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Abstract. We present a new technique to realize attribute-based encryption (ABE)
schemes secure in the standard model against chosen-ciphertext attacks (CCA-secure).
Our approach is to extend certain concrete chosen-plaintext secure (CPA-secure) ABE
schemes to achieve more efficient constructions than the known generic constructions of
CCA-secure ABE schemes. We restrict ourselves to the construction of attribute-based
key encapsulation mechanisms (KEMs) and present two concrete CCA-secure schemes: a
key-policy attribute-based KEM that is based on Goyal’s key-policy ABE and a ciphertext-
policy attribute-based KEM that is based on Waters’ ciphertext-policy ABE. To achieve
our goals, we use an appropriate hash function and need to extend the public param-
eters and the ciphertexts of the underlying CPA-secure encryption schemes only by a
single group element. Moreover, we use the same hardness assumptions as the underlying
CPA-secure encryption schemes.

Keywords: attribute-based key encapsulation mechanism, attribute-based encryption,
chosen-ciphertext security, bilinear maps

1 Introduction

Traditionally, encryption is viewed as a method of transmitting messages confidentially
between a sender and a receiver, whereas nowadays encryption schemes are used for
various applications. Consequently, conventional encryptions often do not satisfy addi-
tional requirements of these applications and need to be enhanced. An example is the
realization of access control mechanisms for secure shared storage via encryption. The
encrypted data in such a system is usually not meant for a single user but for a sub-
group of users. However, every user should have their own secret key and data should
be encrypted only once. To provide such a powerful access control of encrypted data,
attribute-based encryption (ABE) schemes were introduced as a natural extension of
public-key encryption (PKE) schemes.

ABE in their basic form were introduced by Sahai and Waters [SW05]. Later, Goyal
et al. proposed two different types of ABE schemes [GPSW06]. In the so-called key-policy
attribute-based encryption (KP-ABE), ciphertexts are labeled with sets of attributes and
private keys are associated with access structures that control which ciphertext a user will
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be able to decrypt. In the ciphertext-policy attribute-based encryption (CP-ABE), the
keys are associated with attribute sets and the data is encrypted under access structures.

Since the work of Sahai and Waters, various extensions for ABEs have been consid-
ered. Some work focuses on extending the expressiveness of policies [GPSW06, OSW07,
Wat11]. Other schemes consider the multi-authority setting [Cha07, CC09] or construc-
tions based on lattices [ABV+12, Boy13]. In [Wat09, LW10, LOS+10], the authors present
a first method to achieve adaptive security rather then selective security for ABE. This
line of research was followed up in [LW11a, LW11b, LW12] and many further works.

In this paper, we focus on another important issue in the area of ABE. We consider
the aspect of attaining security against chosen-ciphertext attacks (CCAs) in the standard
model. CCA-security has emerged as the right security notion for encryption schemes.
Most ABE schemes originally are only chosen plaintext secure (CPA-secure). Usually,
the Fujisaki-Okamoto transformation [FO99] is proposed to achieve CCA-security for
ABE schemes as well. However, the Fujisaki-Okamoto transformation is only secure in
the random oracle model.

In the standard model, Goyal et al. [GPSW06] achieve CCA-security for their
KP-ABE by a method based on the technique of Canetti et al. [BCHK07]. It has been
proposed to apply this technique to several ABE constructions [GPSW06, CN07, Wat11].
The idea was generalized and extended by [YAHK11], where generic constructions for
the CCA-secure KP-ABE and for the CCA-secure CP-ABE were presented. These con-
structions use one-time signatures as a building block in addition to a CPA-secure ABE
scheme. First, the ciphertexts of the CPA-secure ABE are extended by the public key of
the one-time signature scheme. Then, the one-time signature is applied to the resulting
ciphertext. It is shown in [YAHK11] that under some mild conditions on the underlying
CPA-secure ABE scheme this yields a CCA-secure ABE scheme.

Our contribution. In this paper we follow another approach and transfer the direct
chosen-ciphertext techniques already known from public-key cryptography [BMW05,
Kil06] and from identity-based cryptography [KG09] to attribute-based encryption.

Similar to [KG09] we restrict ourselves to the construction of key encapsulation
mechanisms (KEMs) [CS03]. The construction of CCA-secure KEMs is conceptually
easier than the construction of CCA-secure encryption schemes. As in the public-key and
identity-based setting it is not hard to see that combining any CCA-secure attribute-
based key encapsulation mechanisms (AB-KEMs) with a symmetric scheme (also called
data encapsulation mechanism (DEM)) with appropriate security properties leads to a
fully functional CCA-secure ABE scheme. For identity-based encryption schemes this
was proven in [BFMLS08]. The proof can easily be adapted to ABE settings. For many
practical reasons the modular KEMs/DEMs approach is preferable over ABE schemes,
in particular for applications such as secure shared storage, which require the encryption
of big data using public-key techniques.

To construct CCA-secure AB-KEMs, first, from the CPA-secure KP-ABE of
[GPSW06] and from the CPA-secure CP-ABE of [Wat11], we derive AB-KEMs in the
usual way. Then, we enhance these KEMs by the property called public verifiability of
encapsulations [NMP+12]. Achieving public verifiability is straightforward for the key-
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policy AB-KEM (KP-AB-KEM). For the ciphertext-policy AB-KEM (CP-AB-KEM)
this is more involved. Next, we add some redundancy to the encapsulation to make it
CCA-secure. As in the identity-based key encapsulation mechanism (IB-KEM) of [KG09],
the redundancy consists of a single group element based on a hash of parts of the original
encapsulation. In [KG09], target collision resistant hash functions were sufficient to prove
CCA-security of their IB-KEM. Due to the rich internal structure in the attribute-based
setting, we need cryptographically stronger hash functions, e.g. the universal one-way
hash function (UOWHF). Altogether, we achieve CCA-secure AB-KEMs with the same
hardness assumptions as the underlying CPA-secure ABE schemes. Note that in [CZF11],
the authors use a construction similar to that of [KG09]. However, their scheme realizes
only restricted access structures described by a single non-monotone AND gate.

The ABE schemes in [GPSW06] and [Wat11] are CPA-secure only in the selective-
security model. Hence, for our schemes we can prove CCA-security only in this model as
well. It turns out that achieving CCA-security for CP-AB-KEM is harder than to obtain
CCA-security for KP-AB-KEM, therefore in this extended abstract we restrict ourselves
to the more involved construction of CP-AB-KEM.

Organization. In Section 2, we present the basic concepts of ABE schemes including
monotone span programs (MSPs), security definitions and security assumptions. We also
discuss the main ingredients of our construction and prove some useful lemmata from
linear algebra. In Section 3, based on Waters’ construction, we present our CCA-secure
CP-AB-KEM and its security proof. Due to space limitations, we restrict ourselves to
the additional ingredients that allow us to achieve CCA-security.

2 Background

In this section we recall fundamental notions for attribute-based encryption schemes.

2.1 Access Structures and Monotone Span Programs (MSPs)

Definition 1. (Access Structure [Bei96]) Let X = {x1, . . . , xn} be a set of parties, γ, β ⊆
X . A collection A ⊆ 2X is monotone if γ ∈ A and γ ⊆ β implies β ∈ A. A monotone
access structure is a monotone collection A of non-empty subsets of X . The sets in A
are called the authorized sets and the sets not in A are called the unauthorized sets.

We always assume that access structures are not empty. Based on this definition we
obtain:

Definition 2. (Monotone Span Program [Bei96]) Let p be a prime and X = {x1, . . . , xn}
a set of parties. An MSP M over Zp is a labeled matrix (M,ρ), where M ∈ Zl×dp is a
matrix and ρ : {1, . . . , l} → X is a labeling of rows of M with parties. The size of M is
defined by the number of rows l.
M accepts γ ⊆ X if vector e1 is in the span of the rows of M with labels in γ and

rejects it otherwise. M realizes an access structure A (write MA) if M accepts every
authorized set and rejects every unauthorized set of A.
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Beimel proved in [Bei96] the equivalence of existence of linear secret sharing scheme
(LSSS) for a monotone access structure A and the existence of monotone span program
MA = (M,ρ) of the same size. In order to share a secret s ∈ Zp using MA, choose
v2, . . . , vd ← Zp, set v = (s, v2, . . . , vd) and compute the vector λ of shares by λ := M ·v.
The share λi belongs to party ρ (i). For an authorized set γ ∈ A there exists a vector w
so that w ·M = e1 and wi = 0 for all i with ρ(i) /∈ γ. Such a vector can be computed
efficiently and the parties in γ can reconstruct the secret by

∑
i∈{1,...,l},wi 6=0wi · λi =

w ·M · v = s. For an unauthorized set β such a vector does not exist and the parties in
β get no information about the secret from their shares.

The following definition turns out to be helpful. Let MA = (M,ρ) be an MSP over
Zp. Since A 6= ∅, there exists a vector z with z ·M = e1. The affine vector space VM is
defined as

VM :=
{
w ∈ Zlp

∣∣∣ w ·M = e1

}
, (1)

i.e. the vectors in VM can be used to reconstruct the secret. Clearly, VM = z+ker
(
M tr

)
and VM can efficiently be computed given M .

Reduced echelon form of MSPs. Different MSPs can be used to realize the same
access structure. This leads us to the major problem for the construction of CCA-secure
CP-AB-KEMs, where the MSP is a part of the encapsulation. To solve this problem
we will use the following special form of MSPs that is based on the reduced column
echelon form of matrices. Moreover, we restrict ourselves to MSPs with injective labeling
functions. As already observed and exploited in [Wat11], by using several distinct copies
of parties, every MSP can be converted into MSP with an injective labeling function.

Definition 3. A monotone span program M = (M,ρ) with M ∈ Zl×dp and injective
labeling function ρ is in reduced echelon form if:

– The columns of M are linearly independent, thus d ≤ l.
– The rows are ordered according to some fixed order on the labels.

– The submatrix of M consisting of the last d−1 columns is in reduced column echelon
form. [Sho06]

– The entries in the first column that correspond to the pivot elements in the other
columns are zero.

Using Gauss-Jordan elimination, every MSP with injective labeling function can be
converted into reduced echelon form without changing the access structure.

Example 1. We use the notation of [LC10]. A boolean formula can be expressed as
(φ1, . . . , φn, t). The root node is a t of n threshold gate and its children are threshold gates
of the same form or leaf nodes corresponding to parties. Let A be the access structure
given by the set of satisfying assignments of φ = (B, (A,F, 2) , (C,D,E,G, 3) , 1). The
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following two MSPs over Z17 realize this access structure:

B
A
F
C
D
E
G



1 0 0 0
1 1 0 0
1 2 0 0
1 0 1 1
1 0 2 4
1 0 3 9
1 0 4 16


−→

A
B
C
D
E
F
G



0
1
0
0
1
16
3

1 0 0
0 0 0
0 1 0
0 0 1
0 14 3
2 0 0
0 9 6


.

The first MSP is constructed by the algorithm of [LC10]. Conversion of this MSP leads
to the second MSP, which is in reduces echelon form.

The following general lemma about matrices is critical for our construction (see
Appendix A for the proof).

Lemma 1. Let p be a prime, M = [m1, . . . ,md] , N = [n1, . . . , nd] ∈ Zl×dp be matrices
with span (m1, . . . ,md) = span (n1, . . . , nd). Then, the reduced column echelon forms of
M and N are equal.

2.2 Attribute-Based Key Encapsulation Mechanisms (AB-KEMs)

As already mentioned in the introduction, we will restrict ourselves to the construction
of AB-KEMs. Here, attributes play the role of parties. Following the usual terminology,
from now one we call parties attributes.

Definition 4. A ciphertext-policy attribute-based key encapsulation mechanism Π over
an attribute universe U for symmetric key space K consists of four probabilistic polyno-
mial time (ppt) algorithms:

Setup: The setup algorithm gets as input the security parameter 1η and computes the
public parameters and the master secret key: (params,msk) ← Setup (1η). (The public
parameters will be implicitly used by all the other algorithms.)

KeyGen: The key generation algorithm on input γ ⊆ U and msk computes the secret
key: skγ ← KeyGenmsk (γ).

Encaps: The encapsulation algorithm gets as input an access structure A over U ,
generates a key k ← K and its encapsulation: (k,EA)← Encaps (A).

Decaps: The decapsulation algorithms on input skγ and EA recovers the key k :=
Decapsskγ (EA).

Correctness: We require that for every access structure A over U , every set of at-
tributes γ ∈ A, every (params,msk) ← Setup (1η), skγ ← KeyGenmsk (γ) and every
(k,EA)← Encaps (A) it holds that Decapsskγ (EA) = k.

For KP-AB-KEM the roles of access structures and sets of attributes are reversed.
Public verifiability of encapsulations will be an important ingredient of our construc-

tions and security proofs. Let A (x; τ) denote the execution of a ppt algorithm A on
input x with random bits τ .
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Definition 5. A ciphertext-policy attribute-based key encapsulation mechanism Π has
publicly verifiable encapsulations if there exists a ppt algorithm Verify that on input
the public parameters params and a possibly malformed encapsulation EA accepts EA if
and only if there exist random bits τ such that Encaps (A; τ) = (k,EA). Encapsulations
produced by the algorithm Encaps are called consistent.

Security model for CP-AB-KEM. In [YAHK11, CZF11], the authors use similar
CCA-security definitions of ABE adapted from the context of identity-based encryp-
tion (IBE). We extend these definitions and give the adversary potentially additional
power through more specific decapsulation queries (decryption queries for ABE) as ex-
plained below. Note, however, that the constructions in [YAHK11, CZF11] also satisfy
this stronger security notion.

In ciphertext-policy attribute-based settings users with the same attributes will have
different private keys. Hence, we should model this in our security definition and allow the
adversary to force the challenger to generate several keys for the same set of attributes.
Then, in a decapsulation query the adversary should be allowed to specify which of the
generated keys will be used for decapsulation. In the following experiment we formalize
this by so-called covered key generation queries.

The experiment sCP-AB-KEMaCCA
A,Π (η) for a ciphertext-policy attribute-based key

encapsulation mechanism Π and a ppt adversary A is as follows:
Init: A on input 1η commits to an access structure A∗. Challenger C initializes an

empty list L of secret keys.
Setup: C generates (params,msk)← Setup (1η) and gives params to A.
Phase 1: A adaptively queries the key generation KeyGen (γ) for γ /∈ A∗, covered

key generation CoveredKeyGen (γ) for γ ∈ A∗ and decapsulation queries Decaps (EA, i)
for arbitrary EA and i ∈ N, i ≤ |L|. C replies to the queries as follows:

– KeyGen (γ): Output skγ ← KeyGenmsk (γ).
– CoveredKeyGen (γ): Generate skγ ← KeyGenmsk (γ) and add (|L|+ 1, skγ) to L. C

returns no output.
– Decaps (EA, j): Let (j, skγ) ∈ L. Output k := Decapsskγ (EA).

Challenge: C runs the encapsulation algorithm (k1, E
∗
A∗) ← Encaps (A∗), chooses

k0 ← K, ν ← {0, 1}, sets k∗ := kν and outputs the challenge (k∗, E∗A∗).
Phase 2: Similar to Phase 1 under the restriction that decapsulation queries on E∗A∗

are not allowed.
Guess: A outputs a guess ν ′ and the output of the experiment is 1 iff ν ′ = ν.

Definition 6. A CP-AB-KEM Π is selectively secure against adaptive chosen-ciphertext
attacks if for every ppt algorithm A there exists a negligible function negl such that it
holds Pr

[
sCP-AB-KEMaCCA

A,Π (η) = 1
]
≤ 1/2 + negl (η).

2.3 Security Assumptions

Our constructions use symmetric bilinear maps (see e.g. [BF03]). We use standard ter-
minology for bilinear maps and cryptographic assumption. Let G be an algorithm that
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generates bilinear groups (p,G,GT , e, g), where p is a prime, G and GT are groups of
order p, e : G×G→ GT is an admissible bilinear map and g ∈ G is a generator.

The decisional Bilinear Diffie-Hellman experiment BDHA,G (η) is as follows:

– Challenger C generates (p,G,GT , e, g)← G (1η) and gives it to adversary A.
– C chooses a, b, c, z ← Zp, ν ← {0, 1}. A receives

(
ga, gb, gc, Z

)
, where Z := e(g, g)z if

ν = 0 and Z := e(g, g)abc if ν = 1.
– A outputs a guess ν ′ and the output of the experiment is 1 iff ν ′ = ν.

Definition 7. The decisional Bilinear Diffie-Hellman problem relatively to G is hard
if for every ppt algorithm A there exists a negligible function negl such that it holds
Pr [BDHA,G (η) = 1] ≤ 1/2 + negl (η).

The q-Bilinear Diffie-Hellman Exponent experiment q-BDHEA,G (η) is as follows:

– Challenger C generates (p,G,GT , e, g)← G (1η) and gives it to adversary A.

– C chooses a, s, z ← Zp, ν ← {0, 1}. A receives
(
gs, ga, . . . ga

q
, ga

q+2
, . . . , ga

2·q
, Z
)

,

where Z = e(g, g)z if ν = 0 and Z = e(g, g)s·a
q+1

if ν = 1.
– A outputs a guess ν ′ and the output of the experiment is 1 iff ν ′ = ν.

Definition 8. The q-Bilinear Diffie-Hellman Exponent problem relatively to G is hard
if for every ppt algorithm A there exists a negligible function negl such that it holds
Pr
[
q-BDHEA,G (η) = 1

]
≤ 1/2 + negl (η).

2.4 Hash Functions

Our constructions require universal one-way hash functions (UOWHFs) as introduced in
[NY89]. Target collision resistant hash functions presented in [CS03] and used by [KG09]
are not sufficient for our construction, since the input of the hash function will depend
on the choices of the adversary. In practice, both types of hash functions are instantiated
by dedicated cryptographic hash function like SHA-2 (cf. [CS03]).

Definition 9. (cf. [Gol04]) Let UOWHF =
{
hs : {0, 1}∗ → {0, 1}l(|s|)

}
s∈{0,1}∗ with l :

N → N be a collection of efficiently computable keyed functions. UOWHF is called a
family of universal one-way hash functions if there exists a ppt algorithm I such that for
all ppt adversaries A the probability to win the following game is negligible in η:

– A on input 1η outputs x.
– A is given s← I(1η).
– A outputs x′ and wins the game if x′ 6= x but hs(x

′) = hs(x).

In our constructions we need to hash tuples consisting of a natural number of cer-
tain length and a bounded number of group elements. Although we require an injective
encoding of such tuples through bit strings, we will not explicitly mention this in our
constructions.
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2.5 Useful Lemmata

Next we present two lemmata that will be useful to obtain public verifiability of our
CP-AB-KEM. See Appendix A for the proofs.

Lemma 2. Let p be a prime, M ∈ Zl×dp with ker
(
M tr

)
= span (u1, . . . ,uk) ⊆ Zlp, then

λ ∈ im (M) if and only if for all j ∈ {1, . . . , k} it holds uj · λ = 0.

Lemma 3. Let G be a group of prime order p, h ∈ G a generator and s, λ1, . . . , λl ∈ Zp.
Let M ∈ Zl×dp be a matrix with e1 ∈ im

(
M tr

)
and ker

(
M tr

)
= span (u1, . . . ,uk). Let w

be arbitrary with w ·M = e1. The following statements are equivalent:

1.
∏l
i=1

(
hλi
)wi = hs ∧ ∀j ∈ {1, . . . , k} :

∏l
i=1

(
hλi
)uj,i = 1.

2. w · λ = s ∧ ∀j ∈ {1, . . . , k} : uj · λ = 0.
3. There exists a vector b with M · b = λ and b1 = s.

3 Ciphertext-Policy Attribute-Based Key Encapsulation

In this section we present our construction of a CP-AB-KEM, selectively secure against
adaptive chosen-ciphertext attacks. Our starting point for this construction is the large
universe CP-ABE of [Wat11]. As in this construction we restrict ourselves to MSPs with
injective labeling functions. The generalization is as described in Section 5 of [Wat11].

In the following, constants Attrmax and lmax specify the maximal number of at-
tributes per key and the maximal size of supported MSPs, respectively.

Setup(1η, Attrmax, lmax) Generate bilinear groups (p,G,GT , e, g) ← G(1η) and
elements α← Zp, g1, g3 ← G. Set U := Zp, Y := e(g, g)α and choose a universal one-way
hash function UHF← UOWHF with appropriate injective encoding such that:

UHF : {0, 1}blog(lmax)c+1 ×Gm≤lmax+1
T → Zp.

Set n := lmax +Attrmax − 1 and choose {Hi ← G}i∈{0,...,n}. As in [Wat11], the elements
Hi define a publicly computable function:

H : U → G
x 7→

∏
i∈{0,...,n}H

∆i,{0,...,n}(x)

i

where ∆i,{0,...,n} (x) are the Lagrange interpolation polynomials. Hence, H(x) = gh(x)

for some polynomial h(x) of degree at most n. Since the Hi are chosen uniformly and
independently at random, h is also chosen uniformly at random.

The master secret is msk := α and the public parameters are

params :=
(
Attrmax, lmax, (p,G,GT , e, g) , g1, g3, Y, {Hi}i∈{0,...,n} ,UHF

)
.

The key space for the DEM is K = GT .
Compared to the large universe construction of [Wat11], we add the group element

g3 and the hash function UHF to public parameters.
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KeyGenmsk(γ) with γ ⊆ U , |γ| ≤ Attrmax. Choose r ← Zp and set D := gα · gr1,

D′ := gr and {Dx := H(x)r}x∈γ . The secret key for γ is skγ :=
(
γ,D,D′, {Dx}x∈γ

)
.

This algorithm is as in [Wat11].

Encaps(M) with M = (M,ρ) in reduced echelon form, M ∈ Zl×dp , l ≤ lmax.
Choose s, b2, . . . , bd ← Zp and set E′ := gs, b := (s, b2, . . . , bd). Compute the vector

λ ∈ Zlp of shares by λ := M · b and set
{
Ei := gλi1 ·H (ρ(i))−s

}
i∈{1,...,l}

. Compute

t := UHF
(
d, e(g, g1)

s, e(g, g1)
λ1 , . . . , e(g, g1)

λl
)

and set E′′ :=
(
gt1 · g3

)s
. The symmet-

ric key is K = Y s and the encapsulation of K is EM :=
(
M, E′, {Ei}i∈{1,...,l} , E′′

)
.

Compared to the original scheme we only add the group element E′′.

Decapsskγ(EM) with M = (M,ρ) in reduced echelon form. Compute a reconstruc-

tion vector w ∈ VM with wi = 0 for all i ∈ {0, 1}l with ρ(i) /∈ γ. Reject, if such a vector
does not exist. Construct ker

(
M tr

)
= span (u1, . . . ,uk). Compute{

Xi := e (Ei, g) · e
(
H (ρ(i)) , E′

)}
i∈{1,...,l}

and t′ := UHF (d, e(E′, g1), X1, . . . , Xl). Reject, if one of the following consistency checks
fails

l∏
i=1

Xwi
i

?
= e(E′, g1), (2)

∀j ∈ {1, . . . , k} :
l∏

i=1

X
uj,i
i

?
= 1, (3)

e(E′, gt
′
1 · g3)

?
= e(g,E′′). (4)

Using w from above, compute Zi := e (Ei, D
′) · e

(
Dρ(i), E

′) for all i with wi 6= 0 and

output the key K := e (E′, D) ·
∏
i∈{0,...,l},wi 6=0 Z

−wi
i .

Compared to Waters CP-ABE, we only add the consistency checks, whereas the
reconstruction works as before. Furthermore, we show later a more efficient version of
the tests in (2) and (3).

Lemma 4. EM passes the tests in (2), (3) and (4) if and only if it is consistent (see
Definition 5). Furthermore, these tests implicitly define an algorithm Verifyparams (EM)
as required by Definition 5.

Proof. Let EM =
(
M, E′, {Ei}i∈{1,...,l} , E′′

)
be a possibly not consistent encapsulation

with M = (M,ρ) in reduced echelon form and E′, E1, . . . , El, E
′′ ∈ G (this can be

checked efficiently). Notice, that tests in (2), (3) and (4) do not use any parts of the
secret key. Furthermore, given EM and without using secret key we may directly compute
VM = w + span (u1, . . . ,uk). It follows that anybody can perform these tests.

By Definition 5 the encapsulation is consistent, if and only if there exists a b ∈ Zdp
such that the encapsulation algorithm with random choices b produces EM. First note
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that because of the prime order of G, the element E′ in EM uniquely defines r ∈ Zp such
that E′ = gr. Given r, the element E′′ uniquely defines t ∈ Zp such that E′′ =

(
gt1 · g3

)r
.

Finally, the exponent r, the labeling function ρ, and the elements Ei in EM uniquely
define a vector λ ∈ Zlp such that for all i it holds Ei = gλi1 ·H (ρ (i))−r.

By the construction of Xi we have

Xi = e (Ei, g) · e
(
H (ρ(i)) , E′

)
= e (g, g1)

λi

for all i. Lemma 3 applied to the group GT and generator e (g, g1) ∈ GT implies the
existence of a preimage b of λ with b1 = r if and only if EM passes (2) and (3).
Encapsulation EM passes the test in (4) if and only if t = t′, which implies

t = t′ = UHF
(
d, e(g, g1)

r, e(g, g1)
λ1 , . . . , e(g, g1)

λl
)
.

Hence, t′ is the correct hash value for EM. The lemma follows.

Correctness of the scheme. Every consistent encapsulation passes the tests in (2), (3)
and (4) by Lemma 4. Therefore, correctness follows directly from the correctness of the
original ABE.

Notice, that the consistency checks are essential for our proof. The fact that these
checks can be performed publicly can be seen as a useful byproduct. Such a property has
been exploited in the context of public-key cryptography and in the context of identity-
based cryptography [NMP+12].

3.1 Security Proof

Our construction is based on the scheme of [Wat11]. In the security proof given below,
we will concentrate on the additional arguments necessary to achieve CCA-security.

Theorem 1. Assume UOWHF is a family of universal one-way hash functions. Let
Attrmax and lmax be appropriate constants defining the maximal number of attributes per
key and the maximal size of supported MSPs respectively. Under the q-BDHE assumption
relative to a group generator G, our ciphertext-policy attribute-based key encapsulation
mechanism is selectively secure against adaptive chosen-ciphertext attacks, where the
challenge matrix is of size l∗ × d∗ with d∗ +Attrmax ≤ q and d∗ ≤ l∗ ≤ lmax.

Proof. We only need to prove the security of our construction for MSPs with injective
labeling functions. The generalization to MSPs with non-injective labeling function is as
in [Wat11].

Let A be an adversary against the scheme. We will construct an algorithm B which
simulates A, answers A’s queries and uses A’s output to win the q-BDHE (η) experiment.

B is given a q-BDHE challenge
(
gs, ga, . . . , ga

q
, ga

q+2
, . . . , ga

2q
, Z
)

along with the

bilinear group description (p,G,GT , e, g)← G (1η) from the q-BDHE challenger C.
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Init: A on input 1η and (p,G,GT , e, g) commits to an MSPM∗ = (M∗, ρ∗) over Zp.
Let M∗ ∈ Zl∗×d∗p in reduced echelon form such that d∗+Attrmax ≤ q and l∗ ≤ lmax. We
define

γ∗ := {x ∈ U|∃i : ρ∗(i) = x} . (5)

This is the set of attributes appearing in the challenge MSP.

Setup: Except for the new element g3, B generates public parameters as in the proof
of [Wat11]. We briefly recall Waters’ construction.

B sets n := lmax + Attrmax − 1, g1 := ga. Furthermore, B chooses α′ ← Zp and sets
Y := e(g, g)α

′ · e
(
ga, ga

q)
. Hence, the master secret is implicitly α = α′ + aq+1. Next, B

chooses d∗ +Attrmax + 1 polynomials {pi(x)}i∈{0,...,d∗+Attrmax} of degree n as follows:

– Choose p0(x) uniformly at random.

– Choose p1(x), . . . , pd∗(x) randomly with pj(xi) = m∗i,j for all xi = ρ∗(i).

– Choose pd∗+1(x), . . . , pd∗+Attrmax(x) randomly with pj(xi) = 0 for all xi ∈ γ∗.

At last, B sets Hi :=
∏d∗+Attrmax
j=0

(
ga

j
)pj(i)

for all i ∈ {0, . . . , n}. Hence, the correspond-

ing polynomial h (x) is implicitly set to h (x) = p0(x) +
∑d∗+Attrmax

j=1 aj · pj(x).

Next we show how B simulates g3. The idea is basically the same as in [KG09]. The
unknown exponent s from the q-BDHE-challenge will be used as the random exponent
of the challenge encapsulation E∗M∗ . In particular, E′′∗ = (gs1 · g3)

t∗ depends on s and
the corresponding hash value t∗. Without a specific choice of g3, B would not be able to
generate E′′∗ correctly. More precisely, B will set g3 such that E′′∗ depends only on the
value t∗ rather than on s. Since A’s challenge in the simulation of [Wat11] is independent
of the queries made by adversary in Phase 1, B can make this choice already in the Setup-
Phase.

Consequently, B sets E′∗ := gs, chooses b′2, . . . , b
′
d∗ ← Zp and computes for all i the

elements E∗i := g
∑d∗
j=2m

∗
i,j ·b′j

1 · (gs)−p0(ρ
∗(i)). This is as in [Wat11]. Next, B computes X∗i

as in the decapsulation algorithm from these elements and chooses UHF ← UOWHF .
Using E′∗ and X∗i , B computes t∗ also as in the decapsulation algorithm. Hence, t∗ is
the correct hash value for the challenge. B chooses c′ ← Zp and sets g3 := gc

′ · (ga)−t∗ =
gc
′−a·t∗ .

The element g3 is uniformly distributed by the choice of c′. Together with the choice
of UHF and the arguments from [Wat11], this shows that B gives A correctly distributed
public parameters.

Challenge: In addition to the already defined E′∗ := gs and {E∗i }i∈{1,...,l∗}, B sets

E′′∗ := (gs)c
′

and K∗ := Z ·e
(
gs, gα

′
)

. B outputs the challenge (E∗M∗ ,K
∗) with E∗M∗ :=(

M∗, E′∗, {E∗i }i∈{1,...,l∗} , E
′′∗
)

.

By the definition of g3 we have:(
gt
∗
1 · g3

)s
=
(
ga·t

∗ · gc′−a·t∗
)s

= (gs)c
′

= E′′∗.

11



Hence, E′′∗ is correctly formed. As shown in [Wat11], E′∗ and {E∗i }i∈{1,...,l∗} implicitly
define

b∗ =
(
s, b′2 + s · a, b′3 + s · a2, . . . , b′d∗ + s · ad∗−1

)
. (6)

By the choice of b∗ the challenge E∗M∗ is correctly distributed.

In the case of Z = e(g, g)s·a
q+1

, we get

K∗ := e(g, g)s·a
q+1 · e

(
gs, gα

′
)

= e(g, g)(α
′+aq+1)·s = Y s.

Thus, E∗M∗ is the correct encapsulation of K∗. In the other case, by the choice of Z the
key K∗ is distributed uniformly and independently from E∗M∗ .

Phase 1 and 2: B answers the queries as follows.
KeyGen (γ): B answers the key generation queries as in the original construction of

[Wat11]. Hence, the correctness follows as in [Wat11].
CoveredKeyGen (γ): B adds (|L|+ 1, γ) to the initially empty list L and returns. Note

that unlike the covered key generation queries in the definition of sCP-AB-KEMaCCA
A,Π (η)

experiment on page 6, B only stores the set of attributes γ. This is sufficient to answer
decapsulation queries correctly, since the consistency tests ensure that the output of the
decapsulation algorithm depends only on γ and not on a particular secret key skγ .

Decapsulate (EM, j): Let γ be the j-th entry in L. B rejects, if the consistency checks
in (2), (3) or (4) fail or γ is not accepted by M, and thus γ is unauthorized.

If EM = E∗M∗ in Phase 1, before the adversary has seen the challenge, the query is
valid, but B cannot win the game any more and aborts. We call this event Abort1. In
Phase 2 such a query is not allowed.

Now, we handle the case that γ is authorized, EM 6= E∗M∗ and EM is consistent.

Let EM =
(

(M,ρ) , E′, {Ei}i∈{1,...,l} , E′′
)

, M ∈ Zl×dp in reduced echelon form, E′ = gr,

Ei = gλi1 ·H (ρ(i))−r for all i and E′′ =
(
gt1 · g3

)r
. Note that t and t∗ can be computed

given EM and EM∗ as shown in the proof of Lemma 4. We consider the following cases
separately:

1. t 6= t∗. B computes(
E′′ ·

(
E′
)−c′)(t−t∗)−1

=
((
gt1 · gc

′−a·t∗
)r
· (gr)−c

′
)(t−t∗)−1

= ga·r.

Using this value B answers the decapsulation query correctly by

K := e
(
E′, g

)α′ · e (gaq , ga·r) = e (g, g)(α
′+aq+1)·r = Y r.

2. t = t∗ and the inputs of the hash function UHF for EM and E∗M∗ are different. This
implies a collision for UHF. Abort the simulation. We call this event Abort2.

3. t = t∗ and the inputs of the hash function UHF for EM and E∗M∗ are equal. That is,
d = d∗, e (E′, g1) = e (E′∗, g1), l = l∗ (implicitly by the number of Ei’s) and Xi = X∗i
for all i ∈ {1, . . . l∗}. This immediately implies gr = E′ = E′∗ = gs. From s = r and
t = t∗, we deduce E′′ = E′′∗. Consider three subcases:

12



(a) ρ 6= ρ∗. Since both functions are injective, l = l∗ and since the rows are ordered,
there exists an index j such that ρ(j) = x̂, x̂ /∈ γ∗ (see (5) for the definition
of γ∗). Thus x̂ 6= x∗j = ρ∗(j). The equality Xj = X∗j implies λj = λ∗j and

Ej = g
λj
1 ·H (x̂)−s = g

λ∗j
1 ·H (x̂)−s. Next, B computes:

Ej ·
(
E∗j
)−1

= gs(h(x
∗
j)−h(x̂))

= gs·
∑d∗+Attrmax
i=0 ai·(pi(x∗j)−pi(x̂)).

Let k be the maximal number 0 < k ≤ d∗ + Attrmax ≤ q such that

pk

(
x∗j

)
− pk (x̂) 6= 0. Then

e
(
Ej ·

(
E∗j
)−1

, ga
q+1−k

)
=

k−1∏
i=0

e
(
gs, ga

q+1+i−k
)pi(x∗j)−pi(x̂)

·e(g, g)s·a
q+1·(pk(x∗j )−pk(x̂)).

From this, B is able to extract the value e(g, g)s·a
q+1

and solve its challenge
directly. The probability that k does not exist for x̂ /∈ γ∗ and x∗j ∈ γ∗, is given by

Pr [∀i ∈ {1, . . . , d∗ +Attrmax} : pi (x̂) = pi (x∗i )] ,

where the probability is over the random choices of polynomials pi. Since x̂ /∈ γ∗,
the value pi(x̂) is distributed uniformly and independently of pi(x

∗
j ). This shows

that the probability is negligible.
(b) ρ = ρ∗ and there exists z ∈ VM , z /∈ VM∗ (see (1) for the definition of VM ). Since

ρ = ρ∗ and λ = λ∗ we obtain Ei = E∗i for all i. Hence, all the elements of EM
and E∗M∗ are equal, except possibly the matrices. Recall that we also know that
l = l∗ and d = d∗. Since M is in reduced echelon form, its columns are linearly
independent. We deduce

dim
(
ker
(
M tr

))
= dim

(
ker
(
(M∗)tr

))
. (7)

Consider the affine vector spaces VM and VM∗ . By their definition in (1) and from
(7) we deduce that dim(VM ) = dim(VM∗).
Consistency of EM and z ∈ VM imply z · λ = r = s. But λ = λ∗ = M∗ · b∗,
and thus z ·M∗ · b∗ = s. Since z /∈ VM∗ , vector v := z ·M∗ satisfies v 6= e1 and
v · b∗ = s. Hence, the following equation holds by the definition of b∗ in (6):

v · b∗ = v1 · s+

d∗∑
i=2

vi ·
(
b′i + s · ai−1

)
= s.

Since v 6= e1, at least one of the elements vi in the sum is not equal to zero. Let
k be the largest number 2 ≤ k ≤ d∗ < q with vk 6= 0. Then(

v1 · s+
k∑
i=2

vi ·
(
b′i + s · ai−1

))
· aq+2−k = s · aq+2−k.
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We deduce

vk · s · aq+1 = (1− v1) · s · aq+2−k −
k∑
i=2

vi · b′i · aq+2−k −
k−1∑
j=2

vj · s · aq+1+j−k.

Vector z and v = z ·M∗ from above can be efficiently computed. Hence, B can
compute e(g, g)s·a

q+1
from:

e (g, g)s·a
q+1·vk := e

(
gs, ga

q+2−k
)1−v1

·
k∏
i=2

e
(
g, ga

q+2−k
)−vi·b′i ·k−1∏

j=2

e
(
gs, ga

q+1+j−k
)−vj

and solve its challenge.
(c) ρ = ρ∗ and for all z ∈ VM : z ∈ VM∗ . As in the last subcase dim (VM ) =

dim (VM∗). We deduce VM = VM∗ , which implies ker
(
M tr

)
= ker

(
(M∗)tr

)
.

Therefore, there exists an invertible matrix T ∈ Zd×dp such that M = M∗ · T .
For w ∈ VM arbitrary, we get e1 = w ·M = w ·M∗ · T = e1 · T. Hence, T has
the form

T =


1 0 · · · 0
a2
...
ad

T ′

 ,
where T ′ is invertible. This implies that the last d− 1 columns of M and the last
d − 1 columns of M∗ span the same vector space. From Lemma 1 and reduced
echelon form of MSPs, we deduce that T ′ is the identity matrix and these columns
are equal.
Assume, that one of the ai’s is not equal to zero. This implies that at least one of
the matrices M , M∗ violates condition (d) in Definition 5, contradicting the fact
that both MSPs are in reduced echelon form. Hence, the assumption is wrong and
T is the identity matrix, which contradicts EM 6= E∗M∗ . Therefore, this subcase
never occurs.

Guess: B outputs the guess of A.
Next, we analyze the success probability of B. Since we have to abort if events

Abort1 or Abort2 occur, B’s simulation is not perfect. Furthermore, the simulation of
key generation queries from [Wat11] aborts with negligible probability over the random
choice of polynomials pi(x).

The event Abort1 happens with negligible probability over the random choice of the
exponent s from the challenge, since the view of A in Phase 1 is independent of s.

To analyze the probability for the event Abort2 consider the following algorithm B′.
This algorithm computes a collision for UOWHF in case of Abort2:

– B′ plays the role of the q-BDHE challenger and the role of B until the complete input
X = 〈d∗, e (gs, g1) , X

∗
1 , . . . , X

∗
l∗〉 of the hash function is computed in the Setup-Phase.

– B′ commits to X, gets UHF← UOWHF and continues to simulate A.
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– If event Abort2 occurs, B′ gets X ′ 6= X with UHF (X) = UHF (X ′) and outputs X ′.

Hence, under the assumption that UOWHF is a family of universal one-way hash func-
tion event Abort2 occurs with negligible probability. These facts together with the neg-
ligible probability for aborts in the simulation of [Wat11] imply the theorem.

Note that by the choice of the challenge MSP, A controls parts of X. Therefore, unlike
[KG09] target collision resistant hash functions are not sufficient for our construction.

Improvement. The tests in (2) and (3) can be performed more efficiently. The
elements Xi do not have to be computed explicitly. The test in (2) is equivalent to

e

(
l∏

i=1

Ewii , g

)
· e

(
l∏

i=1

H (ρ (i))wi , E′

)
?
= e

(
E′, g1

)
. (8)

The tests in (3) ensure that for all j ∈ {1, . . . , k} it holds λ · uj = 0 (cf. Lemma 3).
These tests can be replaced by a single randomized test similar to [KG09]:

e

(
l∏

i=1

E
∑k
j=1 rj ·uj,i

i , g

)
· e

(
l∏

i=1

H (ρ (i))
∑k
j=1 rj ·uj,i , E′

)
?
= 1, (9)

where r1, . . . , rk ← Zp. This test ensures that λ ·
∑k

j=1 rj · uj = 0. Hence, with negligible
probability 1/p an encapsulation passes this randomized test although there exists a
vector uj with uj · λ 6= 0.

Whereas the original tests require O (l) pairings and O
(
l2
)

exponentiations in GT ,
the improved tests require only O (1) pairings and O (l) exponentiations in G.

Comparison. In [YAHK11] generic constructions of fully functional CCA-secure
KP-ABE schemes and fully functional CCA-secure CP-ABE schemes based on any one-
time signature scheme are presented. In the CP-ABE scheme, the complete ciphertext
including the access structure is signed. Then, a weaker notion of verifiability than the
one used in our construction is sufficient to prove CCA-security. Basically, the Verify al-
gorithms in their constructions ensure that decryption queries can be correctly answered
even for ciphertexts that are not consistent.

In contrast, we construct a CCA-secure KP-AB-KEM and a CCA-secure
CP-AB-KEM rather than ABE schemes. For these KEMs we are able to construct a
fully functional Verify algorithm. As a consequence, this allows us to use a single hash
function instead of an one-time signature scheme. Moreover, we only authenticate parts
of the encapsulation, mostly consisting of group elements. Alternatively, we can drop the
consistency test in (3) and hash the complete encapsulation. Similar to [YAHK11] this is
sufficient to answer decapsulation queries also for encapsulations that are not consistent.
This alternative construction already exploits the simpler structure of KEMs as com-
pared to fully functional encryption schemes by replacing one-time signatures by a hash
function. However, the construction presented in this paper has the additional benefit
that we do not have to hash a complex encapsulation consisting of various different data
types. Moreover, it supports full public verifiability of encapsulations. See [NMP+12]
for a thorough discussion of applications and advantages of encryptions schemes with
publicly verifiable ciphertexts.

15



References

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and
Hoeteck Wee. Functional encryption for threshold functions (or fuzzy IBE) from lat-
tices. In Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 280–297. Springer, 2012.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. SIAM Journal on Computing, 36(5):1301–1328, 2007.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

[BFMLS08] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic con-
structions of identity-based and certificateless KEMs. Journal of Cryptology, 21:178–199,
2008.

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from
identity-based techniques. In ACM Conference on Computer and Communications Secu-
rity, pages 320–329. ACM, 2005.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In 10th Theory of
Cryptography Conference, volume 7785 of Lecture Notes in Computer Science, pages 122–
142. Springer, 2013.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In ACM Conference on Computer and Commu-
nications Security, pages 121–130. ACM, 2009.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In 4th Theory of Cryptography
Conference, volume 4392 of Lecture Notes in Computer Science, pages 515–534. Springer,
2007.

[CN07] Ling Cheung and Calvin C. Newport. Provably secure ciphertext policy ABE. In ACM
Conference on Computer and Communications Security, pages 456–465. ACM, 2007.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen-ciphertext attack. SIAM Journal on Computing,
33:167–226, 2003.

[CZF11] Cheng Chen, Zhenfeng Zhang, and Dengguo Feng. Efficient ciphertext policy attribute-
based encryption with constant-size ciphertext and constant computation-cost. In Prov-
able Security - 5th International Conference, volume 6980 of Lecture Notes in Computer
Science, pages 84–101. Springer, 2011.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 537–554. Springer, 1999.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM Conference on Computer and
Communications Security, pages 89–98. ACM, 2006.

[KG09] Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. Theoretical Computer Science, 410(47-49):5093–5111,
2009.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In 3rd Theory of
Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages 581–
600. Springer, 2006.

[LC10] Zhen Liu and Zhenfu Cao. On efficiently transferring the linear secret-sharing scheme
matrix in ciphertext-policy attribute-based encryption. IACR Cryptology ePrint Archive,
374, 2010.

16



[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Wa-
ters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 62–91. Springer, 2010.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In 7th Theory of Cryptography Conference, volume
5978 of Lecture Notes in Computer Science, pages 455–479. Springer, 2010.

[LW11a] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EU-
ROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 568–588. Springer,
2011.

[LW11b] Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption.
In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 547–567.
Springer, 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, volume 7417 of Lecture
Notes in Computer Science, pages 180–198. Springer, 2012.
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A Appendix A

Proof of Lemma 1. (cf. Corollary 1.1 in [Sho06]) Using only elementary column opera-
tions one can convert M into N , since span (m1, . . . ,md) = span (n1, . . . , nd). The lemma
follows by the uniqueness of the reduced column echelon form of matrices (see Theorem
1.3 in [Sho06]).

Proof of Lemma 2. Let λ ∈ im (M), then there exists a vector b such that λ = M · b.
Hence, ∀j ∈ {1, . . . , k} : uj · λ = uj ·M · b = 0.

By the rank-nullity theorem we have dim
(
ker
(
M tr

))
+dim

(
im
(
M tr

))
= l. Further-

more, dim
(
ker
(
M tr

))
= k and dim

(
im
(
M tr

))
= dim (im (M)). Hence, dim (im (M)) =

l − k. But the kernel of matrix with k linear independent rows uj also has dimension
l − k. The claim follows.
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Proof of Lemma 3. We prove the lemma by ”1⇒ 2⇒ 3⇒ 1”.

”1⇒ 2”: The first step follows immediately since G has prime order.

”2⇒ 3”: By Lemma 2 it holds λ ∈ im (M). Hence, there exists b with M ·b = λ and
by the first requirement s = w · λ = w ·M · b = b1.

”3⇒ 1”: Using the property of b we easily show:

l∏
i=1

(
hλi
)wi

= hw·λ = hw·M ·b = hb1 = hs

and analogously

∀j ∈ {1, . . . , k} :

l∏
i=1

(
hλi
)uj,i

= huj ·M ·b = 1.

Hence, the lemma follows.

B Appendix B: CCA-Secure KP-AB-KEM

In this section we present our KP-AB-KEM construction selectively secure against adap-
tive chosen-ciphertext attacks. Our starting point is an encryption scheme selectively
secure against chosen-plaintext attacks. Basically, this is the large universe construction
from [GPSW06]. However, we use monotone span programs to realize access structures
rather than boolean trees. The modifications are straightforward. To achieve security
against chosen-ciphertext attacks we use the technique of [KG09]. In the following, n
is the maximum number of attributes in an encapsulation. The four algorithms of the
KP-AB-KEM are defined as follows.

Setup(1η, n) Generate bilinear groups (p,G,GT , e, g ∈ G) ← G(1η) and elements
g2, g3 ← G, {Hi ← G}i∈{0,...,n} , α ← Zp. Set g1 := gα and Y := e(g1, g2). Choose an

UOWHF UHF : {0, 1}blog(n)c+1×G→ Zp. The master secret is α and the public param-

eters are params :=
(

(p,G,GT , e, g) , g1, g2, g3, {Hi}i∈{0,...,n} , Y,UHF
)
. The key space

for the DEM is K = GT and the universe of attributes is U = Zp.
Compared to the modified large universe construction of [GPSW06], we add the

group element g3 and the hash function UHF.

As in [Wat11], the elements Hi define a publicly computable function:

H : U → G
x 7→

∏
i∈{0,...,n}H

∆i,{0,...,n}(x)

i

where ∆i,{0,...,n} (x) , i = 0, . . . , n are the Lagrange interpolation polynomials. Hence,

H(x) = gh(x) for some polynomial h(x) of degree at most n. Since the Hi are chosen
uniformly and independently at random, h is also chosen uniformly at random.

KeyGenmsk(M) with MSPM = (M,ρ), M ∈ Zl×dp for some arbitrary access structure

A. Choose b2, . . . , bd ← Zp. Set b := (α, b2, . . . , bd) and λ := M · b ∈ Zlp. Choose r ← Zlp

18



and set Di := gλi2 · H(ρ(i))−ri and D′i := gri for all i ∈ {1, . . . , l}. The secret key is

skM :=
(
M, {Di, D

′
i}i∈{1,...,l}

)
. This is as in [GPSW06].

Encaps(γ) with |γ| ≤ n. Choose s← Zp. Set E′ := gs and {Ex := H(x)s}x∈γ . Compute

t := UHF (|γ| , E′) and E′′ :=
(
gt1 · g3

)s
. The encapsulated key is K := Y s and the

encapsulation of K is: Eγ :=
(
γ,E′, {Ex}x∈γ , E′′

)
. Compared to the original scheme

we only add the group element E′′.

DecapsskM(Eγ) with MSP M = (M,ρ), M ∈ Zl×dp for some arbitrary access structure

A. Compute a vector w ∈ Zlp with w ·M = e1 and wi = 0 for all i ∈ {1, . . . , l} with
ρ(i) /∈ γ and reject, if such an vector does not exists, since M rejects γ.

Compute t′ := UHF (|γ| , E′). Reject, if one of the following consistency checks fails

∀x ∈ γ : e
(
E′, H(x)

) ?
= e (g,Ex) , (10)

e
(
E′, gt

′
1 · g3

)
?
= e

(
g,E′′

)
, (11)

For all i ∈ {1, . . . , l}, wi 6= 0, compute Zi = e (Di, E
′) · e

(
D′i, Eρ(i)

)
and output K :=∏

i∈{1,...,l},wi 6=0 Z
wi
i = Y s.

Compared to the modified large universe construction of [GPSW06], we only added
the consistence checks in (10) and in (11). Furthermore the tests in (10) can be exchanged
by a single randomized test similar to [KG09].

Public verifiability: One easily checks that test in (10) ensures that there exists r ∈ Zp
such that E′ = gr and ∀x ∈ γ : Ex = H (x)r. Test in (11) checks the correct form of the
additional element E′′ and is required to achieve CCA-security. The secret key is not
involved into the consistency tests.

Correctness Every correct generated encapsulation pass the consistency check. Correct-
ness follows directly from correctness of the original ABE, where K is the element used
to obscure the message.

Security proof: The next theorem can be proved by combining the proof techniques in
[KG09] and [GPSW06]. Moreover, the proof is a simpler version of the security proof for
our chosen-ciphertext secure ciphertext-policy attribute-based encapsulation mechanism.

Theorem 2. Assume UOWHF is a family of universal one-way hash function. Under
the DBDH-assumption relative to a group generator G, our key-policy attribute-based key
encapsulation mechanism is selectively secure against adaptive chosen-ciphertext attacks.
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