∪A2A4A6

p3 + 6p4

8
A1A3A4A6A7 ∪A1A3A4A6A8 ∪A1A3A5A6A8∪

A1A3A5A7 ∪A2A3A5A6A8 ∪A2A3A5A7∪
A2A4A5A7 ∪A2A4A6A7 ∪A2A4A6A8

5p4 + 4p5

4 Application to the Security of Key-Alternating Feistel
Ciphers

4.1 Coupling For Non-Adaptive Distinguishers

We will first bound the advantage against the r-round ideal KAF cipher KAF[n, r]
of any NCPA distinguisher making at most qe queries to the cipher and qf queries
to each round function. For this we will upper bound the statistical distance
between the outputs of the KAF cipher, conditioned on partial information about
round functions obtained through the oracle queries to F0, . . . , Fr−1, and the
uniform distribution on ({0, 1}2n)∗qe .

For any tuples u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1) with ui, vi ∈
({0, 1}n)qf , and x ∈ ({0, 1}2n)∗qe , we denote µx,u,v the distribution of the qe-
tuple y = KAFF

k (x) when the key k = (k0, . . . , kr−1) is uniformly random, and
the round functions F = (F0, . . . , Fr−1) are uniformly random among functions
satisfying F (u) = v. In the Luby-Rackoff setting (qf = 0), we sometimes simply
denote this distribution µx. We also denote µ∗ the uniform distribution over
({0, 1}2n)∗qe . Then we have the following lemma. Its proof is standard and very
similar to the proof of [9, Lemma 4], and therefore omitted.

Lemma 8. Let qe, qf be positive integers. Assume that there exists α such that
for any tuples u = (u0, . . . , ur−1), v = (v0, . . . , vr−1) with ui, vi ∈ ({0, 1}n)qf ,
and x ∈ ({0, 1}2n)∗qe , we have ‖µx,u,v − µ∗‖ ≤ α. Then Advncpa

KAF[n,r](qe, qf ) ≤ α.

In the remainder of this section, we will establish an upper bound α on
‖µx,u,v − µ∗‖ by using a coupling argument similar to the one of Hoang and
Rogaway [8] (and an improved analysis of this coupling in the Luby-Rackoff
setting). In all the following, we fix tuples u = (u0, . . . , ur−1), v = (v0, . . . , vr−1)
with ui = (u1

i , . . . , u
qf

i ) ∈ ({0, 1}n)qf and vi = (v1
i , . . . , v

qf

i ) ∈ ({0, 1}n)qf , and
x = (x1, . . . , xqe) ∈ ({0, 1}2n)∗qe .
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For 0 ≤ ` ≤ qe−1, we denote ν` the distribution of the (`+ 1) outputs of the
KAF cipher when it receives inputs (x1, . . . , x`, x`+1), and ν∗` the distribution of
the (`+ 1) outputs of the KAF cipher when it receives inputs (x1, . . . , x`, z`+1),
where z`+1 is uniformly distributed over {0, 1}2n \ {x1, . . . , x`} (in both cases
the key k = (k0, . . . , kr−1) is uniformly random, and the round functions F =
(F0, . . . , Fr−1) are uniformly random among functions satisfying F (u) = v).
Then we have the following lemma, whose proof is similar to the one of [15,
Lemma 2] (this lemma is not specific to our setting, and applies to any block
cipher).

Lemma 9. ‖µx,u,v − µ∗‖ ≤
∑qe−1
`=0 ‖ν` − ν∗` ‖.

Proof. Deferred to Appendix A. ut

We now turn to upper bounding ‖ν` − ν∗` ‖ for 0 ≤ ` ≤ qe − 1. Our goal is
to describe a coupling of ν` and ν∗` , i.e. a joint distribution on pairs of (` + 1)-
tuples of 2n-bit strings, whose marginal distributions are ν` and ν∗` . For this,
we consider two KAF ciphers in parallel. The first one, KAFF

k , takes as inputs
(x1, . . . , x`, x`+1), while the second one, KAFF ′

k′ , where F ′ = (F ′0, . . . , F ′r−1), takes
as inputs (x1, . . . , x`, z`+1), where z`+1 is any value in {0, 1}2n \{x1, . . . , x`} (we
upper bound the statistical distance between the outputs of the two systems for
any z`+1, from which it follows that the same upper bound holds when z`+1

is uniformly random in {0, 1}2n \ {x1, . . . , x`}). We assume that k is uniformly
random and F is uniformly random among function tuples satisfying F (u) = v,
and we will define k′ and F ′ so that they also satisfy these properties. This will
ensure that the marginal distribution of the outputs of the first KAF cipher is
ν`, and the marginal distribution of the outputs of the second KAF cipher is ν∗` .

The coupling. We now explain how the coupling of the two KAF ciphers is
defined. First, the round keys in the second KAF cipher are the same as in the
first one, namely k′ = k. For 1 ≤ j ≤ ` + 1, let xj−1 and xj0 denote respectively
the left and right n-bit halves of xj and for 1 ≤ i ≤ r let xji be recursively
defined as xji = xji−2 ⊕ Fi−1(xji−1 ⊕ ki−1) (see Figure 1). For any 1 ≤ j ≤ `

and any 0 ≤ i ≤ r − 1, we simply set F ′i (x
j
i ⊕ ki) = Fi(xji ⊕ ki) (note that this

is consistent with the condition F ′(u) = v in case some value xji ⊕ ki belongs
to ui = (u1

i , . . . , u
qf

i ), the set of queries of the distinguisher to the i-th round
function). Since the ` first queries to the second KAF cipher are the same as the
queries made to the first KAF cipher, this ensures that the ` first outputs of both
ciphers are equal. It remains to explain how the (` + 1)-th queries are coupled.
Let z`+1

−1 and z`+1
0 be respectively the left and right n-bit halves of z`+1. We will

define recursively for 1 ≤ i ≤ r the round values z`+1
i = z`+1

i−2⊕F ′i−1(z`+1
i−1⊕ki−1).

For this, we define two bad events which may happen at round 0 ≤ i ≤ r − 1 in
each KAF cipher. We say that XColli happens if x`+1

i ⊕ki is equal to xji ⊕ki for
some 1 ≤ j ≤ ` (i.e. the input value to the i-th round function when enciphering
x`+1 collides with the input value to the i-th round function when enciphering
some previous query xj). We say that FColli happens if x`+1

i ⊕ ki ∈ ui (i.e.

13



the input value to the i-th round function when enciphering x`+1 is equal to
one of the oracle queries made to Fi by the distinguisher). We simply denote
Colli = XColli ∪ FColli. Similarly, we say that XColl′i happens if z`+1

i ⊕ ki is
equal to xji ⊕ ki for some 1 ≤ j ≤ `, that FColl′i happens if z`+1

i ⊕ ki ∈ ui,
and we denote Coll′i = XColl′i ∪ FColl′i. Then, for i = 0, . . . , r − 1, we define
F ′i (z`+1

i ⊕ ki) as follows:

(1) if Coll′i happens, then F ′i (z`+1
i ⊕ki) is already defined (either because z`+1

i ⊕
ki = xji ⊕ ki for some j ≤ `, or by the constraint F ′(u) = v);

(2) if Coll′i does not happen but Colli happens, F ′i (z`+1
i ⊕ ki) is chosen uni-

formly at random;
(3) if neither Colli nor Coll′i happens, then we define F ′i (z`+1

i ⊕ ki) so that
z`+1
i+1 = x`+1

i+1 , namely:

F ′i (z`+1
i ⊕ ki) = z`+1

i−1 ⊕ x
`+1
i−1 ⊕ Fi(x

`+1
i ⊕ ki) .

One can check that the round functions F ′ in the second KAF cipher are uni-
formly random among functions tuples satisfying F ′(u) = v. This is clear when
F ′i (z`+1

i ⊕ki) is defined according to rule (1) or (2). When F ′i (z`+1
i ⊕ki) is defined

according to rule (3), then Fi(x`+1
i ⊕ ki) is uniformly random since Colli does

not happen, so that F ′i (z`+1
i ⊕ki) is uniformly random as well. This implies that

the outputs of the second KAF cipher are distributed according to ν∗` as wanted.
We say that the coupling is successful if all the outputs of both KAF ciphers

are equal. Since the ` first outputs are aways equal by definition of the coupling,
this is simply equivalent to having z`+1

r−1 = x`+1
r−1 and z`+1

r = x`+1
r .

The following lemma simply states the key idea of a coupling argument: if
the states just after round i when enciphering x`+1 in the first cipher and z`+1

in the second cipher, namely (x`+1
i , x`+1

i+1) and (z`+1
i , z`+1

i+1 ), are equal, then they
remain equal after any subsequent round so that the coupling is successful.

Lemma 10. If there exists i ≤ r − 1 such that z`+1
i = x`+1

i and z`+1
i+1 = x`+1

i+1 ,
then the coupling is successful.

Proof. We proceed by reverse induction. If i = r − 1, there is nothing to prove.
Fix i < r − 1, and assume that the property is satisfied for i + 1. Then, if
z`+1
i = x`+1

i and z`+1
i+1 = x`+1

i+1 , we simply have to prove that z`+1
i+2 = x`+1

i+2 and
the coupling will be successful by the induction hypothesis.

Assume first that Coll′i+1 happens, namely z`+1
i+1⊕ki+1 is equal to xji+1⊕ki+1

for some 1 ≤ j ≤ ` or to uj
′

i+1 for some 1 ≤ j′ ≤ qf . In both cases we see that
F ′i+1(z`+1

i+1 ⊕ ki+1) = Fi+1(x`+1
i+1 ⊕ ki+1), so that

z`+1
i+2 = z`+1

i ⊕ F ′i+1(z`+1
i+1 ⊕ ki+1) = x`+1

i ⊕ Fi+1(x`+1
i+1 ⊕ ki+1) = x`+1

i+2 .

When Coll′i+1 does not happen, then Colli+1 does not happen either since we
assume x`+1

i+1 = z`+1
i+1 , so that by definition of the coupling F ′i+1(zl+1

i+1 ⊕ ki+1) is
chosen such that z`+1

i+2 = x`+1
i+2 . ut
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The following lemma states that if neither Colli nor Coll′i happen for two
consecutive rounds, then the coupling is successful. Note that in general we
cannot use round 0 to try to couple since we cannot prevent the distinguisher
from choosing x`+1 such that x`+1

0 = xj0 for some j ≤ `, in which case Coll0
happens with probability 1.

Lemma 11. For i ∈ [1; r− 1], define Ai = Colli ∪ Coll′i. Let Fail be the event
that the coupling does not succeed. Then:

Pr [Fail] ≤ Pr
[
r−2⋂
i=1

(Ai ∪Ai+1)
]
.

Proof. Fix i ∈ [1; r− 2]. We will show that ¬(Ai ∪Ai+1) =⇒ ¬Fail. Indeed, if
none of the events Colli, Coll′i, Colli+1, and Coll′i+1 happens, then by defini-
tion of the coupling F ′i (z`+1

i ⊕ki) and F ′i+1(z`+1
i+1 ⊕ki+1) are chosen such that one

has z`+1
i+1 = x`+1

i+1 and z`+1
i+2 = x`+1

i+2 . By Lemma 10, this implies that the coupling
is successful. We just proved that ¬Fail ⊃ ∪r−2

i=1¬(Ai ∪ Ai+1), which yields the
result by negation. ut

Hence, the probability that the coupling fails is exactly the probability of
event Cr−1 that we studied in Section 3. At this point, the analysis differs for
the KAF and the Luby-Rackoff settings. Indeed, in the LR setting, we can show
that events Ai are p-negatively dependent, whereas this does not hold in the
KAF setting.

4.2 The KAF Setting

In the KAF setting, we cannot show that events Ai are p-negatively dependent.
However, they satisfy some weaker form of negative dependence.

Lemma 12. For any i ∈ [1; r − 1] and any subset S ⊆ [1; i− 2], one has:

Pr [Ai| ∩s∈S As] ≤
2(`+ 2qf )

2n .

Proof. We need to prove that for any i ∈ [1; r− 1] and any subset S ⊆ [1; i− 2],
one has:

Pr
[
Colli ∪ Coll′i

∣∣∣ ∩s∈S As] ≤ 2(`+ 2qf )
2n .

We upper bound the conditional probability of Colli, the reasoning for Coll′i
being similar. Recall that XColli is the event that x`+1

i ⊕ ki is equal to xji ⊕ ki
for some j ∈ [1; `], and FColli is the event that x`+1

i ⊕ki is equal to uj
′

i for some
j′ ∈ [1; qf ], and that Colli = XColli ∪ FColli.

We first consider the probability of FColli. Since ki is uniformly random and
independent from ∩s∈SAs, this probability is at most qf/2n.
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We now consider the probability of XColli, i.e. that x`+1
i ⊕ ki = xji ⊕ ki for

some j ∈ [1; `]. Note that this is equivalent to

x`+1
i−2 ⊕ Fi−1(x`+1

i−1 ⊕ ki−1) = xji−2 ⊕ Fi−1(xji−1 ⊕ ki−1) . (1)

Here, we face the problem that conditioned on FColli−1, Fi−1(x`+1
i−1 ⊕ ki−1) is

not random because of the constraint F (u) = v. Hence, denoting B = ∩s∈SAs,
we write:

Pr [XColli|B] = Pr [XColli|B ∩ FColli−1] Pr [FColli−1|B]
+ Pr [XColli|B ∩ FColli−1] Pr [FColli−1|B]

≤ Pr [FColli−1|B] + Pr [XColli|B ∩ FColli−1] .

Since ki−1 is random and independent from B = ∩s∈SAs (recall that S ⊆
[1; i − 2]), we have Pr [FColli−1|B] ≤ qf/2n. To upper bound the second prob-
ability, note that if x`+1

i−1 = xji−1, then necessarily x`+1
i 6= xji since otherwise

this would contradict the hypothesis that queries x`+1 and xj are distinct. If
x`+1
i−1 6= xji−1, then conditioned on FColli−1, Fi−1(x`+1

i−1 ⊕ ki−1) is uniformly ran-
dom and equation (1) is satisfied with probability at most 2−n for each j, so
that summing over j ∈ [1; `] we obtain Pr [XColli|B ∩ FColli−1] ≤ `/2n. Hence
we have that Pr[Colli] ≤ (` + 2qf )/2n. The reasoning and the bound are the
same for the probability that Coll′i happens, hence the result. ut

Lemma 13. Let qe, qf be positive integers. Then for any tuples x ∈ ({0, 1}2n)∗qe

and u = (u0, . . . , ur−1), v = (v0, . . . , vr−1) with ui, vi ∈ ({0, 1}n)qf , one has:

‖µx,u,v − µ∗‖ ≤
4t

t+ 1
(qe + 2qf )t+1

2tn with t =
⌊r

3

⌋
.

Proof. Using successively the Coupling Lemma (Lemma 1), Lemma 11, and
Lemma 12, one has:

‖ν` − ν∗` ‖ ≤ Pr [Fail] ≤ Pr
[
r−2⋂
i=1

(Ai ∪Ai+1)
]

≤ Pr
[
(A1 ∪A2)(A4 ∪A5) · · · (A3·b r

3 c−2 ∪A3·b r
3 c−1)

]
≤
(

4(`+ 2qf )
2n

)t
with t =

⌊r
3

⌋
.

Hence, by Lemma 9, we have for any tuples x, u, v:

‖µx,u,v − µ∗‖ ≤
qe−1∑
`=0
‖ν` − ν∗` ‖ ≤

4t

2tn
qe−1∑
`=0

(`+ 2qf )t

≤ 4t

2tn

∫ qe

`=0
(`+ 2qf )t d` ≤ 4t

t+ 1
(qe + 2qf )t+1

2tn ,

which concludes the proof. ut
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Finally, combining Lemmas 8 and 13, we obtain the following bound for the
NCPA-security of the ideal KAF cipher.

Theorem 1. Let qe, qf be positive integers. Then:

Advncpa
KAF[n,r](qe, qf ) ≤ 4t

t+ 1
(qe + 2qf )t+1

2tn with t =
⌊r

3

⌋
.

Hence, the ideal KAF cipher with r rounds ensures NCPA-security up to
O(2

tn
t+1 ) queries of the adversary for t = b r3c.

4.3 The Luby-Rackoff Setting

In the Luby-Rackoff setting, events Ai can be shown to be p-negatively depen-
dent. This will allow to use the results of Section 3 to upper bound the probability
that the coupling fails.

Lemma 14. In the Luby-Rackoff setting (qf = 0), events A1, . . . , Ar−1 are p-
negatively dependent for p = 2`

2n .

Proof. We need to prove that for any i ∈ [1; r− 1] and any subset S ⊆ [1; i− 1],
one has:

Pr
[
Colli ∪ Coll′i

∣∣∣ ∩s∈S As] ≤ 2`
2n .

In the Luby-Rackoff setting, qf = 0 so that events FColli and FColl′i cannot
happen. Hence, we simply have to consider events XColli and XColl′i. Event
XColli happens if x`+1

i ⊕ ki = xji ⊕ ki for some j ∈ [1; `]. Note that this is
equivalent to

x`+1
i−2 ⊕ Fi−1(x`+1

i−1 ⊕ ki−1) = xji−2 ⊕ Fi−1(xji−1 ⊕ ki−1) .

If x`+1
i−1 6= xji−1, then this happens with probability at most 2−n since in the LR

setting Fi−1 is uniformly random and independent of ∩s∈SAs. If x`+1
i−1 = xji−1,

then necessarily x`+1
i 6= xji since otherwise this would contradict the hypothesis

that queries x`+1 and xj are distinct.1 Summing over j ∈ [1; `], the probability of
XColli is at most `/2n. The reasoning is similar for the probability that XColl′i
happens, hence the result. ut

This allows to use Lemma 7 to upper bound the probability that the coupling
fails.

Lemma 15. Let qe be a positive integer. Then for any tuple x ∈ ({0, 1}2n)∗qe ,
one has:

‖µx − µ∗‖ ≤
b 2r−2

3 c∑
t=b r−1

2 c

2t

t+ 1

(
r − t

2r − 2− 3t

)
qt+1
e

2tn .

1 Note that whether x`+1
i−1 and xj

i−1 are distinct or not depends on ∩s∈SAs, so that
the event x`+1

i = xj
i is not independent from ∩s∈SAs.
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Proof. Using successively the Coupling Lemma (Lemma 1), Lemma 11, and
Lemma 7 combined with Lemma 14, one has (note that we apply Lemma 7
with r − 1 rather than r):

‖ν` − ν∗` ‖ ≤ Pr [Fail] ≤ Pr
[
r−2⋂
i=1

(Ai ∪Ai+1)
]
≤
b 2r−2

3 c∑
t=b r−1

2 c

(
r − t

2r − 2− 3t

)(
2`
2n

)t
.

Hence, by Lemma 9, we have for any tuple x ∈ ({0, 1}2n)∗qe :

‖µx − µ∗‖ ≤
qe−1∑
`=0
‖ν` − ν∗` ‖ ≤

b 2r−2
3 c∑

t=b r−1
2 c

(
r − t

2r − 2− 3t

) qe−1∑
`=0

(
2`
2n

)t

≤
b 2r−2

3 c∑
t=b r−1

2 c

(
r − t

2r − 2− 3t

)(
2
2n

)t ∫ qe

`=0
`td`

≤
b 2r−2

3 c∑
t=b r−1

2 c

2t

t+ 1

(
r − t

2r − 2− 3t

)
qt+1
e

2tn ,

which concludes the proof. ut

Finally, combining Lemmas 8 and 15, we obtain the following bound for the
NCPA-security of the ideal LR cipher.

Theorem 2. Let qe be a positive integer. Then:

Advncpa
LR[n,r](qe) ≤

b 2r−2
3 c∑

t=b r−1
2 c

2t

t+ 1

(
r − t

2r − 2− 3t

)
qt+1
e

2tn .

The bound in this theorem is dominated by the term corresponding to t =
b(r−1)/2c. In particular, when r = 2r′+1, the coefficient of this leading term is
simply 2r′ , so that the dominating term is simply 2r′qr′+1

e /2r′n. (Incidentally, this
is exactly the bound that was proved in [9] for the r′-round Even-Mansour cipher
with n-bit permutations.) In other words, against NCPA-distinguishers, the ideal
LR cipher is secure up to O(2

tn
t+1 ) queries of the adversary with t = b(r− 1)/2c.

Comparison with the Hoang-Rogaway (HR) bound. In [8], Hoang and
Rogaway proved the following bound for the security of the ideal Luby-Rackoff
cipher LR[n, r]:

Advncpa
LR[n,r](qe) ≤

4t

t+ 1
qt+1
e

2tn with t =
⌊r

3

⌋
.

In a nutshell, their analysis of the coupling probability proceeds as follows: they
show that the probability not to couple over three rounds is at most 4`/2n, and
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Fig. 3. Proven CCA-security for the ideal Luby-Rackoff cipher LR[n, r] as a function
of log2(qe), the log of the number of adversary’s queries (left: n = 32, right: n = 64).
The dashed lines depict the Hoang-Rogaway bound [8], while the solid lines depict the
bound proven in this paper. On each graph, the two leftmost curves are for r = 24
while the two rightmost curves are for r = 96.

then iterate the process for the next three rounds, etc. In effect, they prove an
additional security margin only every three rounds. Our analysis of the coupling
probability is tighter: we roughly get the same bonus every two rounds, hence
substantially ameliorating the security bound. For example, for three rounds,
both the HR bound and our bound show that the advantage is upper bounded
by 2q2

e/2n (which is exactly the original Luby-Rackoff bound). While for five
rounds the HR bound does not improve, ours already shows that the advantage
is upper bounded by 4q3

e/22n, while the HR bound yields a O(q3
e/22n)-security

bound only for six rounds. See also Figure 4.4 for a concrete comparison of the
two bounds once leveraged to CCA-security.

4.4 Adaptive Distinguishers

In order to prove security against CCA distinguishers, we use the classical
strategy (which was already used in all previous works using a coupling ar-
gument [15, 8, 9]) of composing two NCPA-secure ciphers. This is justified by
the following lemma.

Lemma 16 ([13]). If G and H are two blockciphers with the same message
space, then for any q:

Advcca
H−1◦G(q) ≤ Advncpa

G (q) + Advncpa
H (q) ,

where in H−1 ◦G the two block ciphers are independently keyed.

Unfortunately, this result was only proved in the standard model (i.e. when
the block ciphers do not depend on additional oracles), which allows us to use
it only in the Luby-Rackoff setting.
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Theorem 3. Let qe be a positive integer. Then:

Advcca
LR[n,2r′−1](qe) ≤

b 2r′−2
3 c∑

t=b r′−1
2 c

2t+1

t+ 1

(
r′ − t

2r′ − 2− 3t

)
qt+1
e

2tn .

Proof. Let Rev be the operation defined as Rev(xL, xR) = (xR, xL). Then, as
already noticed in [12], a (2r′ − 1)-round Feistel scheme with round functions
F0, . . . , F2r′−2 can be written as Rev◦H−1◦G, whereG andH are r′-round Feistel
schemes. This can be seen by writing the middle round function Fr′−1 as the xor
of two independent round functions F ′r′−1 ⊕F ′′r′−1 (clearly, this does not change
the distribution of the outputs of the system): then G is the Feistel scheme with
round functions F0, . . . , Fr′−2, F

′
r′−1, while H is the Feistel scheme with round

functions F2r′−2, . . . , Fr′ , F
′′
r′−1. The result then follows from Lemma 16 and

Theorem 2 (clearly composing with Rev does not change the advantage). ut
For a 2r′-round Luby-Rackoff cipher, we get the same bound as for 2r′ − 1

rounds. Again, the bound in this theorem is dominated by the term correspond-
ing to t = b(r′ − 1)/2c. Hence, this shows that an r-round Luby-Rackoff cipher
ensures CCA-security up to O(2

tn
t+1 ) queries, where t =

⌊
b(r+1)/2c−1

2

⌋
= b r−1

4 c.
For KAF ciphers, since we cannot apply Lemma 16 directly because the

cipher depends on additional oracles, we will appeal to the same strategy as
in [9], which relies on the following lemma, a refinement to Lemma 8.
Lemma 17. Let GF and HF ′ be two block ciphers with the same message space,
where GF and HF ′ depend respectively on oracles F = (F0, . . . , Fr−1) and F ′ =
(F ′0, . . . , F ′r′−1) (this might be arbitrary oracles, not necessarily random func-
tions). Assume that there exists αG such that for any tuple x ∈ (MsgSp(G))∗qe

and any tuples u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1) where ui ∈ (Dom(Fi))qf

and vi ∈ (Rng(Fi))qf , one has ‖µGx,u,v − µ∗‖ ≤ αG, and that there exists αH
such that for any tuple x′ ∈ (MsgSp(H))∗qe and any tuples u′ = (u′0, . . . , u′r−1)
and v′ = (v′0, . . . , v′r−1) where u′i ∈ (Dom(F ′i ))qf and v′i ∈ (Rng(F ′i ))qf , one has
‖µHx′,u′,v′ − µ∗‖ ≤ αH .

(Here, MsgSp(E) is the message space of block cipher E, Dom(F ) and Rng(F )
are respectively the domain and the range of the oracle F , and the distribu-
tions are defined as in Section 4.1, namely µGx,u,v is the distribution of the out-
puts of GF when receiving inputs x, conditioned on F (u) = v, and µHx′,u′,v′ is
the distribution of the outputs of HF ′ when receiving inputs x′, conditioned on
F ′(u′) = v′.)

Then:
Advcca

(HF ′ )−1◦GF (qe, qf ) ≤ 2(
√
αG +

√
αH) .

Proof. Deferred to Appendix B. ut
Theorem 4. Let qe, qf be positive integers. Then:

Advcca
KAF[n,2r′](qe, qf ) ≤ 4

(
4t

t+ 1
(qe + 2qf )t+1

2tn

)1/2

with t =
⌊
r′

3

⌋
.
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Proof. Since in this context the distinguisher has oracle access to the round
functions, we cannot use the same trick as in the proof of Theorem 3 of writing
the middle round function of a (2r′ − 1)-round Feistel scheme as the xor of two
independent functions. Hence, we consider a 2r′-round KAF cipher. First, we
note that all the results of Section 4.1 apply mutatis mutandis to the inverse of
a KAF cipher, i.e. when the state at round i is updated according (xL, xR) 7→
(xR⊕Fi(xL⊕ki), xL). Hence, we can see this 2r′-round KAF cipher as the cascade
of an r′-round KAF cipher and the inverse of the inverse of an independent r′-
round KAF cipher. The result then follows directly by combining Lemmas 17
and 13. ut

For a (2r′+ 1)-round KAF cipher, we get the same bound as for a 2r′-round
KAF cipher. Hence, a r-round KAF cipher ensures CCA-security up to O(2

tn
t+1 )

queries in total, where t =
⌊
br/2c

3

⌋
=
⌊
r
6
⌋
.
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A Proof of Lemma 9

We recall that for any distributions µ and ν on the same set Ω, there always
exists a coupling λop, called an optimal coupling, achieving:

‖µ− ν‖ = Pr
(X,Y )∼λop

[X 6= Y ] .

Lemma.

‖µx,u,v − µ∗‖ ≤
qe−1∑
`=0
‖ν` − ν∗` ‖ .
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Proof. For any distribution ν on qe-tuples of distinct elements of {0, 1}2n, and
any (y1, . . . , y`) ∈ ({0, 1}2n)∗` with ` ≥ 0, we denote

ν(y`+1|y1, . . . , y`) = Pr[Y `+1 = y`+1|Y 1 = y1, . . . , Y ` = y`] ,

where (Y 1, . . . , Y qe) ∼ ν. For ` = 0 we simply denote ν(·|Ω) the (unconditional)
distribution of the fist coordinate Y 1 (Ω denotes the certain event).

We define a coupling (Y,Z), where Y = (Y 1, . . . , Y qe) ∼ µx,u,v and Z =
(Z1, . . . , Zqe) ∼ µ∗, as follows. First, we draw (Y1, Z1) according to the opti-
mal coupling of µx,u,v(·|Ω) and µ∗(·|Ω). Then, for ` = 1. . . . , qe − 1, we proceed
as follows: if (Y 1, . . . , Y `) = (Z1, . . . , Z`) = (y1, . . . , y`), we draw (Y `+1, Z`+1)
according to the optimal coupling of µx,u,v(·|y1, . . . , y`) and µ∗(·|y1, . . . , y`). Oth-
erwise, if (Y 1, . . . , Y `) 6= (Z1, . . . , Z`), we couple (Y `+1, Z`+1) arbitrarily.

Then by the Coupling Lemma:

‖µx,u,v − µ∗‖ ≤ Pr[Y 6= Z]

≤
qe−1∑
`=0

Pr[(Y 1, . . . , Y `) = (Z1, . . . , Z`) ∧ Y `+1 6= Z`+1]

≤
qe−1∑
`=1

EY∼µx,u,v

[
‖µx,u,v(·|Y 1, . . . , Y `)− µ∗(·|Y 1, . . . , Y `)‖

]
,

where

EY∼µx,u,v

[
‖µx,u,v(·|Y 1, . . . , Y `)− µ∗(·|Y 1, . . . , Y `)‖

]
=∑

(y1,...,y`)

Pr
Y∼µx,u,v

[(Y 1, . . . , Y `) = (y1, . . . , y`)]×

‖µx,u,v(·|y1, . . . , y`)− µ∗(·|y1, . . . , y`)‖ .

The third inequality above follows from the fact that when (Y 1, . . . , Y `) =
(Z1, . . . , Z`) = (y1, . . . , y`), (Y `+1, Z`+1) is chosen according to the optimal
coupling of µx,u,v(·|y1, . . . , y`) and µ∗(·|y1, . . . , y`).

We also have:

‖ν` − ν∗` ‖ = 1
2

∑
(y1,...,y`+1)

|ν`(y1, . . . , y`+1)− ν∗` (y1, . . . , y`+1)|

= 1
2

∑
(y1,...,y`+1)

ν`−1(y1, . . . , y`)×

∣∣µx,u,v(y`+1|y1, . . . , y`)− µ∗(y`+1|y1, . . . , y`)
∣∣

=
∑

(y1,...,y`)

ν`−1(y1, . . . , y`)‖µx,u,v(·|y1, . . . , y`)− µ∗(·|y1, . . . , y`)‖

= EY∼µx,u,v

[
‖µx,u,v(·|Y 1, . . . , Y `)− µ∗(·|Y 1, . . . , Y `)‖

]
,

which concludes the proof. ut
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B Proof of Lemma 17

In order to prove Lemma 17, we need the following two lemmas. The proof of
the first one is very similar to the proof of [9, Lemma 6] and therefore omitted.
The second one is exactly [9, Lemma 2].

Lemma 18. Let qe, qf be positive integers. Let EF be a block cipher depending
on oracles F = (F0, . . . Fr−1). Assume that there exists β such that for any tuples
x, y ∈ (MsgSp(E))∗qe , and any tuples u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1)
with ui ∈ (Dom(Fi))qf and vi ∈ (Rng(Fi))qf , one has

Pr[F (u) = v ∧ EF
k (x) = y] ≥ (1− β)Pr∗[F (u) = v ∧ P (x) = y] ,

where the probability on the left hand side is taken over the randomness of F
and a uniformly random key k, and

Pr∗[F (u) = v ∧ P (x) = y] = Pr[F (u) = v]
M(M − 1) · · · (M − qe + 1)

is the probability when P is a uniformly random permutation independent of F .
(M denotes |MsgSp(E)|.) Then:

Advcca
E (qe, qf ) ≤ β .

Lemma 19. Let Ω be some finite event space and ν be the uniform probability
distribution on Ω. Let µ be a probability distribution on Ω such that ‖µ−ν‖ ≤ ε.
Then there is a set S ⊂ Ω such that:

– |S| ≥ (1−
√
ε)|Ω|

– ∀x ∈ S, µ(x) ≥ (1−
√
ε)ν(x)

Proof. Define S = {x ∈ Ω : µ(x) ≥ (1 −
√
ε)ν(x)}. We will show that |S| ≥

(1 −
√
ε)|Ω|. Assume for contradiction that |S| < (1 −

√
ε)|Ω|, or equivalently

|S̄| >
√
ε|Ω|, i.e. ν(S̄) >

√
ε. By definition, for any x ∈ S̄, ν(x)−µ(x) >

√
εν(x).

Consequently,
ν(S̄)− µ(S̄) >

√
εν(S̄) > (

√
ε)2 = ε ,

a contradiction with ‖µ− ν‖ ≤ ε. ut

We are now ready to prove Lemma 17. Again, the proof is very similar to
the one of [9, Lemma 7].

Proof (of Lemma 17). We recall the notation. Let GF and HF ′ be two block ci-
phers with the same message space, where GF and HF ′ depend respectively
on oracles F = (F0, . . . , Fr−1) and F ′ = (F ′0, . . . , F ′r′−1). We assume that
there exists αG such that for any tuple x ∈ (MsgSp(G))∗qe and any tuples
u = (u0, . . . , ur−1) and v = (v0, . . . , vr−1) where ui ∈ (Dom(Fi))qf and vi ∈
(Rng(Fi))qf , one has ‖µGx,u,v − µ∗‖ ≤ αG, and that there exists αH such that
for any tuple y ∈ (MsgSp(H))∗qe and any tuples u′ = (u′0, . . . , u′r−1) and v′ =
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(v′0, . . . , v′r−1) where u′i ∈ (Dom(F ′i ))qf and v′i ∈ (Rng(F ′i ))qf , one has ‖µHy,u′,v′ −
µ∗‖ ≤ αH . We also denote M = |MsgSp(G)| = |MsgSp(H)|.

We now apply Lemma 19 to both G and H. This implies that there exists a
subset Sx ⊆ (MsgSp(G))∗qe of size at least

(1−
√
αG)M(M − 1) · · · (M − qe + 1)

such that for all z ∈ Sx, one has:

µGx,u,v(z) ≥ (1−
√
αG) 1

M(M − 1) · · · (M − qe + 1) .

Similarly, there exists a subset Sy ⊆ (MsgSp(H))∗qe of size at least

(1−
√
αH)M(M − 1) · · · (M − qe + 1)

such that for all z ∈ Sy, one has:

µHy,u′,v′(z) ≥ (1−
√
αH) 1

M(M − 1) · · · (M − qe + 1) .

We can now lower bound the probability that (HF ′)−1 ◦GF (x) = y by summing
over all intermediate values z ∈ Sx ∩ Sy the probability that GF (x) = z and
HF ′(y) = z. More precisely:

Pr[F (u) = v ∧ F ′(u′) = v′ ∧ (HF ′)−1 ◦GF (x) = y]

≥ Pr[F (u) = v ∧ F ′(u′) = v′]
∑

z∈Sx∩Sy

µGx,u,v(z)µHy,u′,v′(z)

≥ Pr[F (u) = v ∧ F ′(u′) = v′]
|Sx ∩ Sy|(1−

√
αG)(1−√αH)

(M(M − 1) · · · (M − qe + 1))2 .

Finally, noting that |Sx ∩ Sy| ≥ (1 −√αG −
√
αH)M(M − 1) · · · (M − qe + 1),

and using

(1−
√
αG −

√
αH)(1−

√
αG)(1−

√
αH) ≥ 1− 2(

√
αG +

√
αH) ,

we obtain:

Pr[F (u) = v ∧ F ′(u′) = v′ ∧ (HF ′)−1 ◦GF (x) = y] ≥

(1− β)Pr[F (u) = v ∧ F ′(u′) = v′]
M(M − 1) · · · (M − qe + 1)

where β = 2(√αG +√αH), which with Lemma 18 concludes the proof. ut
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