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Abstract

Secure Multiparty Computation (SMC) is seen as one of the main enablers for secure out-
sourcing of computation. Currently, there are many different SMC techniques (garbled circuits,
secret sharing, homomorphic encryption, etc.) and none of them is clearly superior to others in
terms of efficiency, security guarantees, ease of implementation, etc. For maximum efficiency,
and for obeying the trust policies, a privacy-preserving application may wish to use several dif-
ferent SMC techniques for different operations it performs. A straightforward implementation
of this application may result in a program that (i) contains a lot of duplicated code, differing
only in the used SMC technique; (ii) is difficult to maintain, if policies or SMC implementations
change; and (iii) is difficult to reuse in similar applications using different SMC techniques.

In this paper, we propose a programming language with associated compilation techniques
for simple orchestration of multiple SMC techniques and multiple protection domains. It is
a simple imperative language with function calls where the types of data items are annotated
with protection domains and where the function declarations may be domain-polymorphic. This
allows most of the program code working with private data to be written in a SMC-technique-
agnostic manner. It also allows rapid deployment of new SMC techniques and implementations
in existing applications. We have implemented the compiler for the language, integrated it with
an existing SMC framework, and are currently using it for new privacy-preserving applications.

1 Introduction

Secure multiparty computation (SMC) is a cryptographic method for n different parties to evaluate
a function

(y1, . . . , yn) = f(x1, . . . , xn)

so that each party Pi provides the input xi and learns the output yi such that no party can learn
the inputs or outputs of another party. The first protocols for secure multiparty computation

∗This research was, in part, funded by the Defense Advanced Research Projects Agency (DARPA). The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Government. Distribution Statement A (Approved for Public
Release, Distribution Unlimited). This research has also been supported by the European Regional Development
Fund through the Estonian Center of Excellence in Computer Science, EXCS, and by the Estonian Research Council
through grant IUT27-1.

1



were proposed by Yao [34]. The techniques have been developed since then and several practical
implementations of programmable secure computation have been created [21, 5, 15, 11].

When developing an application making use of SMC techniques (or other, possibly non-cryptographic
secure computation techniques), we may want to use more than one technique simultaneously,
and/or we may want to defer the choice of particular SMC techniques to a later stage of develop-
ment. The main reason for this is efficiency — different operations may be fastest using different
techniques, even when considering the costs of translating between data representations [19]. Con-
fidentiality policies may compound this issue, stating that different pieces of data must be treated
with techniques providing protection against different kinds of adversaries (passive vs. active; the
size of coalitions it’s able to form). In this case, we may use faster techniques for data needing
less protection. Also, in our quest for speed, we may want to try out and profile different SMC
techniques; this should be possible without rewriting the application.

We have responded to the wish to simultaneously use multiple SMC techniques by developing
a secure computation runtime which is modular and makes the integration of new techniques easy.
The application programmer, in order to make full use of the capabilities of the runtime, needs a
language to express the functionality of the application and the possible choices of SMC techniques,
without being forced to commit to particular techniques too early. The goal of this paper is to
present such a programming language, describe its compilation and integration with the runtime.
The design of the language has been somewhat inspired by Jif [23]. Several design choices have
also been affected by our unique practical experience in developing SMC applications.

Our contribution. In this paper we present an implementation of the secure programming
model. Our main contributions include the introduction of protection domains as an abstraction for
a set of SMC protocols and the design of a programming language (an extension of SecreC [17, 31])
that uses protection domains as its foundation. The notion of protection domains is elaborated on
in Sect. 2 of this paper. The language is a simple, strongly typed imperative language where each
variable and piece of data carries its protection domain as part of its type information. Importantly,
our type system supports protection domain polymorphism. This allows the actual choices of SMC
techniques to be done after the implementation of the subroutines of the application. This also
allows the development of libraries of common privacy-preserving functionalities that can be used
with many SMC techniques. To obtain speed-ups from the existence of particularly fast protocols
for some common functionality with some SMC technique, our language also supports overloading
(full and partial) of polymorphic functions. The language and its type system are described in
Sect. 3.

We have developed a compiler for our programming language that translates programs that use
protection domains to bytecode executables that run on a secure computation runtime that enforces
the protection domain restrictions. In this paper (Sect. 4 and Sect. 5), we present the translation
of our language to a monomorphic intermediate language; its further translation to bytecode is
standard.

Related work. Several languages for programming secure computation systems have been pro-
posed [21, 25, 15, 32, 22]. However, these language do not provide a clear separation of data with
different policies on the type system level. Furthermore, some of them are fixed to a single secure
computation paradigm.

Our design has been influenced by the Decentralized Label Model (DLM) [24] and its implemen-
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tation in Jif [23]. A label in DLM is closely related to our notion of a protection domain and label
polymorphism appeared in Jif. The polymorphism is even more fine-grained in information flow
analyses for programs in ML [27] or Haskell [20]. Our choice of following the imperative paradigm
was influenced by its ubiquity in cryptographic literature.

2 Protection Domains

We start by defining the protection domains and their kinds.

Definition A protection domain kind (PDK) is a set of data representations, algorithms and
protocols for storing and computing on protected data.

Definition A protection domain (PD) is a set of data that is protected with the same resources
and for which there is a well- defined set of algorithms and protocols for computing on that data
while keeping the protection.

Each protection domain belongs to a certain protection domain kind and each protection domain
kind can have several protection domains.

A typical example of a PDK is secret sharing, with implementations for sharing, reconstruction,
and arithmetic operations on shared values. A PD in this PDK would specify the actual parties
doing the secret sharing, and the number of cooperating parties for reconstruction. Another example
of a PDK is a fully homomorphic encryption scheme with operations for encryption, decryption,
as well as for addition and multiplication of encrypted values. Here different keys correspond to
different PD-s. Non-cryptographic methods for implementing PDK-s may involve trusted hardware
or virtualization. In general, a PDK has to provide

1. A list of data types used in the PDK.

2. For each data type in a PDK we need:

(a) a classification and declassification functions to convert between public and protected
representation of values,

(b) protocols or functions that perform operations on protected values

The functions performing secure operations should be universally composable so they can be com-
bined into programs [7].

Constructing a useful PDK from secure multiparty computation is non-trivial, as many such
schemes only support a few secure operations. It may be possible to construct more complex secure
computation operations by composing simpler ones, but dedicated protocols have been shown
to be more efficient in practice. We have identified several protocol suites that are suitable for
implementation as protection domain runtimes with some work, including, but not limited to [2,
5, 10].

Our programming model includes a special public protection domain that does not apply any
protective measures. The public protection domain is useful for working with values like public
constants that do not have to be hidden.

Our programming language will allow the application developer to define protection domain
kinds and instantiate these kinds as individual protection domains. Each PDK (including the
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public one) supports a range of data types and operations on those data types; the operations are
accessed through system calls whose implementation (as a cryptographic algorithm or protocol) is
beyond the scope for application programmer. The data type of each value used in the program is
annotated with its protection domain. In order to write generic code, our programming language
makes use of polymorphism.

3 Polymorphic Language

We will now describe the programming language for expressing SMC applications. In this paper,
we concentrate on the details related to protection domains. We skip the features that are also
necessary for the ease of use of the language (e.g. the module system, arrays and arithmetic
operators), but are orthogonal to the semantics and type system of the protection domains, and
are also more straightforward to implement.

3.1 Abstract Syntax

The polymorphic language program consists of a sequence of declarations followed by a statement
s. Every declaration is either a protection domain kind declaration, protection domain declaration,
or a function declaration.

P ::= (pdk k; | pd d : k; | F )∗ s (1)

Functions are optionally quantified over some protection domains and their body consists of a
statement. If the function body is missing the function acts as a system call declaration.

F ::= [∀ α1, . . . ,αn] f(xi : di ti) : d t [s]
α ::= d | d : k

(2)

Data types, denoted with t, include integers int, booleans bool, and vectors of integers int[]
and booleans bool[]. Kind variables are denoted with k, protection domain variables with d,
function and system call names with f , and variables with x. A special protection domain name
public, and the kind it belongs to Public, are reserved and considered predefined. Public data
types public t are often written t+ for conciseness.

Language statements and expressions are fairly standard for a WHILE-language. We also
provide the ability to declare variables of given (domain and data) type in some scope. Expressions
are limited to variables, literal constants and function or system call invocations.

s ::= skip | s1 ; s2 | x = e | if e then s1 else s2
| while e do s | return e | {x : d t; s}

e ::= x | ct | f(e1, . . . ,en)

3.2 Examples

The first example demonstrates that the selection of protection domains that a given algorithm
is invoked on can greatly affect its performance. Consider the task of computing the Hamming
distance between two vectors. We can implement this by comparing the input vectors point-wise in
domain D and summing the result in a different protection domain DT. The user of this algorithm
is free to select both protection domains provided that they support the used operations.
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∀ D, DT. hammingDist (x: D int[], y: D int[]): DT int

{

eq : D bool[] = x != y; // pointwise

ns : DT int[] = boolToInt(reclassify(eq));

return sum(ns);

}

Listing 1: Hamming distance

We will explore the performance of the previous algorithm by looking at two different protection
domain kinds, both available on our runtime system. The first is additive secret sharing (among
three parties) and the second is XOR secret sharing where data is bit-wise additively shared (also
among three parties). Assume that integers are 64-bit wide and both protection domains are run
on the same set of physical machines. In this particular case the algorithm performs best if the
input is XOR shared and output is additively shared. In this case only 8 communication rounds
are required for doing the computation. If both input and output are additively shared then the
computation takes 10 communication rounds [6].

As the second example consider the task of sorting a vector of integers in privacy-preserving
manner. The sorting method is polymorphic over the protection domain — the only restriction
is that the given protection domain kind supports basic arithmetic and comparison. The generic
sorting function operates by constructing a sorting network and obliviously performing compare-
and-swap on pairs provided by the network.

∀ D. sort(src : D int[]) : D int[] {

i : public int;

a, b, c : D int;

alength : public int = length(src);

sn : public int[] = sortNetwork (alength);

for (i=0; i < length(sn)-1; i = i + 2) {

a = src[sn[i+0]]; b = src[sn[i+1]];

c = isLessThan(a, b);

src[sn[i+0]] = c*a + (1 - c)*b;

src[sn[i+1]] = c*b + (1 - c)*a;

}

return src;

}

Listing 2: Generic sort

However, we can do better if we have more information about the given protection domain
kind. In particular, if a protection domain kind K provides a fast method to shuffle vectors, an
efficient method for sorting can be implemented. Comparison results of shuffled vector can be
declassified and control flow of the program can depend on the declassified results. Sorting can
be overloaded for this special case and when sorting a vector the overload resolution mechanism
selects the appropriate implementation.

∀ D:K. sort(src : D int[]) : D int[] {

dest : D int[] = shuffle(src);

// Sort dest vector using public comparisons:

// declassify(isLessThan(dest[i], dest[j]))
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return dest;

}

Listing 3: Specialized sort

The examples above do not precisely match the abstract syntax of the language. For read-
ability we have used syntactic sugar and operators, such as arithmetic, that we have not defined
syntactically. However, all of those operations can be modeled through system calls and both of
the for-loops can be straightforwardly implemented using a while-loop.

3.3 Static Semantics

A polymorphic language program must satisfy a number of conditions in order to be considered
valid, to have a (dynamic) semantics, and to be compilable. The main verification pass, which we
state as a type system, makes sure that for all function calls in the program, there is a function
declaration that matches it. A final pass ensures that all variables are initialized before being used
and all (finite) execution paths through function bodies (except the main function) end with a
return statement. Here we only consider the type checking phase.

In order to state typing judgments for various parts of the program, we will give unique labels
to all function declarations. Let L be the set of labels of function declarations. Let us introduce
the following notation:

• For a program P , let pdk(P ) and pd(P ) be the sets of protection domain kinds and protection
domains declared in P . For d ∈ pd(P ), let kind(d) ∈ pdk(P ) be the kind of the protection
domain d.

• For a function declaration f ` in program P , let argP (`) be the list of declarations of its formal
arguments, and retP (`) be the return type.

• For a program P and a function name f let

implP (f ; d1 t1, . . . , dn tn → d) ∈ L ∪ {⊥}

denote the label of a function declaration in P that has the name f and is the best match
among all those declarations with the name f , and with the type matching the arguments
with protection domains d1, . . . , dn ∈ pd(P ) and data types t1, . . . , tn, and output with the
protection domain d. If there is no such function declaration, or if there are multiple equally
good matches, then let the value of implP (. . .) be ⊥.

• For a label ` ∈ L let δ(`) be the set of protection domains quantified in the declaration of the
function with label `.

• Let bodyP (`) be the body of the function declared at the label ` ∈ L. If ` refers to a system
call let bodyP (`) be ⊥. For a mapping θ : δ(`) → pd(P ), let bodyθP (`) be the body of the
function declared at label `, where all protection domains d ∈ δ(`) have been syntactically
replaced with protection domains dθ. We define argθP (`), and retθP (`) in identical manner by
syntactically replacing domains d in δ(`) by dθ.

• For a function declaration F labeled ` and protection domains d′0, . . . , d
′
n let θ = unif `(d

′
0, . . . , d

′
n)

be a mapping from δ(`) to protection domains declared by the program, such that d′i = diθ
for every quantified di.
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∆;P ;⊥⊥; ∅ ` body(P )

∆ ` P
∆;P ; retθP (`); argθP (`) ` bodyθP (`)

∆;P ; θ ` f `
bodyθP (`) = ⊥
∆;P ; θ ` f `

d ∈ pd(P ) ∆;P ; d0 t0; (Γ, x : d t) ` s
∆;P ; d0 t0; Γ ` {x : d t; s}

∆;P ; d t; Γ ` skip
∆;P ; d t; Γ ` s1 ∆;P ; d t; Γ ` s2

∆;P ; d t; Γ ` s1 ; s2

∆;P ; Γ ` e : bool+ ∆;P ; d t; Γ ` s1 ∆;P ; d t; Γ ` s2
∆;P ; d t; Γ ` if e then s1 else s2

∆;P ; Γ ` e : bool+ ∆;P ; d t; Γ ` s
∆;P ; d t; Γ ` while e do s

∆;P ; Γ ` e : d t

∆;P ; d t; Γ ` return e
(x : d t) ∈ Γ ∆;P ; Γ ` e : d t

∆;P ; d0 t0; Γ ` x = e

∆;P ; Γ ` ct : t+
(x : d t) ∈ Γ

∆;P ; Γ ` x : d t

∆;P ; Γ ` e1 : d1 t1 . . . ∆;P ; Γ ` en : dn tn
f ` = implP (f ; d1 t1, . . . , dn tn → d) (`, θ) = ∆(f, d, d1, . . . , dn)

θ = unif `(d, d1, . . . , dn) ∆;P ; θ ` f ` d t = retθP (`)

∆;P ; Γ ` f(e1, . . . ,en) : d t

Figure 1: Typing judgments of the polymorphic language

• Let body(P ) denote the body of a program P .

We have not specified how the function implP , for finding the concrete location of the function,
given the function name and types of the arguments, is implemented. There are multiple possible
implementations, for instance, we could return the first match or we could select a match that, in
some sense, best fits the template parameters. Regardless of the implementation the type checking
judgements remain the same. In our actual implementation, we select the function declaration
that (i) quantifies over the least number of polymorphic protection domains, and (ii) out of those,
has the strictest kind annotations. If multiple such function definitions match then a type error is
raised.

Let the ∆ be a function that maps function name f , return domain d, and domains of parameters
d1, . . . , dn to pairs consisting of the location ` ∈ L, and domain substitution θ ∈ pd(P ). Intuitively
∆ is instantiation context that stores function instantsiations to concrete domains. At times we
will consider ∆ as a set. In the type system, the following kinds of judgments will be considered.

• ∆ ` P means that the program P is well-typed in instantiation context ∆.

• ∆;P ; θ ` f ` means that the function f with label ` in the program P is well-typed if protection
domains in δ(`) are bound to the protection domains given by θ.

• ∆;P ; d t;x1 : d1 t1, . . . , xn : dn tn ` s means that in the program P , in a function returning
a value with data type t in protection domain d, the statement s is well-typed if the free
variables xi have the protection domains di and the data types ti. Shorthand Γ is often used
to represent the product of types x1 : d1 t1, . . . , xn : dn tn, and we write G as shorthand for
∆;P ; d t; Γ.

• ∆;P ; Γ ` e : d t means that the expression e, in the given context, has data type t in protection
domain d. We write H as a shorthand for ∆;P ; Γ.

The typing rules are presented in the Fig. 1. There are two noteworthy points. First, our
typing rules are not to be interpreted inductively, but co-inductively. Intuitively, we consider a
typing judgment to be valid if it belongs to a set of typing judgments where all elements can be
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justified using these rules and the judgments in this set. There exists the largest such set; it is
obtained by starting from the set of all possible typing judgments and iteratively deleting from it
all judgments that cannot be justified.

The second point is that these rules constitute the definition of typability, but are not intended
to describe an actual type-checking algorithm. The actual algorithm deployed in our compiler has
similarities to the instantiation of templates during the compilation of C++ programs.

Similarly to existing languages for programming secure computation, we let the control flow of
the program to only depend on public values. This reflects the common consideration of the costs
of hiding the control flow as too high to perform automatically (it would involve the execution of
both branches, and obliviously selecting the result of one of them). If needed, the programmer has
to explicitly encode the branching on private values (or it could be provided as syntactic sugar).

For a well-typed program the instantiation context that the program type checks under is not
unique. This is because the type checking rules do not restrict the instantiation context in any way
but only require that some specific set of instantiations occur. Redundant instantiations can easily
be removed from the context, but there doesn’t always have to be an unique smallest instantiation
context.

Consider a function ∀d.f():d int polymorphic in the return type and ∀d.g(x:d int):int

polymorphic in the argument return type. According to our type checking rules the composition of
these functions g(f()) is well-typed, but the concrete protection domain can be picked arbitrarily.
In practice we want to reject programs that lead to this kind of ambiguous behavior. We say that
the program P is unambiguously typed if there exists an instantiation context ∆ such that ∆ ` P
and for any ∆′ if ∆′ ` P then ∆ ⊆ ∆′. One may notice that if the program doesn’t declare any
protection domains then the program with the expression g(f()) is unambiguously typed. We
can reject this kind of situation if for every protection domain kind we add countably infinite set
of dummy protection domains that may not be used in the program. From now if we talk about
well-typed program we always mean unambiguously typed program.

3.4 Dynamic Semantics

We will in the following define a small-step operational semantics of the polymorphic language. To
define the small-step transition rules of the language we extend the abstract syntax of expressions
with all possible values that variables can take: e ::= . . . | d v.

Values carry the protection domain and are pairs consisting of a protection domain d, and some
representation v ∈ Val (for simplicity of treatment, we conflate all data types to a single set Val
here) which is left abstract. Public values public v are denoted as v+ for conciseness. A special
bottom value ⊥ ∈ Val is used to denote uninitialized or undefined values.

In order to specify the evaluation order we define statement evaluation context S and expression
evaluation contexts E using a simple grammar in Fig. 2. We choose to evaluate expressions from left
to right in a deterministic order. For every evaluation context we define a mapping from expressions
to either statements or expressions respectively. The definitions of the functions S[−] : e→ s, and
E [−] : e→ e have been omitted, but are easily defined by structural recursion.

The semantics is a set of triples that we denote C◦
κ→ C•. Here C◦ is a program configuration

(defined below), C• is the configuration after making a single step in the program, and κ is the
action performed during that step. If the step was not an invocation of a system call, then the
action is empty (denoted either with τ or by simply omitting it). If the step consisted of making a
system call with name f , arguments v1, . . . , vn in protection domains d1, . . . , dn, returning a value
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S ::= S ; s2 | x = E | return E | if E then s1 else s2
E ::= [] | f(d1 v1, . . . ,E,ei, . . . ,en)

Figure 2: Evaluation context

v in the protection domain d then we denote the action with κ ≡ v = f(d, d1, v1, . . . , dn, vn).
System calls can not choose the protection domain the value is returned in. The only source of
system calls in the polymorphic language are function calls that refer to functions with omitted
body.

A configuration C = c1 : . . . : cn : cn+1 consists of a list of stack frames, where every frame
ci, other than the last, is a triple consisting of a statement evaluation context S, return domain
d, and local environment γ. A configuration always consists of at least one stack frame. The
statement evaluation context S acts as a return position, and if the current procedure returns we
plug the returned value into the context S of the previous stack frame and continue evaluating the
resulting statement. Currently active stack frame cn+1 is a pair consisting of return domain and
local environment.

The program configuration C◦ is either a program 〈P 〉 or a pair of configuration and statement
〈C, s〉. The target configuration C• of transition may be a regular program configuration C◦ or a
configuration C if the evaluation halts.

With such set-up, the definition of the triples C◦
κ→ C• is quite straightforward. First we define

the expression evaluation rules in the form γ ` 〈e〉 ⇒ 〈d v〉, stating that the expression e evaluates
to the value v in protection domain d, if the values and protection domains of variables occurring
in e are given by γ. The transition rules for the statements are in the form ∆ ` 〈C, s〉 κ→ C•, where
s is the statement still left to execute. The instantiation context ∆ has the same meaning as in
Sec. 3.3; we assume that the program P is unambiguity typed and the context ∆ is the unique
smallest one. The context ∆ is needed to dispatch function calls dynamically based on the possible
protection domains the function call resides in and the protection domains of the arguments. The
expression evaluation and transition rules are defined in Appendix A.

3.5 Trace Semantics

Trace is a sequence of program states that are connected by actions. Individual states of trace are
hidden and denoted with • as we are only concerned about which sequences of actions a program
may perform. Traces may be empty, finite or infinite. For example, configuration in final state
has trace •, but a infinite trace • → • . . . corresponds to configuration which performs no actions
and loops indefinitely. A set of all finite traces T ∗, infinite traces T ω, and arbitrary traces T ∞ are
defined over the set of labels A corresponding to actions (i.e. system calls) a program may perform.

Trace semantics of a well-typed program ∆ ` P is defined by a set of sequences of labels
JP K ⊆ T ∞ by collecting all finite and infinite traces starting with the program configuration 〈P 〉.
All finite traces have to stop in some configuration C as we assume that the body of the program
does not contain a return statement.

JP K = {• κ1→ • . . . • κn→ • | ∆ ` 〈P 〉 κ1→ . . .
κn→ C}

∪ {• κ1→ • . . . | ∆ ` 〈P 〉 κ1→ . . .}
(3)

A symbolic trace T summarizes a set of traces. A symbolic trace is a rooted, (potentially)
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infinite and infinitely branching tree, where each path, starting from the root vertex, corresponds
to a trace potentially generated by a program P . Formally, for each type t, let Nt be a countable
set of names, with Nt ∩ Nt′ = ∅ if t 6= t′. A symbolic action A is either empty or of the form
v = f(d, d1, v1, . . . , dn, vn), where v ∈ Nt and vi ∈ Nti ∪ {⊥}, such that the system call f exists
for protection domains d, d1, . . . , dn, argument types t1, . . . , tn and return type t. Each node of a
symbolic trace T is labeled with a symbolic action A. The number of descendants of non-leaf nodes
u of T depends on the symbolic action Au ≡ v = f(d, . . .) labeling it. If d is not public, (or if Au

is empty) then u has one descendant. If d is public, then the descendants of u are in one-to-one
relationship with the values of the type t, where v ∈ Nt. Finally, for each path from the root of
T downwards, any name v occurring in some symbolic action on this path may only occur in the
argument position of some symbolic action after it has occurred in the value position before.

Let g = (gt) be a family of mappings (indexed by the types t) from Nt to the values of the type t.
The application g(T) gives us a concrete trace where each name v ∈ Nt occurring in some symbolic
action is replaced with gt(v), and where for all nodes u of T labeled with Au ≡ v = f(public, . . .),
the subtree corresponding to g(v) is selected. Let VTW be the set of traces {g(T)} for all possible
families of mappings g.

The semantics of a program P defines a unique (up to α-conversion) symbolic trace TPU which
can be either defined similarly to Sec. 3.4 or recovered from the trace semantics of P . It is easy to
see that VTPUW = JP K. It is also easy to see that V·W is an injective (up to α-conversion) mapping,
thus there is essentially a single symbolic trace corresponding to the trace semantics JP K.

3.6 Execution

Our runtime environment securely implements (in the sense of universal composability [7]) an
arithmetic black box (ABB) [9] with multiple protection domains. Recall that an arithmetic black
box for n parties is an ideal functionality FABB that allows the parties to perform secure arithmetic
with values stored in the ABB. The parties refer to the stored values through handles. To perform
an operation, sufficiently many parties (the exact number depending on the security model of the
protocols implementing the ABB) must instruct the ABB to perform that operation, specifying
the handles of the arguments, as well as giving a name to the handle to the result. A value in the
ABB can be declassified if sufficiently many parties decide to give the respective instruction to the
ABB, in this case all parties will learn that value. Values can be input to the ABB either by the
parties themselves, or the ABB can be instructed to obtain a value from the outside environment.
Such values can later be accessed through handles and used in computations.

In our case, the ABB FABB stores for each type t and protection domain d the mapping stt,d
from the handles defined for this type and domain to the values in this type. It is natural to
consider the domain of stt,d to be a finite subset of Nt. The ABB accepts instructions of the form
v = f(d, d1, v1, . . . , dk, vk), where the system call f has been defined for the protection domains
d, d1, . . . , dk and the types t, t1, . . . , tk, where v ∈ Nt and vi ∈ Nti ∪ {⊥}. The ABB implements
the system calls: when receiving the instruction v = f(d, d1, v1, . . . , dk, vk), it will pick a value
corresponding to the handle v. This value may depend on the values assigned to v1, . . . , vk, as well
as on the responses FABB receives from the environment, and the random choices of FABB. Hence
the ABB provides a refinement for the non-determinism present in the dynamic semantics of the
programming language.

Using an ABB for n parties, a program P is executed as follows. There are n computing
parties P1, . . . ,Pn, the ABB FABB and the outer environment Z (that may e.g. provide inputs to
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the computation), as well as the adversary AS that may e.g. corrupt certain parties and perform
other “permitted” attacks on FABB. All parties Pi give instructions to FABB according to the
symbolic trace TPU. If the instruction produces a value in protection domain public, the parties
subsequently ask the ABB to declassify this value. In this way, they select one of the traces from
JP K. In effect, this execution defines a probability distribution over the set of traces JP K. We denote
this distribution by D[FABB,Z,AS ](P ).

A number of protocol sets πABB implementing an ABB have been proposed: garbled circuits [34]
making use of encryption and oblivious transfer [30]; protocols that perform arithmetic operations
with values in secret-shared form [33, 14, 12]; homomorphic encryption [26, 8], including fully
homomorphic encryption (FHE) [13]; private BDDs [16], etc. Different protocol sets may have a
different set of operations that can be executed by the parties using the ABB. They all are at least
as secure as FABB [7]: for any environment Z and any adversary A from a class of adversaries
(this class determines the number of tolerated corruptions of parties, as well as their kind — either
active or passive), there exists an adversary AS , such that the views of Z in the systems Z‖πABB‖A
and Z‖FABB‖AS are indistinguishable. These ABB implementations correspond to ABBs with
single protection domain. The combination of such ABB implementations, together with extra
functionality for converting data between protection domains [28] gives us an ABB implementation
with multiple protection domains.

We can now state the theorem on the correctness and security of the execution of the program
P using the real implementations of protocols, compared to the specification. The proof of the the-
orem is trivial, showing that the universal composability framework is wholly adequate to relating
abstract and concrete executions of protocols, allowing us to concentrate on specifications of what
should be executed.

Theorem 3.1 Let πABB be a secure implementation of FABB. Then for any environment Z and
any adversary A from the class of adversaries admitted by πABB, there exists an adversary AS ,
such that

Correctness the distributions of traces D[FABB,Z,AS ](P ) and D[πABB,Z,A](P ) are indistin-
guishable;

Security the views of Z in systems Z‖P1‖ · · · ‖Pn‖FABB‖AS and Z‖P1‖ · · · ‖Pn‖πABB‖A are in-
distinguishable.

Proof Follows directly from πABB being at least as secure as FABB. Consider the composition of
Z, P1, . . . ,Pn as the environment Z ′ for πABB. For this environment and the adversary A, there
exists AS , such that the views of Z ′ are indistinguishable in systems Z ′‖πABB‖A and Z ′‖FABB‖AS .
Both claims of the theorem state the indistinguishablity of certain parts of these views.

3.7 Security of Information Flow

The protection domains give us a simple discipline for information flow control. An observer able
to access data only in certain protection domains will learn nothing about data in other domains,
as long as no operation explicitly transfers data between these protection domains.

The semantics (3) specifies the order in which system calls are made. The actual execution
of the program depends on the implementations of these system calls. The used ABB FABB, the
environment Z and the adversary AS define the semantics JfK of an arity-k system call f as a
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function with the type PD× (PD×Val)k ×W → Val×W, where PD is the set of all protection
domains and Val is the set of possible values the program operates on. For simplicity of exposition,
we assume that we have a single type (with the set of values Val) and all system calls are defined
for all protection domains. The result of the system call depends not only on its arguments and
their (and the result’s) protection domains, but also (e.g. when inputting values) on the outside
environment Z‖AS . We let W denote the set of possible states of the environment. This state can
change due to the system call, thus codomain of JfK also contains W.

The initial state of the environment is distributed according to W ∈ D(W), this distribution
is known to everyone (D(X) denotes the set of probability distributions over the set X). The
distribution W and the semantics of system calls define a probability distribution over the set of
traces JP K. In this setting, the semantics of all system calls can be assumed to be deterministic, as
the random coins they might use may be considered to be a part of W.

To speak about information flow security, we partition the set of protection domains into “low”
and “high” domains: PD = PDL∪̇PDH , with public ∈ PDL. Similarly, the state of the world has
“low” and “high” part: W =WL×WH ; these parts must be independent in the initial distribution
W . For each label κ ≡ v = f(d, d1, v1, . . . , dn, vn) we define its low-slice κ by replacing each vi
by a placeholder ∗ iff di ∈ PDH ; this definition straightforwardly extends to traces. A label κ
is a declassification label if d ∈ PDL, but di ∈ PDH for some i. We require that the semantics
of system calls JfK only has the information flows that we expect it to have: the low-part of the
state of the environment output by JfK may only depend on the low inputs to JfK, and the value
v output by JfK may depend on the high-part of the state of the environment only if d ∈ PDH . It
is natural to require that the environment Z ensures the absence of other information flows even
without the cooperation of the adversary AS .

We can show that unless κ is a declassification label, the execution of a system call labeled κ
does not increase the low-adversary’s (that can observe the low-slices of traces) knowledge about the
high-part of the initial state of the environment. We define a probabilistic notion of the knowledge
—similar to [1]— of the adversary after observing the low-slice of the trace so far. The adversary’s

knowledge KN T ,wL
P is a probability distribution that assigns to each pair (w′, T ′), where w′ ∈ W

and T ′ is a trace, the probability that the execution of the program P started in state w′ and
proceeded along the trace T ′, given that the low-slice of the trace so far has been T and the initial
low-part of the state of the environment was wL. We can show (see Appendix D) that if κ is not a

declassification label, then KN T ,wL
P = KN T ;κ,wL

P .

4 Monomorphic Language

The monomorphic language is a WHILE-language with functions and PDs. The notion of protection
domains remains in the language but the run-time behavior no longer depends on them. All dynamic
dispatches have been resolved; the function calls in the monomorphic language are statically bound.
The majority of program optimizations and static analysis should be done at the level of the
monomorphic language.

Syntactically the target language has only few differences from the high level language (1) and
(2). The first is that functions can no longer be polymorphically quantified over protection domains,
and every function definition is uniquely indexed to distinguish between the instances of the same
polymorphic language function. We also assume that every function call refers to the unique index
ι.
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4.1 Dynamic Semantics

Operational semantics of the monomorphic language (Appendix B) is defined in very similar style
to the polymorphic language semantics. A major difference is that environment no longer stores
domain types of values, and due to the lack of dynamic dispatch, the semantic rules do not depend
on the instance environment ∆. We shall not define all of the language concepts because they are
almost identical to those presented for the polymorphic language semantics.

Trace semantics of the monomorphic language program is defined using the same notion of
traces as defined for the polymorphic language. It’s possible because the traces hide the individual
configurations between the transitions, but the labels are same between the language semantics.
Trace semantics of monomorphic language program P ′ is defined by a set of sequences of labels
JP ′K ⊆ T ∞ analogously to the polymorphic language trace semantics. The resulting semantics is
executable in the same way as described in Sec. 3.6.

5 Translation

This section covers a type-directed method for translating programs of the polymorphic language
to the programs of the monomorphic language. The type-directed translation methods model
compilation to intermediate representation.

5.1 Translation Methods

Type-directed methods for translating statements are in the form ∆;P ; d t; Γ ` s s′ where s is a
statement of the polymorphic language and s′ is a statement of the monomorphic language. The
context ∆ contains instantiations of functions to some particular protection domains, and Γ is the
type environment for variables, d and t denote the return type of the current function. Translation
rules of expressions are in the form ∆;P ; Γ ` e e′ : d t, where e is expression of the polymorphic
language, e′ is expression of the monomorphic language, d is the domain type, and t is the data
type of the expression.

The translation methods follow the type checking rules directly. There are, however, few notable
points. The first difference is that in the monomorphic language we refer to the concrete instances of
polymorphic functions using the index ι = (`, θ) where ` is the label of function in the polymorphic
language and θ is the substitution to concrete protection domains. Due to unambiguity this index
is unique for every function call. Second notable point is that the translation does not always
produce a well-typed monomorphic language program — the instantiation context might contain
instantiations that do not type. If given smallest ∆ such that ∆ ` P and ∆ ` P  P ′ then P ′

type checks.

5.2 Functional Correctness

Informally we wish to show that the original program and the translated program give rise to
the same set of sequences of system calls. First we will define equivalence relation between the
polymorphic and monomorphic language program configurations. Next we will assert a lemma that
intuitively states that equivalent program configurations will eventually transition into equivalent
configurations. Finally, we will state a theorem to establish that the translation to monomorphic
form preserves semantics.
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To establish an equivalence relation between polymorphic and monomorphic language configura-
tions we define equivalence relation between: environments, singleton configurations, and program
configurations. Two environments Γ ` γ ≡ γ′ are equivalent under the given type environment Γ if,
for every (xi : di ti) ∈ Γ, there exists vi ∈ Val, such that γ(xi) = di vi and γ′(xi) = vi. Additionally,
if a variable does not occur in the type environment Γ it must not occur in either of the environ-
ments. Given equivalent environments the equivalence of singleton configurations rises naturally,
and equivalence of configurations and program configurations follows from statement translation
rules.

∆;P ; d′0 t
′
0; Γ′ ` C ≡ C ′ Γ ` γ ≡ γ′

∆;P ; d0 t0; Γ ` S[d0⊥] S ′[⊥]

∆;P ; d0 t0; Γ ` (S, d0, γ) : C ≡ (S ′, γ′) : C ′

G ` C ≡ C ′ G ` s s′

G ` 〈C, s〉 ≡ 〈C ′, s′〉

We write C◦
κ∗→ C•, for both polymorphic and monomorphic program configurations, if it’s pos-

sible to transition from the source configuration to the destination configuration by performing the
action κ followed and preceded by some finite number of empty transitions. For empty transitions

we allow that C◦
τ∗→ C◦.

Lemma 5.1 (Weak bisimulation) Let G be statement type checking context. For every two
equivalent program configurations G ` C◦ ≡ C ′◦ the following conditions hold:

1. For every label κ and configuration C• if ∆ ` C◦ κ→ C• there exists C ′• such that ` C ′◦ κ
∗
→ C ′•

and G ` C• ≡ C ′•.

2. For every label κ and configuration C ′• if ` C ′◦ κ→ C ′• there exists C• such that ∆ ` C◦ κ
∗
→ C•

and G ` C• ≡ C ′•.

Proof By structural recursion over the translation methods.

Finite traces are said to be equivalent if they are equal without their empty transitions. We
say that two infinite traces T, T ′ ⊆ T ω are equivalent T ∼= T ′ if for every prefix of T there exists
equivalent prefix of T ′. Notice that, according to our definition, a finite trace can never be equivalent
to an infinite trace. This matches with intuition that, given enough time, a non-terminating
program can always be distinguished from a terminating program no matter the system calls they
perform. Sets of traces are equivalent if for every trace from one set there exists equivalent trace
in another. More formally T ∼= T ′ if for every T ∈ T there exists T ′ ∈ T ′ such that T ∼= T ′, and
for every T ′ ∈ T ′ there exists T ∈ T such that T ∼= T ′.

Theorem 5.2 For every unambiguously well-typed polymorphic language program ∆ ` P and a
monomorphic language program P ′, the following holds. If ∆ ` P  P ′ then the trace semantics
of the two programs are equivalent: JP K ∼= JP ′K.

The equivalence of trace sets of the polymorphic language program P and its compilation
to monomorphic language P ′ implies the indistinguishability of their executions, using either the
arithmetic black box FABB or its concrete implementation πABB. Indeed, the behaviour of the
machines P1, . . . ,Pn described in Sec. 3.6 and referred to in Thm. 3.1 depends only on the symbolic
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trace of the program P , which is determined by the trace semantics JP K. As JP K ∼= JP ′K, the
instructions given to FABB (or πABB) by the execution of P or P ′ are the same and the executions
proceed in lock-step.

5.3 Security

The secure information flow property we stated in Sect. 3.7 was specified in terms of the set of
program traces making up the semantics of the program. In particular, the property did not
directly refer to the program that generated those traces. One could then also ask for a particular
program in the intermediate language whether it satisfies that information flow property; some
of them would satisfy it for a particular choice of PDL, while the others wouldn’t. But as the
translation from the polymorphic language to the monomorphic language preserves the semantics
of the program, we immediately obtain that the translation of any polymorphic language program
satisfies the secure information flow property stated in Sect. 3.7.

6 Implementing Protection Domains

6.1 Using Secure Multiparty Computation

Programs that use protection domains require a runtime that enforces the data separation pro-
tection domain separation. Techniques for implementing such a runtime include secure multiparty
computation, trusted hardware and virtualization. In our work, we focus on the first of the three.
Secure multiparty computation is a cryptographic method for n different parties evaluate a func-
tion (y1, . . . , yn) = f(x1, . . . , xn) so that each party Pi provides the input xi and learns the output
yi so that no party can learn the inputs or outputs of another party. The first protocols for se-
cure multiparty computation were proposed by Yao [34]. The techniques have been developed
since then and several practical implementations of programmable secure computation have been
created [21, 5, 15, 11].

Protection domains can be implemented with secure multiparty computation techniques. A
suitable technique must provide the following elements:

1. A list of data types used in the protection domain.

2. For each data type in a protection domain we need:

(a) a classification function that converts a public value into a protected value of the same
type,

(b) a declassification function that converts a protected value into a public value of the same
type,

(c) functions that perform meaningful operations on protected values that output protected
values and

The functions performing secure operations should be universally composable so they could be
combined into programs [7].

An example of a suitable technique is homomorphic encryption. A homomorphic encryption
scheme allows encrypted values to be transformed into new encrypted values that can represent
sums or products of the original value. Data values would be classified by encrypting them and
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stored as ciphertexts. Declassification would mean the decryption of the values. Operations on
protected data would use the transformation functions defined for the homomorphic encryption
scheme.

Constructing a useful protection domain from secure multiparty computation is non-trivial, as
many such schemes only support a few secure operations. It may be possible to construct more
complex secure computation operations by composing simpler ones, but dedicated protocols have
been shown to be more efficient in practice. We have identified several protocol suites that are
suitable for implementation as protection domain runtimes with some work, including, but not
limited to [2, 5, 10].

6.2 Deploying Protection Domains

A secure multiparty computation technique may require several computing parties to be able to
provide its security guarantees. This means that a runtime using protection domains may need
to be a distributed system. Furthermore, individual protection domains may require a different
number of servers, so their concurrent use in a single program requires that the runtime is aware
of all protection domains and can coordinate their execution. We will now describe one option for
deploying multi-node protection domains.

The first option lets each computing node in the runtime make use of a protection domain.
Let m be the maximum number of nodes required by a deployable protection domain. We choose
n ≥ m as the number of computing nodes that we need to use (and have available). We call these
nodes N1, . . . ,Nn.

Assume that a protection domain PDk requires mk nodes named P1, . . . ,Pmk
. We now assign

each protection domain node Pi to a physical node Nj so that no physical node hosts more than
one protection domain node. There will remain physical nodes, where a protection domain node
is not assigned. These physical nodes will be “placeholder nodes” that know the locations of the
other nodes that are actually involved in the computation. The benefit of this approach is that each
physical node is aware of each protection domain so a program containing references to protection
domains can be loaded on each physical node unchanged.

Alternatively, if we prefer not to use placeholder nodes, the program may need to be recompiled
for each physical node so that it will have to run code with protection domains that are available
at that node.

6.3 Implementation

Our compiler translates from the described polymorphic language to the described monomorphic
language, performs certain program optimizations on the translated code, and then translates it
further to a bytecode that is handled by our distributed SMC runtime. The runtime interfaces with
PDK implementations (using system calls) that are also distributed among the nodes executing
the runtime. Each PD requires a number of nodes (that we call “roles” by an analogue with
cryptographic protocols) to run securely. To deploy an application, we select for each role of each
PD in that application a physical node that executes the code for that role in this PD. Currently,
we have implementations of two PDKs, based on [6, 29]. The PDs in these two PDKs use two or
three parties, respectively.

Our compiler can successfully translate polymorphic code to bytecode that is targeted to both
protection domains. This code can successfully be executed on our runtime and tests show that the
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execution and results are correct for both domains. The compiler and the runtime are not publicly
available at this time, as the implementation is still on a research prototype level.

7 Applications

SecreC has been used in the following applications.

1. In [18], Kamm and Willemson used Sharemind and SecreC to build a satellite collision
prediction tool that keeps the trajectories of satellites confidential.

2. In [4], Bogdanov, Laud and Talviste used Sharemind and SecreC to implement oblivious
sorting algorithms using secret sharing. The study evaluates the theoretical performance and
discusses the practical implications of the different approaches.

3. In [3], the authors present a privacy-preserving statistical analysis toolkit built using SecreC.

8 Conclusion

Efficient combining of different SMC techniques is crucial for obtaining acceptable performance for
privacy-preserving outsourced computations. Equipping the programmer with easy-to-use tools to
guide the combination is a big step towards this. In this paper, we have presented a language that
allows fine-grained orchestration of different techniques with minimum effort by the programmer.
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γ ` 〈ct〉 ⇒ 〈c+〉 γ ` 〈x〉 ⇒ 〈γ(x)〉

Figure 3: Polymorphic language expression evaluation rules

∆ ` 〈P 〉 → 〈⊥, ε, body(P )〉
γ′ = γ[x 7→ d⊥]

∆ ` 〈γ, {x : d t; s}〉 → 〈γ′, s〉
∆ ` 〈C, s〉 κ→ 〈C ′, s′〉

∆ ` 〈(S, γ) : C, s〉 κ→ 〈(S, γ) : C ′, s′〉
∆ ` 〈C, s〉 κ→ C ′

∆ ` 〈(S, γ) : C, s〉 κ→ (S, γ) : C ′

∆ ` 〈γ, s1〉
κ→ γ′

∆ ` 〈γ, s1;s2〉
κ→ 〈γ′, s2〉

∆ ` 〈γ, s1〉
κ→ 〈γ′, s′〉

∆ ` 〈γ, s1;s2〉
κ→ 〈γ′, s′;s2〉 ∆ ` 〈γ, x = d v〉 → γ[x 7→ d v]

∆ ` 〈γ, if true+ then s1 else s2〉 → 〈γ, s1〉 ∆ ` 〈γ, if false+ then s1 else s2〉 → 〈γ, s2〉

∆ ` 〈γ, while e do s〉 → 〈γ, if e then (s ; while e do s) else skip〉

∆ ` 〈γ, skip〉 → γ ∆ ` 〈(S ′, γ′) : γ,S[return d v]〉 → 〈γ′,S ′[d v]〉
γ ` 〈e〉 ⇒ 〈e′〉

∆ ` 〈γ,S[e]〉 → 〈γ,S[e′]〉

Figure 4: Polymorphic language statement evaluation rules

A Dynamic Semantics of the Polymorphic Language

A.1 Expressions

The transition rules for expressions (Fig. 3) are in form γ ` 〈e〉 ⇒ 〈d v〉. The expression evalu-
ation rules can only be applied to expressions with fully evaluated subexpressions. The rules are
completely standard apart from function calls which are handled by statement evaluation rules.

A.2 Statements

Transition rules for statements (Fig. 4) are either in the form ∆ ` 〈C, s〉 κ→ 〈C ′, s′〉 or, if evaluation
of the statement halts, in the form ∆ ` 〈C, s〉 κ→ C ′. Most rules are fairly standard and we only
highlight some of them. Throughout this section we denote pairs that consist of protection domain
d and environment γ with just γ. Every rule apart from the one for system calls and the one for
function calls passes the protection domain along with the environment. We have also omitted the
program P from the context of every rule.

If a return statement, with evaluated sub-expression, is reached within arbitrary statement eval-
uation context. The top-most stack frame is removed, and the value is inserted into the evaluation
context of the caller. The current statement evaluation context is discarded entirely.

System calls are somewhat similar to return statement, but have the effect of calling the system
function with currently active stack frame. The system call gets entire stack frame as argument
which is unpacked to fit the form defined previously. For environment γ = ε[x1 7→ d1 v1, . . . , xn 7→
dn vn] the call f(d0, γ) is equal to f(d0, d1 v1, . . . , dn vn).
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d0 t0 = retθP (`) γ `d S : d0 (`, θ) = ∆(f, d0, d1, . . . , dn)

γ′ = ε[xi 7→ di vi | xi : di ti ∈ argθ(`)] s = bodyθP (`)

∆ ` 〈γ, d,S[f(d1 v1, . . . ,dn vn)]〉 → 〈(S, d, γ) : (d0, γ
′), s〉

d0 t0 = retθP (`) γ `d S : d0 (`, θ) = ∆(f, d0, d1, . . . , dn)

κ ≡ v0 = f(d0, d1, v1, . . . , dn, vn) ⊥ = bodyθP (`)

∆ ` 〈γ, d,S[f(d1 v1, . . . ,dn vn)]〉 κ→ 〈γ, d,S[d0 v0]〉

Figure 5: Polymorphic language function and syscall evaluation

γ `d S : d′

γ `d S ; s2 : d′
γ(x) = d v γ `d E : d′

γ ` x = E : d′
γ `d E : d′

γ `d return E : d′ γ `d [] : d

γ `public E : d′

γ ` if E then s1 else s2 : d′
γ ` E : d′

γ ` f(d1 v1, . . . ,E,ei+1, . . . ,en) : d′

Figure 6: Domain of the evaluation context

A.3 Function Calls

Function calls – with fully evaluated parameters – are handled by statement evaluation rules. If
such function call is reached within some statement evaluation context S the statement evaluation
context will be pushed onto the return stack, the rule transitions into evaluating the function body,
and new stack frame is constructed. The new environment within the stack frame maps the formal
parameters to the values of the actual parameters.

The appropriate protection domain of the return type is selected dynamically using judgments
in the form γ `d S : d′ (see Fig. 6), where d is the current domain context. The judgment will
match with every possible security domain d′ that the evaluation context can reside in. The rule for
function call could lead to ambiguous behaviour but all function calls of an unambiguously-typed
program can be evaluated unambiguously.

B Monomorphic Language Semantics

See Fig. 8 for the transitions of the statements of the monomorphic language. The evaluation of
expressions is defined in Fig. 7.

γ ` 〈x〉 ⇒ 〈γ(x)〉 γ ` 〈ct〉 ⇒ 〈c〉

Figure 7: Monomorphic language expression evaluation rules
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` 〈P 〉 → 〈ε, body(P )〉
γ′ = γ[x 7→ ⊥]

` 〈γ, {x : d t; s}〉 → 〈γ′, s〉
γ ` 〈e〉 ⇒ 〈e′〉

` 〈γ,S[e]〉 → 〈γ,S[e′]〉
` 〈C, s〉 κ→ C ′

` 〈(S, γ) : C, s〉 κ→ (S, γ) : C ′

` 〈C, s〉 κ→ 〈C ′, s′〉
` 〈(S, γ) : C, s〉 κ→ 〈(S, γ) : C ′, s′〉

` 〈γ, skip〉 → γ

` 〈γ, s1〉
κ→ 〈γ′, s′〉

` 〈γ, s1 ; s2〉
κ→ 〈γ′, s′ ; s2〉

` 〈γ, s1〉
κ→ γ′

` 〈γ, s1 ; s2〉
κ→ 〈γ′, s2〉 ` 〈γ, x = v〉 → γ[x 7→ v]

` 〈γ, if true then s1 else s2〉 → 〈γ, s1〉 ` 〈γ, if false then s1 else s2〉 → 〈γ, s2〉

` 〈γ, while e do s〉 → 〈γ, if e then (s ; while e do s) else skip〉

` 〈(S ′, γ′) : γ,S[return v]〉 → 〈γ′,S ′[v]〉
γ′ = ε[xi 7→ vi | ∀xi : di ti ∈ argP (f ι)] s = bodyP (f ι)

` 〈γ,S[f ι(v1, . . . , vn)]〉 → 〈(S, γ) : γ′, s〉
κ ≡ v0 = f(d0, d1, v1, . . . , dn, vn) xi : di ti ∈ argP (f ι) d0 t0 = retP (f ι) ⊥ = bodyP (f ι)

` 〈γ,S[f ι(v1, . . . , vn)]〉 κ→ 〈γ′,S[d0 v0]〉

Figure 8: Monomorphic language statement evaluation rules

F = {g | (`, θ) = ∆(f, d1, . . . , dn), ∆; θ ` f `  g} ∆;P ;⊥⊥; ∅ ` body(P ) s

∆ ` P  pdk(P ) pd(P )F s
d ∈ pd(P ) ∆;P ; d0 t0; (Γ, x : d t) ` s s′

∆;P ; d0 t0; Γ ` {x : d t; s} {x : d t; s′}
∆;P ; retθP (`); argθP (`) ` bodyθP (`) s

∆;P ; θ ` f `  f (`,θ)(argθP (`)):d t s

G ` skip skip

G ` s1  s′1 G ` s2  s′2
G ` s1 ; s2  s′1 ; s′2

H ` e e′ : bool+ G ` s1  s′1 G ` s2  s′2
G ` if e then s1 else s2  if e′ then s′1 else s′2

H ` e e′ : bool+ G ` s s′

G ` while e do s while e′ do s′
H ` e e′ : d t

G ` return e return e′
(x : d t) ∈ Γ H ` e e′ : d t

G ` x = e x = e′

H ` ct  ct : t+
(x : d t) ∈ Γ

H ` x x : d t

H ` e1  e′1 : d1 t1 . . . H ` en  e′n : dn tn
f ` = implP (f ; d1 t1, . . . , dn tn → d) (`, θ) = ∆(f, d, d1, . . . , dn)

θ = unif `(d, d1, . . . , dn) d t = retθP (`)

H ` f(e1, . . . , en) f (`,θ)(e′1, . . . , e
′
n) : d t

Figure 9: Translation methods

C Translation Rules

See Fig. 9 for translation rules from polymorphic language to monomorphic language.

D Proof of Information Flow Security

The initial state w ∈ W of the environment of the program P is distributed according to W . The
adversary is assumed to know the low-part wL of the initial state. During the execution of P , the
adversary is also assumed to see the low-slice of the label of each occurring transition.

Besides the low-slices of transition labels and traces (according to the partitioning PDL ∪̇PDH

of the set of protection domains PD), we can also speak about low-slices of program configurations.
Recall that a program configuration is a pair 〈C, s〉 or an item C, where s is a statement (Sect. 3.1)
and C is a sequence (S1, d1, γ1) : · · · : (Sn, dn, γn) : (dn+1, γn+1), where n ≥ 0, Si is a statement
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evaluation context (Fig. 2), di is the protection domain of the value to be returned from this
frame and γi is a mapping from variables to values annotated with protection domains. All values
appearing in s and Si are annotated with their protection domains as well. To form the low-slice
〈C, s〉 or C, we replace all annotated values d v in s and Si with the placeholders d ∗, if d ∈ PDH .
We have, that the low-slice of the execution of the program P can be recovered from the low-slices
of the labels of the transitions taken during the execution.

Lemma D.1 Let P be a well-typed program and C◦1
κ1→ C•1 and C◦2

κ2→ C•2 two of possible steps that
it may make. If C◦1 = C◦2 and κ1 = κ2, then C•1 = C•2 .

Proof The low-slice of a context contains full information about the control flow of the program,
hence C◦1 and C◦2 both make the same step. If it is an assignment of a value to a variable, and the
assigned value has a low protection domain, then the value must be the same in C◦1 and C◦2 , hence
the variable will have the same value in both C•1 and C•2 . If the assigned value has a high protection
domain, then it is replaced with the placeholder ∗ in both C◦1 and C◦2 , as well as in C•1 and C•2 .
If the step is corresponds to a choice in some if- or while-statement then the value branched on
must be public, it will not be replaced with ∗ in C◦1 and C◦2 , and hence both C◦1 and C◦2 branch in
the same direction. If C◦1 and C◦2 make a function call or return a value, then the passed values are
either equal (if they have low protection domains) or replaced with the placeholder in the low-slice
(if they have high protection domains). A low-security value returned from a system call can be
found from the low-slice of the labels κ1 and κ2.

For each possible initial environment w ∈ W, the semantics JfK of the system calls f and the
program P uniquely determine the trace (an element of JP K) of the execution. Denote this trace
by TrJ·K(w,P ). Let T be the set of all low-slices of transition labels. For each T ∈ T ∗ and each

wL ∈ WL, let IT ,wL
P be the set of possible initial environments, the low-part of which is wL and the

execution from which starts with transitions, the low-slices of which make up T . Formally,

IT ,wL
P = {w′ |w′L = wL ∧ T v TrJ·K(w′, P )},

where v denotes that a sequence is a prefix of the other one. The knowledge of an adversary

observing the execution of P is characterized by a probability distribution KN T ,wL
P obtained by

projecting W to IT ,wL
P . To project a probability distribution D ∈ D(X) to a set Y ⊆ X means

setting the probabilities of all x ∈ X\Y to 0 and rescaling the probabilities of all x ∈ X, such that
their sum is still equal to 1. After observing the prefix of the trace T and knowing that the low-part
of the initial environment was equal to wL, the adversary knows that the initial environment had

to belong to the set IT ,wL
P . The relative probabilities of the elements in this set are the same as

their relative probabilities in W .
The set of possible initial states is not changed by observing the low-slice of one more transition,

unless it is a declassification transition. Namely,

Lemma D.2 Let wL ∈ Wl, T ∈ T
∗

and κ ∈ T , such that κ is not a declassification label. Then

either IT ;κ,wL
P = IT ,wL

P or IT ;κ,wL
P = ∅.

Proof We first note that the low-slice of the program context and the low-part of the environment

are the same for all w′ ∈ IT ,wL
P after the execution that produces the trace with the low-slice
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κ. Indeed, they do not depend on w′ at the beginning of the execution (the low-part of the
environment is wL and the low-slice of the context is empty) and, according to Lemma D.1, the
contexts stay equal after each step of the program. Similarly, the low-part of the environment in
different executions evolves in the same way (due to the constraints placed on the semantics of the
system calls, its changes can be deduced from the low-slice of the execution trace).

We now note that the low-slice of the current program context, as well as the low-part of the
current environment determine the low-slice of the label of the next transition, unless this label
is a declassification label. Indeed, the current program point is uniquely determined, hence it is
determined whether the next transition is silent or a system call f(d0, d1 v1, . . . , dn vn). If it is a
system call then the domains d0, . . . , dn are determined by the low-slice of the program context.
In the low-slice of the label κ′ of the next transition, the values v1, . . . , vn are included if the
corresponding domains d1, . . . , dn are in PDL. In this case, these values can be found from the
low-slice of the program context. If some di is in PDH , then only a placeholder is included in κ′

instead of the value vi. The value v0 returned by the system call is included in κ′ only if d0 ∈ PDL.
In this case, v0 can be computed from the values vi (i ∈ {1, . . . , n}) included in κ′ and the low-part
of the current environment. The low-part of the environment after this step can also be computed
from the same values and the low-part of the current environment.

As κ′ is uniquely determined, we have IT ;κ,wL
P = IT ,wL

P if κ = κ′, and IT ;κ,wL
P = ∅ otherwise.

Considering the definition of KN T ,wL
P , the previous lemma immediately implies

Proposition D.3 Let wL ∈ Wl, T ∈ T
∗

and κ ∈ T , such that κ is not a declassification label.

Then KN T ;κ,wL
P = KN T ,wL

P .
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