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Abstract

Key exchange with unilateral authentication (short: unilateral key exchange) is an important
primitive in practical security protocols; a prime example is the widely deployed TLS protocol,
which is usually run in this mode. Unilateral key-exchange protocols are employed in a client-
server setting where only the server has a certified public key. The client is then authenticated
by sending credentials via a connection that is secured with the key obtained from the proto-
col. Somewhat surprisingly and despite its importance in practical scenarios, this type of key
exchange has received relatively little attention in the cryptographic literature compared to the
type with mutual authentication.

In this work, we follow the constructive cryptography paradigm of Maurer and Renner (ICS
2011) to obtain a (composable) security definition for key-exchange protocols with unilateral
authentication: We describe a “unilateral key” resource and require from a key-exchange proto-
col that it constructs this resource in a scenario where only the server is authenticated. One main
advantage of this approach is that it comes with strong composition guarantees: Any higher-
level protocol proven secure with respect to the unilateral key resource remains secure if the
key is obtained using a secure unilateral key-exchange protocol.

We then describe a simple protocol that is based on any CPA-secure KEM and an unforgeable
signature scheme and prove that it constructs a unilateral key (previous protocols in this setting
relied on a CCA-secure KEM). The protocol design and our security analysis are fully modular
and allow to replace a sub-protocol π by a different sub-protocol π′ by only proving security of
the sub-protocol π′; the composition theorem immediately guarantees that the security of the
modified full protocol is maintained. In particular, one can replace the KEM by a sub-protocol
based on Diffie-Hellman, obtaining a protocol that is similar to the A-DHKE protocol proposed
by Shoup. Moreover, our analysis is simpler because the actual key-exchange part of the protocol
can be analyzed in a simple three-party setting; we show that the extension to the multi-party
setting follows generically.

Compared to the TLS handshake protocol, the “de facto” standard for unilateral key ex-
change on the Internet, our protocol is more efficient (only two messages) and is based on
weaker assumptions.
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1 Introduction

Many practical security protocols used on the Internet are designed for a client-server setting, where
only the server has a certified public key. The most prominent example for this use case is access
to web servers, but protocols for sending or receiving mail or for accessing database or directory
servers often follow the same approach. In these settings, the client and the server generate a
cryptographic key which has only unilateral authentication (cf. [BM03]), i.e., the client is assured
to share a key with the assumed server; the server has no comparable guarantee. The client is later
authenticated by sending its credentials, often a username and password, over a connection that
is secured with the shared key. Despite the practical importance of key exchange with unilateral
authentication (if the client does not have a certified public key, a mutually authenticated key
cannot be achieved), most models and protocols in the cryptographic literature focus on the mutual-
authentication case where both the client and the server have certified public keys.

A (cryptographic) key is not a particularly interesting security goal in its own right. The rea-
son for a key to be useful is that it can be used in other protocols or schemes (such as encryption
or MAC) that assume such a key. Hence, a crucial requirement for a security definition for key-
exchange protocols is that it supports this type of composition: If one uses the key that was gener-
ated by a key-exchange protocol in some higher-level protocol that was proven secure with respect
to some “ideal key,” then the security of the higher-level protocol is maintained. This argument
extends to the settings of unilateral keys, but previous security models for unilateral key exchange
do not come with an explicit such composability guarantee.

We analyze unilateral key exchange from the perspective of the constructive cryptography para-
digm introduced by Maurer and Renner [MR11, Mau11]: We define a “unilateral key” as a resource
available to parties and require from a unilateral key-exchange protocol that it constructs, in a well-
defined sense derived from [MR11], such a resource in a setting where only one party has a certified
public key. This approach has two main advantages: First, constructive security definitions come
with a general notion of composition. In our case, this means that the key generated by a unilateral
key-exchange protocol can be used in any higher-level protocol that requires such a key. Second,
it leads to a modular protocol design, where each method or scheme used in the protocol (such as
the use of nonces or the application of a cryptographic schemes) has a clear goal which it is proven
to achieve, and sub-protocols can be replaced without re-proving the security of the remaining
protocol steps. We describe our approach in more detail in the following sections.

1.1 Constructive Cryptography

The foundational idea of constructive cryptography [MR11, Mau11] is to specify both the assump-
tions1 and the guarantees of protocols explicitly as resources, and to consider a protocol as a con-
struction of a (desired) resource from assumed resources. A resource is a shared functionality ac-
cessed by several parties; in this work we consider different types of communication channels and
shared keys. The assumed resources formalize the setting in which a protocol is used (such as a cer-
tain type of communication channel) and constructed resources describe the functionality achieved
by using the protocol on the assumed resources (such as a shared key or a communication channel
with stronger guarantees).

1The term “assumption” often refers to two different concepts: setup assumptions such as a network or a PKI, and
computational assumptions such as the hardness of certain problems. Here, we refer to setup assumptions.
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If a cryptographic protocol π constructs the resource S from the assumed resource R, we write
R

π
==⇒ S. Two such construction steps can be composed, i.e., if we additionally consider a protocol

ψ that assumes the resource S and constructs a resource T , the composition theorem states that

R
π

==⇒ S ∧ S
ψ

==⇒ T =⇒ R
ψ◦π

==⇒ T,

where ψ ◦ π denotes the composed protocol. A similar idea underlies the subroutine replacement
operation in the UC framework [Can01], but security statements in that framework formally do
not make the assumed resources explicit.

Following the constructive paradigm, a protocol is built in a modular fashion from isolated
construction steps. A security proof guarantees the soundness of one such step, and each proof is
independent of the remaining steps. The composition theorem then guarantees that several such
steps can be composed.

1.2 Keys with Unilateral Authentication

From a constructive perspective, the goal of a unilateral key-exchange protocol is to construct a
key with unilateral authentication (short: a unilateral key). This resource formalizes that if the
adversary does not interfere, then the client and the server obtain a perfectly random shared secret
key; and if the adversary does interfere, then the server shares a key with the adversary (i.e., the
client is not authenticated), and the client does not obtain a key.

We specify the described guarantee as a resource that has three interfaces A (the client), B (the
server), and E (the adversary). The input c ∈ {0, 1} in step 0. signals to the resource that, if c = 0,
no adversary is present (this allows to formalize an availability or correctness condition), or that, if
c = 1, an adversary is present and will potentially interfere. The input r ∈ {0, 1} at the E-interface
determines that either (r = 0) the server shares a secret key with the client, or (r = 1) the server
shares a key with the adversary. We differentiate between the cases c = 0 and (c = 1 ∧ r = 0)
because the case c = 0 formalizes the availability/correctness of the scheme, whereas the case
(c = 1 ∧ r = 0) formalizes the case where an attacker potentially modifies the messages, but only
such that the modifications do not prevent the protocol from succeeding.

Key with unilateral authentication:
K

= =•

0. Obtain input c ∈ {0, 1} at the E-interface. If c = 0, then choose κ ∈ K uniformly at
random, output κ at both the A and the B-interface, and halt. If c = 1, then:

1. Upon input (r, κ̃) ∈ {0, 1} × K at the E-interface:

• If r = 1, then output κ̃ at the B-interface.
• If r = 0, then choose κ ∈ K uniformly at random and output κ at the B-interface.

2. Upon input ok at the E-interface, if r = 0, then output κ at the A-interface

Figure 1: The resource formalizing the guarantees of a key with unilateral authentication.

The symbol = =• that we use to denote the resource follows the notation introduced by [MS96].
The marker “•” signifies that the capabilities at the B-interface are exclusive to that interface: If
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a key is output at the A-interface, this key is guaranteed to be shared with the B-interface (and
not the E-interface). There is no comparable guarantee with respect to the A-interface, and hence
there is no “•” at the left hand side of the symbol = =•. A unilateral key is a useful resource for
higher-level protocols, as discussed in Section 4.

1.3 Modular Protocol Design

The consistent application of the constructive cryptography paradigm leads to a different perspec-
tive on protocol design, and to modular security proofs. Following this approach, each method or
scheme that is used in a larger protocol is understood as a construction in its own right. This of
course includes schemes such as encryption or signatures, but also “simpler” mechanisms such as
nonces are formalized in this way. This approach has three main advantages:

• every protocol step has a well-understood purpose; this helps keeping protocols simple and
efficient as well as based on the “right” and “minimal” tools,
• as each step is proven in isolation and steps are composed by a general composition theorem,

the proofs for the isolated steps remain easy to write and verify,
• if an isolated construction step is achieved by different mechanisms (e.g., Diffie-Hellman or a

CPA-secure encryption), proving a modified protocol in which one replaces one sub-protocol
by a different sub-protocol that achieves the same step means that one only has to prove this
single step, the security of the entire protocol again follows from the general composition
theorem.

1.4 Contributions

The contributions of this paper can be categorized as follows: Conceptually, this is the first paper
that applies the constructive paradigm to protocol design, and shows that this approach leads to
simple and modular protocols and proofs. To formalize our security statements, we extend the
framework used for constructive cryptography to capture settings with any number of parties, and
show how statements in settings with two honest parties can be “lifted” to this more general setting.
Finally, we provide a simple protocol for unilateral key exchange. The protocol consists of only two
messages and can be based on any CPA-secure KEM; previous protocols for unilateral key exchange
that were based on KEMs generally required CCA-security, a much stronger property. Compared
to the TLS handshake protocol, which prevails in practice, our protocol requires fewer messages,
makes weaker assumptions on the underlying primitives, and does not require the use of random
oracles.

1.5 Related Work

Various security models for key-exchange protocols have been proposed, most of them in the game-
based setting and with focus on key-exchange protocols with mutual authentication. A partial list
includes [BR93, BJM97, BCK98, BM98, CK01, LLM07]. Such security definitions come (a priori)
without general composition theorems, although specific results are known for some of the defi-
nitions [CK01, BFWW11]. A simulation-based definition of key-exchange security has first been
given by Shoup [Sho99], still without general composition guarantees. A treatment in the UC
framework [Can01], which guarantees composability, is given in [CK02].
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Only few security definitions apply to the case of unilateral authentication; the first formal
treatment of this setting has been given by Halevi and Krawczyk [HK99], with a focus on password-
based protocols. Shoup [Sho99] also covers unilateral authentication, and describes several proto-
cols that achieve his security definition; one of those (called A-DHKE) is very similar to a modifica-
tion of our protocol with respect to Diffie-Hellman, as we show in Appendix C. Goldberg, Stebila,
and Ustaoglu [GSU13] extend the so-called eCK-model [LLM07] to support unilateral authentica-
tion; the resulting model is more complicated than ours and lacks general composition, but on
the other hand allows for considering advanced types of attacks. Their protocol is less efficient
(three messages) and based on stronger assumptions (Random Oracles). Dodis and Fiore [DF13],
in concurrent and independent research, proposed a protocol that is very similar to ours, in partic-
ular it is also based on a CPA-KEM and a mechanism for authentication. They also give a simple
game-based security definition for unilateral key exchange. In recent work, Coretti, Maurer, and
Tackmann [CMT13b] show that CCA-secure KEMs construct the unilateral key resource in a non-
interactive scenario.

Most further definitions appear in works on TLS: Morissey, Smart, and Warinschi [MSW08]
extend a game-based definition to capture the case where only the server is authenticated, but, as
in [HK99, Sho99], the guarantees this definition provides with respect to composition are unclear.
The recent analyses of the TLS handshake by Krawczyk, Paterson, and Wee [KPW13] and Kohlar,
Schge, and Schwenk [KSS13] also consider the case of unilateral authentication, but as the un-
modified TLS handshake protocol is not secure with respect to “standard” security notions for key
establishment, they provide a combined security statement for the complete protocol. Kohlweiss et
al. [KMO+14] show that the TLS handshake protocol, if one considers the confirmation messages
as part of the record layer protocol, constructs (essentially) a unilateral key in the same setting as
our protocol, but requires stronger assumptions and has a considerably more contrived analysis.

2 Preliminaries

2.1 Systems: Resources and Converters, Distinguishers, Games, and Reductions

At the highest level of abstraction (following the hierarchy in [MR11]), systems are objects with
interfaces by which they connect to (interfaces of) other systems; each interface is labeled with
an element of some label set. This concept, which we refer to as abstract systems, captures the
topological structures that result when multiple systems are connected in this manner. Generally,
several systems can be composed in parallel, and interfaces of systems can be connected. Moreover,
multiple interfaces of a system can be merged to form a single interface; we refer to the original
interfaces as the sub-interfaces of the newly formed interface.

The abstract systems concept, however, does not model the behavior of systems, i.e., how the
systems interact via their interfaces. Consequently, statements about cryptographic protocols are
statements at the next (lower) abstraction level. In this work, we describe all systems in terms of
(probabilistic) discrete systems, which we explain in Section 2.2.

Resources and Converters. Resources in this work are systems with multiple interfaces labeled by
elements of some label set L. A converter is a two-interface system which is directed in that it has an
inside and an outside interface. As a notational convention, we generally use upper-case, bold-face
letters (e.g., R, S), symbols (e.g., •− →), or upper-case sans-serif fonts to denote resources and
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lower-case Greek letters (e.g., α, β) or sans-serif fonts (e.g., enc, dec) for converters. We denote by
ΦL (or simply Φ if L is clear from the context) the set of all resources with interfaces labeled by
elements in L, and by Σ the set of all converters.

The topology of a composite system is described using a term algebra, where each expression
starts from one resource on the right-hand side and is subsequently extended with further terms
on the left-hand side. An expression is interpreted in the way that all interfaces of the system it
describes can be connected to interfaces of systems which are appended on the left. For instance,
for a single resource R ∈ Φ, all its interfaces are accessible. For I ∈ L, a resource R ∈ Φ, and
a converter α ∈ Σ, the expression αIR denotes the composite system obtained by connecting the
inside interface of α to the I-interface of R; the outside interface of α becomes the I-interface of the
composite system. The system αIR is again a resource. For two resources R and S, [R,S] denotes
the parallel composition of R and S. For each I ∈ L, the I-interfaces of R and S are merged and
become the sub-interfaces of the I-interface of [R,S]. (Sub-interfaces are labeled relatively to the
composite interface; to denote the sub-interfaces J of interface I, we use the notation I/J .) A
converter α that connects to the I-interface of [R,S] has two inside sub-interfaces, where the first
connects to R and the second connects to S (i.e., sub-interfaces are ordered). Converters can (as
resources) be composed in parallel, which is also written [α, β]. It then holds that [α, β]I [R,S] =
[αIR, βIS]. Any two converters α and β can be composed sequentially by connecting the inside
interface of β to the outside interface of α, written β ◦ α, with the effect that (β ◦ α)IR = βIαIR.
There are two special converters: an “identity” converter id with idIR = R for all resources R ∈ Φ
and I ∈ L, and a “blocking” converter ⊥ that has an inactive outside interface.

We introduce special notation for families of resources/converters: If we compose a family of
resources (Ri)i∈{1,...,n} (resp. converters (αi)i∈{1,...,n}) in parallel, we write this as a product such
as
⊗n

i=1Rn (resp.
⊗n

i=1 αi). If we attach a family of converters α1, . . . , αn to interfaces I1, . . . , In
of a resource R, we write

∏n
i=1 αi

IiR.

Distinguishers. A distinguisher D is a special type of system that connects to all interfaces of
a resource U and outputs a single bit at the end of its interaction with U. In the term algebra,
this appears as the expression DU, which defines a binary random variable. The distinguishing
advantage of a distinguisher D on two systems U and V is defined as

∆D (U,V) := |P(DU = 1)− P(DV = 1)|.

The advantage of a class D of distinguishers is defined as ∆D (U,V) := supD∈D∆D (U,V). The
distinguishing advantage measures how much the distribution of the output of D differs when
it is connected to either U or V. Intuitively, if no distinguisher (of a certain class) differentiates
between U and V, they can be used interchangeably in any environment (of that class, as otherwise
the environment would serve as a distinguisher).

Note that the distinguishing advantage is a pseudo-metric. In particular, it satisfies the triangle
inequality, i.e., ∆D (U,W) ≤ ∆D (U,V) + ∆D (V,W) for all resources U, V, and W and distin-
guishers D. There is an equivalence relation on the set of resources (which is defined on the level
of discrete systems), denoted by U ≡ V, which means that ∆D (U,V) = 0 for all distinguishers D.

Games. We consider two different types of games. First, games that capture properties such as
unforgeability are two-interface systems that at their left interface connect to some adversary or

5



solver A and at the right interface output a single bit (usually denoted W ). The performance of A
in a game G is denoted as

ΓA(G) := PAG(W = 1).

Second, properties such as confidentiality are captured via distinguishing problems in which
an adversary A tries to distinguish between two systems G0 and G1. These systems are single-
interface systems, which appear, similarly to resources, on the right-hand side of the expressions in
the term algebra. The adversary is similar to a distinguisher, but it connects to a game instead of a
resource.

Reductions. When relating two problems, it is convenient to use a special type of system C that
translates one setting into the other. Formally, C is a converter that has an inside and an outside
interface. When it is connected to a system S, which is denoted by CS, the inside interface of C
connects to the merged interfaces of S and the outside interface of C becomes the interface of the
composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systems U,V, one exhibits a
reduction C such that CS ≡ U and CT ≡ V. Then, for all distinguishers D, we have ∆D (U,V) =
∆D (CS,CT) = ∆DC (S,T). The last equality follows from the fact that C can also be thought of
as being part of the distinguisher.

2.2 Discrete Systems

Protocols that communicate by passing messages and the respective resources are described as
(probabilistic) discrete systems. Their behavior is formalized by random systems as in [Mau02],
i.e., as families of conditional probability distributions of the outputs (as random variables) given
all previous inputs and outputs of the system. For systems with multiple interfaces, the interface to
which an input or output is associated is explicitly specified as part of the input or output.

2.3 Settings Considered in this Work

The most important scenario we consider in this work comprises multiple clients, one server, and
one (explicit) external adversary. Still, some protocol steps can be proven in isolation, i.e., with
respect to only one client, one server, and the adversary.

The {A,B,E}-setting. This simple setting is used to analyze protocols that involve only two
honest parties (such as in symmetric encryption). The (honest) parties’ interfaces are named A and
B, and there is an explicit adversarial interface E. Resources are in the set Φ{A,B,E}, and protocols
are pairs of converters π = (π1, π2) for A and B, respectively.

The multiple-clients setting. Unilateral key-exchange protocols are used in a setting with multi-
ple clients, one server, and an explicit adversary. We consider a set C of clients, a server S, and an
adversary E. (The interfaces S and E of a resource often have multiple sub-interfaces.) Hence, we
consider a label set L = C ∪ {E,S}, resources are in the set ΦL and a protocol consists of a family
(πC)C∈C of client converters and a server converter πS .
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Lifting from the {A,B,E}-setting to the multi-entity setting. Constructions in the {A,B,E}-
setting can be “lifted” to settings with more interfaces. Such a lifting is described by an injective
function τ : {A,B,E} → L, where we generally assume τ(E) = E. Resources R ∈ Φ{A,B,E} are
embedded into ΦL by providing the A and B-interfaces as τ(A) and τ(B)-interfaces and inactive
interfaces for all I ∈ L \ τ({A,B,E}). We denote this resource by JRK(τ(A),τ(B),τ(E)) (we usually
only write JRK(τ(A),τ(B)), as the embedding of the E-interface is clear). A protocol π = (π1, π2)
consisting of a pair of converters π1 for A and π2 for B becomes πL = (πI)I∈L with πτ(A) = π1,
πτ(B) = π2, and πI = id for all I /∈ τ({A,B,E}). Security statements transfer from the {A,B,E}-
setting to the L-setting since any distinguisher in the L-setting can be translated into a distinguisher
for the {A,B,E}-setting by simply emulating the inactive interfaces.

2.4 The Notion of Construction

Recall that we consider resources with interfaces labeled by elements of the set L, with adver-
sarial interface E. We formalize the security of protocols via the following notion of construction
(cf. [Mau11]):

Definition 1. Let ΦL and Σ be as in Section 2.1. A protocol π consisting of converters πL = (π`)`∈L
constructs resource S ∈ Φ from resource R ∈ Φ within ε and with respect to distinguisher class D, if

∆D

((∏
`∈L

π`
`

)
πS

S⊥ER,⊥ES

)
≤ ε (availability)

and

∃σ ∈ Σ : ∆D

((∏
`∈L

π`
`

)
πS

SR, σES

)
≤ ε (security)

The availability condition captures that a protocol correctly implements the functionality of the
constructed resource in the absence of the adversary. The security condition models the require-
ment that everything the adversary can achieve in the real-world system (i.e., the assumed resource
with the protocol) he can also accomplish in the ideal-world system (i.e., the constructed resource
with the simulator). In more detail, we describe all the resources as taking a special “cheating
bit” c ∈ {0, 1} at the E-interface and describe their behavior in the case there is no attacker present
(c = 0, this is input by ⊥), and in case that there is an attacker present (c = 1, usually set by the
simulator σ).

2.5 Primitives and Assumptions

Signature schemes. A signature scheme is a triple of algorithms SIG = (siggen, sign, vrf). The
key generation algorithm siggen takes no input2 and outputs a pair (sk, vk) of a signature key
sk and a verification key vk. The signing algorithm sign takes as input a signature key sk and a
message m ∈ M of some message spaceM, and outputs a signature s = sign(sk,m). The (often
deterministic) verification algorithm vrf takes as input a verification key vk, a message m, and a
signature s, and outputs a decision bit. A signature scheme is correct if for any key pair (sk, vk)
generated by siggen and for all m ∈M, vrf(vk,m, sign(sk,m)) = 1.

2For an asymptotic treatment, the algorithm takes as input the security parameter.
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The common security requirement for a signature scheme SIG = (siggen, sign, vrf) is called
unforgeability and is formalized using the following game GSIG:

1. Generate a key pair (sk, vk) = siggen() and output vk to the adversary.
2. (Repeatedly) Given a message m ∈ M from the adversary, compute s = sign(sk,m), store

m in an internal buffer B, and return s to the adversary.
3. Upon input a pair (m′, s′) with m′ /∈ B and vrf(vk,m′, s′) = 1, output that the game is won.

For ε ∈ [0, 1], a signature scheme is ε-secure with respect to a class A of adversaries if ΓA(GSIG) ≤ ε
for all A ∈ A.

Key encapsulation mechanisms. A key-encapsulation mechanism (KEM) with key space K is a
triple of algorithms KEM = (kemgen, enc, dec). The key generation algorithm kemgen outputs a key
pair (pk, sk) = kemgen(), the (probabilistic) encryption algorithm enc takes a public key pk and
outputs a pair (κ, z) = enc(pk), where κ ∈ K and z is the corresponding ciphertext, and the
decryption algorithm dec takes a secret key sk and a ciphertext z′ and outputs κ′ = dec(sk, z′).
A KEM is correct if for (κ, z) = enc(pk) also dec(sk, z) = κ for all key pairs (pk, sk) generated by
kemgen. For security properties of KEM schemes which are defined via a bit-guessing game, it will
be more convenient to phrase the game as a distinguishing problem between two game systems
(cf. Section 2.1). We consider the following game, which corresponds to the (standard) notion
IND-CPA.

To formalize CPA-security for KEMs, consider systems GKEM
0 and GKEM

1 : For a KEM scheme KEM,
both GKEM

0 and GKEM
1 initially compute (pk, sk) = kemgen(), output pk, and compute (κ, z) =

enc(pk). Then, GKEM
0 outputs (κ, z), and GKEM

1 outputs (κ̄, z) for a randomly chosen κ̄ ∈ K. The
scheme is called CPA-secure if the two systems GKEM

0 and GKEM
1 are indistinguishable.

2.6 Resources Described in Previous Work

We use two types of communication channels that have been described and used in previous work
(e.g., [MT10, CMT13a]). We specify the channels with respect to a set {A,B,E} of interfaces, and
each channel is parametrized by a message spaceM (usually ⊆ {0, 1}∗).

The first channel is a fully insecure channel−� that transmits multiple messages. This channel
corresponds to, for instance, communication via the Internet. If no adversary is present (i.e., if
c = 0), then all messages are transmitted from A to B faithfully. Otherwise, the communication
can be controlled via the E-interface. The channel is described in more detail below.

Insecure channel −�

0. Obtain input c ∈ {0, 1} at the E-interface.
1. (Repeatedly) Upon input a message m at the A-interface:

• if c = 0, then output m at the B-interface;
• if c = 1, then output m at the E-interface.

2. (Repeatedly) Upon input a message m at the E-interface, if c = 1, then output m at the
B-interface.

The second channel is a single-use authenticated channel •− →. The channel guarantees that,
while a message transmitted from A to B is leaked at the E-interface, a message is output at the
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B-interface only if it has previously been input at the A-interface (authenticity). The channel is
described in more detail below.

(Single-use) authenticated channel •− →

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Upon input a message m at the A-interface:

• if c = 0, then output m at the B-interface and halt;
• if c = 1, then output m at the E-interface.

2. Accept at the E-interface a bit d ∈ {0, 1}, on input d = 0, output m at the B-interface.

3 Constructing a Unilateral Key

In this section, we iteratively build a protocol that constructs a unilateral key from a network of
insecure communication channels and a single authenticated channel that models the availability
of a public-key infrastructure (PKI). Each construction step is simple and serves a clear purpose:

1. A signature scheme allows to transfer the authenticity from a single-use channel to a multiple-
use channel: the server publishes the verification key and signs all messages, and the clients
verify the signatures.

2. The clients send their “names” to the server (this could be a unique network address or
a nonce as a “disposable name” that is unique with high probability), which uses them to
separate protocol sessions and target specific clients. All further construction steps can be
analyzed in a simpler setting with only three entities.

3. Within a session, the client generates a KEM key pair and sends the public key to the server,
which responds by encapsulating a key (and confirming the client’s public key). As the client’s
messages are not authenticated, we obtain a unilateral key.

3.1 The Assumed Resources

The protocol we describe assumes an insecure communication network and a public-key infrastruc-
ture that allows the server to transmit one message (the signature verification key) authentically.
This is usually implemented by a certification authority that signs the server’s key.

The insecure network. The insecure network consists of, for each C ∈ C, one insecure commu-
nication channel −� from the client to the server, and one such channel in the opposite direction.
Hence, the server’s interface S has one sub-interface S/C for each C ∈ C, and the network is the
parallel composition of resources J−�K(C,S/C) and J� −K(C,S/C) for each C ∈ C. In short, we use
the “cloud” symbol “�.”

Authenticated transmission of single messages. The purpose of a public-key infrastructure in
the unilateral setting is to provide the clients with an authentic copy of the server’s public key. We
model the PKI as a resource that takes a message from the server and distributes copies to the
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clients, where the delivery of the copies may be delayed via the E-interface. (Technically, the E-
interface has for each C ∈ C a sub-interface that accepts an ok-message to provoke delivery.) The
resource is specified with the same interface labels as the network.

Authenticated transmission of single messages BB1 (“bulletin board”)

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Upon input a string m ∈ {0, 1}∗ at the S-interface:

• if c = 0, then output m at all interfaces C ∈ C and halt;
• if c = 1, then output m at the E-interface.

2. (Repeatedly) Upon input ok at the C-sub-interface of the E-interface (C ∈ C), output m
at the C-interface.

3.2 Authentication via Signatures

The PKI resource BB1 is useful for transmitting the server’s signature verification key to the clients.
Using the signature scheme, the server can then transmit multiple messages authentically. The
protocol uses as resources BB1 as well as channels � − from the server to the clients. The server’s
converter sgn operates as follows:

1. Generate a key pair (sk, vk) = siggen() and input the verification key vk at BB1.
2. For each m ∈M that is input at the C-sub-interface of the outside interface (C ∈ C), compute

s = sign(sk,m) and send (m, s) via the insecure channel corresponding to C.

The clients’ converter vrf is defined as follows:

1. Obtain a verification key vk from BB1.
2. (Repeatedly) Upon receiving a pair (m′, s′) at � −, if vrf(vk,m′, s′) = 1, then output m′ at

the outside interface.

We claim that we construct the following resource, which has interfaces C ∈ C, S, and E, where
the interfaces S and E both have sub-interfaces for each C ∈ C:

Authenticated transmission of multiple messages BB∗ (“bulletin board”)

0. Obtain input c ∈ {0, 1} at the E-interface.
1. (Repeatedly) Upon input a string m ∈ {0, 1}∗ at the C-sub-interface of the S-interface:

• if c = 0, then output m at the C-interface.
• if c = 1, then output m at the C-sub-interface of the E-interface and put it in

buffer B.

2. (Repeatedly) If c = 1, then upon input a message m at the C-sub-interface of the E-
interface, if m ∈ B, output m at the C-interface.

The construction is achieved if the signature scheme is unforgeable. This is formalized in the
following lemma.

10



Lemma 2. Let (siggen, sign, vrf) be a signature scheme and (sgn, vrf) be the pair of converters
described above. Then(∏

C∈C
vrfC

)
sgnS⊥E

[
BB1,

⊗
C∈C

J� −K(C,S/C)

]
≡ ⊥EBB∗,

and there is a simulator σ and a reduction C such that for all distinguishers D,

∆D

((∏
C∈C

vrfC

)
sgnS

[
BB1,

⊗
C∈C

J� −K(C,S/C)

]
, σEBB∗

)
≤ ΓDC(GSIG).

Proof (sketch). The availability condition follows from the correctness of the signature scheme. The
simulator initially generates a key pair (sk∗, vk∗) = siggen() and simulates vk∗ on the sub-interface
corresponding to BB1, and registers the clients C ∈ C to which the distinguisher has decided to
deliver the key. Whenever some message m∗ is output to σ via sub-interface C of the E-interface of
BB∗, σ computes s∗ = sign(sk∗,m∗) and simulates (m∗, s∗) on the channel � − to C. Whenever
σ obtains at its outside interface the command to deliver some pair (m′, s′) to some client C ∈ C, if
vrf(vk∗,m′, s′) = 1, m′ has been input into BB∗ before, and the key vk∗ was delivered to C, then
input m′ at the C-sub-interface of (the E-interface of) BB∗.

The reduction that connects to GSIG and simulates the same interfaces for D is straightforward.
The systems

(∏
C∈C vrf

C
)
sgnS [BB1,

⊗
C∈C J� −K(C,S/C)], σEBB∗, and CGSIG are equivalent unless

a forgery occurs (sometimes called “bad” event), and using [Mau13, Lemma 2] concludes the
proof.

3.3 (Obtaining) Unique Names

Unique names that are associated to clients allow to fully separate sessions that belong to different
clients. A unique name in our terminology is a weak assumption: There is no authenticity require-
ment, and it is sufficient if honest clients have distinct names with high probability. The “unique
name” resource can be implemented by choosing any value that leads to a unique name for each
session that a client initiates (a client’s interface then corresponds to one session). One possibility
is to use the client’s network address along with a session counter if one is willing to accept that
the client keeps state over multiple sessions.

For a set N of names, the resource assigns to each client C ∈ C a unique name n ∈ N ,3 this
assignment is described by an injective function ρ : C → ρ(C) ⊆ N .

Unique name resource NAMEρ for ρ ⊆ C ×N

At each interface C ∈ C, output ρ(C).

Alternatively, the honest clients can choose their “name” at random from a set of nonces N (at the
loss of a collision probability term). The nonces can be viewed as “disposable names,” which is
further discussed in Appendix B.

3We assume N ⊆M.
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3.4 Separating Sessions

The purpose of the unique names is to separate different “sessions” in the protocol. The client
sends its name via an insecure channel, and the server will associate all following communication
in this session with that name. (Of course, the name may be modified by the adversary, there is
no authenticity guarantee.) In particular, the server includes the names in the communication via
BB∗, and a client will only accept messages if they contain the chosen name. Furthermore, the
server will also use that name to locally address the sessions; in our formulation, this means that
the server will use a sub-interface corresponding to the name.

Below, we describe a protocol π that achieves the following construction:[⊗
C∈C

J−�K(C,S/C) ,BB∗,NAMEρ

]
π

==⇒
⊗
C∈C

J[−− →,← −•]K(C,S/ρ(C)) .

The term on the right-hand side means that for each C ∈ C there are two channels −− → and← −•
such that the A-interface of the channels is embedded as the C-interface, and the B interface as
the ρ(C)-sub-interface of the server’s interface S.

The client converter s-client has at the inside three sub-interfaces (one is supposed to connect
to BB∗ as receiver, one to − � as sender, and one to NAMEρ). The outside interface of s-client is
structured in two sub-interfaces, where the first one allows to input one message and the second
one potentially outputs one message. In more detail, s-client is specified as follows:

• Upon receiving the name n ∈ N at the inside (i.e., from NAMEρ), output n at the inside (i.e.,
send it to the server via −�).
• Upon input a message m at the outside interface, output m at the inside (i.e., send it to the

server via −�).
• Upon receiving a message m′ at the inside interface (via the second sub-interface, i.e., from
BB∗) such that m′ = n|m′′, output m′′ at the second sub-interface.

The server converter s-server has at the inside interface |C| + 1 sub-interfaces, where the first sub-
interface is supposed to connect to (the sender’s interface of) BB∗, and all other interfaces to the
receiver’s interfaces of − �. The outside interface is structured into sub-interfaces labeled by
n ∈ N , where each such interface again consists of two sub-interfaces (the first one outputs a
message, the second one takes one as input).

• Upon receiving the first message on a sub-interface C of the inside interface, parse the mes-
sage as name n ∈ N and, if this succeeds, store the pair (C, n) internally. (If there are pending
messages for C—see below—deliver those.)
• Upon receiving the second message mC on a sub-interface C of the inside interface, output
mC at the n-sub-interface of the outside interface (if there is a recorded pair (C, n)).
• Upon receiving an input m′ at the first part of the n-sub-interface: If there is a record (C, n)

for some C, then send n|m′ via the C-sub-interface of BB∗. (Otherwise record the message
as pending.)

We now state and prove the construction described above. For simplicity, the lemma is stated for
the case |C| = |N | (otherwise the constructed resource has further sessions that do not correspond
to honest clients).
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Lemma 3. For the converters s-client and s-server described above,(∏
C∈C

s-clientC
)
s-serverS⊥E

[⊗
C∈C

J−�K(C,S/C) ,BB∗,NAMEρ

]
≡ ⊥E

⊗
C∈C

J[−− →,← −•]K(C,S/ρ(C))

and there is a simulator σ such that(∏
C∈C

s-clientC
)
s-serverS

[⊗
C∈C

J−�K(C,S/C) ,BB∗,NAMEρ

]
≡ σE

⊗
C∈C

J[−− →,← −•]K(C,S/ρ(C)) .

Proof (sketch.) For ρ : C → N we describe a simulator σ that achieves the respective construction.
Initially, the simulator σ outputs for each C ∈ C the message ρ(C) on the channel −� correspond-
ing to C (and S/C). The simulator keeps track of which names have been delivered on which
channel, i.e., with respect to which C ∈ C. In the following, whenever the simulator obtains a
message at its inside interface, i.e., on one of the resources of the type −− → or← −•, it behaves as
follows.

• For a message m corresponding to the channel J−− →K(C,S/ρ(C)), output m as second message
on J−�K(C,S/C).
• For a message m′ corresponding to the channel J← −•K(C,S/n), output n|m′ as transmitted via

BB∗ to Cn, where Cn has been recorded in a pair (Cn, n) (see below).

On receiving messages at the outside interface, the simulator behaves as follows:

• Upon delivery of the first message at J−�K(C,S/C), if the message can be parsed as a name n,
then record a pair (C, n). If messages have been sent on the channel J← −•K(C

′,n) before,
perform the simulation of delivering via BB∗ now.
• Upon delivery of the second message at J−�K(C,S/C), let n be the name recorded in a pair

(C, n) (if that name was invalid, stop!), and inject the message into J−− →K(ρ
−1(n),S/n).

• Upon delivery of a message n|m via BB∗ to a client address C, if (C, n) ∈ ρ then make
J← −•K(C,S/n) deliver the message.

It is easy to verify that the complete systems in the real and the ideal case behave equivalently.

3.5 Key Exchange Based on a KEM

After using the unique names to separate the protocol sessions, we can analyze the following steps
in the simple {A,B,E}-setting. The next step in our construction is to use a CPA-secure KEM with
key space K to construct a unilateral key. The protocol is initiated by the client, which runs the key
generation algorithm to obtain a key pair (pk, sk) and sends the public key pk over a fully insecure
channel to the server. The server runs the encryption algorithm, obtaining a key κ and a ciphertext
z, and sends z along with the public key pk via the authenticated channels. The client verifies that
the server used the “correct” pk (remember that pk was sent over an insecure connection) and only
computes the key in this case. The resource that is constructed in this step is a unilateral key with
key space K. This resource = =• is more formally described in Figure 1.

The client’s converter dec first generates (pk, sk) = kemgen(), and sends pk via −− →. Then,
upon receiving (pk′, z′) via ← −•, if pk′ = pk, then dec outputs κ′ = dec(sk, z′) at the outside
interface.
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The server’s converter enc, receiving pk′ via −− →, runs (κ, z) = enc(pk), sends (pk′, z) via← −•,
and outputs κ at the outside interface.

Lemma 4. Let dec and enc be as described above, then

decAencB⊥E [−− →,← −•] ≡ ⊥E = =•,

and there are a simulator σ and a reduction C such that for all D:

∆D
(
decAencB[−− →,← −•], σE = =•

)
≤ ∆DC

(
GKEM

0 ,GKEM
1

)
.

Proof. The availability condition is easy to verify, the reduction C provides to D the key κ obtained
from the game. The simulator σ is as follows:

1. Generate (pk, sk) = kemgen() and simulate pk as transmitted on −− →.
2. Here we have to distinguish cases, based on the input at the E-interface.

• If pk is delivered to B, then compute (κ̄, z) = enc(pk), input (0, κ̄) at = =•, and output
(pk, z) at the outside interface.
• If pk′ 6= pk is delivered, then compute (κ̄, z) = enc(pk′), input (1, κ̄) at = =• and output

(pk′, z) at the outside interface.

3. In case pk was delivered and (pk, z) is forwarded on← −•, then input ok to = =•.

The case where pk′ 6= pk is delivered is clear: The outputs in the real and ideal cases are distributed
equivalently, there is no output at the A-interface. The key κ̄ obtained by enc(pk′) is output at the
B-interface, and the value (pk′, z) is output at the E-interface.

If pk is delivered, the distribution corresponds either exactly to the one given by GKEM
0 (in the

“ideal” case), or to the one given by GKEM
1 (in the “real” case). The reduction C′ can provide the

same view to D using the values obtained from the CPA-game.

3.6 The Complete Protocol

Let ka1 and ka2 the (client’s and server’s) converters that we obtain by composing the converters
vrf, s-client, and dec, and sgn, s-server, and enc, respectively. More formally: ka1 = dec ◦ s-client ◦
[vrf, id, id] and ka2 =

(⊗
n∈N enc

)
◦ s-server ◦ [sgn, id, id]. Then, using the composition theorem, we

obtain:

Theorem 5. For the protocol (ka1, ka2) described above,∏
C∈C

ka1
Cka2

S⊥E [BB1,�,NAMEρ] ≡ ⊥E
⊗
C∈C

J= =•K(C,S/ρ(C))

and there are a simulator σ as well as reductions C and C′ such that

∆D

(∏
C∈C

ka1
Cka2

S [BB1,�,NAMEρ], σ
E
⊗
C∈C

J= =•K(C,S/ρ(C))

)
≤ ΓDC(GSIG) + ∆DC′

(
GKEM

0 ,GKEM
1

)
.

The theorem follows from Lemmas 2, 3, and 4 as well as the composition theorem (cf. Ap-
pendix A). The reductions C and C′ are obtained by composing the reductions shown in the
lemmas.

The protocol consists of two messages: First, the client sends (n, pk) for a name n and public
key pk. The server responds with (n|pk|z, s), where z is a KEM ciphertext and s is a signature on
n|pk|z.
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4 Using Unilateral Keys

A unilateral key (after potentially expanding and then splitting it appropriately) can be used in
encryption and MAC schemes (i.e., Encrypt-then-MAC) for protecting messages to construct a com-
munication channel in which either the server communicates consistently with the client, or it
communicates consistently with the adversary. As a resource, such a channel allows the adversary
to choose in the beginning (like the bit r in = =• in Figure 1) whether it behaves as a secure
channel between A and B (which we usually denote by •− →•), or whether it lets the adversary
control the communication with the server; in this case the A-interface becomes inactive. Such a
communication channel can then, e.g., be used to authenticate the client by sending credentials.
The formalization of this technique, however, is not in the scope of the current paper.

5 Conclusion

In this paper, we applied the constructive cryptography approach of Maurer and Renner [MR11] to
design and analyze a protocol for constructing unilateral keys from a resource that allows the server
to transmit a single message (here: a signature verification key) authentically to all potential clients.
We make two main technical contributions: First, we provide a composable security definition for
unilateral key-exchange protocols, in the sense that the keys that are established using a secure
protocol can be used in arbitrary applications. Previous definitions for this setting were not shown
to be composable. Second, the approach naturally leads to a simple and efficient protocol that
can be based on any unforgeable signature scheme and CPA-secure KEM. Previous protocols in this
setting that were based on KEMs required the KEM to be CCA-secure, a much stronger requirement.
Furthermore, both the protocol and the security proof are modular, so that replacing a sub-protocol
only requires a proof of the respective sub-protocol.

Acknowledgments. The authors thank Markulf Kohlweiss for pointing out inconsistencies in ear-
lier versions of this work.
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[KSS13] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH and TLS-
RSA in the standard model. Cryptology ePrint Archive, Report 2013/367, June 2013.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenti-
cated key exchange. In Willy Susilo, Joseph K. Liu, and Yi My, editors, ProvSec 2007,
volume 4784 of Lecture Notes in Computer Science. IACR, Springer, 2007.

[Mau02] Ueli Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor, Ad-
vances in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 110–132. IACR, Springer-Verlag, 2002.

[Mau11] Ueli Maurer. Constructive cryptography: A new paradigm for security definitions and
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A The Composition Theorem

We formulate the composition theorem in constructive cryptography. We extend the notation for
parallel and sequential composition to protocols, i.e., we write ψ ◦ π or [π(1), . . . ,π(m)] and mean
that the respective operations apply to all converters individually. We also make use of a spe-
cial converter id that behaves transparently (i.e., allows access to the underlying interface of the
resource). The protocol where all parties have to converter id is denoted id.

This composition theorem here resembles the one in [MT10], but is phrased such that it applies
to settings where one does not assume that the distinguisher class is closed under absorption of
converters or resources, such as concrete security notions. The proof follows the same steps as
the one in [MT10]. For the statement of the theorem we assume the operation [·, . . . , ·] to be
left-associative; in this way we can simply express multiple resources using the single variable U.

Theorem 6. Let R,S,T,U ∈ ΦL be resources, and let L′ := L \ {E}. Let π = πL′ and ψ = ψL′ be
protocols (such that π is intended to construct S from the resource R and ψ is intended to construct T
from S).

For each distinguisher D, denote by D′ the distinguisher that runs D but emulates ψ` at interface
` for all ` ∈ L′, and by D′′ the distinguisher that runs D and emulates σπ at interface E. Then, for
all D,

∆D
(
(ψ ◦ π)R, (σπ ◦ σψ)ET

)
≤ ∆D′

(
πR, σEπ S

)
+ ∆D′′

(
ψS, σEψT

)
, and

∆D
(
⊥E(ψ ◦ π)R,⊥ET

)
≤ ∆D′

(
⊥EπR,⊥ES

)
+ ∆D

(
⊥EψS,⊥ET

)
.

For each distinguisher D, let D′′′ be the distinguisher that runs D and additionally emulates a concur-
rent execution of U. Then, for all D,

∆D
(

[π, id][R,U], [σπ, id]E [S,U]
)
≤ ∆D′′′

(
πR, σEπ S

)
, and

∆D
(
⊥E [π, id][R,U],⊥E [R,U]

)
≤ ∆D

′′′ (
⊥EπR,⊥ES

)
.

The similar argument holds with respect to [id,π], [U,S], and [U,R].
If one considers classes of distinguishers that are closed under composition with converters, that is

D ◦ Σ ⊆ D, and π constructs S from the resource R within ε1 and ψ constructs T from S within ε2,
then ψ ◦ π constructs T from R within ε1 + ε2, [π, id] constructs [S,U] from [R,U] within ε1, and
[id,π] constructs [U,S] from [U,R] within ε1.

B Using Nonces as Unique Names

The approach of choosing a nonce at random also implements the resource NAME; in particular
the resource is constructed without any setup assumptions. In more detail, let rnd be the converter
that chooses a nonce n ∈ N uniformly at random and outputs n at the outside interface.

Lemma 7. The protocol consisting of one converter rnd for each client (and the converter ⊥ for the
server) constructs (from scratch) the resource NAMER, where R is an injective function chosen uni-
formly at random from all such functions C → N . More formally, for all D,

∆D

((∏
C∈C

rndC

)
⊥S∅,⊥S⊥ENAMER

)
≤
(
|C|
2

)
· 1

|N |
,
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which in this case is both the availability and the security condition.

Proof (sketch). We define a collision event on the output at the client’s interfaces (i.e., the event says
that there exist C,C ′ ∈ C with ρ(C) = ρ(C ′)). Conditioned on this event being false, the real and
ideal settings are equivalent. Following [Mau13, Theorem 3], this means that the distinguishing
advantage is bounded by the probability of provoking the event, i.e., the probability of a collision
in the clients’ nonces.

C A Diffie-Hellman-Based Protocol

In this section, we show how the protocol from the main paper can be adapted to be based on the
Diffie-Hellman protocol together with a strong extractor. The protocol as we describe it here (we
do so for the modularity of the description) sends two messages from the server to the client (the
group element and the seed for the extractor), hence we have to modify the session protocol to
provide two authenticated channels. (This appears to be an effect of our current proof technique
rather than a restriction of the model.)

C.1 Preliminaries

The Diffie-Hellman protocol. The Diffie-Hellman protocol [DH76] can be specified with respect
to an arbitrary finite cyclic group G = 〈g〉. The protocol is executed between two parties A and
B, A chooses a number a ∈ {1, . . . , |G|} and B chooses a number b ∈ {1, . . . , |G|}, both uniformly
at random. Then, A computes and sends the message ga to B, and B computes and sends the
message ga to A. Finally, both parties compute the key gab = (ga)b = (gb)a ∈ G.

The Diffie-Hellman protocol is secure if (and only if) the messages ga and gb are transmitted
via authenticated channels and the so-called Decisional Diffie-Hellman (DDH) assumption holds: no
efficient algorithm distinguishes a triple (ga, gb, gc), with a, b, c ∈ {1, . . . , |G|} uniformly random,
from a triple (ga, gb, gab) with a, b ∈ {1, . . . , |G|} uniformly random.

Strong extractors. The purpose of a randomness extractor is to convert a random source which
has an arbitrary distribution with sufficiently high (min-)entropy into a distribution over a smaller
space which has (almost) full entropy. A strong extractor makes use of an additional (short but
public) random seed.

Definition 8. A (k, ε)-strong extractor is a function ext : {0, 1}n × {0, 1}d → {0, 1}m such that
for every distribution X on {0, 1}n with min-entropy at least k the distribution (Ud, ext(X,Ud)) is
ε-close to the uniform distribution on {0, 1}n+d.

In the protocol, we apply a strong extractor to the (preliminary) key that we obtain from the
Diffie-Hellman protocol, which is (an encoding of) a group element, in order to obtain a shared key
which is a shorter bit string with full entropy.

C.2 Separating Sessions

The Diffie-Hellman-based protocol requires the server to send two messages authentically (in the
protocol, the two messages can be sent together): one for transmitting the server’s Diffie-Hellman
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element, and one for transmitting the seed required for the strong extractor. Hence, the protocol
that implements separated sessions has to construct two authenticated channels from the server
to the client. This is easily achieved by separating the message spaces by an additional bit that is
included before the messages are sent via BB∗.

The construction we aim for in this case is hence:[⊗
C∈C
−�,BB∗,NAMEρ

]
π

==⇒
⊗
C∈C

J[−− →,← −•,← −•]K(C,S/ρ(C)) .

The clients’ converter s-client has at the inside three sub-interfaces (one is supposed to connect to
BB∗ as receiver, one to −� as sender, and one to NAMEρ). The outside interface of s-client is also
structured in three sub-interfaces, where the first one allows to input one message and the second
and third each potentially output one message. Finally, s-client is specified as follows (each step is
performed at most once):

• Upon receiving the name n ∈ N (from NAMEρ), send n to the server (i.e., via −�).
• Upon input a message m at the outside interfaces, send m to the server (via −�).
• Upon receiving a message m′ at the inside interface (via the second sub-interface, i.e., from
BB∗) such that m′ = n|0|m′′, output m′′ at the second sub-interface.
• Upon receiving m′ at the inside with m′ = n|1|m′′, output m′′ at the third sub-interface.

The server’s converter s-client has at the inside interface |C|+ 1 sub-interfaces, where the first sub-
interface is supposed to connect to (the sender’s interface of BB∗), and all other interfaces to the
receiver’s interface of−�. The outside interface is structured into sub-interfaces labeled by n ∈ N ,
where each such interface again consists of three parts (one for −− →, and two for each one← −•).

• Upon receiving the first message on a sub-interface C of the inside interface, parse the mes-
sage as name nC ∈ N and, if this succeeds, store the pair (C, nC) internally.
• Upon receiving the second message mC on a sub-interface C of the inside interface, output
mC at the nC -sub-interface of the outside interface.
• Upon receiving an inputm′n at the first part of the n-sub-interface (and there is a record (C, n)

for some C), send n|0|m′n via BB∗.
• Upon receiving an input m′n at the second part of the n-sub-interface (and there is a record

(C, n) for some C), send n|1|m′n via BB∗.

We now state and prove the construction that we already described above. The proof is similar to
the proof of Lemma 3 and hence omitted.

Lemma 9. For the converters s-client and s-server described above,

∏
C∈C

s-clientCs-serverS⊥E
[⊗
C∈C

J−�K(C,S/C) ,BB∗,NAMEρ

]
≡ ⊥E

⊗
C∈C

J[−− →,← −•,← −•]K(C,S/ρ(C))

and there is a simulator σ such that

∏
C∈C

s-clientCs-serverS
[⊗
C∈C

J−�K(C,S/C) ,BB∗,NAMEρ

]
≡ σE

⊗
C∈C

J[−− →,← −•,← −•]K(C,S/ρ(C)) .
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C.3 Obtaining a Diffie-Hellman Key

The next step in our construction is to use a (essentially) Diffie-Hellman protocol in a cyclic group
G = 〈g〉. The protocol is initiated by the client, which sends a group element ga ∈ G over a fully
insecure channel to the server. The server also chooses a group element gb ∈ G, and includes the
client’s group element in its reply. The client verifies that the server used the “correct” ga (remember
that ga was over an insecure connection) and only computes the key in this case.

The resource that is constructed in this step is a unilateral key with key space G. This resource
G

= =• is more formally described in Figure 1.
The protocol consists of two converters dh1 (for the client) and dh2 (for the server). The client’s

converter initially chooses a ∈ {1, . . . , |G|} uniformly at random and send ga via −− →. Then, upon
receiving (g1, g2) ∈ G2 via← −•, if g1 = ga, then dh1 outputs ga2 at the outside interface.

The server’s converter, upon receiving g0 via −− →, choose b ∈ {1, . . . , |G|} uniformly at random,
send (g0, g

b) via← −•, and output gb0 at the outside interface.

Lemma 10. Let G be a finite cyclic group. For the converters dh1 and dh2 described above:

dhA1 dh
B
2 [−− →,← −•] ≡ ⊥E G

= =•,

and there is a simulator σ such that for all D:

∆D
(
dhA1 dh

B
2 [−− →,← −•], σE G

= =•
)
≤ ∆DC

(
(ga, gb, gab), (ga, gb, gc)

)
.

Proof. The availability condition is easy to verify, if there is no adversary present then in both the
real and the ideal settings a uniformly random group element is output at both the A- and the
B-interface. The simulator σ is as follows:

1. Choose a, b ∈ {1, . . . , |G|} uniformly at random, and simulate ga (as transmitted on −− →).
2. Here we have to distinguish cases, based on the input at the E-interface.

• If ga is delivered to B, then input (0, g) at
G

= =• and simulate (ga, gb) on← −•.
• If g′ 6= ga is delivered, then input (1, (g′)b) at

G
= =• and simulate (g′, gb) on← −•.

3. In case ga was delivered and (ga, gb) is forwarded, then input ok to = =•.

The case where g′ 6= gc is delivered is clear: The outputs in the real and ideal cases are distributed
equivalently, there is no output at the A-interface, the value (g′)b for uniformly distributed b ∈
{1, . . . , |G|} is output at the B-interface, and the value (g′, gb) is output at the E-interface.

If ga is delivered, this corresponds exactly to distinguishing triples (ga, gb, gab) and (ga, gb, gc)
with a, b, and c uniformly distributed. In the “real” case, D obtains gab at both the A- and the
B-interface, and (ga, gb) at the E-interface. In the “ideal” case, D also obtains (ga, gb) at the E-
interface, but the group element output at both theA- and theB-interface is uniformly random.

C.4 Extracting from the Diffie-Hellman Key

Our final goal is to obtain a key that is (almost) uniformly distributed in the set {0, 1}m. We obtain
this by applying a strong extractor to the key obtained from the Diffie-Hellman protocol. In more
detail, the server will use the second authenticated channel to transmit a seed for the extractor,
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and both client and server will then extract from the Diffie-Hellman key. The first constructive step
is to construct, from the second authenticated channel, a resource formalizing the availability of a
random seed:

The random seed SEEDd

0. Obtain input c ∈ {0, 1} at the E-interface.
1. Choose u ∈ {0, 1}d uniformly, output u at the B- and, if c = 1, also the E-interface.
2. If c = 0 or upon input ok at the E-interface, output u at the A-interface.

Lemma 11. The protocol (seed1, seed2) where seed2 chooses x ∈ {0, 1}d uniformly at random and
sends it to seed1 constructs from a channel← −• the resource SEEDd, formally

seed1
Aseed2

B⊥E ← −• ≡ ⊥ESEEDd,

and there is a simulator σ such that

seed1
Aseed2

B ← −• ≡ σESEEDd.

Proof. The availability condition is clear. The simulator σ only forwards random value from SEEDd

as a message on← −•, and the bit d ∈ {0, 1} from the outside interface to SEEDd. The distributions
are identical.

The key they obtain is the one where the adversary can choose the server’s key if it interferes
with the session, but the key is uniformly random otherwise. We denote the resource by

m
= =•. We

describe a converter ext that on the inside attaches to the two resources SEEDd and
G

= =•. It obtains
the seed and the Diffie-Hellman key, applies a (k, ε)-strong extractor (with k ≤ log |G|), and outputs
the result at the outside interface.

Lemma 12. Let k ≤ log |G|. By applying a (k, ε)-strong extractor to the seed obtained from SEEDd

and the key obtained from
G

= =•, we get a key
m

= =•. More formally, for a (k, ε)-extractor we obtain

∆D
(
extAextB⊥E [SEEDd,

G
= =•],⊥E m

= =•
)
≤ ε

and there is a simulator σ such that

∆D
(
extAextB[SEEDd,

G
= =•], σE m

= =•
)
≤ ε,

for any distinguisher D.

Proof. The simulator begins by simulating a uniformly random seed. If the adversary injects a
group element as a (preliminary) key, the simulator simply computes the final key via the extractor
and the seed, and injects that key into the resource

m
= =•. (This can easily be seen to be a perfect

simulation.) If the adversary lets the client and the server exchange a (preliminary) key, the sim-
ulator also sets r = 0. In this case, the distribution in the ideal is uniformly random for both the
seed obtained at E and the key obtained at A and B. In the real case the seed is also uniformly
random, and the value extracted from the (preliminary) key using the seed at A and B. Since the
min-entropy of the key is log |G| ≥ k, the distinguishing advantage is at most ε.

The availability condition follows even more directly, since the distinguisher only obtains the
output of the extractor.
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