
Inter-FSP Funds Transfer Protocol

Technical Report

Amir Herzberg and Shay Nachmani

Computer Science Department, Bar Ilan University

Table of Contents

Inter-FSP Funds Transfer Protocol . I
Shay Nachmani and Amir Herzberg

1 Introduction . 1
1.1 Network Limitation Aspects . 2
1.2 The Trust Model . 3
1.3 Our Contribution . 4

Organization . 4
2 Related Works . 4

2.1 Funds Transfer Protocols . 4
2.2 Electronic Payment Systems . 4
2.3 Formal Security Proofs . 5

The cryptographic approach . 5
The automated formal-methods approach . 5

3 General Security Model . 5
3.1 Protocol Execution Model . 5
3.2 Requirements Model . 6
3.3 The Communication Model . 8

4 FSP Machine Requirements . 8
4.1 The FSP Machine . 8
4.2 The leaky bucket model . 10
4.3 FSP requirements . 11

5 The Inter-FSP Funds Transfer Protocol . 13
5.1 Give Credit . 13
5.2 PC and PO . 13

PC flavors . 13
5.3 Issue PC . 14
5.4 Redeem PO . 15
5.5 External Payment . 15
5.6 Communication Messages . 15

6 Protocol Descriptions . 17
6.1 Notations . 17
6.2 Cryptographic library abstraction . 17
6.3 Databases . 17
6.4 Protocol Algorithms . 18

7 Security Analysis . 24
7.1 The cryptographic library . 24
7.2 The Theorems . 24
7.3 Claims . 25
7.4 Proof of Theorem 1 based on the claims . 26
7.5 Proof of the Claims . 27

Proof of Claim 1 . 30
Proof of Claim 2 . 31
Proof of Claim 3 . 32
Proof of Claim 4 . 32
Proof of Claim 5 . 33
Proof of Claim 6 . 33
Proof of Claim 7 . 34

8 Liveness . 35
9 Conclusions . 35

Abstract. The present work introduces the first decentralized secure funds transfer protocol, allow-
ing funds transfer from payer to payee without a direct relationship, using the help of a mutually-
trusted peer, or a chain of trusted-peers connecting between payer and payee. The protocol guar-
antees that a participant only loses money if a trusted peer happens to be corrupt. Furthermore,
the loss is limited to the amount of credit given to that peer. The protocol supports expiration
times for payment orders, and takes into consideration actual network queuing delays. To achieve
our goals, we used models and techniques from the Quality of Service area, to handle delays and
avoid the expiration of payment orders. We provide rigorous proofs to the security of the protocol.

1 Introduction

The present work discusses electronic funds transfer, a basic and critical financial operation. We use the
term funds transfer to denote money transfers between Financial Service Providers (FSPs1, as opposed
to regular payments that are usually made for certain goods. Consider a client that wishes to buy certain
goods from vendor A on the Internet. The client is unable to pay A directly, as no payment mechanism
exists between them. He must therefore provide a payment commitment from FSP B with whom A works.
This funds transfer operation is carried out in several stages, which are illustrated in Fig. 1. Initially, FSP
B issues a payment certificate (PC) for its partner A. A PC is an electronic signed certification stating
that B commits to transfer funds against payment orders (PO), subject to certain restrictions. A PO is
an electronic signed message that orders the payment of money. The restrictions in the PC may limit the
total amount of the POs, set a deadline for the commitment, define a commission rate, etc. The PO itself
may also have an expiration date. FSP B may issue a PC at the request of its client, stating that the
latter has deposited money in B and wishes to transact with A. The client can pay A with the PO issued
for him by B. Once A receives the PO, a redemption request can be sent to B, which should transfer
the funds it has committed to. Our protocol covers the stages of issuing the PC and redeeming the PO.
These stages are indicated in Fig. 1 by continuous lines. The actual payment and the transfer of the
goods are not dealt with here, and are indicated in Fig. 1 by broken lines. Nevertheless, our protocol is
informed about these operations, and reacts accordingly. This operation is somewhat complex. To begin

Fig. 1. In an electronic funds transfer operation, B commits in a PC to pay money to A against a PO, and the
client pays A with B ’s PO

with, trust must exist between two parties that wish to transact with each other. There is no guarantee
that the committed party will indeed pay the money, whether due to corruption or to bankruptcy. In
order to cover payment commitments, funds must be reserved. This implies that the commitment must
have a defined expiration date, to enable releasing reserved funds. It follows that the operation depends
to a large extent on communication. If a party fails to send redemption request, or if the network is
overloaded and the deadline is passes before the request is received, money will be lost. Therefore, the

1 Financial institutions, e.g. banks, insurance companies and investment funds, that have reciprocal business
relations with each other and handle accounts for their clients.

1

end-to-end communication delay should be taken into consideration. Of course, a queuing delay depends
on network loads; to determine their bounds QoS techniques must be used. These problems can be dealt
with rather easily if all the involved parties have a trusted third party (TTP) that will make the payment
or resolve communication conflicts that come up between them. Most contemporary systems and research
solutions follow this centralized approach. Centralized designs are simple to outline, launch and operate;
however, they also have significant disadvantages, which motivated us to focus on a decentralized design
in this work. Below are several of these disadvantages:

Lack of competition: Obviously, a TTP receives a commission from the parties who wish to trans-
fer funds between them. Very few TTPs have the trust of both sides. As a result, there is little
competition, and the costs are relatively high.

Reduced interoperability: In the centralized model, it may happen that certain entities do not have
a common TTP, and are therefore unable to carry out any financial operations with each other.

Bottleneck: Centralization faces the TTP with significant loads and overheads, as all the traffic passes
through it.

Single point of failure (and ‘legal attack’): A technical failure in the TTP is liable to disrupt the
entire network, and make it vulnerable to denial-of-service attack. An example illustrating this point
is the instruction given to SWIFT by the European Council to stop providing services to Iranian
banks subject to European Union sanctions [1], making it impossible to trade with Iran.

We introduce here the first provably secure decentralized funds transfer protocol. Our solution allows
transactions on the Internet through multiple FSPs, each interacting with and trusted by its own part-
ners only, without having to rely on one common trusted third party. Decentralization should predictably
increase competition between the payment providers, reduce commissions and costs, and improve avail-
ability and connectivity. Decentralization also facilitates the participation of smaller players, disproving
the assumption that trading systems are all highly reputable large institutes. It should be taken into
account that the smaller parties may not behave properly, and that the decentralized model creates new
challenges, where several parties might cooperate against another party.

1.1 Network Limitation Aspects

The quality of service in networks has been widely researched; however, the influence of network delays
on electronic trade has not been explored as yet. Making certain assumptions on the network, such as
a minimum transmission rate, we are able to guarantee that if the involved party behaves according to
the proposed protocol, it will not lose money due to excessive network delays.

In order to appreciate the communication challenges that exist in a decentralized system, consider
the case illustrated in Fig 2. Four FSPs are involved: A, A’, B, and C. First, consider a simple case: a
PO is issued by C, and then is sent by A to B for redemption. Suppose the PO expires at time t; clearly,
B must receive it a bit earlier, say before t− δ, to make sure B can send the PO so it will be received by
C in time. Otherwise, a payment order may be sent too late, causing B (or A) to lose funds. Note that
if such loss is allowed, it may also be abused, e.g., if A loses, then B may fake a network failure.

Next, note that determining this delay δ is not trivial, as it may depend on other transmissions, e.g.,
concurrent redemption requests that A’ may be sending to B (say, of another payment order issued by
C).

Who will be losing money if A and A’ send redemption requests with POs to B, at higher rates than
B is able to handle and send to C ? Obviously, C will not pay the funds for expired POs; must B still
pay A and A’, or should they somehow split the loss?

If it were decided that B should be the one to bear the loss, the other parties A, A’ and C might
collude to make B lose. However, if it were decided that A or A’ should be the losers, B and C might
collude to make A or A’ lose. Note that if the participants (e.g. A,A’,B, or C) are reputable entities such
as banks, it may be safe to assume that they would not abuse the system this way. However, the protocol
is designed to be safe even for less trustworthy participants (i.e. smaller and less reputable entities).
It is possible to avoid these losses using QoS techniques. Our solution addresses for the first time the
delays caused by queuing and congestion, namely, it takes into consideration the fact that the network’s
capacity is limited. This point is crucial when the discussion concerns delivering payment orders and
commitments that have expiration dates.

2

Fig. 2. Funds Transfer with Four FSPs

The protocol limits the rate at which redemption requests are sent. This rate restriction is formulated
using the ‘leaky bucket model’,[12] (Section 4.2), which allows for setting a maximum rate and a
maximum pending request bucket to limit the transmission rate. By this method, an honest peer is able
to set limits in its PC to the received redemption requests rate in accordance with the rate restriction of
the peer that comes next on the redemption path.

Additionally, by limiting the overall transmission rates between peers using the leaky bucket model,
the protocol limits maximum delay. Hence, a peer is able to calculate the extra time required to send a
redemption request before it expires. To this end, we assume that the underlying layer guarantees the
delivery of messages at a minimum rate with certain latency. This assumption is based on a popular model
known as the ‘latency-rate server’ model [12], and is discussed in the communication model (Section 3.3).

1.2 The Trust Model

When financial institutes such as banks do business with each other, they decide the credit amount
that would be given to each partner. This credit is the maximum amount to be risked by trusting
a certain partner, taking into account the peer’s reputation, and the probability that this peer or its
employees would go bankrupt or commit fraud. The proposed protocol provides an automated risk
limiting mechanism, where the risks are determined externally by the upper layer. In the protocol, each
party sets its credit for each peer, and the protocol guarantees that the possible loss to be caused by a
peer does not surpass this credit. Moreover, the protocol guarantees that a party does not lose money
unless its peer is corrupt. That is, risk limiting is conservative, because honest participants are required
to limit the total risk for all their peers so that it does not reach an amount that could lead to bankruptcy.

Of course, if all the parties follow the protocol correctly, no loss should ever occur. To understand
the trust model, consider the following scenario, illustrated in Fig 3. FSP A gives FSP B a 1M$ credit,
namely, A allows B to owe it 1M$. B can use this credit to issue a PC for A, i.e. commit to pay A
against its own POs. A honors these POs, which may be received from its clients, to the amount of up
to 1M$ until B pays it the money. Now consider that B credits FSP C with 2M$, and C issues a PC for
B. In this situation, B can issue a PC for A committing to redeem POs of up to 2M$ from C as well.
This way, funds can transfer from C to A, B pays A against the POs of C, and is later paid by C. As
already mentioned, all the PC’s have deadlines and limited amounts. Therefore, the protocol must limit
the commitment B may make in its PC, based on C ’s PC, to avoid loss. As already mentioned, there are
also network limitations to consider, and B should limit the rate of the POs sent from A, so that they
can be successfully redeemed by C. Moreover, if B wishes to issue a PC for another peer A’, committing
to redeem C ’s POs (see Fig. 2), the credit for C should be divided between A and A’ in the PCs; the
redemption rate and the amount of C ’s PC should also be divided between them.

Obviously, fraud is a prevalent concern in online transactions; double spending, forgery, and repu-
diation must be avoided. Therefore, we bring rigorous cryptographic proof that the proposed payment
system is secure. We also introduce a general model for validating a protocol’s security requirements. In

3

Fig. 3. Protocol scenario with three FSPs

spite of the available variety of automatic proof systems, we have not come across a system that is able
to model service rate limitation, and prove the network’s delay related requirements.

1.3 Our Contribution

This present the design of a decentralized funds transfer protocol, allowing interoperability and secure
funds transfer among multiple FSPs. Our design addresses several critical challenges.

• A loss can only be caused to a party by a corrupt trusted peer, and the amount of this loss does not
surpass the credit given by the party to this peer.

• The protocol takes into account queuing delays, using Quality of Service approach.
• We prove security using a well-defined generic model that takes into account the assumed communi-

cation model of the lower layer. This model can be used for other protocols as well.
• The protocol supports FSP commissions (fees), compensating intermediate FSPs for their services

and risk.

Organization In Section 2 we review other works related to ours. In Section 3 we describe the model
of the system, the assumptions related to the upper and lower layers and the services they provide. In
Section 4 we define the requirements of the protocol. In Section 5 we present our protocol. In Section
7 we prove that the protocol meets the requirements. In section 8 we prove the liveness property of the
protocol.

2 Related Works

2.1 Funds Transfer Protocols

Our protocol is a refinement of the ideas sketched in [9]. Our extensions include dealing with queuing
delays and fees, as well as providing security requirements and analysis (proof).

Several research works are available regarding interbank funds transfer. In [13], Leinonen et al. de-
scribe a payment and settlement system simulator they have developed, which can be used to construct
simulation models of payment systems. Zho [20] examined the operation flow of the electronic funds
transfer process and its security control mechanism. However, none of these works discusses a decen-
tralized design; furthermore, these works do not present analysis or requirements, and do not consider
queuing delays.

2.2 Electronic Payment Systems

Much work has been carried out on anonymous payments but with a single (centralized) FSP, e.g., [5, 6,
7]Much less work was done on open decentralized payment systems. Schmees [16] describes the benefits

4

gained by giving up a centralized client- server payment system and moving toward distributed electronic
payment using peer-to-peer networks. However, he does not propose a mechanism for implementing this
model.

Yang and Garcia-Molina describe a micropayment system protocol called PPay [19], built upon a
peer-to-peer network. They introduce the concept of floating, a self-managed currency concept that
allows digital currency to float from one node to another without involvement of a TTP. Although PPay
security is based on digital signatures, fraud cannot be prevented; instead, a mechanism of punishment
and risk management is proposed that makes fraud unprofitable.

Xiong et al. developed PeerTrust [18], a peer-to-peer trust model that enables quantifying and com-
paring the trustworthiness of peers by a transaction-based feedback system. They built a general trust
metric that effectively measures and captures the trustworthiness of peers, and also addresses the issue
of fake or misleading feedbacks, minimizing the risk involved in e-commerce transactions. However, the
model does not provide any protection against certain outcomes of a given transaction.

Bitcoin [14] is an electronic coin defined as a chain of digital signatures. Each owner transfers the
coin to the next by digitally signing a hash of the previous transaction and the public key of the next
owner, adding them to the end of the coin. A payee is able verify the signatures and thus verify the chain
of ownership. To prevent double-spending, a peer-to-peer network is proposed, using proof-of-work to
record the public history of transactions. Fraud becomes computationally impractical for an attacker if
honest nodes control most of the CPU power.

Notably, none of the above works contains signed commitments between peers, with deadlines. Thus,
the challenges are extremely different from those of our work. What is more, none of them deals with
the influence of network delay on the payments.

2.3 Formal Security Proofs

There are two approaches to conducting a security proof:

The cryptographic approach Usually proved by reduction to one of the underlying cryptographic
primitives. This approach provides rigorous proofs but they are not automated.

The automated formal-methods approach , based on the Dolev-Yao model [8]. The model rep-
resents cryptography as term algebras, and simplifies security proofs for large protocols. In [3] Backes
proved that the real cryptographic library with its much more sophisticated adversary is as secure as the
ideal cryptographic library. Therefore, a protocol that is proved based on the deterministic Dolev-Yao-
like ideal library can be safely implemented on the real cryptographic library. For example, in [2] Backes
used this model to prove that a 3KP electronic payment system is secure [4]. We used these results for
the security analysis of our protocol. Also, based on the work of Herzberg and Yoffe [11], we defined a
security requirement framework for the security analysis of our protocol.

3 General Security Model

In this section we describe the protocol’s execution model, and introduce the general model of validation
for any set of requirements under any set of communication assumptions. This model may be used for
various protocols and other purposes, with different requirements and different communication models.
The model is based on the work of Herzberg and Yoffe [11].

3.1 Protocol Execution Model

Each party is represented by interacting machine M which reacts to received input [15]. A machine is
a probabilistic I/O automaton (extended finite-state machine) in a slightly refined model to allow com-
plexity considerations. For these machines, Turing-machine realizations are defined, and their complexity
is measured in terms of a common security parameter 1k, given as the initial work-tape content of every
machine. We only use polynomial run-time deterministic I/O automata, whose output is also polynomial
in the initial input. This brief definition is taken from [3]. The machine is controlled by its administra-
tor via internal input commands. The machine passes relevant information to the administrator from
received external input.

5

Fig. 4. Overview of the Game

3.2 Requirements Model

We define a game in which the adversary sets honest parties and corrupt parties. The honest parties
follow the protocol, with the adversary as administrator. They also have reliable communication with
each other. The corrupt parties are fully controlled by the adversary. The honest parties and the adversary
use the cryptographic library directly. The adversary controls all the communications in the game. All
the machines are given a global time parameter; the time is received from the adversary, and is verified
to be non-decreasing. For an overview of the game see Fig 4.. The game receives the adversary algorithm
as input, and executes its instructions step by step. These instructions might involve sending messages
to honest parties, or giving the administrator instructions for them. The adversary is a machine A that
has the following interfaces:

• (init request, 1k) receives the security parameter 1k and returns the tuple (state, communication parameters, n),
where state is the state of the adversary machine; communication parameters are the parameters
of the communication model, and n is the number of honest machines M initialized by the game.
• (next state, adv state) receives the currentA state and returns the tuple (instruction, id, parameter list, time, adv state),

where instruction may be the name of an instruction to M, or an instruction given tothe game to
end the game or to send a message to one of the parties. id is the identifier of the M that should
receive this instruction or message; parameter list is the list of the instruction parameters; time is
the current time, and adv state is the next A state.
• (protocol output, out, sending request, adv state) receives theM output, sends a request with the

current state, and returns the next state of A.

The game ensures that the time is strictly progressing, and no more than one operation can occur at a
certain point in time. The game provides both the parties and the adversary with a cryptogaphic library.
This library receives the security parameter, and has interfaces for generating randomize id and key pairs.
It also has interfaces for signing and verifying messages which could be broken with negligible probability
with respect to the security parameter. An example for a library of this kind is found in [3]. The game
stores a communication log and a protocol log, where every instruction given to an honest party and
every ensuing output is logged. When the adversary gives an instruction to end the game, the game
returns true if the adversary has won, i.e., the protocol log is valid (no cheating), or the communication
log is invalid (the adversary did not preserve the assumptions about the communication layer). That is
to say, given a log of running M over n honest parties, we require that

V alid ProtocolLog(ProtocolLog) = True

6

as long as

V alid CommLog(CommunicationLog) = True

These functions should be implemented for specific protocols and communication models. The game
receives these functions as parameters. The implementations that follow our requirements and commu-
nication model are described in the next section. For the game pseudo code, see Algorithm 1 below.

Definition 1 We state that machine M is a secure machine with respect to V alid CommLog and
V alid ProtocolLog, if for every polynomial adversary A, the probability

Pr[Game(M, V alid CommLog, V alid ProtocolLog,A, 1k) = False]

is negligible with respect to the security parameter 1k.

Algorithm 1: Game(machine M,V alid CommLog,V alid ProtocolLog , adversary A, secu-
rity parameter 1k)

1 ProtocolLog = ””;
2 CommLog = ””;
3 CurrentT ime = 0;
4 H = φ;

5 (adv state, communication parameters, n) = A(init request,1k);
6 for i = 1→ n do

7 (state, id) = MFSP (init request, 1k, communication parameters);
8 States[id] = state;
9 H = H ∪ {id} ;

// The first line of the log is for the parameters

10 ProtocolLog+ = (Parameters, communication parameters, n,H);
11 CommLog+ = (Parameters, communication parameters);
12 while True do
13 (instruction, id, parameter list, time, adv state) = A(next state, adv state);
14 if time ≤ CurrentT ime then
15 return False;

16 CurrentT ime = time;
17 if instruction = finish game then
18 ProtocolLog+ = (finish game, time);
19 return Valid CommLog(CommLog) ∧!Valid ProtocolLog(ProtocolLog)

20 if instruction = send then
21 (u,msg) = parameters list;

// sending request is a (destination, message) list

22 (States[id], sending request, out) = MFSP (received, States[id], u,msg);
23 CommLog+ = (received, time, id, u,msg);

24 else
// regular instruction to machine

25 (States[id], sending request, out) = MFSP (instruction, States[id], parameters list);
26 ProtocolLog+ = (id, time, instruction, parameters list);

27 adv state = A(protocol output, out, sending request, adv state);
28 foreach (dest,msg) ∈ sending request do
29 CommLog+ = (send, time, id, dest,msg);

30 ProtocolLog+ = (id, time, out);

7

Algorithm 2: LR FIFO Valid CommLog(CommLog)

1 set L,R to the values in (Parameters, L,R) ;
// CommLog next lines are of the form (send, source, destination,time,message) or

(received,destination,source,time,message)

// We require LR server with the input parameters

2 Let Ru,v,t1,t2 = |{(received, u, v, t,msg) ∈ CommLog|t1 ≤ t ≤ t2}|
3 Let Su,v,t1,t2 = |{(send, u, v, t,msg) ∈ CommLog|t1 ≤ t ≤ t2}|
4 if ∃(u, v, t1, t2)|∃t1 ≤ s ≤ t2 ∧Rv,u,t1,t2 < Su,v,t1,s − (t2 − s− L) ∗R then
5 return False;

// We require FIFO

6 Let R MSGu,v,t1 be the concatenation in chronological order of all the messages in
{msg|(received, u, v, t,msg) ∈ CommLog ∧ t ≤ t1}

7 Let S MSGu,v,t1 be the concatenation in chronological order of all the messages in
{msg|(send, u, v, t,msg) ∈ CommLog ∧ t ≤ t1}

8 if ∃(u, v, t)|R MSGv,u,t is not prefix of S MSGu,v,t then
9 return False;

10 return True;

3.3 The Communication Model

We assume a simple model in which the machines communicate over a network whose peers are able to
handle each other’s requests with some delay, and then with a fixed rate of service. This model is called a
Latency Rate (LR) server [17]; it enables calculating tight bounds on the end-to-end delay of individual
sessions in an arbitrary network of schedulers. The LR server model is widely used, and many well-known
scheduling algorithms, such as TDM, Fair Queueing, VirtualClock, and Weighted Round Robin, were
proven to be LR servers.

The behavior of an LR server is determined by two parameters, L and R, as follows. After the initial
latency L, the scheduler allocates to the session a minimum service rate R. That is to say, the model
guarantees delivering (t− L) ∗ R bits in intervals the length of which is t. For a graphic description see
Fig. 5.

For simplicity, we assume that all the links ensure reliable FIFO communication, following the LR
server model, and with the same (L,R) parameters. We give our implementation to the V alid CommLog
function of the game in Algorithm 2 and we call it LR FIFO V alid CommLog. Intuitively, this function
validates that:

1. Communication service rate according to the LR server model with the input parameters. (lines 2 -
5)

2. Reliable FIFO communication (lines 6 - 9).

4 FSP Machine Requirements

In this section we define the FSP machine and the requirements of the protocol by implementing the
generic function of the game.

4.1 The FSP Machine

The FSP machine is used to manage an FSP entity. It saves the balance for each peer, handles the
commitments, and communicates with the other peers. The machines have interfaces to recognize each
other via public keys inserted by the administrator. They also have interfaces for allocating credits, send-
ing commitments, redeeming, and certifying external payments. The underlying layer provides interfaces
that enable sending and receiving messages. The cryptographic library provides interfaces that enable
signing and verifying signatures, and generating identifiers and keys. The protocol is defined by the FSP

8

Fig. 5. Latency Rate Server

Fig. 6.MFSP interfaces

9

machine. There is a network of FSPs that set credits for each other; that is, the administrator of FSPu

gives his machine a command to set the credit for FSPv. Of course, the FSPu machine must have the
public key and address of FSPv, and should receive them via the set credit interface as the identifier.
This means that FSPu trusts FSPv and agrees for FSPv to owe it money up to the credit amount, i.e.,
FSPu takes the risk that FSPv will not pay as committed due to bankruptcy, corruption, or another
failure. If the FSP machine does not receive any input regarding the credit set for a partner, the credit for
this partner is zero. The machines issue signed commitments - PCs, and checks - POs, and redeem them.
The upper layer is also able to notify the machine about external payments, and certification about this
payment should be sent to the payer machine. For the sake of intelligibility, we refer to the inputs from
the upper layer interfaces as instructions.

Definition 2 MFSP is a machine with the following interfaces:

1. Upper layer interfaces
• in(init request, security parameter, communication parameters) to initialize an FSP machine

with the communication parameters.
• out(init response, identifier) to deliver the identifier given by the underlying layer to the

upper layer.
• in(give credit, peer identifier, credit, b, r) to give initial credit, and set leaky bucket parame-

ters b, r to limit the rate of communications sent to this peer. The leaky bucket model is discussed
in section 4.2 below.

• out(received credit, peer identifier, credit) to report a given credit.
• in(issue pc, PC arguments) to issue signed commitments - PC (Definition 5).
• in(pc timeout, PCid) to notify PC expiration.
• out(pc issued, payment certificate) to report that a PC was received (Definition 5).
• in(payment received, peer identifier, amt) to notify the payee that an external payment was

made.
• out(payment certified, peer identifier, redemption id, amt) for the payer to report receiving

an external payment certification from the payee.
• out(redeem, peer identifier, redemption id, amt) to inform the upper layer that a redemption

request was sent with a PO (Definition 7).
• out(valid redemption, peer identifier, redemption id, amt) to report that a valid redemption

request was received from another peer.
• out(redemption certified, peer identifier, redemption id, amt) to report that a redemption

certification was received from the peer to whom the redemption request was sent.
• in(issue po, path, amt, expire) to issue a PO.
• in(po received, PO, PCid) to redeem a PO received from the upper layer against a PC.

2. Communication interfaces
• out(send, peer,message)
• in(received, peer,message)

3. Cryptographic interfaces
• (generate id, security parameter) generates a unique identifier and key pair for signing.
• (sign, key,message) creates an electronic signature of a message.
• (verify,message, key, signature) verifies an electronic signature of a message with a key, returns

true upon successful verification, and otherwise false.

The interfaces are illustrated in Fig. 6.

4.2 The leaky bucket model

We use the leaky bucket model to limit transmission rate between peers. The model is given rate r, and
bucket size b as parameters, and commits to service packets if the arrival rate of the requests is lower
than r, with a buffer size of b. A leaky bucket validation pseudo code is provided in Algorithm 3.

Assuming the underlying layer guarantees on a service rate according to LR server model, with given
parameters, we are able to limit maximum delay between peers, where the transmission rate is limited
by using LB model.

10

Algorithm 3: LB(b,r)

1 Initially:
2 bucket = 0 ;

3 Upon request arrival:
4 if bucket+ 1 ≤ b then
5 bucket+ +;
6 return True;

7 else
8 return False;

9 Every 1/r seconds:
10 if bucket > 0 then
11 bucket−−;

Definition 3 Let Delay(u, v) denote the upper limit of the delay of the communication sent from u to
v, computed based on the LR server model parameters L,R, and the LB parameters that come from the
instruction (give credit, v, credit, bu,v, ru,v) in u machine.

Delay(u, v) = L+ bu,v/R

This would hold only if ru,v ≤ R.

4.3 FSP requirements

It is required that an honest party lose money only if its peer is corrupt, and that the loss be limited by
the credit set for this peer.

Definition 4 We define money loss as the scenario in which a party sends a redemption request to its
peer, and that peer does not accept it.

Therefore, the protocol must ensure that an honest party always accepts a valid redemption request
from its peer. We consider every redemption request sent from an honest party as valid. Also, to limit
the loss we limit the possible debt. It is therefore required that the negative balance be limited for each
peer. This limitation is set by the upper layer, in the form of the credit set for that peer. In summary,
the requirements are the following:

1. Every redemption request sent by an honest party to its honest peer must be accepted.
2. An honest party will never have a peer with a negative balance that surpasses that peer’s credit

limits.

To validate these requirements we implement the FSP V alid ProtocolLog function of the game in
Algorithm 4. First, lines 2 - 3 set the initial credit and delay to zero for each peer. Then we go over
the ProtocolLog, line by line (line 4).

Lines 5- 10 set the credit values that each honest peer gives to its partners, and calculate the
maximum communication delay from u to v. Line 19 in Algorithm 4 validates the first requirement. We
verify that every redemption request sent by an honest party to an honest peer is accepted no later than
the maximum communication delay allowed. Of course, if the game ends before the redemption message
has arrived, the requirement is no longer justified.

To validate the second requirement, we update the values of the balance of the parties, following
redemptions (lines 16, 18) and payments (lines 24, 26). The condition in line 27 ascertains that no
negative balance has surpassed the credit limits, as required. The conditions in line 22 are meant to
restrict the external payment notifications to zero negative balance, i.e. the payer does not gain a positive
balance by an external payment. This way, the adversary is unable to create a negative balance for the
payee, which could exceed the credit limit.

11

Algorithm 4: FSP Valid ProtocolLog(ProtocolLog)

1 set L,R, n,H to the values in (Parameters, L,R, n,H) ∈ ProtocolLog ;
// ProtocolLog next lines are of the form (FSP identifier,time, instruction, parameter

list)

2 Credit[n][] = 0;
3 Delay[n][] = 0 ;

4 foreach line(u, t, line type, v, paramters) ∈ ProtocolLog do
// we go over ProtocolLog lines sequentially, u must be honest

5 if line = (u, t, give credit, v, k, credit, b, r) then
// We allow only one give credit instruction for each party

6 if Credit[u][v]! = 0 then
7 return True;

// We allow only non-negative credit

8 if credit < 0 then
9 return True;

10 Credit[u][v] = credit;
// We allow LB rate no higher than the communication rate

11 if (b < 0) ∨ (r < 0) ∨ (r < R) then
12 return True;

// max delay from u to v

13 Delay[u][v] = L+ b/R ;
14 Balance[u][v] = 0 ;

15 if line = (u, t, valid redemption, v, id, amt) then
16 Balance[u][v]+ = amt ;

17 if line = (u, t, redeem, v, id, amt) then
18 Balance[u][v]− = amt ;

// Every valid redemption to an honest peer must be validated.

19 if (v ∈ H)∧ (!∃t2 ≤ t+Delay(u, v)) |
(∃ (v, t2, valid redemption, u, id, amt) ∈ ProtocolLog ∨ ∃ (finish game, t2) ∈ ProtocolLog) then

20 return False;

21 if line = (u, t, payment received, v, amt) then
22 if Balance[u][v] + amt > 0 then
23 return True;

24 Balance[u][v]+ = amt ;

25 if line = (u, t, payment certified, v, amt) then
26 Balance[u][v]− = amt ;

// Credit bounds the negative balance

27 if Credit[u][v] < −Balance[u][v] then
28 return False;

29 return True;

12

5 The Inter-FSP Funds Transfer Protocol

Following is an overview of the Inter-FSP Funds Transfer Protocol, which is our way of implementing
the MFSP machine, as illustrated in Fig. 7. In Section 6 we present the protocol in a formalized way
and describe it in detail, and in Section 6.4 we bring accurate and efficient algorithms for the protocol’s
implementation.

An FSP is identified by the tuple < addr, pub > which is given by the underlying cryptographic
library, where addr is the address for the communication layer, and pub is the public key which is used
to sign and verify the FSP’s messages.

5.1 Give Credit

The first stage of the FSP’s protocol involves setting the credits each given by each FSP to its peers.
As already explained, the credit that FSP A gives to its peer B is the amount that A risks trusting
B with, i.e. it sets a limit to the loss A would incur if B behaved improperly. To set the credit for
a peer < f, k >, the administrator instruction (give credit, f, k, c, r, b) is used, where c is the credit
given, f is the address of the peer and k is its public key. By this instruction, the upper layer also sets
the leaky bucket parameters, b, r, that set a limit to the rate of communications sent to this peer. The
implementation is shown in Algorithms 8, 10.

5.2 PC and PO

The next stage of the protocol deals with issuing payment certificates (PC). Generally speaking, a PC
is a commitment to pay money against specific payment orders (POs) under certain conditions.

Definition 5 We define a PC as the tuple:

PC =< id, by, for, path, expire, trt,max, net, b, r, v, sigby >

The meanings of the attributes are as follows:

• id is the identifier of the PC at the issuer machine.
• by is the identifier of the FSP that issued this PC.
• for is the identifier of the FSP that this PC was issued for.
• path is a list of FSP identifiers, marking the path through which a payment passes.
• max is the maximum amount that should be paid under this PC.
• expire is the expiration date of this PC.
• trt is the time it takes to handle a redemption under this PC.
• net is a commission function of redeeming against this PC; i.e the net amount that will be paid

against redemption of amount x is net(x).
• b and r are parameters of the leaky bucket that limit the rate at which the peer by may serve

redemption requests under this PC.
• v is a key for validation of a signed payment order.
• sigby is the signature of the issuer on the PC.

PC flavors

Definition 6 We distinguish between two PC flavors:

1. Prime PC: A PC issued independently at the instruction of the upper layer, together with its terms
and conditions .

2. Derived PC: A PC issued at the instruction of the upper layer, based on a PC received from another
peer. We refer to the PC on which the derived PC is based as a Base PC.

Definition 7 We define a payment order as the tuple:

PO =< id, issuer, path, amt, expire, sigissuer >

13

With the following attributes:

• id is the identifier of the PO at the issuer machine.
• issuer is the identifier of the FSP that issued this PO.
• path is a list of FSP identifiers, that form the path through which a payment should pass.
• amt is the amount of the payment.
• expire is the expiration date of this PO.
• sigissuer is a signature of the issuer on the PC.

Actually, the PC is the signed commitment that contains the terms for accepting POs. When a party
accepts a PO redemption request it updates the balance for the sending peer, and returns a certificate
notifying that the PO has been redeemed. Following are the conditions under which POs are accepted
with respect to a PC. Let ACCEPTED(PC)t denote the set of the POs that were accepted with respect
to a PC, by PC.by, prior to time t. Let the function verify(msg, keypub, sig) denote the return value of
using the cryptographic interface (verify,msg, keypub, sig).

Definition 8 We state that a payment order PO is acceptable with respect to a payment certificate PC
at time t if the following constraints hold:

1. PC was received by machine PC.for from machine PC.by.
2. verify(PC,PC.by.pub, PC.sigby) = true, where PC.by.pub is the public key part of the identifier

PC.by.
3. PC.path is a suffix of PO.path.
4. verify(PO,PC.v, PO.sigissuer) = true.
5. t ≤ min{PC.expire, PO.expire− PC.trt}.
6. No other PO with an identical PO.id was accepted earlier with respect to this PC .
7. The net amount that PC.by should pay to PC.for does not exceed PC.max, i.e.

PC.net(PO.amt) ≤ PC.max−
∑
{PC.net(po.amt)|po ∈ ACCEPTED(PC)t}

8. For every time interval (t′, t), it holds that

ACCEPTED(PC)t −ACCEPTED(PC)t
′
≤ PC.r · (t− t′) + PC.b

.

5.3 Issue PC

The instruction for FSP to issue a PC has different parameters, depending on the PC flavor. We mention
again the PC attributes:

PC =< id, by, for, path, expire, trt,max, net, b, r, v, sigby >

1. In order to issue a prime PC, we use

(issue pc, peer, expr,max, net, b, r)

This yields the following PC:

< id, u, peer, peer||u, expr, 0,max, net, b, r, u, sigu >

2. In order to issue a derived PC, from a base PC

PC0 < id0, by0, u, path0, expr0, trt0,max0, net0, b0, r0, v0, sigby0
>

we use
(issue pc, peer, expr,max, net, b, r, PCind)

We add another parameter, the base PC index in the PC issuer machine database (6.3). This would
yield the following PC:

PC1 < id1, by1, for1, for1||path0, expr1, trt0 +Dalay(by1, by0),max1, net1, b1, r1, v0, sigby1 >

14

When an FSP issues PC1, a credit of at least max1, for by0 is required. Otherwise, if a matching PO is
redeemed, by0 will owe by1 a higher amount than the maximum allowed one. Moreover, if other PCs are
derived from by0 PCs, the sum of these PCs max attributes should not exceed the credit given to by0.
An FSP may issue several derived PCs based on the same base PC0, but every PO that is redeemable
against the derived PC should be redeemable against the base PC0, to ensure that the derived PCs issuer
does not lose money.

For the derived PC flavor, the leaky bucket allocations should be validated, so the issuer does not
commit to a higher rate than it is able to handle. To this end, the protocol stores the maximum b and r
that limit the communication for each peer. It also stores the available b and r of the base PC, and every
time a derived PC is issued, it takes the given b and r parameters off the original b and r allocations.

The time it takes to handle a derived PC is calculated by adding the maximum delay to by0 to the
base PC handling time (trt0). This makes it possible for the issuer to send a redemption request with a
PO, and this redemption request should be received by by0 before the PO expires. The implementation
is described in Algorithms 17, 11.

5.4 Redeem PO

The next stage of the protocol is redemption. Every FSP keeps a balance for its peers, which changes
whenever redemptions and payments are made. This balance is the amount this FSP owes to its peer.
When an FSP receives a message (redeem, PO, id, POind) from its peer, it verifies that the PO is ac-
ceptable with respect to the relevant PC (PC.id = id), according to the conditions listed earlier. If the
PO is acceptable, the FSP responds with a signed message (redemption certified, POind, PO, time)
and increases the balance for that peer by PO.amt. Once this peer receives this certificate it takes the
said amount off its own balance. Of course, if the PO is accepted with respect to a derived PC, the PO
must also be acceptable with respect to the base PC, and the FSP should send a redemption reqest with
the same PO to the base PC issuer. In the present work we only consider one possible path for each
PO redemption; this path is specified in the PO itself. The implementation is described in Algorithms
13, 14.

5.5 External Payment

The last stage of the protocol is the actual payment. The payment is external to our system, and is notified
by the machine administrator. When an FSP receives notification (payment received, peer, amt), where
amt is the amount paid, it should increase the balance for peer by amt, until it reaches zero (to simplify
the protocol). The FSP must also send a signed certificate (payment certified, peer, amt, time) to peer.
Once peer receives this certificate, it should take the sum off its own balance. The implementation is
described in Algorithms 15, 16.

5.6 Communication Messages

Following is a list of messages that pass between the peers over the protocol:

• (given credit, credit): This message informs the receiver that the sender gave it credit. When
received, it is evaluated by Algorithm 10.
• (pc issued, PC): This message includes a PC issued by the sender for the receiver. When received,

it is evaluated by Algorithm 11.
• (redeem, PO, PCid, POindex): This message is used to request a redemption of a PO against a PC

with id PCid. It also includes the index of the PO in the sender database, to be referred to in the
certification. When received, it is evaluated by Algorithm 13.
• (redemption certified, POindex, peer, amount, time, signature) - This message certifies that the

sender accepts the PO sent by the receiver. Once received, it is evaluated by Algorithm 14.
• (payment certified, peer, amount, time, signature): This message certifies that the sender has re-

ceived an external payment in the amount of amount from the receiver. Once received, it is evaluated
by Algorithm 15.

15

 2give _credit, , , , ,C C CC pub c b r

B C

.

A

 2received _ credit, ,B cOut

  1 1 1 1 1 1 1pc_issued, , , , , , , , , , , CPC id C B B C exp max net b r C sig

 1 1 1 1 1issue _pc, , , , , , ,B exp max net b r 

 redemption_certified , , ,
AindB PO amtOut

 valid_redemption , , ,
BindB PO amtOut

 redemption_certified, , , , ,
Bind CPO B amt time sig

Fig. 7. Protocol Overview Illustration

16

6 Protocol Descriptions

We give a pseudo code implementation to the inter-FSP funds transfer protocol in the algorithms listed
in 6.4 below. Each algorithm describes the evaluation of an MFSP machine input interface. Algorithm
9 reacts upon input from the communication layer, and calls the relevant function to evaluate it.

6.1 Notations

We outline briefly the definitions included in [3], and substitute a number of notations by more convenient
forms. The symbol ↓ is the error element added to the domains and ranges of all the functions. We
substitute it by the notation null. Generally speaking, a database D is a countable set of functions,
called entries, each over a finite domain called attributes. For an entry x ∈ D, the value in an attribute
att is written as x.att For a predicate pred involving attributes, D[pred] means the subset of entries whose
attributes fulfill pred. If D[pred] contains only one element, we use the same notation for this element.
An entry x added to D is abbreviated as D :⇐ x, we substitute it by D : insert(x). A database D of a
machine owned by u is denoted by Du. The set INDS, isomorphic to N, numbers all the entries in D
consecutively. Each database has an incremental index cur ind ∈ INDS, that is initialized to zero, and
incremented on every entry insertion. The first attribute of the entry is the index, which is set to cur ind
implicitly. We use the notation cur inddb name for the incremental index of the database Ddb name. The
index is used as a primary key attribute of the database, i.e., we write D[i] for the selection D[ind = i].
We further use the convention that look-ups in D always return the element with the smallest index
whose attributes fulfill the queried predicate. The private key of u machine is denoted by pkshndu , and
the public key that u saves for v is denoted by pkshndu,v . We substitute these notations by private key,
and public keyv, respectively, for u machine.

6.2 Cryptographic library abstraction

The algorithms are written in a pseudo code that supports the abstraction of the cryptographic library
implementation, i.e. uses handles. A handle is a local name that the machine uses to reference cryp-
tographic terms. We use the set HNDS to represent the handles. This mechanism allows a protocol
description to be implemented both with an idealized cryptography and with real cryptography. In the
idealized version the handles are the local names of Dolev-Yao-style terms; in the real version, they are
the bit-strings. For this kind of work, the cryptographic library interface includes the commands:

• list forms a list of handles.
• parse list retrieves a handle to the i-th element in the list. It is equivalent to the list proj interface

in the original notations.
• store, retrieve inserts and receives data from the cryptographic library using handles.

In the algorithms, the superscript hnd on a parameter denotes that it is a handle. We use the
cryptographic library interfaces only with handle parameters. For example, we call the function store to
get a handle of a normal parameter before signing, and retrieve is called before database insertions.

6.3 Databases

The Inter-FSP Funds Transfer Protocol uses databases to maintain the data it needs for running. The
first database is DFSP . Each entry x in it has the arguments

(ind, peer, credit, balance, cert, b, r, t, x)

with the following types and meaning for a certain peer u:

• x.ind ∈ INDS, index in the database.
• x.peer, partner peer id.
• x.credit ∈ N, the remaining credit for x.peer.
• x.balance ∈ N, the amount that u owes to x.peer.
• x.cert ∈ N, holds the most recent certificate of external payment to x.peer. This certificate is received

by a message payment certified from x.peer.

17

• x.b, x.r ∈ N, the maximum leaky bucket parameters that can be given to this peer. These parameters
limit the rate that u can send messages to this peer.
• t, x are used to verify the leaky bucket transmission rate limitation according to the parameters

allocated for sending messages to x.peer; t is the last update time, and x is the last bucket value.

Another database is DPC , used to handle PC s. Each entry x in this database has the arguments

(ind, pc id, by, for, path, expire,max, net, b, r, v, sig, t, x, avl, base)

with the following types and meanings for a certain peer u:

• x.ind ∈ INDS, index in the database.
• x.pc id, pc by, for, path, expire, trt,max, net, b, r, v, sig, PC attributes as defined above in Definition

5.
• x.base, in case of a derived PC, this is the index of the base PC, otherwise it is null.
• x.avl ∈ N, the part of the maximum amount given in the PC that u has not used yet.
• t, x are used to verify the leaky bucket transmission rate limitation according to the parameters

allocated for sending redemption requests against this PC; t is the last update time, and x is the last
bucket value.

Another database, DPO, is used to handle POs and certificates. Each entry x in DPO
u has the arguments

(ind, id, issuer, path, amt, expire, sig, pc, cert)

with the following types and meanings for a certain peer u:

• x.ind ∈ INDS, index in the database.
• x.id, issuer, path, amt, expire, sig, PO attributes as defined earlier.
• x.pc ∈ INDS, the corresponding PC index in DPC

u of the PO.
• x.cert ∈ N , holds the certificate of the PO redemption. This certificate is received by a message
redemption certified.

6.4 Protocol Algorithms

In the algorithms below we give our pseudo code implementation to the protocol as described in section
5. An overview of the protocol is given in Fig. 7. In order to prevent message forgery, the sender
must always sign before sending a message. The receiver must verify this signature every time an input
arrives from the communication layer. To this end, we use the function ‘sign send’ (Algorithm 6) for all
messages exchanged between peers. This algorithm is also an excellent example for working with handles.
We first use the ‘store’ and ‘list’ function to prepare the parameters for signing (lines 3- 7) and then
pack the message and its signature for sending 9. The matching procedure for receiving a message is
demonstrated in Algorithm 9: First we split the argument list of which the message is made, and the
signature, and then verify them with the public key of the sender. We denote the running machine owner
id by u, and the running machine itself by MFSP

u .

Algorithm 5: verify LB(DB, ind)

// updates the pending bucket, and last time of update whenever it called

1 DB[ind].x− = (now()−DB[ind].t)/DB[ind].r ;
2 DB[ind].t = now() ;

// checks if adding one more packet to the pending bucket would exceed the max bucket

3 if DB[ind].x+ 1 > DB[ind].b then
4 return False;

5 return True;

18

Algorithm 6: sign send(f, type, parameters)

1 if (type = redeem) ∨ (// the LB validation is for non-redeem messages

2 (DFSP
u [(peer = f)].ind 6= null) ∧ (verify LB(DFSP

u , DFSP
u [(peer = f)].ind)) = True) then

3 typehnd ← store(title) ;

4 lhnd ← list(titlehnd) ;
5 foreach param ∈ parameters do

6 paramhnd ← store(param) ;

7 add to list(lhnd, paramhnd) ;

8 shnd ← sign(private key, lhnd) ;

9 mhnd ← list(lhnd, shnd) ;

10 send(f,mhnd) ;

11 DFSP
u [(peer = f)].x+ = 1 ;

Algorithm 7: Evaluation of init request instruction in MFSP
u

Input: (init request, security parameter, communication parameters)

1 L,R← communication parameters;
2 (private key, public keyu, id)← generate id(security parameter) ;
3 Output(init response, id, public keyu) ;
4 return success;

Algorithm 8: Evaluation of give credit instruction in MFSP
u

Input: (give credit, f, k, c, b, r)

1 if (DFSP
u [(peer = f)].ind = null) ∧ (c > 0) ∧ (b ≥ 0) ∧ (r ≥ 0) ∧ (r < R) then

2 DFSP
u : insert(f, c, 0, null, b, r, now(), 0) ;

// attributes are (peer,credit,balance,cert,b,r,t,x)

3 public keyf ← k ;
4 sign send(f, given credit, c) ;
5 return success;

6 else
7 return failure;

19

Algorithm 9: Evaluation of inputs from the Communication Layer in MFSP
u

Input: (f, lhnd)

1 lhnd
j ← parse list(lhnd, j) for j = 1, 2 ;

2 if verify(lhnd
1 , public keyf , l

hnd
2) = True then

3 typehnd ← parse list(lhnd
1 , 1) ;

4 type← retrieve(typehnd) ;

5 for i = 1 to list length(lhnd
1) do

6 paramhnd ← parse list(lhnd
1 , i) ;

7 param← retrieve(paramhnd) ;
8 add to list(parameter list, param) ;

9 if type = given credit then
10 evaluate given credit(f, parameter list) ;

11 else if type = pc issued then

12 evaluate pc issued(f, parameter list, lhnd
2) ;

13 else if type = redeem then
14 evaluate redeem(f, parameter list) ;

15 else if type = redemption certified then

16 evaluate redemption certified(f, parameter list, lhnd
2) ;

17 else if type = payment certified then

18 evaluate payment certified(f, parameter list, lhnd
2) ;

Algorithm 10: evaluate given credit(f, credit, b, r)

1 Output(received credit, credit, f, b, r) ;

Algorithm 11: evaluate pc issued(f, pc)

1 (id, by, for, path, expire, trt,max, net, b, r, v, sig)← parse list (pc);

2 j := DPC
u [(pc id = id) ∧ (pc by = by)].ind ;

3 if (DFSP
u [peer = f] 6= null) ∧ (j = null) ∧ (by = f) ∧ (for = u) ∧(prefix(u||f, path) = True)
∧(expire > now())∧ // check this is reasonable PC

4 (net(max) ≤ DFSP
u [peer = f].credit)∧ // net amount does not exceed the credit for the base pc

issuer

5 (DFSP
u [peer = f].b ≥ b) ∧ (DFSP

u [peer = f].r ≥ r) then
6 DPC

u : insert(pc, now(), 0,max, null) ;
// attributes are (PC(pc id,by,path,expire,trt,max,net,b,r,v,sig),t,x,avl,base)

7 DFSP
u [peer = f].credit− = net(max) ;

8 DFSP
u [peer = f].b− = b ;

9 DFSP
u [peer = f].r− = r ;

10 Output((pc issued, pc)) ;

20

Algorithm 12: is acceptable(po, pc id, time)

1 (po id, po issuer, po path, po amt, po expire, po sig)← parse list (po);

2 if (DPC
u [ind = pc id].ind! = null) // pc was issued

3 ∧ verify(po,DPC
u [pc id].v, po sig) = True) // po signature verified

4 ∧(DPO
u [id = po id ∧ issuer = po issuer].ind = null) // po id is unique

5 ∧(DPC
u [pc id].net(po amt) ≤ DPC

u [pc id].avl) // po net amount does not exceed the pc max amount

6 ∧(verify LB(DPC
u , DPC

u [pc id].ind) = True) // check the redemption rate

7 ∧(time ≤ po expire−DPC
u [pc id].trt) // we have the treatment time before po expiration

8 ∧(time ≤ DPC
u [pc id].expire) // pc didn’t expired

9 ∧(suffix(DPC
u [pc id].path, po path) = True) // po path matches the pc path

10 then
11 return True;

12 return False;

Algorithm 13: evaluate redeem(f, po, pc id, po index)

1 if is acceptable(po, pc id, now()) then
2 DPO

u : insert(po id, po issuer, po path, po amt, po expire, po sig, pc id, null) ;
// attributes are (id,issuer,path,amt,expire,sig,pc,cert)

3 DPC
u [pc id].avl− = DPC

u [pc id].net(po amt) ;

4 DPC
u [pc id].x+ = 1 ;

5 DFSP
u [peer = f].balance+ = DPC

u [pc id].net(po amt) ;

6 sign send(f, redemption certified, po index, f,DPC
u [pc id].net(po amt), now()) ;

7 Output(valid redemption, f, po index,DPC
u [pc id].net(po amt)) ;

8 base id := DPC
u [pc id].base ;

9 if (base id 6= null) ∧ (DPC
u [base id].ind 6= null) then

10 p := DPC
u [base id].by ;

11 DFSP
u [peer = p].balance− = DPC

u [base id].net(po amt) ;

12 DPC
u [base id].x+ = 1 ;

13 sign send(p, redeem, po, base id, cur indPO) ;

14 Output(redeem, p, cur indPO, DPC
u [base id].net(po amt)) ;

Algorithm 14: evaluate redemption certified(f, po ind, for, amt, time, sig)

1 if (po ind ≤ cur indPO) ∧ (for = u) ∧ (DPO
u [po ind].amt = amt) ∧ (now()− time ≤ Delay(f, u)) then

2 DPO
u [po ind].cert := list(redemption certified,f,po ind,for,amt,time,sig) ;

3 Output(redemption certified, f, po ind, amt) ;

Algorithm 15: evaluate payment certified(f, for, amt, time, sig)

1 if (for = u) ∧ (DFSP
u [peer = f].balance− amt ≥ 0)) then

2 DFSP
u [peer = f].balance− = amt ;

3 DFSP
u [peer = f].cert := list(payment certified,f,for,amt,time,sig) ;

4 Output(payment certified, f, amt) ;

21

Algorithm 16: Evaluation of payment received instruction in MFSP
u

Input: (payment received, f, amt)

1 if DFSP
u [peer = f].balance+ amt ≤ 0 then

2 DFSP
u [peer = f].balance+ = amt ;

3 sign send(f, payment certified, f, amt, now()) ;
4 return success;

5 else
6 return failure;

Algorithm 17: Evaluation of issue pc instruction in MFSP
u

Input: (issue pc, f, expr,max, net, x, b, r, base ind)

1 if (base ind = null) then
// prime PC

2 path← list(f,u) ;

3 pc← list(cur indPC , u, f, path, expr, 0,max, net, b− r ∗Delay(u, f), r, public keyu) ;
4 sig ←sign(private key, pc) ;
5 pc← list(pc, sig) ;

6 DPC
u : insert(pc, now(), 0,max, null) ;

// attributes are (PC(pc id,by,for,path,expire,trt,max,net,b,r,v,sig),t,x,avl,base)

7 sign send(f, pc issued, pc) ;
8 return success;

9 else
// derived PC

10 p← DPC
u [base ind].by ;

11 if (base ind ≤ cur indPC ∧ p 6= u) // base PC exists

12 ∧(expr ≤ DPC
u [base ind].expr −Delay(u, p)) // pc expires before its base PC

13 ∧(DPC
u [base ind].net(max) ≤ DPC

u [base ind].avl) // max amount does not exceed the base PC

14 ∧(b ≤ DPC
u [base ind].b) ∧ (r ≤ DPC

u [base ind].r)// committed rate not higher than the base PC

15 then
16 DPC

u [base ind].avl− = DPC
u [base ind].net(max) ;

17 DPC
u [base ind].b− = b ;

18 DPC
u [base ind].r− = r ;

19 path← list(f,DPC
u [base ind].path) ;

20 trt← DPC
u [base ind].trt+Delay(u, p) ;

21 pc← list(cur indPC , u, f, path, expr, trt,max, net, b, r,DPC
u [base ind].v) ;

22 sig ←sign(private key, pc) ;
23 pc← list(pc, sig) ;

24 DPC
u : insert(pc, now(), 0,max, base ind) ;

// attributes are (PC(pc id,by,for,path,expire,trt,max,net,b,r,v,sig),t,x,avl,base)

25 sign send(f, pc issued, pc) ;
26 return success;

27 else
28 return failure;

22

Algorithm 18: Evaluation of pc timeout instruction in MFSP
u

Input: (pc timeout, pc id)

1 if DPC
u [id = pc id].expr > now() then

2 base id = DPC
u [id = pc id].base ;

3 if DPC
u [id = pc id].by = u ∧ (base id 6= null) then

4 DPC
u [base id].avl+ = DPC

u [id = pc id].net(DPC
u [id = pc id].max) ;

5 DPC
u [base id].b+ = b ;

6 DPC
u [base id].r+ = r ;

7 else
8 f ← DPC

u [id = pc id].by ;

9 DFSP
u [peer = f].credit+ = DPC

u [id = pc id].net(DPC
u [id = pc id].max) ;

10 DFSP
u [peer = f].b+ = DPC

u [id = pc id].b ;

11 DFSP
u [peer = f].r+ = DPC

u [id = pc id].r ;

12 return success;

13 else
14 return failure;

Algorithm 19: Evaluation of issue po instruction in MFSP
u

Input: (issue po, path, amt, expire)

1 pohnd ← list(cur indPO, u, path, amt, expire) ;

2 sighnd ← sign(private key, pohnd) ;

3 Output(pohnd, sighnd) ;
4 return success;

Algorithm 20: Evaluation of po received instruction in MFSP
u

Input: (po received, po, pc id)

1 (po id, po issuer, po path, po amt, po expire, po sig)← parse list (po);

2 p := DPC
u [pc id].by ;

3 if (p 6= null) ∧ (p 6= u)∧ is acceptable(po, pc id, now() +Delay(u, p)) then
4 DPO

u : insert(po id, po issuer, po path, po amt, po expire, po sig, pc id, null) ;
// attributes are (id,issuer,path,amt,expire,sig,pc,cert)

5 DFSP
u [peer = p].balance− = DPC

u [pc id].net(po amt) ;

6 DPC
u [pc id].avl− = DPC

u [pc id].net(po amt);

7 DPC
u [pc id].x+ = 1 ;

8 sign send(p, redeem, po, pc id, cur indPO) ;

9 Output(redeem, p, po index,DPC
u [pc id].net(po amt)) ;

10 return success;

11 else
12 return failure;

23

7 Security Analysis

7.1 The cryptographic library

The Inter-FSP Funds Transfer Protocol uses cryptographic interfaces to sign messages with a private key,
verifying these signatures with a public key. The following security analysis assumes that the interfaces
are implemented by the ideal Dolev-Yao cryptographic library, which is defined by Backes et al. [3],and
denoted by:

Syscry,id

The Dolev-Yao model [8] represents cryptography as term algebras, and thus signature is verified with
a certain public key, if and only if the message was signed with the matching private key. Therefore,
the ideal library saves the tuple (message, key, signature) for each signing operation it performs, and
returns a handle that represents signature internally. Verification is done by searching for a tuple that
matches the input. If such a tuple exists it returns true, otherwise it returns false.

Of course, we wish the Inter-FSP Funds Transfer Protocol to be provably secure, with negligible
probability with respect to a given security parameter, when it uses a real cryptographic library and real
cryptographic calculations, as defined in [3] and denoted by:

Syscry,real

7.2 The Theorems

Before describing the theorems, we repeat the definition of a secure machine with respect to Valid CommLog
and Valid ProtocolLog from Section 3.

Definition 1 We state that machine M is a secure machine with respect to V alid CommLog and
V alid ProtocolLog, if for every polynomial adversary A, the probability of

Pr[Game(M, V alid CommLog, V alid ProtocolLog,A, 1k) = False]

is negligible with respect to the security parameter 1k.

Theorem 1. The proposed Inter-FSP Funds Transfer Protocol with an ideal cryptogaphic library is a
secure MFSP machine with respect to FSP V alid ProtocolLog and LR FIFO V alid CommLog.

Theorem 2. The proposed Inter-FSP Funds Transfer Protocol with a real cryptogaphic library is a
secure MFSP machine with respect to FSP V alid ProtocolLog and LR FIFO V alid CommLog.

Proof. Backes et al. proved the following claim in ([3], Theorem 1 (Security of Cryptographic Library):
The real cryptographic library is as secure as the ideal cryptographic library, so that protocols proved
on the basis of the deterministic, Dolev-Yao-like ideal library can be safely implemented with the real
cryptographic library. In their notation, they proved that:

Syscry,real ≥ Syscry,id

That is, any polynomial attacker able to break the system using the real cryptographic library, with
non-negligible probability, is able break the system when it uses the ideal one. According to Theorem
1, the Inter-FSP Funds Transfer Protocol is secure with Syscry,id. From the Backes et al. theorem, it
follows that the Inter-FSP Funds Transfer Protocol is secure with Syscry,real. �

In the following sections we prove Theorem 1. In Section 7.3 we present claims that help to prove
Theorem 1. In Section 7.4 we show that if these claims hold, Theorem 1 holds. In Section 7.5 we give
the proofs of the claims.

24

7.3 Claims

We claim that the balance that is saved in the machine is equal to the balance that is saved in
FSP V alid ProtocolLog.

Claim 1 When running FSP V alid ProtocolLog during the game, the value of Balance[u][v] is equiv-
alent to the value of DFSP

u [peer = v].balance.

We claim that Delay(u, v) limits the communication delay of a redemption request that passes from u
to v.

Claim 2 If LR FIFO V alid CommLog(CommLog) = True, then if an honest party u sends a redeem

message to v at time t, v should receive it at time t2 s.t. t ≤ t2 ≤ t+Delay(u, v).

We claim that the credit limits a negative balance.

Definition 9 Let Credit(u, v) denote the credit c given by the first instruction

(give credit, v, c, b, r)

from the upper layer of u, where c > 0.

Claim 3 For every honest peer u,

Credit(u, v) ≥ −DFSP
u [peer = v].balance

at every step of running the game.

We claim that an honest peer validates a redemption request with an acceptable PO.

Claim 4 If an honest peer u receives a payment order PO from its peer v at time t, and the PO is
acceptable at time t, with respect to a payment certificate PC that u issued for v, then u should output

(valid redemption, v, PO.id, PC.net(PO.amt))

immediately.

We claim that two honest peers store the same attributes of PCs they have issued for each other.

Claim 5 Let x be a record in database DPC
u of an honest peer u, and let v denote x.by. If v is honest,

there is a record y in DPC
v s.t.:

∀attribute ∈ {pc id, by, for, path, expire, trt,max, net, b, r, v, sig}

it holds that:
x.attribute = y.attribute

We claim that an honest peer can check if a PO will be acceptable to another peer.

Claim 6 Let u be an honest party, and let x be a record in DPC
u , where x.by is honest too. Let v denote

x.by, and let po be a certain payment order. For any time t1, if u runs the function

is acceptable(po, x.id, t1 +Delay(u, v))

at time t1 and it returns true, if v runs

is acceptable(po, x.id, t2)

at t2 s.t. t1 ≤ t2 ≤ t1 +Delay(u, v), it will return true as well.

We claim that every PO that is acceptable with respect to a derived PC (Definition 6), is also acceptable
with respect to the base PC.

Claim 7 Let pc derived be a derived payment certificate that an honest peer u issued based on a payment
certificate pc base received from p. Every payment order that is acceptable with respect to pc derived at
time t, is also acceptable with respect to pc base at any time t2|t ≤ t2 ≤ t+Delay(u, p).

25

7.4 Proof of Theorem 1 based on the claims

Consider the FSP Valid ProtocolLog procedure in Algorithm 4. We must show that for every run of the
game, if

LR FIFO V alid CommLog(CommLog) = True

then
FSP V alid ProtocolLog(ProtocolLog) = True

i.e. the conditions in lines 19 and 27 are never satisfied. We start with the condition in line 27:

Credit[u][v] < −Balance[u][v]

It is clear that Credit[u][v] is equivalent to Credit(u, v). Claim 1 also maintains that the DFSP
u [peer =

v].balance that is saved in the machine is equal to theBalance[u][v] that is saved in FSP V alid ProtocolLog.
Therefore, it follows from Claim 3 which maintains Credit(u, v) ≥ −DFSP

u [peer = v].balance, that this
condition is never satisfied. We now show that the condition in line 19, is never satisfied. To this end,
we must show that for every record

(u, t1, redeem, v, id, amt)

in the ProtocolLog, where v is honest, there is a matching record

(v, t2, valid redemption, u, id, amt)

or a record
(finish game, t2)

where t2−t1 ≤ Delay(u, v). Note that by definition, only honest parties write to ProtocoLog, and the first
attribute of a record in ProtocolLog is the writing peer identifier. Thus, a record (u, t1, redeem, v, id, amt)
may exist in ProtocolLog, only if an honest peer u outputs

(redeem, v, id, amt)

at time t1. Such an output can only occur in Algorithm 20. in line 9 and in Algorithm 13. in line 14:

1. Algorithm 20. line 9. Algorithm 20 is the evaluation of a (po received, po, pc id) instruction, of
a payment order received from the upper layer. To reach line 9, the conditions in line 3 must be
satisfied; in particular,

is acceptable(po, pc id, t1 +Delay(u, v)) = true

must hold. Also, a message (redeem, po, pc id, po ind) is sent to v (line 8), and should be received in
v at time t2 s.t. t2 ≤ t1 + Delay(u, v), according to Claim 2. Of course, if the game ends before a
redemption message was received, we get the line

(finish game, t2)

s.t. t2 ≤ t1 +Delay(u, v) in ProtocolLog as required.
If v is honest, its machine should evaluate such an input using Algorithm 13. Thus, v should output
(valid redemption, u, id, amt) at time t2 (line 9), if the function

is acceptable(po, pc id, t2)

(line 1) returns true. As mentioned earlier, the condition in Algorithm 20 in line 3 must be satisfied
in u. This means that there is a record x in DPC

u where x.id = pc id, and x.by = v. In this case,
according to Claim 6, if

is acceptable(po, pc id, t1 +Delay(u, v))

returns true in u, then
is acceptable(po, pc id, t2)

must also return true in v, and v should output (valid redemption, u, id, amt). This output leads
to the required (v, t2, valid redemption, u, id, amt) record in ProtocolLog.

26

2. Algorithm 13. line 14. To reach line 14, the condition in line 1 must be satisfied, i.e the input of
payment order po was acceptable at time t1 with respect to the payment certificate PC that is stored
in the record DPC

u [id = pc id]. To reach line 14, the condition in line 9 must be satisfied. That is,
the payment certificate PC, was derived from another payment certificate PC base. Additionally,
line 13 must be reached, and u should send a redemption request message to v, which is PC base.by.
According to Claim 2, this message will reach v no later than t1 +Delay(u, v). Of course, if the game
ends before the redemption request message arrives, we get the line

(finish game, t2)

s.t. t2 ≤ t1 + Delay(u, v) in ProtocolLog as required. According to Claim 7, every payment order
that is acceptable with respect to a derived PC at time t1, is also acceptable with respect to the base
PC at time t1 +Delay(u, v).
According to Claim 4, if v is honest, it should output immediately

(valid redemption, u, id, amt)

when it receives the redemption message from u, i.e. at time t2 s.t. t2 ≤ t1 +Delay(u, v). This output
leads to the required (v, t2, valid redemption, u, id, amt) record in ProtocolLog.

�

7.5 Proof of the Claims

In order to prove our claims, we first add sub-claims and prove them.

Sub-Claim 1 Consider an honest party u. There is at most one record per peer in DFSP
u .

Proof. The only time a record is inserted into DFSP
u is in Algorithm 8. line 2, and the condition in line

1 ensures that there is no other record with the same peer in DFSP
u . �

Sub-Claim 2 Consider an honest party u. If u sends a redemption message to its peer v, then u must
have exactly one record DFSP

u [peer = v].

Proof. The only places where u is able to send a redeem message are in Algorithms 20 and 13. In
both places we check first that a payment certificate from v exists in DPC

u (in line 3 and in line 9,
respectively). Such a payment certificate may be inserted into DPC

u only in Algorithm 11 at line 6. To
reach this insertion, the condition in line 3 must be satisfied; particularly, DFSP

u [peer = v] 6= null must
hold. According to Sub-Claim 1 there is at most one record DFSP

u [peer = v], so u must have exactly one
record DFSP

u [peer = v]. �

Sub-Claim 3 An honest party will never send a redemption against a payment certificate PC unless
the rate meets the LB limitation with PC.b, PC.r as parameters.

Proof. The only places where u is able to send a redemption are in Algorithm 20 and in Algorithm 13.
In Algorithm 20, u sends the redemption only if the function is acceptable returns true. The function
is acceptable is implemented in Algorithm 12, and returns true only if the condition in line 6 is satisfied.
This condition uses the function verify LB(DB, ind) (Algorithm 5). The function verify LB(DB, ind)
verifies if sending a single message at the time this function is called, is valid with respect to the LB model
with the parameters DB[ind].b,DB[ind].r. It uses the attribute DB[ind].x which represents the size of
the bucket ofpending messages on this link, and updates DB[ind].x according to the attribute DB[ind].t,
which is the last update time. The record that passes to verify LB(DB, ind) is the record of PC in
DPC

u , i.e. DPC
u [id = PC.id], so the LB is validated against PC.b, PC.r. The x attribute of this record is

incremented with each request (Algorithm 13 line 4, and Algorithm 20 line 7). In Algorithm 13, u sends
the redemption of a payment order that was accepted with respect to a derived payment certificate.
The redemption is sent to the issuer of the base payment certificate base pc. We show that the sum of
b, r parameter among all payment certificates derived from base pc, does not exceed pc base.b, pc base.r,
respectively. To issue a derived payment certificate Algorithm 17 is used. In this algorithm, the derived
payment certificate b, r attributes are checked in line 14, against the attributes b, r in the pc base record

27

of DPC
u . These attributes are initialized to pc base.b, pc base.r once pc base is received, in in line 6 of

Algorithm 11. For every PC derived from pc base these attributes are reduced by the b, r of the derived
PC in lines 17 and 18 (When the derived PC is timed out these attributes are increased by the same
values of Algorithm 18 lines 5,6). This way the derived payment certificates’ rates are pre-allocated from
the total LB parameters of the base payment certificate, and the redemption of payment orders that are
received from the upper layer are verified against the reminder of the LB parameters. �

Sub-Claim 4 The net amount of redemptions of an honest peer against a certain PC, is limited by the
total maximum amount of the PC.

Proof. An honest peer u, saves in avl the attributes of record x in DPC
u the amount remaining in the

payment certificate that is stored in this record. This attribute is initialized to the x.net(x.max) when the
payment certificate received is stored (Algorithm 11. line 6). A redemption can only be sent in Algorithm
20, or in algorithm 13. In Algorithm 20, u checks that the net amount of the redemption does not exceed
this avl, using the is acceptable function (Algorithm 12.line 5), and updates it in line 6. In Algorithm
13, u would redeem a payment certificate only if it is acceptable with respect to some derived payment
certificate, and it would redeem it to the issuer of the base payment certificate automatically. So, the
check and the update of avl, must be done when u issues derived PC.

We look into Algorithm 17, that describes the evaluation of the issue pc instruction. Issuing of
derived payment certificate pc derived, that is based on payment certificate pc base, is done by u only
if the condition in line 13 is satisfied. This condition checks the attribute avl in the record DPC

u [id =
pc base.id] and together with the update in line 16 (and with the update of timeout PC in Algorithm
18, line 4), it limits the total maximum net amount of all derived payment certificates that are based on
pc base, to the initial value of this avl attribute, which is the net amount of the maximum amount of
pc base (Algorithm 11. line 6). �

Sub-Claim 5 When running Algorithm 17. which evaluates issuing of derived PC, the condition that
ends at line 15 is satisfied if and only if every acceptable PO with respect to the derived PC at some
time t, is acceptable with respect to the base PC at any time t2|t ≤ t2 ≤ t + Delay(u, p), where p is the
issuer of the base PC.

Proof. Let pc derived be the derived PC, issued by an honest peer u for some peer f , using Algorithm
17, i.e. the condition that ends at line 15 was satisfied. Let pc base be the base PC of pc derived,
issued by other peer p. Also, let po be an acceptable payment order with respect to pc derived at some
time t. We repeat Definition 8, that specifies the constrains that should hold for payment order PO
to be acceptable with respect to payment certificate PC, and show that the claim holds, that is, po is
acceptable with respect to pc base at time t+Delay(u, p), by referring to lines in Algorithm 17. For the
sake of intelligibility, we rewrite the definition and add our proof of each part inline:

1. PC was received by machine PC.for from machine PC.by. This is checked in line 11, a record
with x s.t. x.by 6= u may exist in DPC

u only if it was inserted in Algorithm 11 in line 6, that is,
(PC issued, pc base) message was received in u, from the issuer p.

2. verify(PC,PC.by.pub, PC.sigby) = true, where PC.by.pub is the public key part of the identifier
PC.by. As mentioned above, pc base was received from the communication layer as a (PC issued, pc base)
message from p. The verification of the signature is done in Algorithm 9, line 2 before this input is
evaluated in Algorithm 11.

3. PC.path is a suffix of PO.path. If po is acceptable with respect to pc derived, then pc derived.path
must be a suffix of po.path. According to line 19, pc base.path is a suffix of pc derived.path. Therefore,
pc base.path is a suffix of po.path.

4. verify(PO,PC.v, PO.sigissuer) = true. If po is acceptable with respect to pc derive it must satisfy
this condition, since pc derived.v = pc base.v according to line 21.

5. t ≤ min{PC.expire, PO.expire − PC.trt}. If po was accepted with respect to pc derived at time t,
then t ≤ po.expr − pc derived.trt and t ≤ pc derived.expr.
In line 12 it is checked that pc derived.expr ≤ pc base.expr−Delay(u, p). Therefore, t+Delay(u, p) ≤
pc base.expr. Also, according to line 20, pc derived.trt = pc base.trt + Delay(u, p). Therefore, if
t ≤ po.expire− pc derived.trt, then t+Delay(u, p) ≤ po.expire− pc base.trt.

28

6. No other PO was accepted earlier with respect to this PC, with an identical PO.id. Of course, po is
acceptable only once. Every PO has a specific redemption path, so if a po is found to be unique in
u, it will be unique in p as well, since no other peer is able to redeem this PO to p.

7. The net amount that PC.by should pay to PC.for does not exceed PC.max, i.e.

PC.net(PO.amt) ≤ PC.max−
∑
{PC.net(po.amt)|po ∈ ACCEPTED(PC)t}

This is checked in line 13, with the attribute avl in the pc base record in DPC
u . According to

Sub-Claim 4, this condition limits the net amount of all the redemptions against pc base, including
redemptions of payment orders that were accepted with respect to derived PCs from pc base.

8. For every time interval (t′, t), it holds that

ACCEPTED(PC)t −ACCEPTED(PC)t
′
≤ PC.r · (t− t′) + PC.b

We first show that the sum of the b, r parameter of all the payment certificates derived from base pc
does not exceed pc base.b, pc base.r, respectively. This is verified in line 14, with the attributes r, b
in the pc base record in DPC

u . These attributes are initialized to pc base.b, pc base.r when pc base is
received, in Algorithm 11 at line 6. For every PC derived from pc base, these attributes are reduced
by the b, r of the derived PC in lines 17 and 18 (When the derived PC is timed out Algorithm 18
lines 5,6) increases these attributes by the same values. This way, if po is acceptable with respect to
pc derived, it is LB-verified with pc derived.r, pc derived.b, which together with all derived payment
certificates are lower than pc base.r, pc base.b. Thus, po must be LB-verified with pc base.r, pc base.b.

Therefore according to Definition 8, the claim holds. �

Sub-Claim 6 The return value of the function is acceptable(PO, pc id, t), when run by an honest peer
u at time t, is true if and only if the payment order PO is acceptable at time t with respect to the payment
certificate PC which is stored in DPC

u [id = pc id].

Proof. The function is acceptable is implemented in Algorithm 12. and returns true only if the condition
that ends in line 9 is satisfied. We repeat Definition 8 that specifies the constrains that should hold
for a payment order PO to be acceptable with respect to payment certificate PC, and for each constrain
show that it holds, by referring to the relevant lines in Algorithm 12. For the sake of intelligibility, we
rewrite the definition and add our proof of each part in line:

1. PC was received by machine PC.for from machine PC.by. This is checked at line 2; the condition
is satisfied only if DPC

u contains a record x, where x.id = pc id. If x.by = u, such a record can only
be inserted in Algorithm 17 at lines 6 or 24 respectively, and only if a prime PC or a derived PC
is issued. Immediately after each of these lines (Algorithm 17 lines 7, 25), the payment certificate
PC is sent to x.for, which is PC.for. Otherwise, if x.by 6= u, such a record can only be inserted in
Algorithm 11. that evaluates receiving a payment certificate from the communication layer, at line
6. According to the condition in line 3, this x.by is the sender of the message, and x.for = u.

2. verify(PC,PC.by.pub, PC.sigby) = true, where PC.by.pub is the public key part of the identifier
PC.by. If the issuer of a PC is u itself, it should sign the PC and store the signature in PC.sig in
Algorithm 17 lines 7, 25. Otherwise, if a PC is received as a communication input, u must verify
the signature of the sender on the PC, in Algorithm 2. before evaluating it.

3. PC.path is a suffix of PO.path. This is checked in line 9.
4. verify(PO,PC.v, PO.sigissuer) = true. This is checked in line 3.
5. t ≤ min{PC.expire, PO.expire− PC.trt}. This is checked in lines 8 and 7.
6. No other PO has been accepted earlier with respect to this PC, with an identical PO.id. This is

checked in line 4. This condition checks that there is no record in DPO
v from the same issuer, with

an id attribute that is identical to PO.id, given that the payment order id attribute is unique for each
issuer (Algorithm 19). A payment order record can be inserted into DPO only after successful check
of is acceptable() with this payment order (Algorithm 13. line 2, Algorithm 20. line 4). It follows
that every payment order can pass is acceptable() only one time per machine, when a redemption is
sent or received.

29

7. The net amount that PC.by should pay to PC.for does not exceed PC.max, i.e.

PC.net(PO.amt) ≤ PC.max−
∑
{PC.net(po.amt)|po ∈ ACCEPTED(PC)t}

This is checked in line 5, using the attribute x.avl. According to Sub-Claim 4, this condition limits
the net amount of all redemptions made against a PC.

8. For every time interval (t′, t), it holds that

ACCEPTED(PC)t −ACCEPTED(PC)t
′
≤ PC.r · (t− t′) + PC.b

This is checked in line 6 that uses the function verify LB(DB, ind) (Algorithm 5). The function
verify LB(DB, ind) verifies that a single message sent at the time this function was called, is
valid with respect to the LB model with the parameters DB[ind].b,DB[ind].r. It uses the attribute
DB[ind].x which represents the size of the bucket of the pending messages on this link, and updates
DB[ind].x according to the attribute DB[ind].t, which is the last update time. The b, r parameters of
the LB verification are the PC.b, PC.r parameters. The x.x is incremented by each request (Algorithm
13 line 4, and Algorithm 20 line 7).

�

Proof of Claim 1

Claim 1 When FSP V alid ProtocolLog (Algorithm 4.) is run during the game, the value of Balance[u][v]
is equivalent to the value of DFSP

u [peer = v].balance.

Proof. Consider an honest party u that runs the Inter-FSP Funds Transfer Protocol. According to Sub-
Claim 1, there is at most one record per peer in DFSP

u . DFSP
u [peer = v].balance is initialized to zero in

Algorithm 8 in line 2, following instruction

(give credit, v, k, c, b, r)

to machine u; this is the first give credit instruction for the peer v and (c > 0)∧(b ≥ 0)∧(r ≥ 0)∧(r <
R). Clearly, such an instruction will lead to the following line in ProtocolLog

(u, t, give credit, v, k, c, b, r)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, the conditions in lines 5
- 11 will not be satisfied, and thus, at line 14 Balance[u][v] will be initialized to zero as well.

We list below all the places where DFSP
u [peer = v].balance is changed:

1. Algorithm 13 at line 5.
2. Algorithm 13 at line 11.
3. Algorithm 20 at line 5.
4. Algorithm 16 at line 2.
5. Algorithm 15 at line 2.

We prove by induction that DFSP
u [peer = v].balance is equivalent to the value of Balance[u][v], after all

the possible changes according to this list.

1. Added amount amt to DFSP
u [peer = v].balance in Algorithm 13 at line 5. Right after this line, at

line 7, u should output
(valid redemption, v, po ind, amt)

Such an output will lead to the following line in ProtocolLog:

(u, t, valid redemption, v, po ind, amt)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, it will reach line 16
and add amt to Balance[u][v] as well.

30

2. Subtracted amount amt from DFSP
u [peer = v].balance in Algorithm 13 at line 11. Right after this

line, at line 14, u should output
(redeem, v, po ind, amt)

Such an output will lead to the following line in ProtocolLog:

(u, t, redeem, v, po ind, amt)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, it will reach line 18
and subtract amt from Balance[u][v] as well.

3. Subtracted amount amt from DFSP
u [peer = v].balance in Algorithm 20 at line 5. Right after this

line, at line 9, u should output
(redeem, v, po ind, amt)

Such an output will lead to the following line in ProtocolLog:

(u, t, redeem, v, po ind, amt)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, it will reach line 18
and subtract amt from Balance[u][v] as well.

4. Added amount amt to DFSP
u [peer = v].balance in Algorithm 16 at line 2. This Algorithm is called

as a result of instruction
(payment received, v, amt)

where DFSP
u [peer = v].balance + amt ≤ 0. Such instruction will lead to the following line in

ProtocolLog:
(u, t, payment received, v, amt)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, it will reach line 24
and add amt to Balance[u][v] as well.

5. Subtracted amount amt from DFSP
u [peer = v].balance in Algorithm 15 at line 2. Right after this

line, at line 4, u should output
(payment certified, v, amt)

Such an output will lead to the following line in ProtocolLog:

(u, t, payment certified, v, amt)

and when FSP V alid ProtocolLog (Algorithm 4.) reaches this line in the log, it will reach line 26
and subtract amt from Balance[u][v] as well.

�

Proof of Claim 2

Claim 2 If LR FIFO V alid CommLog(CommLog) = True, then if an honest party u sends a redeem

message to v at time t, it should be received by v at time t2 s.t. t ≤ t2 ≤ t+Delay(u, v).

Proof. Note that Delay(u, v) (Definition 3) limits the delay of communication between u to v as long as
the underlying communication layer guarantees sending requests at a certain service rate defined in the
LR server model by the parameters L,R. This is given by the assumption of

LR FIFO V alid CommLog(CommLog) = True

In addition, the rate by which messages are sent from u to v must be limited by the LB model validation
with the parameters b, r, given by the instruction:

(give credit, v, k, c, b, r)

in u, where (b ≥ 0) ∧ (r ≥ 0) ∧ (r < R). We need to show that the transmission rate of an honest
party meets this limitation. To this end we maintain the attributes DFSP

u [peer = v].b,DFSP
u [peer = v].r.

31

According to Sub-Claim 2, if u sends redemptions to v, there is exactly one record DFSP
u [peer = v]. The

attributes DFSP
u [peer = v].b,DFSP

u [peer = v].r are initialized when u inserts the record DFSP
u [peer = v],

at line 2 of Algorithm 8, which evaluates the

(give credit, v, k, c, b, r)

instruction. A record may be inserted according to the condition in line 1 only if (b ≥ 0)∧(r ≥ 0)∧(r < R)
and the values of DFSP

u [peer = v].b,DFSP
u [peer = v].r are set to the b, r parameters, respectively. We de-

termine that the total sums of all b, r attributes of the stored payment certificates from v never exceed the
given initial b, r parameters in the give credit instruction. Whenever u receives a payment certificate
PC from v, the values of PC.b, PC.r are verified to be lower than DFSP

u [peer = v].b,DFSP
u [peer = v].r re-

spectively (Algorithm 11, line 5), and if a PC is stored, the values of DFSP
u [peer = v].b,DFSP

u [peer = v].r
are reduced by PC.b, PC.r, respectively. DFSP

u [peer = v].b,DFSP
u [peer = v].r may increase only when

PC is timed out, and they are increased by PC.b, PC.r respectively (Algorithm 18. lines 10,11). Accord-
ing to Sub-Claim 3, u never sends a redemption against a payment certificate PC unless the transmission
rate meets the LB limitation with PC.b, PC.r as parameters. The only way for an honest peer to send
a message, is by using the sign send() function (Algorithm 6). The LB is limited in Algorithm 6, at
line 2, using the function verify LB(DB, ind) (Algorithm 5). Only messages that are not redemptions
are verified, as the redemption messages rates are pre-allocated, and the verification is done against the
payment certificate, as already mentioned.

The function verify LB(DB, ind) verifies that sending a single message at the time this function
is called is valid with respect to the LB model with the parameters DB[ind].b,DB[ind].r. It uses the
attribute DB[ind].x which represent the size of the bucket of pending messages on this link, and updates
DB[ind].x according to the attribute DB[ind].t, which is the last update time. The b, r parameters of
the LB verification are the remaining DFSP

u [peer = v].b,DFSP
u [peer = v].r attributes, after allocation of

the rates of the redemptions. The values of DFSP
u [peer = v].t,DFSP

u [peer = v].x are initialized to the
initialization time, and to zero respectively (Algorithm 8 line 2), and DFSP

u [peer = v].x is updated each
time a message of any type is sent (Algorithm 6. line 11).

�

Proof of Claim 3

Claim 3 For every honest peer u, at every step of running the game,

Credit(u, v) ≥ −DFSP
u [peer = v].balance

Proof. The balance that honest party u saves for its peer in DFSP
u [peer = v].balance is the amount that

u owes to v, that is, when this is a negative value, v owes money to u. Obviously, the Credit(u, v) is
always non-negative, by definition. We need to show that the balance is never lower than −Credit(u, v),
even if it is negative.

According to Claim 1, DFSP
u [peer = v].balance is initialized to zero, and decreases only when an

external payment is certified and a redemption request is sent. On certification of an external payment
(Algorithm 15), the balance never goes below zero, according to the condition in line 1, so it is still higher
than any negative value. Therefore, the only possible way for the balance to have a negative value is by
sending a redemption to v, in which case the balance decreases by the net amount of the redemption.
An honest peer u saves the remaining credit in DFSP

u [peer = v].credit for its peer v. This attribute is
initialized to Credit(u, v) in Algorithm 8 at line 2. Every time a payment certificate is received from v, it
is checked and updated that the net maximum amount that can be redeemed using the received payment
certificate is lower or equal to DFSP

u [peer = v].credit, and is reduced by the same value (Algorithm
11 lines 4 and 7). When a PC is timed out, DFSP

u [peer = v].credit is updated and is increased by the
same value (Algorithm 18. line 9). According to Sub-Claim 4, all the redemptions made against a certain
payment certificate are limited by the maximum net amount of this payment certificate, and the total
sum of all the payment certificates of a certain peer, is limited by this peer’s initial credit. �

Proof of Claim 4

32

Claim 4 If an honest peer u receives a payment order PO from peer v at time t, and the PO is acceptable
at time t with respect to a certain payment certificate PC that u issued for v, then u should output

(valid redemption, v, PO.id, PC.net(PO.amt))

immediately.

Proof. An honest peer evaluates the reception of a payment order in Algorithm 13, and outputs the
required message (valid redemption, v, PO.id, PC.net(PO.amt)) if the condition in line 1 is satisfied.
This condition examines the return value of the function is acceptable(PO,PC.id, t), where t is the time
of running. According to Sub-Claim 6, is acceptable(PO,PC.id, t) returns true only if PO is acceptable,
at time t, with respect to PC. Therefore, given that PO is acceptable at time t, with respect to PC, the
required message should be output immediately as required. �

Proof of Claim 5

Claim 5 Let x be a record in database DPC
u of an honest peer u, and let v denote x.by. If v is honest,

there is a record y in DPC
v s.t. the tuple:

(x.pc id, x.by, x.for, x.path, x.expire, x.trt, x.max, x.net, x.b, x.r, x.v, x.sig)

is exactly the same as the tuple:

(y.pc id, y.by, y.for, y.path, y.expire, y.trt, y.max, y.net, y.b, y.r, y.v, y.sig)

Proof. The only possible place to insert a record to DPC
u , where the by attribute is not u, is in Algo-

rithm 11. in line 6. To evaluate this algorithm, u must receive an input message (pc issued, pc) from v
(Algorithm 2, line 11). Moreover, the input pc is passed to Algorithm 11 and when the record is inserted
into DPC

u , the attributes

(pc id, by, path, expire, trt,max, net, b, r, v, sig)

of the record are set to the input pc. If a message is sent from an honest v, the only possible place to
send this message is in Algorithm 17 at lines 7,25. To reach one of these lines, v must insert a record
whose attributes

(pc id, by, path, expire, trt,max, net, b, r, v, sig)

are set to the pc that it sends to u (lines 6, 24 respectively). �

Proof of Claim 6

Claim 6 Let u be an honest party, and let x be a record in DPC
u , where x.by is honest too. Let v denote

x.by, and let po be a certain payment order. For any time t1, if u runs the function

is acceptable(po, x.id, t1 +Delay(u, v))

at time t1 and it returns true, if v runs

is acceptable(po, x.id, t2)

at t2 s.t. t1 ≤ t2 ≤ t1 +Delay(u, v), it will return true as well.

Proof. The implementation of the function is acceptable() is in Algorithm 12. and it returns true only
if all the conditions in lines 2 - 9 are satisfied. We list below the conditions, and show for each that if it
is satisfied in u, it will be satisfied in v as well.

1. Line 2: To satisfy this condition there must be a record in DPC
v with id an attribute that equals

pc id. According to Claim 5. if there is a x record in DPC
u where x.by = v ∧ x.id = pc id, there must

be a record y in DPC
v with the same PC attributes. Specifically, y.id = x.id = pc id.

33

2. Line 3: This condition depends only on the parameter po, which is the same when it is run in u.
Therefore, if it is satisfied in u it is also satisfied in v.

3. Line 4: This condition checks that there is no record in DPO
v with an id attribute that equals to

po.id from the same issuer. The payment order id attribute is unique per issuer (Algorithm 19). An
honest peer must run the function is acceptable() with a payment order before sending a redemption
(Algorithm 13. line 1, Algorithm 20. line 3). A payment order record can only be inserted into DPO

after successful check of is acceptable() with this payment order (Algorithm 13. line 2, Algorithm 20.
line 4). For is acceptable() to return true, our condition (line 4) must be satisfied, i.e. there is no such
record with the same po.id and po.issuer in the machine database. Therefore, every payment order
can pass is acceptable() only one time per machine. Once the condition in line 9 (specific redemption
path for a PO) is satisfied in u, a payment order can pass is acceptable(PO, pc id, time) in v, only
if it comes from u. Therefore, when u runs is acceptable, if there is no record in DPO

u with id and
issuer attributes that equals po.id and po.issuer respectively, then when v runs it, there will be no
record in DPO

v with id and issuer attributes that is equal to po.id and po.issuer respectively.
4. Line 5, DPC

v [pc id].net(po amt) ≤ DPC
v [pc id].avl. The left side of the inequality should be the same

when run by u, since DPC
v [pc id].net = DPC

u [pc id].net, according to Claim 5, as showed above. We
will show that DPC

v [pc id].avl ≤ DPC
u [pc id].avl by induction. In both records, the attribute avl is

initialized to the attribute max when it is inserted into DPC (Algorithm 17 lines 6,24, and Algorithm
11, line 6). The attribute DPC

u [pc id].avl is reduced only in two places
(a) Algorithm 17. at line 16, when u issues a payment certificate that is derived from the payment

certificate with the identifier pc id. The subtraction is by the max attribute of the derived
payment certificate.

(b) Algorithm 20. at line 6, when u sends the redemption of a PO that was received from the upper
layer and passed is acceptable(PO, pc id, time), to v.

The attribute DPC
v [pc id].avl is reduced by the net amount of payment order PO that passes the

check of is acceptable(PO, pc id, time) (Algorithm 13, line 3). As we showed above, such a PO can
be received only from u. Therefore, if v reduced DPC

v [pc id].avl by the net amount of a certain PO
from u, u should reduce from DPC

u [pc id].avl an equal or greater amount, because the net amount of
the payment orders that come from a derived payment certificate are limited by the max attribute
of the derived payment certificate, and the net amount of a payment certificate that comes from the
upper layer is equal on both sides.

5. Line 6, validation of the redemption rate. LB is validated using the function verify LB()with the
same LB parameters, since according to Claim 5, DPC

v [pc id].b = DPC
u [pc id].b and DPC

v [pc id].r =
DPC

u [pc id].r. The attribute x is updated in v upon each redemption of a payment order received
from u (Algorithm 13. line 4), and is updated in u as well (Algorithm 20. line 7, and Algorithm 13.
line 12).

6. Lines 7 and 8, check that po is up to date, and can be redeemed before the expiration time, according
to the trt attribute in the payment certificate. Of course, the right-hand sides of the inequalities are
the same when run by u and by v, according to Claim 5. The only difference is in the time parameter.
Note that u runs is acceptable with time parameter is equal to t1 + Delay(u, v) while v runs with
time parameter t2. Since t2 ≤ t1 + Delay(u, v), according to Claim 2, the left-hand sides of the
inequalities, when run by v, will be equal or lower from those run by u, meaning that the conditions
are satisfied.

7. Line 9. This condition depends on a po, which is the same when run by v as by u, and onDPC
v [pc id].path

that according to Claim 5, DPC
v [pc id].path = DPC

u [pc id].path. Therefore, if it is satisfied for u, it
is satisfied for v as well.

We showed that for each condition in is acceptable, if it is satisfied in u, it is satisfied in v as well. �

Proof of Claim 7

Claim 7 Let pc derived be a derived payment certificate that an honest peer u issued based on a payment
certificate pc base from p. Every payment order that is acceptable with respect to pc derived at time t,
will be acceptable with respect to pc base at any time t2|t ≤ t2 ≤ t+Delay(u, p).

Proof. An honest party can only issue pc derived in Algorithm 17. at line 25. To reach this line, the
condition that ends at line 15 must be satisfied. According to Sub-Claim 5, this condition is satisfied only

34

if every payment order that is acceptable with respect to pc derived at some time t, is also acceptable
with respect to pc base at any time t2|t ≤ t2 ≤ t+Delay(u, p), where p is the issuer of pc base. �

8 Liveness

In Section 7 we proved the safety property of the Inter-FSP Funds Transfer Protocol. In the present
section we prove the liveness property, i.e. that the protocol reacts to instructions without throwing
exceptions. Actually, in most of the protocol’s instructions, the protocol throws exceptions only for
trivially invalid input. However, in the instructions issue pc and po received, it is not trivial to show
that exceptions do not occur. We need to show that for these instructions, the Inter-FSP Funds Transfer
Protocol only throws exceptions for invalid instructions.

Definition 10 We define the expected behavior of MFSP upon an (issue pc, PC attributes) instruc-
tion, as follows: The machine should sign a payment certificate PC that comprises the given attributes,
as defined in Definition 5, and send a (pc issued, PC) message to PC.for. This should be done under
the restriction that redemption of any payment order that is acceptable with respect to PC, at any time,
will not cause money loss as defined in Definition 4.

Definition 11 We define the expected behavior of MFSP upon a (po received, PO, PCid) instruction,
as follows: The machine should send redeem message with the given payment order PO to the peer that
issued the given payment certificate. This should be done under the restriction that the given payment
certificate was received from another peer, and that the PO is acceptable with respect to it at the time
the redemption is received.

Definition 12 We state thatMFSP has a liveness property if it behaves as expected upon the instructions
issue pc and po received.

Theorem 3. The Inter-FSP Funds Transfer Protocol has the liveness property.

Proof. For each instruction, we show that the Inter-FSP Funds Transfer Protocol behaves as defined in
Definitions 10 and 11:

1. The instruction (issue pc, PC attributes) is evaluated in Algorithm 17. In case of a prime PC, the
required payment certificate is sent at line 7. In case of a derived PC, the required payment certificate
is sent at line 25, only if the condition that ends at line 15 is satisfied. According to Sub-Claim 5, this
condition is satisfied if every PO that is acceptable with respect to the derived PC at some time t, is
acceptable with respect to the base PC at any time t2|t ≤ t2 ≤ t+Delay(u, p), where p is the issuer
of the base PC. Of course, if the machine receives a PO that is acceptable with respect to its derived
PC, and is not acceptable with respect to the base PC at the time the redemption is received, it
will lose the money according to Definition 4. Therefore, the condition that ends at line 15 validates
precisely the restriction of Definition 10.

2. The instruction (po received, PO, PCid) is evaluated in Algorithm 20. The redeem message is sent
as required in line 8, only if the condition at line 3 is satisfied. This condition checks that the given PC
was received by machine u from another peer p, and that the function is acceptable(PO,PCid, now()+
Delay(u, p)) returns true. According to Claim 6, if is acceptable(PO,PCid, now() + Delay(u, p))
returns true in u, is acceptable(PO,PCid, t2) must return true in p, for any time t2|t ≤ t2 ≤
t + Delay(u, p). According to Sub-Claim 6, is acceptable(PO,PCid, t2) returns true in p only if
PO is acceptable with respect to PC at time t2. Therefore, the condition at line 3 validates precisely
the restriction of Definition 11.

�

9 Conclusions

• Initially, we present the Inter-FSP Funds Transfer Protocol. The protocol ensures reliability by
limiting the rate of service for each peer.

35

• The protocol was designed with a conservative risk limiting mechanism, ensuring that each of the
parties meet its commitments even in worst case situations. Note that real systems often take higher
risks to maximize revenues. In such cases a system with additional freedom degrees should be imple-
mented based on our work. For instance, it is possible to limit the risk by letting each party estimate
the probability of loss in addition to the credit it gives to its peers, and add a parameter that sets a
limit to the probability of bankruptcy.
• The proposed protocol handles the relationships between the peers and the transactions they make.

The problem of finding a path made of peers that trust and work with each other is out of this proto-
col’s scope. The difference between these two tasks resembles the difference that exists in networking
between an IP protocol and routing. In the future, work could be done on routing, i.e. determining
an optimal path on a given FSP network.
• In cases that are considered as losses, adding an evidence layer to our protocol could provide sufficient

evidence for disputing outside the protocol. This evidence should include non-repudiated delivery of
messages and signed certificates that the peers give to each other (see [10]).

36

Bibliography

[1] Swift instructed to disconnect sanctioned iranian banks following eu council decision, March 2012. URL

http://www.swift.com/news/press_releases/SWIFT_disconnect_Iranian_banks.

[2] M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of an electronic

payment system. 2005. ISSN 1063-6900.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In

Proceedings of the 10th ACM conference on Computer and Communications Security, pages 220–230. ACM,

2003. ISBN 1581137389.

[4] M. Bellare, J.A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik, and M. Waidner. ikp:

a family of secure electronic payment protocols. In Proceedings of the 1st conference on USENIX Workshop

on Electronic Commerce-Volume 1, pages 7–7. USENIX Association, 1995.

[5] Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital payment systems with passive anonymity-revoking

trustees. Journal of Computer Security, 5(1):69–89, 1997.

[6] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology: Proceedings of Crypto,

volume 82, pages 199–203, 1983.

[7] Y. Chen, R. Sion, and B. Carbunar. Xpay: Practical anonymous payments for tor routing and other net-

worked services. In Proceedings of the 8th ACM workshop on Privacy in the electronic society, pages 41–50.

ACM, 2009.

[8] D. Dolev and A. Yao. On the security of public key protocols. Information Theory, IEEE Transactions on,

29(2):198–208, 1983.

[9] A. Herzberg, E. Shai, and I. Zisser. Decentralized electronic certified payment, 2009. US Patent 7,546,275.

[10] Amir Herzberg and Igal Yoffe. The delivery and evidences layer. IACR Cryptology ePrint Archive, 2007:

139, 2007.

[11] Amir Herzberg and Igal Yoffe. The layered games framework for specifications and analysis of security

protocols. International Journal of Applied Cryptography, 1(2):144–159, 2008.

[12] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic queuing systems for

the internet, volume 2050. Springer, 2001.

[13] Harry Leinonen and Kimmo Soramäki. Simulating interbank payment and securities settlement mechanisms

with the bof-pss2 simulator. Technical report, Bank of Finland, 2003.

[14] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

[15] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure

message transmission. In Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,

pages 184–200. IEEE, 2001.

[16] M. Schmees. Distributed digital commerce. In Proceedings of the 5th international conference on Electronic

commerce, pages 131–137. ACM, 2003.

[17] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of traffic scheduling algorithms.

IEEE/ACM Transactions on Networking (ToN), 6(5):611–624, 1998.

[18] L. Xiong and L. Liu. A reputation-based trust model for peer-to-peer ecommerce communities. 2003.

[19] B. Yang and H. Garcia-Molina. Ppay: micropayments for peer-to-peer systems. In Proceedings of the 10th

ACM conference on Computer and communications security, pages 300–310. ACM, 2003.

[20] Dan Zhu. Security control in inter-bank fund transfer. Journal of Electronic Commerce Research, 3(1):

15–22, 2002.

http://www.swift.com/news/press_releases/SWIFT_disconnect_Iranian_banks

	Inter-FSP Funds Transfer Protocol
	Introduction
	 Network Limitation Aspects
	The Trust Model
	Our Contribution
	Organization

	Related Works
	Funds Transfer Protocols
	Electronic Payment Systems
	Formal Security Proofs
	The cryptographic approach
	The automated formal-methods approach

	General Security Model
	Protocol Execution Model
	Requirements Model
	The Communication Model

	FSP Machine Requirements
	The FSP Machine
	The leaky bucket model
	FSP requirements

	The Inter-FSP Funds Transfer Protocol
	Give Credit
	PC and PO
	PC flavors

	Issue PC
	Redeem PO
	External Payment
	Communication Messages

	Protocol Descriptions
	Notations
	Cryptographic library abstraction
	Databases
	Protocol Algorithms

	Security Analysis
	The cryptographic library
	The Theorems
	Claims
	Proof of Theorem 1 based on the claims
	Proof of the Claims
	Proof of Claim 1
	Proof of Claim 2
	Proof of Claim 3
	Proof of Claim 4
	Proof of Claim 5
	Proof of Claim 6
	Proof of Claim 7

	Liveness
	Conclusions

