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Abstract. Combinatorial key predistribution schemes can provide a
practical solution to the problem of distributing symmetric keys to the
nodes of a wireless sensor network. Such schemes often inherently suit
networks in which the number of nodes belongs to some restricted set
of values (such as powers of primes). In a recent paper, Bose, Dey and
Mukerjee have suggested that this might pose a problem, since discarding
keyrings to suit a smaller network might adversely affect the properties
of the scheme.
In this paper we explore this issue, with specific reference to classes of key
predistribution schemes based on transversal designs. We demonstrate
through experiments that, for a wide range of parameters, randomly
removing keyrings in fact has a negligible and largely predictable effect on
the parameters of the scheme. In order to facilitate these computations,
we provide a new, efficient, generally applicable approach to computing
important properties of combinatorial key predistribution schemes.
We also show that the structure of a resolvable transversal design can
be exploited to give a deterministic method of removing keyrings to
adjust the network size, in such a way that the properties of the resulting
scheme are easy to analyse. We show that these schemes have the same
asymptotic properties as the transversal design schemes on which they
are based, and that for most parameter choices their behaviour is very
similar.

Keywords: wireless sensor network, key predistribution scheme, com-
binatorial design

1 Introduction

In this paper, we consider wireless sensor networks (WSNs) consisting of a large
number m of identical sensor nodes that are randomly deployed over a target
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area. After deployment, each node communicates in a wireless manner with other
nodes that are within communication range, thus forming an ad hoc network.
Due to the wireless nature of the communication, it is desirable for cryptographic
tools to be used for provision of secrecy, data integrity, and/or authentication.
The nodes’ restricted computational ability and battery power mean that, in
many situations, it is preferable to use symmetric algorithms rather than relying
on more computationally-intensive public key techniques. This requires nodes
to share keys; one standard approach to providing such keys is the use of a key
predistribution scheme (KPS), in which keys are stored in the nodes’ keyrings
prior to deployment. For example, in the seminal scheme of Eschenauer and
Gligor [4], the keys are randomly drawn from a common keypool.

After the nodes have been deployed, nodes that are within communication
range execute a shared key discovery protocol to determine which keys they
have in common. Two nodes that share at least η keys (for some predetermined
intersection threshold η ≥ 1) use all their common keys to derive a new key that
is used to secure communication between them. This is referred to as a secure
link between these nodes. There exists a large quantity of literature relating to
the construction of KPSs for WSNs; surveys include [2, 7, 10].

KPSs based on combinatorial structures such as designs or codes have been
studied as an alternative to random schemes (see [6, 9] for surveys of combinato-
rial schemes). Such schemes have several advantages over the random schemes:
for instance, they make it possible to prove the scheme has desirable properties
relating to connectivity and resilience, they enable more efficient discovery of
shared keys, and they reduce the amount of randomness required when instan-
tiating the schemes [5].

Key predistribution schemes for WSNs are typically evaluated using certain
metrics that relate to the performance of the resulting networks. Firstly, it is
desirable to restrict the total amount of memory each node must use for stor-
ing keys/keying material. Secondly, after the nodes have been deployed, it is
desirable for there to be as many secure links as possible between neighbouring
nodes, so as to increase the (secure) connectivity of the resulting network. The
extent to which a KPS facilitates achieving this objective is frequently measured
in terms of the quantity Pr1, which denotes the probability that any two given
nodes share at least η common keys.

Finally, we wish to measure the scheme’s ability to withstand adversarial
attack. A widely studied attack model, which we follow in this paper, is that
of random node capture [4], where the adversary can eavesdrop on all communi-
cation in the network, and can also comprise random nodes in order to extract
any keys/keying material they contain. The resilience of a KPS in the face of an
attacker is expressed in terms of the quantity fail(s), which is defined to be the
probability that a randomly chosen link is broken when an attacker compromises
s nodes uniformly at random, and then extracts their keys.

For simplicity, we focus particularly on fail(1) in this work. In this case, a
link {A,B} is broken by another node C when A ∩ B ⊆ C, where A,B and C
denote the sets of keys held by the three corresponding nodes.



There is an inherent tension between the need to provide good connectivity
and the need to maintain a high level of resilience without requiring an excessive
number of keys to be stored. Designing a KPS involves finding a scheme that
delivers a good tradeoff between these properties, and which is sufficiently flexible
to be useful for a range of practical choices of parameters such as network size,
available storage and desired level of security.

One feature of combinatorial schemes that could be viewed as a drawback is
the fact that, due to the structure of the combinatorial object used, the number
of nodes in the scheme may be required to be of a particular form, such as a
power of a prime, for example. If the number n of nodes in the network in which
we wish to employ such a scheme is not of this form, then the most commonly
suggested remedy is to take the smallest number of that form that is larger
than n, and simply select some (randomly chosen) subset of n keyrings from the
resulting scheme (e.g., see [5]). In a recent paper [1], Bose, Dey and Mukerjee have
suggested that removing keyrings in this manner from a combinatorial scheme
may adversely affect its properties, thus negating some of the main benefits of
such schemes. Instead, they propose a deterministic KPS in which various block
designs are combined to give a scheme in which the number of keyrings can be
varied directly in a more flexible manner.

In this paper, we examine more closely the actual effects of removing keyrings
from a combinatorial KPS. We focus specifically on the family of schemes pro-
posed by Lee and Stinson based on transversal designs [5], since they have been
shown to behave well for a wide range of parameters [9]. In Section 2, we exploit
the structure of resolvable transversal designs to propose a deterministic method
for selecting keyrings to remove from the schemes of Lee and Stinson without
unduly affecting their performance. The properties of these modified schemes are
easy to analyse using the framework established in [9], and we exploit this fea-
ture to compare their performance directly with the the combinatorial schemes
from which they were derived, demonstrating that they yield a family of schemes
with a flexible choice of parameters whose properties compare favourably with
those of existing schemes.

In addition, for a broad range of parameter choices, we consider networks
consisting of various numbers of nodes with keyrings chosen uniformly at random
from transversal design KPSs, and we compute the mean and standard deviation
of the resulting values of the security and performance metrics for these schemes.
The results, given in Section 3.2, demonstrate that the change in these metrics
as keyrings are removed is in fact very limited, and largely predictable.

Computing properties of schemes obtained by randomly deleting some num-
ber of keyrings from a combinatorial scheme can be time-consuming. Therefore,
in Section 4 we describe a new approach to facilitate the efficient evaluation of
metrics for connectivity and resilience in general KPSs. This approach is based
on some new formulas for these metrics that are of independent interest.



1.1 Overview of the Construction and Analysis of Combinatorial
Key Predistribution Schemes

A set system (X,A) consists of a finite set X of points, together with a finite
set A of subsets of X, which are known as blocks. A set system can be used to
construct a KPS by associating each key in a certain keyspace with an element
of X and each node with an element of A, so that a node is preloaded with the
keys that correspond to points lying in its corresponding block. The point x acts
as a key identifier for the corresponding secret key. Key identifiers (and which
nodes hold which key identifiers) are public information, whereas the values of
the keys are secret (known only to the nodes that hold them).

Example 1. Let

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}.

Then (X,A) is a set system in which there are nine points and twelve blocks.
Each block contains three points. The associated KPS will have 12 nodes, each
of which possesses three of the nine secret keys.

It is easy to see that, in this model, the Eschenauer-Gligor scheme [4] is ob-
tained when the underlying set system consists of n random k-subsets of the v-set
X. On the other hand, combinatorial key predistribution schemes are typically
based on set systems arising from combinatorial objects with nice properties that
ensure the resulting schemes perform well and are amenable to analysis. Partic-
ular examples of combinatorial objects that have been proposed for use in key
distribution in this way include projective planes, generalised quadrangles, con-
figurations, common intersection designs, transversal designs of strength 2 or 3,
partially balanced incomplete block designs, inversive planes, orthogonal arrays,
Reed-Solomon codes, mutually-orthogonal Latin squares, and rational normal
curves in projective spaces (see [9] for a survey and analysis of such schemes).

In this paper, we focus mainly on transversal designs, which we define now.

Definition 1. Let t, n and k be positive integers such that t ≤ k ≤ n. A transver-
sal design TD(t, k, n) is a triple (X,H,A), where X is a finite set of cardinality
kn, H is a partition of X into k parts (called groups) of size n and A is a set
of k-subsets of X (called blocks), which satisfy the following properties:

1. |H ∩A| = 1 for every H ∈ H and every A ∈ A, and
2. every subset of t elements of X from t different groups occurs in exactly one

block in A.

The parameter t is called the strength of the transversal design.

We note that transversal designs are equivalent to other familiar combinato-
rial objects such as orthogonal arrays and maximum distance separable (MDS)
codes; see [9, §2.7] for further discussion on these equivalences.



Example 2. Lee and Stinson [5] proposed a family of combinatorial KPSs based
on transversal designs TD(2, k, p). The set systems they use can be constructed
explicitly as follows:

For p a prime and k an integer with 2 ≤ k ≤ p we construct a TD(2, k, p) by
letting the points be all elements of the form (a, b) where a ∈ {0, 1, . . . , k − 1}
and b ∈ Zp. The transversal design has p2 blocks, which are given by the sets of
the form

Ai,j = {(x, ix+ j (mod p))|0 ≤ x ≤ k − 1}.

This construction can be generalised in an obvious way by replacing Zp by the
finite field GF(n). Hence, we can obtain a transversal design TD(2, k, n) with n2

blocks for any prime power n. It is straightforward to show that in this scheme
any two nodes share either 1 key or 0 keys; as such we specify that η = 1 and
hence two neighbouring nodes form a secure link if they share one common key.

To construct a transversal design of strength 3 (a TD(3, k, p)) the points are
taken to be all elements of the form (a, b) where a ∈ {0, 1, . . . , k−1} and b ∈ Zp,
as before. For each of the p3 polynomials f in Zp[x] of degree at most 2 we obtain
a block by taking the set of points of the form

Af = {(x, f(x) (mod p))|0 ≤ x ≤ k − 1}.

Once again, we can replace Zp by the finite field GF(n) in this construction and
obtain a TD(3, k, n) for any prime power n. Two nodes in this scheme share
either 0, 1 or 2 keys. Hence we can choose to use an intersection threshold of
either η = 1 or η = 2 for specifying the minimum number of keys that must be
shared by two nodes before they can form a secure link.

The values of fail(1) and Pr1 for these schemes, in the case of strength 2 with
η = 1 and strength 3 with η = 1 or η = 2, are given in Table 1.

For the transversal designs TD(t, k, n) for both t = 2 and t = 3 described
above, the points of the design can be partitioned into k subsets Hi, for 0 ≤ i ≤
k − 1, by setting

Hi = {(i, b)|b ∈ GF(n)}.

These sets Hi are known as the groups of the transversal design. It is straight-
forward to show that each subset of t points of the transversal design from t
different groups occur together in exactly one block of the transversal design.

Example 3. Bose et al. [1] proposed a family of KPSs obtained by combining η
designs that are the duals of designs derived from association schemes. For the
sake of clarity, we will restrict ourselves to the specific instantiation in which the
designs are all copies of a TD(2, k, n).

In the case of η = 1, the Bose et al. scheme instantiated with a TD(2, k, n)
coincides exactly with Lee and Stinson’s transversal design scheme.

For η = 2, they take two copies of a TD(2, k, n) and construct a new set
system by letting the set of points be the union of the sets of points of each



of the designs, and by letting the blocks be given by all possible unions of the
form B1 ∪ B2 where B1 is a block of the first TD(2, k, n) and B2 is a block of
the second TD(2, k, n). This scheme has 2kn points, and n4 blocks. Each block
contains 2k points, and two blocks intersect in either 0, 1, 2, k, or k + 1 points.

As observed in [5], combinatorial schemes possess several distinct advantages
as compared to random schemes such as Eschenauer-Gligor:

– the deterministic nature and regular structure of combinatorial schemes en-
sure that the precise values of metrics of the scheme such as fail(1) and Pr1
can be computed exactly, rather than simply the expected value of these
quantities;

– combinatorial schemes reduce the quantity of random numbers that must be
generated in setting up the scheme;

– most importantly, for many combinatorial schemes, their regular structure
leads to very efficient algorithms for performing tasks such as shared key
discovery once the nodes are deployed.

As such, combinatorial schemes can represent an efficient and effective way of
establishing keys in many WSN scenarios.

A survey and analysis of many existing combinatorial schemes was carried out
in [9]. The concept of a partially balanced t-design (PBtD) was introduced, and
explicit formulas for evaluating fail(1) and Pr1 were given for any combinatorial
scheme that can be constructed from a PBtD.

Definition 2. For positive integers v, k, t and λi with 0 ≤ i ≤ t − 1, a t −
(v, k, λ0, λ1, . . . , λt−i)-partially balanced t-design is a pair (X,A) with the fol-
lowing properties:

1. X is a finite set whose elements are referred to as points, and A is a finite
set of k-subsets of X; its elements are referred to as blocks.

2. There are λ0 blocks in A.
3. For 1 ≤ i ≤ t− 1, each subset of i points of X occurs in either no blocks, or

in exactly λi blocks.
4. For t ≤ i ≤ k, each subset of i points occurs in either 0 or 1 blocks.

Paterson and Stinson [9] showed that a wide range of existing combinatorial
KPSs (including KPSs constructed from transversal designs) could be modelled
as PBtDs. The advantage of doing so is that the properties of these schemes can
easily be evaluated and compared with the aid of the formulas given in [9]. The
resulting values for a range of schemes are given in Table 1. The transversal-
design based schemes described in Example 2 were shown to provide a good
degree of flexibility for the construction of KPSs relative to other PBtDs, since
they are easily constructed for a wide range of useful parameters, the block size
can be chosen independently of the network size, and the values of t and η can
also be varied independently.

The KPSs of Bose et al. [1] are not PBtDs, and hence they cannot be analysed
directly using the approach of [9]. One of the motivations behind their schemes is



to provide constructions that can yield KPSs for a flexible choice of network size;
in [1], they note that “the number of nodes need not be of the particular forms
p2 or p3, with p prime or prime power”. The traditional view of combinatorial
construction of KPSs is that, provided a range of parameters is available, then
if a specific network size n is desired it suffices to choose parameters to give
a scheme that suits a network of size greater than n and simply discard the
unneeded keyrings. Bose et al. [1] object (with particular reference to [5]) that
“if we then discard the unnecessary node allocations to get the final scheme for
use, this final scheme will not preserve the Pr1 and fail(s) values of the original
scheme and hence the properties of the final scheme in this regard can become
quite erratic” [1]. One main goal of our paper is to refute this statement.

1.2 Outline of the Paper

In Section 2, we present two approaches to increasing the flexibility of combi-
natorial predistribution schemes based on transversal designs. One approach is
randomized and the other is deterministic. In Section 3, we perform extensive
comparisons of our generalized constructions to the original transversal design
schemes. In Section 4, we derive new formulas that facilitate the computation of
metrics for connectivity and resilience for arbitrary key predistribution schemes
based on set systems. Finally, Section 5 is a short conclusion.

2 Two Approaches to Varying the Network Size in KPSs
based on Transversal Designs

In this section we consider two distinct approaches to varying the network size
in the transversal design-based KPSs of Lee and Stinson. One option is to use
the standard approach of randomly removing blocks from the design.

Scheme 1 (Random scheme). Suppose a KPS is desired for a network con-
taining m nodes. Let n be the smallest prime power satisfying n2 ≥ m. Then by
constructing a TD(2, k, n) and selecting a subset of m blocks uniformly at random
we obtain a set system that can be used to provide a KPS for the network.

Similarly, we can construct a KPS for this network based on a transversal
design of strength 2 by taking n to be the smallest prime power with n3 ≥ m,
and then selecting m blocks uniformly at random from the set of blocks of a
TD(3, k, n).

The benefits of such an approach include its simplicity and the fact that it
can be applied for any value of m. It is a very natural approach, given that it
mirrors precisely the commonly anticipated situation in which a small number of
nodes may fail or run out of power after deployment. We will see that this scheme
performs well in practice: in Section 3.2 we demonstrate that for a wide range
of parameter choices, restricting to a random subset of blocks of a TD(2, k, n)
does not adversely affect the expected performance of schemes based on these



designs. Furthermore, we still retain some desirable properties of combinatorial
schemes such as efficient shared key discovery.

One of the other underlying motivations of using combinatorial designs to
construct KPSs is the fact that their deterministic and highly structured nature
allows us to guarantee the values they attain for metrics such as fail(1) and Pr1. If
blocks are deleted at random, we lose these guarantees, even though diminished
performance is very unlikely. In this section we propose a second technique, to
overcome this possible drawback. We demonstrate how to exploit the structure
of transversal designs in order to select subsets of the blocks deterministically in
such a way that the precise performance of the resulting structure is straightfor-
ward to evaluate. Specifically, we will make use of resolvable transversal designs
to accomplish this objective.

2.1 Resolvable Transversal Designs of Strength 2

Definition 3. A transversal design TD(2, k, n) is said to be resolvable if it is
possible to partition the blocks of the design into sets B1,B2, . . . ,Bn, such that
each point of the design belongs to precisely one block in each set. The sets Bi
are known as parallel classes of the design.

Resolvable transversal designs have previously been exploited for construct-
ing KPSs suited for networks where there is group deployment of nodes; see [8].
The transversal design KPSs proposed by Lee and Stinson do not require the
resolvability property; however, the transversal designs TD(2, k, n) used in [5]
are in fact resolvable.

Example 4. For the TD(2, k, n) described in Example 2, the parallel classes of
blocks are given by

Bi = {Ai,j |j ∈ GF(n)}, i ∈ GF(n).

It is straightforward to see that no point lies in two distinct blocks of a given
parallel class, since if a point (x, y) were in blocks Ai,j and Ai,h, this would
imply that y = ix+ j and also y = ix+ h, whence j = h.

A resolvable transversal design TD(2, k, n) has n parallel classes with n blocks
in each class. We propose using such designs for key predistribution as follows:

Scheme 2 (Linear scheme). We construct a set system for use in a KPS by
starting with a resolvable TD(2, k, n), where n is a prime power. Let ` be an
integer between 1 and n. Select ` parallel classes of blocks of the design, and let
the blocks in these parallel classes be the blocks of the set system. We refer to
the resulting set system as a TD(2, k, n, `).

As each parallel class contains n blocks, this means that Scheme 2 yields
a KPS with `n keyrings. This number can be varied as required by choosing
an appropriate value of `: roughly speaking, we require that n ≥

√
m and ` ≈

m/n. One nice feature of this method of choosing blocks is that the resulting



incidence structure is in fact a PBtD, and hence its properties can be determined
in a straightforward manner simply by using the formulas given in [9]. We now
perform this analysis to show that Scheme 2 performs well even for comparatively
small values of `.

Theorem 1. A TD(2, k, n, `) is a 2-(kn, k, `n, `)-PBtD

Proof. Take ` parallel classes of blocks from a resolvable TD(2, k, n), and let A
be the set of blocks in these parallel classes. Let X be the set of points in the
TD(2, k, n); we note that X contains kn points. Now, A contains λ0 = `n blocks,
each containing k points. Every point of X is contained in precisely one block
in each parallel class, and hence is contained in precisely λ1 = ` blocks of A.
Furthermore, since each pair of points in X is contained in either 0 or 1 blocks
of the TD(2, k, n), it follows that any pair of points is contained in either 0 or 1
blocks of A. Thus (X,A) satisfies all the properties of a 2-(kn, k, `n, `)-PBtD.

The values of fail(1) and Pr1 for a PBtD are easy to compute systematically
using the explicit formulas given in [9]. For a given block B of a PBtD and a
point C on that block, denote by µ′(1) the number of blocks A of the PBtD
such that A∩B = {C} (it was shown in [9] that this value is independent of the
choice of point and block.) Define a link to be a pair of blocks with nonempty
intersection. We let L denote the total number of links in a PBtD, we let α
denote the number of links in which a given block B is contained, and we let
β denote the number of links {A,C} with B 6= A,C such that A ∩ C ⊂ B
(again, these values do not depend on the specific choice of B). Then, applying
the formulas of [9] to a 2-(kn, k, `n, `)-PBtD, we have:

µ′(1) = λ1 − 1 = `− 1,

α = kµ′(1) = k(`− 1),

β = µ′(1)

(
λ1
2
− 1

)
k = (`− 1)

(
`

2
− 1

)
k,

L =
bα

2
=
`nk(`− 1)

2
,

fail(1) =
β

L− α
=

`− 2

`n− 2
,

Pr1 =
α

b− 1
=
k(`− 1)

`n− 1
.

In the case where ` = n, a TD(2, k, n, `) is simply a TD(2, k, n), and hence
Scheme 2 is a generalisation of the corresponding scheme of Lee and Stinson.
The formulas computed above for fail(1) and Pr1 can be seen to agree with the
corresponding formulas for Lee and Stinson’s scheme in the case where ` = n.

2.2 Transversal Designs of Higher Strength

Just as in the case of transversal designs of strength 2, it is possible to determin-
istically select subsets of blocks from transversal designs of higher strength, such



as the TD(3, k, n) suggested for use in key predistribution by Lee and Stinson,
in a way that allows flexibility in the number of keyrings of the resulting scheme,
while still maintaining good performance. We begin by illustrating a useful ap-
proach to partitioning the blocks of the TD(3, k, n) described in Example 2.

Example 5. Let n be a prime power and let X be the set of points of one of the
TD(3, k, n) whose construction is described in Example 2. We can partition the
blocks of this design into sets B1,B2, . . . ,Bn by defining

Bi = {Af |f(x) = ix2 + ax+ b for some a, b ∈ GF(n)}, i ∈ GF(n).

We show, for each i, that the incidence structure (X,Bi) is a TD(2, k, n), with
the same groups as the original TD(3, k, n). Suppose this is not the case. Then
there is a pair {(x,A), (y,B)} (where x 6= y) that appears in two blocks of the
same Bi. So we have

ix2 + ax+ b = A = ix2 + cx+ d and iy2 + ay + b = B = iy2 + cy + d.

From this, we get

ax+ b = cx+ d and ay + b = cy + d.

Since x 6= y, we have a = c, which implies b = d. Therefore the two blocks
coincide and we have a contradiction.

Scheme 3 (Quadratic scheme). Let n be a prime power. Starting with a
TD(3, k, n), we define a set system by letting ` be an integer between 1 and n,
selecting ` of the sets Bi, and letting A be the set of blocks in these ` sets. We
refer to the incidence structure (X,A) as a TD(3, k, n, `). Using a TD(3, k, n, `)
for constructing a KPS in the standard way yields a scheme with `n2 keyrings,
for which we can choose an intersection threshold of either η = 1 or η = 2.

As before, this method of selecting blocks yields a structure that is easy to
analyse:

Theorem 2. A TD(3, k, n, `) is a 3-(kn, k, `n2, `n, `)-PBtD.

Proof. A TD(3, k, n, `) consists of a set of kn points, together with ` disjoint sets
of n2 blocks of k points, and thus has `n2 blocks in total. Every point of the
TD(3, k, n, `) is contained in n blocks in each of these sets, and therefore is con-
tained in `n blocks in total. If a pair of points belong to a group of the underlying
TD(3, k, n) then they do not occur together in any block of the TD(3, k, n, `). If
two points lie in different groups, then in each of the ` sets Bi there is precisely
one block that contains them. Thus any pair of points occurs together in either
0 or ` blocks of the TD(3, k, n, `). Finally, any set of three points occur together
in either 0 or 1 blocks of the TD(3, k, n) and thus also occur together in 0 or 1
blocks of the TD(3, k, n, `).



This allows us to use the formulas of [9] to compute fail(1) and Pr1. Defining
µ′(2) to be the number of blocks C whose intersection with a given block B is a
given set S ⊂ B of two points, we have

µ′(2) = λ2 − 1 = `− 1,

µ′(1) = λ1 − 1− (k − 1)µ′(2) = `n− 1− (k − 1)(`− 1).

For a KPS with intersection threshold η = 2 we have

α =

(
k

2

)
µ′(2) =

(
k

2

)
(`− 1),

β = µ′(2)

(
λ2
2
− 1

)(
k

2

)
= (`− 1)

(
`

2
− 1

)(
k

2

)
,

L =
bα

2
=
`n2(`− 1)

2

(
k

2

)
,

fail(1) =
β

L− α
=

`− 2

`n2 − 2
,

Pr1 =
α

b− 1
=
k(k − 1)(`− 1)

2(`n2 − 1)
.

Using intersection threshold η = 1 gives

α = kµ′(1) +

(
k

2

)
µ′(2) = k(`n− 1)−

(
k

2

)
(`− 1),

β = µ′(1)

(
λ1
2
− 1

)
k + µ′(2)

(
λ2
2
− 1

)(
k

2

)
,

= (`n− 1− (k − 1)(`− 1)) k

(
`n

2
− 1

)
+ (`− 1)

(
`

2
− 1

)(
k

2

)
,

L =
bα

2
=
`n2

(
k(`n− 1)−

(
k
2

)
(`− 1)

)
2

,

fail(1) =
β

L− α
=

2(`n− 1)(`n− 2)− (k − 1)(`− 1)(2`n− `− 2)

(`n2 − 2)(2`n− 2− (k − 1)(`− 1))
,

Pr1 =
α

b− 1
=
k(2`n− 2− (k − 1)(`− 1))

2(`n2 − 1)
.

In the case where ` = n, a TD(3, k, n, `) is simply a TD(3, k, n) and Scheme 2
is a generalisation of the corresponding scheme of Lee and Stinson. When ` = n,
the formulas computed above for fail(1) and Pr1 agree with the corresponding
formulas for Lee and Stinson’s scheme.

2.3 Finer Control Over the Number of Blocks

Scheme 3 provides KPSs with `n2 keyrings by selecting ` disjoint sets of n2

blocks from a TD(3, k, n). Each of these sets of blocks is in fact a resolvable



TD(2, k, n). Thus, if a more fine-grained choice of network size is required, it
would be possible to choose ` sets of blocks, together with m parallel classes of
blocks from an (`+ 1)th copy of a TD(2, k, n). This would yield a network with
`n2 +mn keyrings; appropriate choices of ` and m thus allow the network size to
be adjusted to the nearest multiple of n. The resulting combinatorial structure
would be a 3-(kn, k, `n2 +mn, `n+m, `+1)-PBtD, and hence could be analysed
in a similar manner to the schemes based on a TD(3, k, n, `).

3 Analysis and Comparisons of the New Constructions
with Previous Schemes

In this section, we compare the new schemes (Scheme 1, 2 and 3) with the
transversal design schemes from which they were derived. Recall that Scheme 1
consists of random blocks chosen from a transversal design, while Scheme 2 and
Scheme 3 are deterministic schemes consisting of specified blocks from transversal
designs of strength 2 and 3, respectively.

First, Table 1 summarizes the formulas for six deterministic schemes. The
six schemes considered in Table 1 (denoted A–F ) are the following:

A: Scheme 2, based on a TD(2, k, n, `)
B: Scheme 3, based on a TD(3, k, n, `), η = 2
C: Scheme 3, based on a TD(3, k, n, `), η = 1
D: Scheme 2, based on a TD(2, k, n) (i.e., Scheme 2 with ` = n)
E: Scheme 3, based on a TD(3, k, n), η = 2 (i.e., Scheme 3 with ` = n)
F : Scheme 3, based on a TD(3, k, n), η = 1 (i.e., Scheme 3 with ` = n)

Table 1. Metrics for some transversal design based schemes

scheme Pr1 fail(1)

A.
k(`− 1)

`n− 1

`− 2

`n− 2

B.
k(k − 1)(`− 1)

2(`n2 − 1)

`− 2

`n2 − 2

C.
k(2`n− 2 − (k − 1)(`− 1))

2(`n2 − 1)

2(`n− 1)(`n− 2) − (k − 1)(`− 1)(2`n− `− 2)

(`n2 − 2)(2`n− 2 − (k − 1)(`− 1))

D.
k

n+ 1

n− 2

n2 − 2

E.
k(k − 1)

2(n2 + n+ 1)

n− 2

n3 − 2

F.
k(2n− k + 3)

2(n2 + n+ 1)

2n3 + (4 − 2k)n2 + (k − 5)n+ 2k − 6

(2n− k + 3)(n3 − 2)

In Section 3.1, we briefly discuss asymptotic comparisons between the deter-
ministic schemes A–F , using the formulas in Table 1. In Section 3.2, these formu-
las are evaluated for a range of parameter choices to provide a direct comparison



with the corresponding values for equivalent parameter choices in Scheme 1 (the
Random Scheme).

3.1 Asymptotic Comparisons

It is interesting to compare Scheme 2 and Scheme 3 to the transversal design
schemes on which they are based. In Scheme 2 and Scheme 3, we have an ad-
ditional parameter ` ≤ n (the original schemes correspond to ` = n). Suppose
c < 1 is a positive real number and we take ` = cn. We compute the ratio of the
values of Pr1 for schemes labelled A and D in Table 1 using the formulas given
there:

Pr1(schemeA)

Pr1(schemeD)
=

k(cn−1)
cn2−1
k

n+1

=
(cn− 1)(n+ 1)

cn2 − 1
.

As n→∞, it is easy to see that this ratio approaches 1.
Thus, for example, if we use only n/1000 of the n parallel classes, the connec-

tivity of the partial scheme is asymptotically the same as the transversal design
scheme on which it is based. A similar result holds for resilience, as can be seen
by computing the ratios of the relevant fail(1) values. Furthermore, a similar
phenomenon is observed for Scheme 3, for both η = 1 and η = 2, i.e., when we
use the formulas for the schemes labelled B and E, as well as for the schemes
labelled C and F . We summarize this as follows.

Theorem 3. Let 0 < c < 1 and let ` = cn in scheme A, B or C from Table 1.
Then

lim
n→∞

Pr1(schemeA)

Pr1(schemeD)
= lim
n→∞

fail(1)(schemeA)

fail(1)(schemeD)
= 1,

lim
n→∞

Pr1(schemeB)

Pr1(schemeE)
= lim
n→∞

fail(1)(schemeB)

fail(1)(schemeE)
= 1,

and

lim
n→∞

Pr1(schemeC)

Pr1(schemeF )
= lim
n→∞

fail(1)(schemeC)

fail(1)(schemeF )
= 1.

3.2 Comparisons for Explicit Parameter Choices

In this section, we compare the random and deterministic schemes we have pre-
sented. We consider transversal designs of strengths 2 and 3 that are appropriate
for maximum network sizes of (approximately) 5000 nodes and 24000 nodes:

– The transversal designs yielding maximum network size 5000 (approximately)
are TD(2, 15, 71) and TD(3, 15, 17); note that 712 = 5041 and 173 = 4913.
Here the block size is 15, which means that nodes will each store 15 keys.

– The transversal designs for maximum network size 24000 (approximately)
are TD(2, 25, 157) and TD(3, 25, 29); note that 1572 = 24649 and 293 =
24387. Here the block size is 25, which means that nodes will each store 25
keys.



We analyse and compare the behaviour of Scheme 1, Scheme 2 and Scheme 3
for the parameters listed above; in particular, we evaluate fail(1) and Pr1 for
these schemes. In the case of Scheme 2 and Scheme 3, we have used the formulas
from Table 1 to obtain these values. For each choice of n and k, we evaluated
fail(1) and Pr1 for the schemes based on a TD(2, k, n, `) or TD(3, k, n, `) with
η = 1, 2, for every ` between 2 and n inclusive. In the case of Scheme 1, for
each network size m, we constructed 100 random instances of the KPS and we
computed the exact values of fail(1) and Pr1 for each of these 100 instances.

The results of these calculations are presented in graphical form in Figures 1–
6. In these figures, we plot the connectivity or resilience of a random scheme and
a corresponding deterministic scheme. The solid lines, labelled “random”, refer
to Scheme 1; the dashed lines, labelled “parallel”, refer to Scheme 2 or Scheme 3.
The dotted lines, labelled “σ”, indicate the standard deviation of the values
computed for Scheme 1 over the 100 trials (since the standard deviations are
quite small, these lines are very close to the bottom of the graphs). The value m
is the number of blocks in the associated set system (i.e., the number of nodes
in the network).

In the case of Scheme 1, we also computed the maximum and minimum values
of fail(1) and Pr1 obtained over the 100 trials, for each value of m. As well, we
have tabulated the mean and standard deviation over the 100 samples. In these
two tables, the network size is m = `n = 71`. This data is presented, for the
schemes derived from a TD(2, 15, 71), in Tables 3 and 4 in the Appendix.

Some of the main observations we can draw from these results are as follows:

– In Figures 1–6, the plots of the values of fail(1) or Pr1 as blocks are selected
uniformly from a TD(2, k, n) or TD(3, k, n) (Scheme 1) are all essentially
a horizontal line, indicating that on average the values of fail(1) and Pr1
do not change greatly, even if the number of blocks selected is quite small.
This is entirely to be expected: fail(1) and Pr1 by definition are quantities
that represent an average over all the keyrings in the network, so taking the
average over smaller, uniformly selected subsets of keyings should not affect
these values too much. The average values computed in our experiments are
in fact very close to the exact average values that are computed theoretically.

– One quantity of particular interest here is the standard deviation of fail(1)
and Pr1 for Scheme 1, since this determines the extent to which a particu-
lar random choice of subnetwork may have fail(1) or Pr1 values that differ
from the average values for the scheme as a whole. Naturally, the standard
deviation of these values increases slightly when the number blocks is very
small. However, we can see from Figures 1–6 that these standard deviations
are still extremely low, especially in the case of schemes obtained from the
larger designs. Moreover, there is a very low range of values of fail(1) and
Pr1 encountered in our experiments. This is evident from Tables 3 and 4
in the Appendix, for the schemes derived from a TD(2, 15, 71). Schemes de-
rived from other transversal designs exhibit similar behaviour in terms of the
variability of these metrics. Thus we see that in practice, selecting random



Fig. 1. Connectivity and resilience of KPSs derived from TD(2, 15, 71)
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subsets of the keyrings is unlikely to have much of an effect on the values of
fail(1) and Pr1 for the scheme.

– In Scheme 2, when the number ` of parallel classes is very small, the value
of Pr1 is low, due to the fact that no two blocks within a given parallel class
have any points in common. Nevertheless, Figures 1 and 4 demonstrate that
this value grows rapidly as ` increases, and soon approaches the Pr1 value
attained by Scheme 1. On the other hand, for Scheme 2, the value of fail(1)
is also low initially, and similarly becomes closer to that of Scheme 1 as `
increases. Thus we see that the properties of Scheme 2 and Scheme 1 are
very similar in practice, for even moderately large values of `.

– Figures 3 and 6 show that Scheme 3 with intersection threshold η = 2 exhibits
a similar behaviour to that of Scheme 2: the Pr1 and fail(1) values are low
when ` is small, but increase rapidly as ` becomes larger. The reason for this
is entirely analogous: for any given set Bi of blocks, no two of the blocks in



Fig. 2. Connectivity and resilience of KPSs derived from TD(3, 15, 17) with η = 1
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that set intersect in two points, and hence for η = 2 there are no secure links
formed between nodes whose keyrings are derived from such blocks.

– Figures 2 and 5 are interesting, as they show a slightly different behaviour
pattern for Scheme 3 in the case of intersection threshold η = 1. Here the
Pr1 and fail(1) values are in fact higher when ` is small, and then decrease
for larger values of `, eventually approaching the properties of Scheme 1.
This is explained by the fact that two blocks within the same set Bi have
probability k

n+1 of sharing a common key (cf. Table 2), which is higher (for

the parameters under consideration) than the average probability k(2n−k+3)
2(n2+n+1)

that two blocks chosen uniformly from a TD(3, k, n) share at least one key.
As in previous cases, it is clear from these graphs that once a reasonable
number of the sets Bi are chosen, the properties of Scheme 3 are very close
to those of Scheme 1.



Fig. 3. Connectivity and resilience of KPSs derived from TD(3, 15, 17) with η = 2
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We conclude that removal of keyrings from a KPS based on transversal de-
signs, whether randomly or deterministically as in Scheme 2 or 3, causes no
undue disruption to the behaviour of the scheme.

4 An Efficient New Approach to Calculating Connectivity
and Resilience for Arbitrary Set Systems

In this section, we describe a new approach to facilitate the efficient evaluation
of metrics for connectivity and resilience in general KPSs. We were motivated to
do this in order to compute the metrics of our random scheme that consists of
random subsets of blocks of a transversal design. Suppose we start with any set
system (X,A) having blocks of size k. Denote b = |A|. Suppose the maximum
intersection of any two blocks in A is t− 1. (In a given application, the value of



Fig. 4. Connectivity and resilience of KPSs derived from TD(2, 25, 157)
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t may already be known beforehand. However, if it were not already known, it
could be computed as the first step of the process we are about to describe.)

For |C| = i where η ≤ i ≤ t− 1, define λC to be the number of blocks A ∈ A
containing all the points in C. It will turn out that we can compute Pr1 and
fail(1) fairly easily if we know all the λC values. This has at least two desirable
consequences:

1. For various types of “structured” set systems (for example, a partially bal-
anced t-design) we know the relevant λC ’s and so we can compute formulas
for Pr1 and fail(1) in a straightforward manner.

2. For an arbitrary “unstructured” set system, we can use this approach to
compute Pr1 efficiently. In a “naive” approach, we would probably examine
all pairs of blocks to see which pairs form links, which would already require
time Θ(b2). However, it is straightforward to tabulate all the relevant λC



Fig. 5. Connectivity and resilience of KPSs derived from TD(3, 25, 29) with η = 1
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values in time Θ(b), and then apply the formulas we derive, in order to
compute Pr1. This will be discussed further in Section 4.3.

4.1 Formulas for Connectivity

For a set of points C with |C| ≥ η, define a C-link to be a set of two nodes {A,B}
such that A ∩B = C. The number of C-links is denoted by λ′(C); therefore,

λ′(C) = |{{A,B} : A,B ∈ A, A ∩B = C}|.

The next lemma follows easily from the principle of inclusion-exclusion.

Lemma 1. If |C| = i ≤ t− 1, then

λ′(C) =
∑

D⊆X\C,|D|≤t−1−i

(−1)|D|
(
λC∪D

2

)
. (1)



Fig. 6. Connectivity and resilience of KPSs derived from TD(3, 25, 29) with η = 2
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In particular, λ′(C) =
(
λC

2

)
if |C| = t− 1.

Define an i-link to be any C-link where |C| = i. For η ≤ i ≤ t − 1, let Li
denote the number of i-links (or course, there are no i-links with i ≥ t). For
η ≤ i ≤ t− 1, it is clear that

Li =
∑
|C|=i

λ′(C). (2)

The quantity

L =

t−1∑
i=η

Li (3)



is the total number of links. From this, it immediately follows that

Pr1 =
L(
b
2

) . (4)

Define

qi =
∑
|C|=i

(
λC
2

)
. (5)

We now provide a useful formula for Li.

Lemma 2. For η ≤ i ≤ t− 1, we have that

Li =

t−1∑
j=i

(−1)j−i
(
j

i

)
qj . (6)

Proof. In view of (2), we need to sum (1) over all C with |C| = i. When we do

this, each possible term (−1)|D|
(
λC∪D

2

)
is included in the sum

(|C∪D|
|C|

)
=
(|D|+i

i

)
times.

For η ≤ i ≤ t− 1, let

ai =

i∑
j=η

(−1)i−j
(
i

j

)
. (7)

Then we have the following.

Theorem 4.

L =

t−1∑
i=η

aiqi, (8)

where the qi’s and ai’s are defined in (5) and (7), respectively.

Proof. We sum the formula (6) as i ranges from η to t− 1. The number of times
qi is included in the sum is easily seen to be equal to ai.

We present some applications of the formula (8) for small values of t and η in
Table 2.

Now, applying (8) and (4), we have the following formula for Pr1.

Corollary 1.

Pr1 =

∑t−1
i=η aiqi(
b
2

) . (9)



t η L

2 1 q1
3 2 q2
3 1 q1 − q2
4 3 q3
4 2 q2 − 2q3
4 1 q1 − q2 + q3
5 4 q4
5 3 q3 − 3q4
5 2 q2 − 2q3 + 3q4
5 1 q1 − q2 + q3 − q4

Table 2. Applications of Theorem 4

4.2 Formulas for Resilience

Recall that a C-link is a set of two nodes {A,B} such that A ∩ B = C. The
number of C-links is λ′(C) and the number of nodes that break the C-link {A,B}
is λC−2. The probability that the C-link {A,B} is broken by the compromise of
a random node not in the link is (λC − 2)/(b− 2). Averaging over all L links, we
obtain the following formula for fail(1), which can be viewed as a generalisation
of [9, Cor. 4.6]:

fail(1) =
1

L

∑
{C:η≤|C|≤t−1}

(λC − 2)λ′(C)

b− 2
. (10)

In order to compute fail(1) using (10), we first need to evaluate the expression∑
λCλ

′(C). Substituting (1) into this sum, we have

∑
{C:η≤|C|≤t−1}

λCλ
′(C) =

∑
{C:η≤|C|≤t−1}

λC ∑
D⊆X\C,|D|≤t−1−i

(−1)|D|
(
λC∪D

2

)
=

∑
{E:η≤|E|≤t−1}

(λE
2

) ∑
{C:η≤|C|,C⊆E}

(−1)|E|−|C|λC

 ,

letting E = C ∪D. As a result, we obtain the following.

Lemma 3. ∑
{C:η≤|C|≤t−1}

λCλ
′(C) =

∑
{E:η≤|E|≤t−1}

µE

(
λE
2

)
, (11)

where
µE =

∑
{C:η≤|C|,C⊆E}

(−1)|E|−|C|λC . (12)



For future use, we mention a couple of special cases of (12):

µE =

{
λE if |E| = η

λE −
∑
x∈E λE\{x} if |E| = η + 1.

(13)

Next, applying (3) and (2) we have that∑
{C:η≤|C|≤t−1}

2λ′(C) = 2L. (14)

Now we can state our main formula.

Theorem 5.

fail(1) =
1

L(b− 2)

 ∑
{E:η≤|E|≤t−1}

µE

(
λE
2

)− 2

b− 2
. (15)

Proof. The result follows immediately from (10), (11) and (14).

4.3 Computing Connectivity and Resilience

Suppose we are given a set system (X,A), where b = |A|. As previously men-
tioned, we assume that value of the parameter t is already known. Here are the
steps that would be followed to compute Pr1 and fail(1).

1. Compute all the values λC for η ≤ |C| ≤ t− 1. This can be done efficiently
as follows:

(a) Initialise λC ← 0 for all relevant C.

(b) For every block A ∈ A and for every C ⊆ A such that η ≤ |C| ≤ t − 1,
set λC ← λC + 1.

(For fixed values of η and t, we observe that the λC ’s can be computed in
time Θ(b) by this method.)

2. Compute all the values µC for η ≤ |C| ≤ t− 1, using the formula (12).

3. Compute the values qi for η ≤ i ≤ t− 1, using the formula (5).

4. Compute L using the formula (8).

5. Compute Pr1 = L/
(
b
2

)
and compute fail(1) using the formula (15).

Remark: If we only wanted to compute Pr1, then step 2 could be omitted.

4.4 Examples

Here are some small examples to illustrate the application of the formulas we
have developed.



Example 6. Suppose X = {1, . . . , 6} and

A = {{123}, {124}, {125}, {456}, {136}}.

It easy to check that t = 3 in this design. Then we have

λ12 = 3 λ13 = 2 λ14 = 1 λ15 = 1 λ16 = 1 λ23 = 1
λ24 = 1 λ25 = 1 λ26 = 0 λ34 = 0 λ35 = 0 λ36 = 1
λ45 = 1 λ46 = 1 λ56 = 1
λ1 = 4 λ2 = 3 λ3 = 2 λ4 = 2 λ5 = 2 λ6 = 2

It is easy to compute q1 = 13 and q2 = 4. When η = 1, we have L = q1 − q2 = 9
and Pr1 = 9/10; when η = 2, we have L = q2 = 4 and Pr1 = 4/10.

In order to compute fail(1), we also need to compute the µC ’s. First, suppose
η = 2. Then µC = λC for |C| = 2, and

fail(1) =
1

4× 3

(
3

(
3

2

)
+ 2

(
2

2

))
− 2

3
=

1

4
.

When η = 1, we need to compute λC when |C| = 1, 2. When |C| = 1, we
have µC = λC . When |C| = 2, we use (13) to compute µC :

µ12 = −4 µ13 = −4 µ14 = −5 µ15 = −5 µ16 = −5 µ23 = −4
µ24 = −4 µ25 = −4 µ26 = −5 µ34 = −4 µ35 = −4 µ36 = −3
µ45 = −3 µ46 = −3 µ56 = −3

fail(1) =
1

9× 3

(
4

(
4

2

)
+ 3

(
3

2

)
+ 4× 2

(
2

2

)
− 4

(
3

2

)
− 4

(
2

2

))
− 2

3
=

7

27
.

Here is an example with t = 4. We just compute Pr1 for this example.

Example 7. Suppose X = {1, . . . , 9} and

A = {{1234}, {1235}, {1367}, {5678}, {4789}}.

Here t = 4 and we compute q1 = 14, q2 = 7 and q3 = 1. When η = 1, we have
L = q1 − q2 + q3 = 8 and Pr1 = 4/5; when η = 2, we have L = q2 − 2q3 = 5 and
Pr1 = 1/2; and when η = 3, we have L = q3 = 1 and Pr1 = 1/10.

5 Conclusion

We have provided two methods of increasing the flexibility of combinatorial key
predistribution schemes. These methods are discussed and evaluated in refer-
ence to the transversal design schemes introduced in [5]. The first method is to
exploit the underlying structure of transversal designs to explicitly describe a
wide range of “partial” designs whose properties can easily be analysed using
existing formulas [9]. The schemes based on these partial designs have properties
very similar to the transversal design schemes from which they are derived. The



second method (e.g., see [5]) is to randomly delete blocks from a specified set
system. We show by running extensive experiments that this method also does
not affect performance adversely, which contradicts assertions made in [1]. Fi-
nally, we develop some new formulas that facilitate the efficient computation of
metrics of KPS derived from arbitrary set systems. These formulas were useful
in the experiments we carried out, but they may have additional applications in
the theoretical study of combinatorial KPS for wireless sensor networks.
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Appendix

Table 3: Resilience of random KPSs derived from TD(2, 15, 71)

` fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
2 0.013749 0.000642 0.011989 0.015357
3 0.013660 0.000381 0.012879 0.014684
4 0.013687 0.000278 0.013134 0.014481
5 0.013702 0.000234 0.013158 0.014362
6 0.013704 0.000179 0.013294 0.014108
7 0.013676 0.000140 0.013338 0.014077
8 0.013687 0.000136 0.013356 0.014063
9 0.013707 0.000109 0.013418 0.013950

10 0.013690 0.000094 0.013476 0.013964
11 0.013682 0.000077 0.013505 0.013850
12 0.013698 0.000071 0.013552 0.013897
13 0.013696 0.000068 0.013517 0.013836
14 0.013685 0.000058 0.013558 0.013820
15 0.013691 0.000055 0.013528 0.013841
16 0.013685 0.000055 0.013586 0.013830
17 0.013694 0.000053 0.013583 0.013862
18 0.013692 0.000044 0.013579 0.013800
19 0.013694 0.000042 0.013602 0.013808
20 0.013694 0.000042 0.013582 0.013812
21 0.013693 0.000037 0.013588 0.013780
22 0.013694 0.000033 0.013602 0.013792
23 0.013687 0.000034 0.013603 0.013760
24 0.013693 0.000031 0.013632 0.013780
25 0.013692 0.000025 0.013614 0.013746
26 0.013690 0.000026 0.013592 0.013749
27 0.013690 0.000025 0.013631 0.013743
28 0.013692 0.000021 0.013630 0.013737
29 0.013691 0.000019 0.013633 0.013730
30 0.013688 0.000019 0.013639 0.013729
31 0.013693 0.000020 0.013655 0.013749
32 0.013693 0.000018 0.013645 0.013732
33 0.013693 0.000016 0.013661 0.013752
34 0.013693 0.000016 0.013659 0.013737
35 0.013695 0.000014 0.013667 0.013724
36 0.013691 0.000014 0.013655 0.013727
37 0.013694 0.000012 0.013664 0.013725
38 0.013694 0.000015 0.013664 0.013735
39 0.013693 0.000012 0.013662 0.013726
40 0.013691 0.000012 0.013668 0.013720
41 0.013693 0.000011 0.013668 0.013726



Table 3: Resilience of random KPSs derived from TD(2, 15, 71)
(cont).

` fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)
42 0.013695 0.000013 0.013664 0.013726
43 0.013693 0.000010 0.013674 0.013725
44 0.013693 0.000009 0.013664 0.013712
45 0.013692 0.000008 0.013673 0.013715
46 0.013694 0.000007 0.013679 0.013715
47 0.013693 0.000007 0.013679 0.013709
48 0.013693 0.000008 0.013676 0.013715
49 0.013693 0.000007 0.013676 0.013710
50 0.013693 0.000007 0.013673 0.013710
51 0.013694 0.000005 0.013682 0.013709
52 0.013693 0.000006 0.013679 0.013705
53 0.013694 0.000005 0.013683 0.013707
54 0.013694 0.000005 0.013681 0.013704
55 0.013694 0.000004 0.013683 0.013707
56 0.013693 0.000004 0.013683 0.013703
57 0.013693 0.000004 0.013681 0.013706
58 0.013693 0.000003 0.013683 0.013704
59 0.013693 0.000003 0.013684 0.013698
60 0.013693 0.000003 0.013685 0.013700
61 0.013693 0.000002 0.013688 0.013698
62 0.013693 0.000002 0.013688 0.013700
63 0.013693 0.000002 0.013687 0.013702
64 0.013693 0.000002 0.013689 0.013697
65 0.013693 0.000001 0.013689 0.013697
66 0.013693 0.000001 0.013690 0.013697
67 0.013693 0.000001 0.013691 0.013696
68 0.013693 0.000001 0.013692 0.013695
69 0.013693 0.000000 0.013692 0.013694
70 0.013693 0.000000 0.013693 0.013694
71 0.013693 0.000000 0.013693 0.013693

Table 4: Connectivity of random KPSs derived from TD(2, 15, 71)

` Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)
1 0.208129 0.008217 0.185111 0.228169
2 0.208647 0.003964 0.197283 0.218659
3 0.208178 0.002706 0.202719 0.215121
4 0.208296 0.001944 0.204200 0.213159
5 0.208403 0.001608 0.204138 0.212795
6 0.208455 0.001297 0.204861 0.211721
7 0.208241 0.001010 0.205467 0.210976



Table 4: Connectivity of random KPSs derived from TD(2, 15, 71)
(cont).

` Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)
8 0.208214 0.000963 0.205741 0.210926
9 0.208424 0.000790 0.206175 0.210355
10 0.208313 0.000695 0.206834 0.210374
11 0.208234 0.000541 0.206914 0.209409
12 0.208359 0.000501 0.207433 0.209764
13 0.208359 0.000477 0.207073 0.209418
14 0.208284 0.000427 0.207436 0.209333
15 0.208332 0.000422 0.207219 0.209515
16 0.208267 0.000397 0.207473 0.209335
17 0.208340 0.000391 0.207518 0.209341
18 0.208324 0.000329 0.207455 0.209105
19 0.208339 0.000311 0.207681 0.209109
20 0.208333 0.000309 0.207523 0.209267
21 0.208333 0.000277 0.207566 0.209007
22 0.208340 0.000243 0.207638 0.209064
23 0.208282 0.000248 0.207686 0.208775
24 0.208336 0.000230 0.207860 0.208999
25 0.208327 0.000184 0.207737 0.208744
26 0.208307 0.000198 0.207572 0.208763
27 0.208309 0.000186 0.207903 0.208706
28 0.208322 0.000160 0.207863 0.208648
29 0.208314 0.000145 0.207887 0.208595
30 0.208295 0.000146 0.207896 0.208618
31 0.208337 0.000148 0.208046 0.208760
32 0.208330 0.000136 0.207953 0.208620
33 0.208334 0.000125 0.208096 0.208799
34 0.208331 0.000122 0.208052 0.208685
35 0.208344 0.000109 0.208120 0.208560
36 0.208318 0.000109 0.208046 0.208621
37 0.208338 0.000094 0.208113 0.208588
38 0.208338 0.000114 0.208114 0.208655
39 0.208330 0.000089 0.208108 0.208568
40 0.208316 0.000091 0.208140 0.208556
41 0.208336 0.000086 0.208144 0.208569
42 0.208345 0.000098 0.208104 0.208569
43 0.208331 0.000074 0.208187 0.208585
44 0.208334 0.000065 0.208109 0.208480
45 0.208328 0.000060 0.208179 0.208492
46 0.208335 0.000053 0.208232 0.208499
47 0.208334 0.000053 0.208223 0.208458
48 0.208331 0.000058 0.208205 0.208499
49 0.208330 0.000050 0.208211 0.208460



Table 4: Connectivity of random KPSs derived from TD(2, 15, 71)
(cont).

` Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)
50 0.208332 0.000051 0.208178 0.208459
51 0.208339 0.000041 0.208246 0.208457
52 0.208332 0.000042 0.208226 0.208426
53 0.208338 0.000034 0.208256 0.208440
54 0.208339 0.000036 0.208245 0.208418
55 0.208336 0.000033 0.208255 0.208437
56 0.208333 0.000030 0.208256 0.208410
57 0.208334 0.000028 0.208241 0.208427
58 0.208329 0.000026 0.208255 0.208417
59 0.208331 0.000023 0.208262 0.208371
60 0.208332 0.000021 0.208273 0.208386
61 0.208333 0.000017 0.208295 0.208371
62 0.208335 0.000017 0.208291 0.208387
63 0.208334 0.000016 0.208285 0.208397
64 0.208332 0.000012 0.208301 0.208361
65 0.208332 0.000010 0.208305 0.208360
66 0.208332 0.000009 0.208312 0.208360
67 0.208333 0.000007 0.208316 0.208358
68 0.208334 0.000005 0.208321 0.208347
69 0.208333 0.000003 0.208324 0.208343
70 0.208333 0.000002 0.208329 0.208339
71 0.208333 0.000000 0.208333 0.208333


