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Abstract

In a basic related-key attack against a block cipher, the adversary has access to encryptions under keys
that differ from the target key by bit-flips. In this short note we show that for a quantum adversary such
attacks are quite powerful: if the secret key is (i) uniquely determined by a small number of plaintext-
ciphertext pairs, (ii) the block cipher can be evaluated efficiently, and (iii) a superposition of related keys
can be queried, then the key can be extracted efficiently.

1 Introduction

The availability of scalable quantum computers would jeopardize the security of many currently deployed
asymmetric cryptographic schemes (Shor, 1997). For symmetric cryptography the expectations for a post-
quantum setting tend to be more optimistic, see e.g. (Bernstein, 2009), from which we quote “quantum
computers seem to have very little effect on secret-key cryptography, hash functions, etc. Grover’s algorithm
forces somewhat larger key sizes for secret-key ciphers, but this effect is essentially uniform across ciphers;
today’s fastest pre-quantum 256-bit ciphers are also the fastest candidates for post-quantum ciphers at a
reasonable security level.”

Related-key attacks are a powerful cryptanalytic tool when exploring block ciphers. In such attacks,
the adversary is granted access to encryptions and/or decryptions of messages under secret keys which are
related to the target key in a known or chosen way. As argued in (Kelsey et al., 1996), this type of attack is of
practical interest, despite the assumptions made. When Winternitz and Hellman described this attack model
more than 25 years ago, they focused on key relations given by bit-flips (Winternitz and Hellman, 1987).
An illustrative example for an application of this attack model is an attack against 9 rounds of Rijndael with
a 256-bit key, invoking 256 related keys with a particular choice of the bit-flips (Ferguson et al., 2001).

Current approaches to formalize related-key attacks allow more general key relations (Bellare and
Kohno, 2003; Albrecht et al., 2011), and restricting to bit-flips can be considered to be a rather conser-
vative choice. Below we show that for a quantum adversary such a basic form of related-key attack is quite
powerful. We show that the possibility to query a superposition of related keys to a block cipher enables the
efficient extraction of the secret key, if some rather mild conditions are met:

1. the block cipher can be implemented efficiently as a quantum circuit, and

2. the secret key is uniquely determined by a small number of available plaintext-ciphertext pairs.
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The attack we describe is unlikely to pose a practical threat as querying a superposition of secret keys may
not be feasible for a typical implementation. Notwithstanding this, from the structural point of view our
observation indicates an interesting limitation for the security guarantees of a block cipher that one can hope
to prove in a post-quantum scenario.

2 Preliminaries

A block cipher with key length k and block length n is a family of 2k permutations {EK : {0,1}n −→
{0,1}n}K∈{0,1}k on bitstrings of length n. Popular block ciphers limit the possible choices of the key length
k—e. g., for the Advanced Encryption Standard (NIST, 2001) we have n = 128 and k ∈ {128,192,256}. To
characterize the efficiency of certain types of attacks, it can nonetheless be convenient to consider families
of block ciphers, interpreting the key length k as a scalable security parameter. Measuring the running time
of an adversary as a function of k, it is meaningful to speak of an expected polynomial time attack.

2.1 Related-key attacks

The attack model we consider goes back to (Winternitz and Hellman, 1987). After a key K ∈ {0,1}k has
been chosen uniformly at random, the adversary has access to two oracles:

E: On input a bitmask L ∈ {0,1}k and a bitstring m ∈ {0,1}n, this oracle returns the encryption EK⊕L(m)
of m under the key K⊕L.

E−1: On input a bitmask L ∈ {0,1}k and a bitstring c ∈ {0,1}n, this oracle returns the decryption E−1
K⊕L(c)

of c under the key K⊕L.

After interacting with these oracles, the adversary has to output a guess K′ for K, and it is considered
successful if and only if K = K′. For our attack we will also assume that the block cipher at hand can be
evaluated efficiently, i. e., with a polynomial-size quantum circuit that has the secret key and a plaintext as
input. For block ciphers that are actually used this condition is of no concern.

The quantum attack below will not involve E−1, but we will allow the adversary to query the block
cipher and also the oracle E with a superposition of keys. Finally, we require that the adversary has access
to a polynomial number of plaintext-ciphertext pairs (m1,c1), . . . ,(mr,cr) such that there exists exactly one
secret key K ∈ {0,1}k satisfying

(c1, . . . ,cr) = (EK(m1), . . . ,EK(mr)).

It is easy to come up with a pathological block cipher where the secret key cannot be uniquely determined by
any number of plaintext-ciphertext pairs1, but for typical block ciphers we do not think this to be a concern.
In (Menezes et al., 2001, Definition 7.34) the known plaintext unicity distance is defined as a measure for the
number of (known) plaintext-ciphertext pairs that are needed to determine the secret key of a block cipher
uniquely, and with (Menezes et al., 2001, Fact 7.35) it seems plausible to estimate that for an n-bit block
cipher with key length k having

r > dk/ne (1)

plaintext-ciphertext pairs suffices. So for the 128-bit version of AES, where n = k = 128, one can think of
an r-value as small as 2. Throughout we will assume that r satisfies Inequality (1). Then the main idea to
mount a quantum related-key attack is a reduction to a quantum algorithm described in (Simon, 1994).

1Encryption and decryption can simply ignore parts of the secret key.
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2.2 Simon’s problem

Let f : {0,1}k −→ {0,1}k′ with k ≤ k′ be a function such that one of the following two conditions holds:

(a) f is injective;

(b) there exists a bitstring s ∈ {0,1}k \{0k} such that for every two distinct x,x′ ∈ {0,1}k we have

f (x) = f (x′) ⇐⇒ x = x′⊕ s.

Simon’s problem asks to decide for such a function f which of the two conditions holds, and in the case (b)
to find s. Allowing the function f to be evaluated at a superposition of inputs, (Simon, 1994) establishes the
following result:

Theorem 1 Let g(k) be an upper bound for the time needed to solve a k× k linear system of equations
over the binary field F2, and let t f (k) be an upper bound for the time needed to evaluate the function
f on (a superposition of) inputs from {0,1}k. Then the above problem can be solved in expected time
O(k · t f (k) + g(k)). In particular, for t f = t f (k) being polynomial, the above problem can be solved in
expected polynomial time.

3 Description of the attack

Alluding to the Electronic Code Book mode of operation (Menezes et al., 2001, Section 7.2.2), subsequently
we will simply write EK(~m) for the tuple of ciphertext blocks (EK(m1), . . . ,EK(mr)) ∈ {0,1}rn. For a fixed,
unknown secret key s ∈ {0,1}k \ {0k} and messages ~m ∈ {0,1}rn as described in Section 2, we define the
function

fs : {0,1}k −→ 2{0,1}
2rn

x 7−→ {Ex(~m),Es⊕x(~m)} .

Remark 1 For each x in the domain of fs, the image is comprised of two different ciphertexts, i. e., it does
not collapse to a singleton set: because of the choice of the plaintexts m1, . . . ,mr the condition s 6= 0k implies
that Ex(~m) 6= Es⊕x(~m).

Meeting the conditions of Simon’s problem To argue that fs meets the conditions of Theorem 1, let us
first clarify how to encode the images as elements of {0,1}k′ for some k′≥ k. As we impose the condition (1),
with k′ = 2rn we clearly have k′ ≥ k as desired. For instance by interpreting elements in {0,1}rn as binary
numbers, we can impose a linear order on {0,1}rn. Then, to store an element {c,c′} in the image of fs, we
simply store the ordered pair (min(c,c′),max(c,c′)) as its unique k′-bit representation.

Now denote by x 6= x′ two different k-bit strings satisfying fs(x) = fs(x′):

• If Ex(~m) = Ex′(~m) then the choice of the plaintexts m1, . . . ,mr implies x = x′, so this cannot happen.

• If Ex(~m) 6= Ex′(~m), then Ex(~m) = Es⊕x′(~m), which by the choice of the plaintexts m1, . . . ,mr means
that x = s⊕ x′.

So we have the implication fs(x) = fs(x′) =⇒ x = x′⊕s. The converse follows trivially from s⊕(x′⊕s) = x′.
Next, let us check that the function fs(·) can be evaluated efficiently.
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Evaluating fs(·) in polynomial time By assumption the underlying block cipher can be evaluated with a
polynomial-size quantum circuit, so computing the two values Ex(~m) and Es⊕x(~m) for a given x can certainly
be done in polynomial time. In the actual attack, the value Es⊕x(~m) is obtained by invoking the encryption
oracle E for each of the plaintexts m1, . . . ,mr, i. e., with a polynomial number of queries to E . This means
we can obtain the pair (Ex(~m),Es⊕x(~m)) in polynomial time, and we are left to distill our unique k′-bit
representation of the set comprised by these two elements.

As indicated in the previous paragraph, such representation can be implemented by interpreting the two
ciphertexts as integers and then sort them. A quantum circuit to determine this unique representation of a
pair of bitvectors consists of swapping Ex(~m) and Es⊕x(~m) conditioned on the the latter value being smaller
than the former. For instance with a reversible circuit to perform addition (Cuccaro et al., 2004; Draper
et al., 2006; Takahashi et al., 2010) one can compute the difference of the binary numbers represented by
Ex(~m) and Es⊕x(~m) in polynomial time. The most significant bit of the result then reveals the result of
the comparison. The swap operation can be conditioned on this bit, followed by an uncomputation of the
garbage introduced by the adder (Bennett, 1973). The overall circuit to compute fs therefore uses 2 adders
and one controlled swap operation of two bitvectors, implying the following result.

Proposition 1 For every s ∈ {0,1}k \ {0k} the function fs defined above satisfies the conditions needed to
apply Theorem 1, and the bound t fs can be chosen to be polynomial.

From Theorem 1 we now obtain the following attack which runs in expected polynomial time:

1. Check if the secret target key s is the all-zero key s = 0k by computing E0k(~m) and comparing these
ciphertexts with the given ciphertexts Es(~m).

2. If s 6= 0k then apply Simon’s algorithm—which constitutes the proof of Theorem 1—to recover s.

4 Conclusion

This note shows that in a quantum setting even a basic related-key attack is very powerful: under rather mild
assumptions on the attacked block cipher the secret key can be extracted efficiently.
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