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Abstract

Xoring two permutations is a very simple way to construct pseudorandom functions from
pseudorandom permutations. In [13], it is proved that we have security against CPA-2 attacks
when m � O(2n), where m is the number of queries and n is the number of bits of the inputs
and outputs of the bijections. In this paper, we will obtain similar (but slightly different) results
by using the “standard H technique” instead of the “Hσ technique”. It will be interesting to
compare the two techniques, their similarities and the differences between the proofs and the
results.

Key words: Pseudorandom functions, pseudorandom permutations, security beyond the birth-
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1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudorandom functions (PRF)
named “Luby-Rackoff backwards” was first considered in [3]. This problem is obvious if we are in-
terested in an asymptotical polynomial versus non polynomial security model (since a PRP is then
a PRF), but not if we are interested in achieving more optimal and concrete security bounds. More
precisely, the loss of security when regarding a PRP as a PRF comes from the “birthday attack”
which can distinguish a random permutation from a random function of n bits to n bits, in 2

n
2

operations and 2
n
2 queries. Therefore different ways to build PRF from PRP with a security above

2
n
2 and by performing very few computations have been suggested (see [2, 3, 4, 6]). One of the

simplest way is simply to Xor k independent pseudorandom permutations, for example with k = 2.
In [6] (Theorem 2 p.474), it has been proved, with a simple proof, that the Xor of k independent

PRP gives a PRF with security at least in O(2
k
k+1

n). (For k = 2 this gives O(2
2
3
n)). In [2], a

much more complex strategy (based on Azuma inequality and Chernoff bounds) is presented. It is
claimed that with this strategy we may prove that the Xor of two PRP gives a PRF with security at
least in O(2n/n

2
3 ) and at most in O(2n), which is much better than the birthday bound in O(2

n
2 ).

However the authors of [2] present a very general framework of proof and they do not give every

1



details for this result. For example, page 9 they wrote “we give only a very brief summary of how
this works”, and page 10 they introduce O functions that are not easy to express explicitly. In
this paper we will use a completely different proof strategy, based on the “standard H technique”
(see Section 3 below), simple counting arguments and induction. This paper is self contained. It is
nevertheless interesting to compare this paper with [13] where similar (but slightly different results,
as we will explain) are obtained by using the Hσ technique instead of the standard H technique.

Related Problems. In [14] the best know attacks on the Xor of k random permutations
are studied in various scenarios. For k = 2 the bound obtained are near our security bounds.
In [7] attacks on the Xor of two public permutations are studied (i.e. indifferentiability instead of
indistinguishibility).

Part I

From the Xor of Two Permutations to the hi

values

2 Notation and Aim of this paper

In all this paper we will denote In = {0, 1}n. Fn will be the set of all applications from In to In,
and Bn will be the set of all permutations from In to In. Therefore |In| = 2n, |Fn| = 2n·2

n
and

|Bn| = (2n)!. x ∈R A means that x is randomly chosen in A with a uniform distribution.
The aim of this paper is to prove the theorem below, with an explicit O function (to be deter-

mined).

Theorem 1 For all CPA-2 (Adaptive chosen plaintext attack) φ on a function G of Fn with m
chosen plaintext, we have: AdvPRF

φ ≤ O(m2n ) where AdvPRF
φ denotes the advantage to distinguish

f ⊕ g, with f, g ∈R Bn from h ∈R Fn.

This theorem says that there is no way (with an adaptive chosen plaintext attack) to distinguish
with a good probability f ⊕ g when f, g ∈R Bn from h ∈R Fn when m � 2n (and this even if we
have access to infinite computing power, as long as we have access to only m queries). Therefore,
it implies that the number λ of computations to distinguish f ⊕ g with f, g ∈R Bn from h ∈R Fn
satisfies: λ ≥ O(2n). We say also that there is no generic CPA-2 attack with less than O(2n)
computations for this problem, or that the security obtained is greater than or equal to O(2n).
Since we know (for example from [2] or [14]) that there is an attack in O(2n), Theorem 1 also says
that O(2n) is the exact security bound for this problem.

3 The general Proof Strategy (“ standard H technique”)

Let a = (ai, 1 ≤ i ≤ m) be m pairwise distinct values of In.
Let b = (bi, 1 ≤ i ≤ m) be m values of In (not necessarily distinct).
• We will denote by H(a, b), or by H(b) since we will see that H(a, b) does not depend on a, the
number of (f, g) ∈ B2

n such that: ∀i, 1 ≤ i ≤ m, (f ⊕ g)(ai) = bi. Often we will denote H(b) by
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Hm for simplicity (but H(b) depends on b).
Introducing h instead of H
• We will denote by h(b), or simply by hm for simplicity (but h depends on b) the number of
sequences xi, 1 ≤ i ≤ m, xi ∈ In, such that:

1. The xi are pairwise distinct, 1 ≤ i ≤ m.

2. The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.

Theorem 2 We have

H(a, b) = h(b) · |Bn|2

(2n(2n − 1) . . . (2n −m+ 1))2

(and therefore H(a, b) does not depend on a, i.e. does not depend on the pairwise distinct values
ai, 1 ≤ i ≤ m).

Proof. When the xi are fixed, f and g are fixed on exactly m pairwise distinct points by ∀i, 1 ≤
i ≤ m, f(ai) = xi and g(ai) = bi ⊕ xi. �

Theorem 3 hm is the number of (P1, P2, . . . , Pm, Q1, . . . , Qm) ∈ I2mn such that

1. The Pi are pairwise distinct (i.e. i 6= j ⇒ Pi 6= Pj).

2. The Qi are pairwise distinct (i.e. i 6= j ⇒ Qi 6= Qj).

3. ∀i, 1 ≤ i ≤ m, Pi ⊕Qi = bi.

Proof. Since Qi is fixed when Pi is fixed, Theorem 3 is obvious from the definition of hm, i.e. just
take Pi = xi and Qi = xi ⊕ bi. �

Computation of E(h) = h̃m
We will denote by h̃m the average of hm when b ∈R Imn .

Theorem 4

h̃m =
(2n(2n − 1) . . . (2n −m+ 1))2

2nm

Proof. Let b = (b1, . . . , bn), and x = (x1, . . . , xn). For x ∈ Imn , let

δx = 1⇔
{

The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

and δx = 0 ⇔ δx 6= 1. Let Jmn be the set of all sequences xi such that all the xi are pairwise
distinct, 1 ≤ i ≤ m. Then |Jmn | = 2n(2n − 1) . . . (2n − m + 1) and N =

∑
x∈Jmn δx. So we have

E(h) =
∑

x∈Jmn E(δx). For x ∈ Jmn ,

E(δx) = Prb∈RImn (All the xi ⊕ bi are pairwise distinct) =
2n(2n − 1) . . . (2n −m+ 1)

2nm
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Therefore

E(h) = |Jmn | ·
2n(2n − 1) . . . (2n −m+ 1)

2nm
=

(2n(2n − 1) . . . (2n −m+ 1))2

2nm

as expected. �
We will denote by Advm the best Advantage that we can get in CPA-2 with m queries when we
try to distinguish f ⊕ g, with f, g ∈R Bn from h ∈R Fn. As we will see now, there is a very deep
connection between Advm and the coefficients hm. More precisely:

Theorem 5 An exact formula for Adv.
Let F = {(b1, . . . , bm) ∈ Imn such that: h(b1, . . . , bm) ≥ h̃m}. Then:

Advm = 1
2.[2n(2n−1)...(2n−m+1)]2

∑
b1,...,bm∈In |hm − h̃m|

= 1
2.2nm

∑
b1,...,bm∈In |

hm
h̃m
− 1|

= 1
2nm

∑
b1,...,bm∈F (hm

h̃m
− 1)

= 1
2nm

∑
b1,...,bm∈In\F (1− hm

h̃m
)

Proof. We have seen above that the choice of the pairwise distinct values ai has no influence.
Therefore, here the best CPA-2 is this one denoted by φ (φ is also the best KPA attack): choose
m pairwise distinct values a1, . . . , am,
∀i, 1 ≤ i ≤ m, ask for f(ai) = bi and now

• If H(b1, . . . , bm) ≥ H̃m output 1.

• If H(b1, . . . , bm) < H̃m output 0.

Here H̃m denotes the average of H(b1, . . . , bm) when (b1, . . . , bm) ∈ Imn , i.e. H̃m = |Bn|2
2nm .

Let p∗1 be the probability that φ outputs 1 when f ∈R Fn. p∗1 is also the probability that

H(b1, . . . , bm) ≥ H̃m when (b1, . . . , bm) ∈R Imn . Therefore p∗1 = |F |
2nm . Let p1 be the probabil-

ity that φ outputs 1 when f = g ⊕ h with (g, h) ∈R B2
n. Then: Adv = Adv(φ) = |p1 − p∗1|.

p1 =
∑

(b1,...,bm)∈F
H(b1,...,bm)
|Bn|2 . We know that Hm = hm|Bn|2

[2n(2n−1)...(2n−m+1)]2
(cf (3.2)). Therefore,

p1 − p∗1 =
∑

b1,...bm∈F
(

hm(b1, . . . , bm)

[2n(2n − 1) . . . (2n −m+ 1)]2
− 1

2nm
)

p1 − p∗1 =
∑

b1,...bm∈F
(

hm − h̃m
[2n(2n − 1) . . . (2n −m+ 1)]2

)

Therefore from Theorem 4:

Advm = p1 − p∗1 =
1

2nm

∑
b1,...bm∈F

(
hm

h̃m
− 1)

Now from 1
2nm

∑
b1,...bm∈F hm = h̃m

2 , we obtain the other equality of Theorem 5. �

As a direct corollary of this Theorem 5 we get:
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Theorem 6 (“Standard H technique theorem”)
Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of Imn such that |E| ≥ (1−β) ·2nm.
If
1. For all sequences bi, 1 ≤ i ≤ m of E we have hm(b) ≥ h̃m(1− α).
Then
2. Advm ≤ α+ β.

Proof From Theorem 5

Advm =
1

2nm

∑
b1,...,bm∈In\F

(1− hm

h̃m
)

In \ F ⊂ (In \ E) ∪ (E \ F ), so

Advm ≤
1

2nm
(β · 2nm + α · 2nm) ≤ α+ β

as claimed. �
Theorem 4 and theorem 5 show the proof strategy that we will follow in this paper: we will study

and evaluate the values hm, and try to show that “most of the time” hm
>∼ h̃m where a

>∼ b means
a ≥ b or a ' b.
Remarks

1. In [13] a slightly different strategy is used, by studying σ(hm), the standard deviation on the
hm values.

2. Theorem 4 and theorem 5 are specific of this problem. However Theorem 6 is a very classical
“coefficient H theorem” and can also be proved independently of Theorem 5 with more general
conditions (see for example [13, 12]).

3. The probability to distinguish is 1
2 +Adv · 12 , as usual.

Theorem 7 (Hworse case theorem)
Let α ≥ 0. If
1. For all sequences bi, 1 ≤ bi ≤ m, of Imn we have hm(b) ≥ h̃m(1− α)
Then
2. Advm ≤ α.

Proof. This follows immediately from Theorem 6 with β = 0. �

Part II

Analysis of the hi values

4 Orange equations, security in O(m
3

22n )

Let ε ≥ 0. From Theorem 7, (i.e. coefficients H technique) we know that if for all b1, . . . , bα ∈ In we
have hα(b1, b2, . . . , bα) ≥ h̃α(1− ε), then: AvdPRF ≤ 2ε (where AvdPRF is as before the advantage
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to distinguish f ⊕ g with f, g ∈R Bn from h ∈R Fn with a CPA-2 attack). Therefore we want to
study hα

h̃α
.

h̃α+1 = h̃α
(2n − α)2

2n

h̃α+1 = h̃α(2n − 2α+
α2

2n
) (4.1)

Now we want to evaluate hα+1 from hα and compare the result with (4.1). In hα+1, we have:

1. The previous conditions on hα.

2. Two new variables Pα+1 and Qα+1.

3. One more equation Pα+1 ⊕Qα+1 = bα+1. We call X this equation.

4. 2α new non equalities: Pα+1 6= Pi, ∀i, 1 ≤ i ≤ α, and Qα+1 6= Qi, ∀i, 1 ≤ i ≤ α. We will
denote by β1, β2, . . . , β2α, the 2α equalities that should not be satisfied here (for example
Pα+1 = P1).

Let Bi = {(P1, P2, . . . , Pα+1, Q1, Q2, . . . , Qα+1) ∈ I2α+2
n that satisfy the conditions on hα,

the equation X, and the equalitity βi}.
We have

hα+1 = 2nhα − | ∪2αi=1 Bi|
Moreover, since 3 equalities βi are necessarily not compatible with the conditions on hα, we have:

hα+1 = 2nhα −
2α∑
i=1

|Bi|+
∑
i<j

|Bi ∩Bj | (4.2)

• X + 1 equations.
We have |Bi| = hα (since X and βi will fix Pα+1 and Qα+1), and −

∑2α
i=1 |Bi| = −2αhα.

• X + 2 equations.
X is : Pα+1 ⊕Qα+1 = bα+1. To be compatible with the conditions on hα the 2 new equalities

should be of the type: Pα+1 = Pi and Qα+1 = Qj , with i ≤ α and j ≤ α. Therefore Pi ⊕ Qj =
bα+1. We will denote by h′α(b1, . . . , bα)(i, j) or simply by h′α(i, j) for simplicity, the number of
(P1, . . . Pα, Q1, . . . , Qα) ∈ I2αn such that

1. We have the conditions on hα (i.e. the Pi are pairwise distinct, the Qi are pairwise distinct,
and ∀i, 1 ≤ i ≤ α, Pi ⊕Qi = bi).

2. Pi ⊕Qj = bα+1 (this is one more affine equality).

Then: ∑
1≤i<j≤2α

|Bi ∩Bj | =
α∑
i=1

α∑
j=1

h′α(i, j)

(there, unlike (4.2), we can have i = j because they do not come from the same βi). From (4.2),
we get:

hα+1 = (2n − 2α)hα +

α∑
i=1

α∑
j=1

h′α(i, j) (4.3)
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Let M = {i, 1 ≤ i ≤ α, bi = bα+1}. Let Y (i, j) be the equation added in h′α (i.e. Y (i, j) is
Pi ⊕ Qj = bα+1). If i ∈ M , then h′α(i, i) = hα, and if i /∈ M , then h′α(i, i) = 0. (This is because
Y (i, i) is Pi⊕Qi = bα+1 and we have Pi⊕Qi = bi). Moreover, if i ∈M , then ∀j, 1 ≤ j ≤ α, j 6= i,
we have h′α(i, j) = 0, and h′α(j, i) = 0 (*).
(Proof: This is because Y (i, j) is Pi⊕Qj = bα+1. Moreover bα+1 = bi, since i ∈M , and Pi⊕Qi = bi.
So we would have Qi = Qj . Similarly, Y (j, i) is Pj ⊕ Qi = bα+1 = bi and from Pi ⊕ Qi = bi, we
would have Pj = Pi). Therefore, from these results and (4.3), we have obtained:

Theorem 8 (“Orange equations”)
With M = {i, 1 ≤ i ≤ α, bi = bα+1}, we have:

hα+1 = (2n − 2α+ |M |)hα +
∑
i/∈M

∑
j /∈M,j 6=i

h′α(i, j)

Theorem 9 (“Stabilization formula for hα+1”)∑
bα+1∈In

hα+1 = (2n − α)2hα

Proof. This comes immediately from the fact that in hα+1 we have Pα+1 and Qα+1 as new
variables, with Pα+1 /∈ {P1, . . . , Pα} and Qα+1 /∈ {Q1, . . . , Qα}. �

Theorem 10 (“Stabilization formula for h′α”)
∀i, j, i 6= j,

∑
bα+1 /∈{bi,bj} h

′
α(i, j) = hα.

Proof. Theorem 10 follows immediately from (∗) above (just before Theorem 8). �

First Approximation: Security in O(m
3

22n
)

From (4.2) we have: hα+1 ≥ (2n − 2α)hα. Then from (4.1)

hα+1

h̃α+1

=
hα

h̃α

(2n − 2α)

2n − 2α+ α2

2n

hα+1

h̃α+1

=
hα

h̃α

(
1−

α2

2n

2n − 2α+ α2

2n

)
Now since h1 = 2n and h̃1 = 2n,

hα ≥ h̃α
(

1− α2

22n − 2α · 2n + α2

)α
First step result:

hα ≥ h̃α
(

1− α3

22n − 2α · 2n + α2

)
(4.4)

Therefore (from Theorem 7):
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Theorem 11

AdvPRFα ≤ α3

22n − 2α · 2n + α2
(4.5)

(and the probability to distinguish is 1
2 + 1

2 ·Advm as usual).

We have proved security in O( α
3

22n
).

Remark. the fact that we have so far proved security when α � 2
2n
3 is not very impressive

compared with we have previously obtained with the Hσ technique (i.e. with the λα values).
However, the fact that AdvPRF decreases in 22n when α is fixed is interesting.

5 Second Approximation: Security in O(m
4

23n + m2

22n )

Lemma 1 (Simple Approximation of h′α)
If i /∈M, j /∈M , and i 6= j, we always have:

hα
2n

(1− 4α

2n
) ≤ h′α(i, j) ≤ hα

2n(1− 4α
2n )

Proof. Without loss of generality, just by changing the order of the indices, we can assume that
i = α − 1 and j = α, i.e. that the new equation Y is: Pα−1 ⊕ Qα = bα+1. We will now evaluate
hα and h′α from hα−2. When we go from hα−2 to hα, we have 4 new variables Pα, Qα, Pα−1, Qα−1
such that Pα ⊕Qα = bα, Pα−1 ⊕Qα−1 = bα−1,
∀i, 1 ≤ i ≤ α− 2, Pα−1 6= Pi
∀i, 1 ≤ i ≤ α− 2, Qα−1 6= Qi
∀i, 1 ≤ i ≤ α− 1, Pα 6= Pi
∀i, 1 ≤ i ≤ α− 1, Qα 6= Qi
For Pα−1, we have between 2n − (α− 2) and 2n − 2(α− 2) possibilities. Now, when Pα−1 is fixed,
for Pα, we have between 2n − (α− 1) and 2n − 2(α− 1) possibilities.
Therefore:

(2n − 2(α− 1))(2n − 2(α− 2))hα−2 ≤ hα ≤ (2n − (α− 1))(2n − (α− 2))hα−2

So
(22n − 4α · 2n)hα−2 ≤ hα ≤ 22nhα−2 (5.1)

Similarly, when we go from hα−2 to h′α, we have 4 new variables Pα, Qα, Pα−1, Qα−1 such that:
Pα ⊕ Qα = bα, Pα−1 ⊕ Qα−1 = bα−1, Pα−1 ⊕ Qα = bα+1, and ∀i, 1 ≤ i ≤ α − 2 : Pα−1 6=
Pi, Qα−1 6= Qi, Pα 6= Pi, and Qα 6= Qi. (we necessarily have Pα 6= Pα−1 and Qα 6= Qα−1 since
Pα ⊕ Pα−1 = bα ⊕ bα+1 and Qα ⊕ Qα−1 = bα ⊕ bα+1 and these values are 6= 0 since i /∈ M and
j /∈M).
Therefore, for Pα we have between 2n − (α− 2) and 2n − 4(α− 2) possibilities.

(2n − 4(α− 2))hα−2 ≤ hα ≤ (2n − (α− 2))hα−2 (5.2)

From (5.1) and (5.2), we obtain lemma 1, as claimed. �
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Lemma 2 (A simple way to get ride of |M |)
If α ≤ 2n

6 , then there exists a value h′α such that:

hα+1 ≥ (2n − 2α)hα + α(α− 1)h′α

(The condition α ≤ 2n

6 could be improved with further analysis).

Proof of Lemma 2. From Theorem 8, we have:

hα+1 ≥ (2n − 2α+ |M |)hα + [(α− |M |)(α− |M |)− α]h′α

So a sufficient condition for hα+1 ≥ (2n−2α)hα+[α2−α]h′α is to have |M |hα ≥ (2α|M |−|M |2)h′α (∗).
From Lemma 1, we have h′α ≤ hα

2n(1− 4α
2n

)
. Therefore a sufficient condition for (∗) is to have:

2n − 4α ≥ 2α− |M | i.e. α ≤ 2n+|M |
6 . This condition is satisfied if α ≤ 2n

6 as claimed. �

Security in O(m
2

22n
+ m4

23n
)

From Theorem 8 and Lemma 1, we have:

hα+1 ≥ (2n − 2α+ |M |)hα + [(α− |M |)(α− |M |)− α]
hα
2n

(1− 4α

2n
)

hα+1 ≥ (2n − 2α+ |M |+ α2 − 2|M |α+ |M |2 − α
2n

)hα −
4α3

22n
hα

We have

|M |+ −2|M |α+ |M |2

2n
≥ 0⇔ α ≤ 2n + |M |

2

We will assume that α ≤ 2n

2 (this condition could be improved with further analysis). Then

hα+1 ≥ (2n − 2α+
α2 − α

2n
− 4α3

22n
)hα

Remark. We can also get this directly from Lemma 2 and Lemma 1 but with α ≤ 2n

6 instead of
α ≤ 2n

2

hα+1

h̃α+1

≥
2n − 2α+ α2−α

2n −
4α3

22n

2n − 2α+ α2

2n

hα

h̃α

hα+1

h̃α+1

≥ (1− α

(2n − α)2
− 4α3

2n(2n − α)2
)
hα

h̃α

Therefore

hα ≥ (1− α

(2n − α)2
− 4α3

2n(2n − α)2
)αh̃α

Second Step result:

hα ≥ (1− α2

(2n − α)2
− 4α4

2n(2n − α)2
)h̃α (5.3)
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Now from (5.3) we have for all CPA-2 attacks with m queries:

AdvPRF ≤ m2

(2n −m)2
+

4m4

2n(2n −m)2
(5.4)

(here we do not need to say “when m ≤ 2n

2 ” since for larger m, this value is larger than 1).

Remark (5.4) gives security in O(m
2

22n
+ m4

23n
) with m queries as wanted in this section. In (5.4),

we have two terms. The first term in m2

22n
is consistent with the fact that when m = 2 for example

we know that we must have a term in 22n (see Appendix A: the value for the advantage with 2

queries is exactly 1
2n(2n−1)). The second term gives security only when m� 2

3n
4 and we will see in

the next sections how to improve this term.

6 An induction formula on h′α (“First purple equations”)

Theorem 12 (“first purple equations”):

h′α+1 = hα + (−2α+ 2 + ν + ξ + µ)h′α +
∑

(i,j)∈N

h′′α

with

• N = {(i, j), i 6= j, 2 ≤ i ≤ α, 2 ≤ j ≤ α, such that none of the 4 equalitites S are satified}
The S equalities are

. bα+1 = bj.

. bα+2 = bj.

. bα+1 = bi.

. b1 ⊕ bα+1 ⊕ bα+2 ⊕ bi = 0.

• µ is the number of i, 2 ≤ i ≤ α, bα+1 = bi.

• ξ is the number of i, 2 ≤ i ≤ α, bα+2 = bi.

• ν is the number of i, 2 ≤ i ≤ α, b1 ⊕ bα+1 ⊕ bα+2 ⊕ bi = 0.

Proof. We have that h′α+1 is the number of P1, . . . , Pα+1, Q1, . . . , Qα+1 such that:

1. The Pi values are pairwise distinct.

2. The Qi values are pairwise distinct.

3. We have all the equalities of hα+1: P1 ⊕Q1 = b1, . . . , Pα+1 ⊕Qα+1 = bα+1.

4. We have the extra equation X: Qα+1 ⊕ P1 = bα+2, with bα+1 6= bα+2 (in order to have
Pα+1 6= P1) and b1 6= bα+2 (in order to have Qα+1 6= Q1).
∀i, 1 ≤ i ≤ 2α, we define by B′i the set of all (P1, . . . , Pα+1, Q1, . . . , Qα+1) that satisfy:

(a) All the conditions hα.
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(b) The equation X.

(c) The equation Pα+1 ⊕Qα+1 = bα+1.

(d) The equation βi (these equations have been defined in section 4, for example β1 is
Pα+1 = P1, β2 is Pα+1 = P2, . . ., βα is Pα+1 = Pα, βα+1 is Qα+1 = Q1, . . ., and β2α is
Qα+1 = Qα).

In h′α+1 we have 2 new variables Pα+1 and Qα+1. These variables are fixed by:{
Pα+1 ⊕Qα+1 = bα+1

X : Qα+1 ⊕ P1 = bα+2

We have:

h′α+1 = hα − |
2α⋃
i=2

i6=α+1

B′i|

(here i = 1 is excluded since Pα+1 6= P1 and similarly i = α+1 is excluded since Qα+1 6= Q1).

6
?
bα+1 ⊕ bα+2 ⊕ b1 (if Pα+1 = Pi)

Pα+1

Qα+1

P1

Q1

Pi

Qi

bα+1

bα+2: equation X

b1

bi

•
•

•
•

•
•

Figure 1: “6-point figure” for X +(1 equation Pα+1 = Pi).

Since 3 equations βi are not compatible with the conditions hα, we have:

h′α+1 = hα −
2α∑
i=2

i 6=α+1

|B′i|+
α∑
i=2

2α∑
j=α+2

|B′i ∩B′j |

X + 1 equation
We want to evaluate |B′i|. These values are denoted as a value h′α (since we have one more equation
than in hα), except when |B′i| = 0.
Case 1. If βi is Pα+1 = Pi (2 ≤ i ≤ α) we will have |B′i| = 0 if βi generates a collision on Qi, this
means here the collision Qi = Q1 (see Figure 1).
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Pα+1 = Pi means P1 = Pi ⊕ bα+1 ⊕ bα+2.
Qi = Q1 means bi = b1 ⊕ bα+1 ⊕ bα+2 (ν values i are like this).
Remark. Qi 6= Qα+1 (unlike Qi 6= Q1) is not one of the conditions of B′i. (We want to evaluate
h′α+1 from solutions hα and in hα we do not have the variables Pα+1 and Qα+1). Here Qi = Qα+1

means bi = bα+1, and we have µ values i like this but we do not need this here.
Case 2. If βj is Qα+1 = Qi (2 ≤ i ≤ α, j = α+ i) we will have |B′i| = 0 if βj generates a collision
Pi = P1.
Qα+1 = Qi means P1 = Pi ⊕ bi ⊕ bα+2

Pi = P1 means bi = bα+2 (ξ values i are like this).
Remark. Pi 6= Pα+1 (unlike Pi 6= P1) is not one of the conditions of B′i. (We want to evaluate
h′α+1 from solutions hα and in hα we do not have the variables Pα+1 and Qα+1). Here Pi = Pα+1

means bi = bα+1, and we have µ values i like this, but we do not need this here.
From Case 1 and Case 2, we have:

2α∑
i=2

i6=α+1

|B′i| = (2α− 2− ξ − ν)h′α

(Remember: h′α is generally not a constant, but, as we will see, all the values h′α will have about
the same value).
X + 2 equations
We want to evaluate here |B′i∩B′j |. These values are denoted as a value h′′α (since we have two more
equations than in hα), except when these two equations are not compatible with the conditions hα
(because they generate a collision Pi = Pj or Qi = Qj , i 6= j) or when these two equations are not
independent (and create a term in h′α).

6
?
bα+1 ⊕ bα+2 ⊕ b1 (if Pα+1 = Pi)

Pα+1

Qα+1

P1

Q1

Pi

Qi

Pj

Qj

bα+1

bα+2: equation X

b1

bi

bj

6
?
bi ⊕ bj ⊕ bα+1 (if Qα+1 = Qj and Pα+1 = Pi )

•
•

•
•

•
•

•
•

Figure 2: “8-point figure” for X + 2 equations
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Case 1.
The two equations Pα+1 = Pi and Qα+1 = Qj are not independent and create a term in h′α. This
implies that i = j (because if i 6= j then Qi and Qj are not connected by Pα+1 = Pi) and then
Qi = Qα+1 means bi = bα+1 as seen in the section X + 1 equation above. Therefore, we have here
a term in µh′α. If i = j and bi 6= bα+1 then Qα+1 6= Qj . Therefore we will now assume (in Case 2)
that i 6= j.
Case 2.
i 6= j and the two equations Pα+1 = Pi and Qα+1 = Qj generate a collision. We have seen in the
section X + 1 equation that from Pα+1 = Pi,
Qi = Q1 means bi = b1 ⊕ bα+1 ⊕ bα+2 (ν values)
(Qi = Qα+1 means bi = bα+1, µ values, this will occur below on Qi = Qj)
and from Qα+1 = Qj ,
Pj = P1 means bj = bα+2 (ξ values)
(Pj = Pα+1 means bj = bα+1, µ values, this will occur below on Pi = Pj)
Moreover: Pi = Pj means here bj = bα+1 (the same as Pj = Pα+1 since we have Pα+1 = Pi)
Qi = Qj means here bi = bα+1 (the same as Qi = Qα+1 since we have Qα+1 = Qj).
With the definitions of N and S given above and from Case 1 and Case 2, we see that

α∑
i=2

2α∑
j=α+2

|B′i ∩B′j | = µh′α +
∑

(i,j)∈N

h′′α

Therefore
h′α+1 = hα + (−2α+ 2 + ν + ξ + µ)h′α +

∑
(i,j)∈N

h′′α

as claimed. �
Example
Let compute h′3 when b2 = b3 is the only exceptional relation on the bi values. We have: P1⊕Q1 =
b1, P2⊕Q2 = b2, P3⊕Q3 = b3 = b2 and X : Q3⊕P1 = b4. Here α = 2, µ = 1, ν = ξ = 0. Theorem
12 gives:

h′3 = h2 + (−4 + 2 + 1)h′2 +
∑

(i,j)∈N

h′′2

Since h′′2 = 0 (because all the variables are already linked in h′2) and since h′2 = 2n and h2 =
2n(2n − 2) (because b1 6= b2), this gives: h′3 = 2n(2n − 2)− 2n = 2n(2n − 3). This value can also be
verified directly.
It is also interesting to see how the proof of Theorem 12 proceeds on this example.

We have:
β1 : P3 = P1 (impossible since b2 6= b4)
β2 : P3 = P2

β3 : Q3 = Q1 (impossible since b1 6= b4)
β4 : Q3 = Q2

In h′3 we have 2 new variables P3 and Q3. These variables are fixed from P1; however all the
solutions for h2 do not necessary give a solution h′3 since in h′3 we must have P3 6= P2 and Q3 6= Q2.
More precisely: h′3 = h2 − |B′2 ∪B′4|. This gives:

h′3 = h2 − |B′2| − |B′4|+ |B′2 ∩B′4|
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h2

h′3

P3

Q3

P1

Q1

P2

Q2

b2(= b3)

b4: equation X

b1

b2

�

�

�

�
-

•
•

•
•

•
•

Figure 3: Computation of h′3 from h2 on this example.

We have: |B′2| = h′3 = 2n because P3 = P2 do not generate Q2 = Q1 (since b1 6= b4). Similarly
|B′4| = h′3 = 2n. Moreover |B′2∩B′4| = 2n since here P3 = P2 ⇔ Q3 = Q2 (since b2 = b3). Therefore
h′3 = 2n(2n − 2)− 2n = 2n(2n − 3).

Theorem 13 With the same notation of Theorem 12, we have:

|N | = (α− 1)(α− 2)− (α− 2)(2µ+ ν + ξ) + µ(µ− 1) + µξ + νξ + ξ(ν − ε1)

with
ε1 = 1⇔ b1 = bα+1

and
ε1 = 0⇔ b1 6= bα+1

Proof. N is the set of all (i, j), i 6= j, 2 ≤ i ≤ α, 2 ≤ j ≤ α such that we have none of these 4
equalities:
bi = bα+1 (1) (µ values)
bi = b1 ⊕ bα+1 ⊕ bα+2 (2) (ν values)
bj = bα+1 (3) (µ values)
bj = bα+2 (4) (ξ values)
(1) and (2) are not compatible since b1 6= bα+2

(3) and (4) are not compatible since bα+1 6= bα+2

We have (α − 1)(α − 2) values (i, j), i 6= j, 2 ≤ i ≤ α, 2 ≤ j ≤ α. We have (µ + ν)(α − 2) values
(i, j) such that i satisfies (1) or (2) and j 6= i. We have (µ + ξ)(α − 2) values (i, j) such that j
satisfies (3) or (4) and j 6= i. Therefore

|N | = (α− 1)(α− 2)− (µ+ ν)(α− 2)− (µ+ ξ)(α− 2) + |P|

where P = {(i, j) such that i satisfies (1) or (2), and j satisfies (3) or (4)}
(1) and (3) : we have µ(µ− 1) values.
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(1) and (4): we have µ.ξ values (i 6= j since bα+1 6= bα+2).
(2) and (3) : we have νξ values (because b1 6= bα+2).

(2) and (4):

{
bi = b1 ⊕ bα+1 ⊕ bα+2 (ν values)
bj = bα+2 (ξ values)

We must have i 6= j. However i = j gives b1 = bα+1.
Case 1. b1 = bα+1. Then for (2) and (4) we have νξ possibilities.
Case 2. b1 = bα+1. Then ξ = ν and for (2) and (4) we have ξ(ν − 1) possibilities.
Therefore

|N | = (α− 1)(α− 2)− (α− 2)(2µ+ ν + ξ) + µ(µ− 1) + µξ + νξ + ξ(ν − ε1)

as claimed. �

7 A simple variant of the schemes with only one permutation

Instead of G = f1 ⊕ f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0) ⊕ f(x‖1), with f ∈R Bn and
x ∈ In−1. This variant was already introduced in [2] and it is for this that in [2] p.9 the security

in m
2n + O(n)(m2n )3/2 is presented. In fact, from a theoretical point of view, this variant G′ is very

similar to G, and it is possible to prove that our analysis can be modified to obtain a similar proof
of security for G′.

8 A simple property about the Xor of two permutations and a
new conjecture

I have conjectured this property:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then ∃(g, h) ∈ B2
n, such that f = g ⊕ h.

Just one day after this paper was put on eprint, J.F. Dillon pointed to us that in fact this was
proved by Marshall Hall Jr in 1952 in [5]. We thank him a lot for this information. (This property
was proved again independently in 1979 in [15]).

A new conjecture. However I conjecture a stronger property. Conjecture:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then the number H of (g, h) ∈ B2
n,

such that f = g ⊕ h satisfies H ≥ |Bn|
2

2n2n
.

Variant: I also conjecture that this property is true in any group, not only with Xor.
Remark: in this paper, I have proved weaker results involving m equations with m � O(2n)

instead of all the 2n equations. These weaker results were sufficient for the cryptographic security
wanted.
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9 Conclusion

The results in this paper improve our understanding of the PRF-security of the Xor of two random
permutations. More precisely in this paper we have proved that the Adaptive Chosen Plaintext
security for this problem is in O(2n), and we have obtained an explicit O function. These results
belong to the field of finding security proofs for cryptographic designs above the “birthday bound”.
(In [1, 8, 10], some results “above the birthday bound” on completely different cryptographic
designs are also given). Since building PRF from PRP has many practical applications,we believe
that these results are of real interest both from a theoretical point of view and a practical point
of view. Our proofs need a few pages, so are a bit hard to read, but the results obtained are
very easy to use and the mathematics used are elementary (essentially combinatorial and induction
arguments). Moreover, we have proved (in Section 5) that this cryptographic problem of security is
directly related to a very simple to describe and purely combinatorial problem. We have obtained
this transformation by using the “Hσ technique”, i.e. combining the “coefficient H technique” of
[?, 10] and a specific computation of the standard deviation of H. (In a way, from a cryptographic
point of view, this is maybe the most important result, and all the analysis after Section 5 can be
seen as combinatorial mathematics and not cryptography anymore). It is also interesting to notice
that in our proof with have proceeded with “necessary and sufficient” conditions, i.e. that the
Hσ property that we proved is exactly equivalent to the cryptographic property that we wanted.
Moreover, as we have seen, less strong results of security are quickly obtained.

References

[1] William Aiello and Ramarathnam Venkatesan. Foiling Birthday Attacks in Length-Doubling
Transformations - Benes: A Non-Reversible Alternative to Feistel. In Ueli M. Maurer, editor,
Advances in Cryptology – EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer
Science, pages 307–320. Springer-Verlag, 1996.

[2] Mihir Bellare and Russell Impagliazzo. A Tool for Obtaining Tighter Security Analyses of
Pseudorandom Function Based Constructions, with Applications to PRP to PRF Conversion.
ePrint Archive 1999/024: Listing for 1999.

[3] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In Kaisa Nyberg, editor, Advances in cryptology
– EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 266–280.
Springer-Verlag, 1998.

[4] Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building PRFs from PRPs. In
Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO 1998, volume 1462 of Lecture
Notes in Computer Science, pages 370–389. Springer-Verlag, 1998.

[5] Marshall Hall Jr. A Combinatorial Problem on Abelian Groups. Proceedings of the Americal
Mathematical Society, 3(4):584–587, 1952.

[6] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
470–487. Springer-Verlag, 2000.

16



[7] Avradip Mandal, Jacques Patarin, and Valérie Nachef. Indifferentiability beyond the Birthday
Bound for the Xor of Two Public Random Permutations. In Guang Gong and Kishan Chand
Gupta, editors, Progress in Cryptology – INDOCRYPT 2010, volume 6948 of Lecture Notes in
Computer Science, pages 69–81. Springer-Verlag, 2010.

[8] Ueli Maurer and Krzysztof Pietrzak. The Security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 544–561. Springer-Verlag, 2003.

[9] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear Equalities and
Linear Non Equalitites for Cryptography. Cryptology ePrint archive: 2010/287: Listing for
2010.

[10] Jacques Patarin. Luby-Rackoff: 7 Rounds are Enough for 2n(1−ε) Security. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 513–529. Springer-Verlag, 2003.

[11] Jacques Patarin. On linear systems of equations with distinct variables and Small block size.
In Dongho Wan and Seungjoo Kim, editors, ICISC 2005, volume 3935 of Lecture Notes in
Computer Science, pages 299–321. Springer-Verlag, 2006.

[12] Jacques Patarin. The coefficientsH technique. In Roberto Avanzi, Liam Keliher, and Francesco
Sica, editors, SAC 2008, volume 5381 of Lecture Notes in Computer Science, pages 328–345.
Springer-Verlag, 2008.

[13] Jacques Patarin. A Proof of Security in O(2n) for the Xor of Two Random Permutations
. In Reihaneh Safavi-Naini, editor, ICITS 2008, volume 5155 of Lecture Notes in Computer
Science, pages 232–248. Springer-Verlag, 2008. An extended version is also on eprint.

[14] Jacques Patarin. Generic Attacks for the Xor of k Random Permutations. In Michael
J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
ACNS 2013, volume 7954 of Lecture Notes in Computer Science, pages 154–169. Springer-
Verlag, 2013.

[15] F. Salzborn and G. Szekeres. A Problem in Combinatorial Group Theory. Ars Combinatoria,
7:3–5, 1979.

[16] Emmanuel Volte, Jacques Patarin, and Valérie Nachef. Mirror Theory: Theorems and Con-
jectures. Applicaitons to Cryptography. Available from the authors.

Appendices

A Examples of hm with m = 1, 2 or 3

As examples, we present here the exact values for hm and h′m when m = 1, 2 or 3. The values that
we will obtain are summarized in Table 1.

(∗) h′3 denotes the condition h3 plus X : P1 ⊕Q3 = b4 with b1 6= b4 and b3 6= b4.
E denotes these 4 equalities: b2 = b3, b2 = b1 ⊕ b3 ⊕ b4, b2 = b4 and b1 = b2.
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Table 1: Summary of the results on hm for m = 1, 2, 3
• If b1 6= b2: • If b1, b2, b3 are pairwise distinct :

h2 = 2n(2n − 2) h3 = 2n(22n − 6.2n + 10)
h1 = 2n • If b1 = b2: • If b1 = b2 6= b3:

h2 = 2n(2n − 1) h3 = 2n(22n − 5.2n + 6)
• If b1 = b2 = b3:

h3 = 2n(22n − 3.2n + 2)

↓ • If we have no equality in E (∗):
Adv1 = 0 h′3 = 2n(2n − 4)

h′2 = 2n • If we have 1 equality in E :
h′3 = 2n(2n − 3)

• If we have 2 equalities in E :
h′3 = 2n(2n − 2)

↓
Adv2 = 1

2n(2n−1) h′′3 = 2n

Adv2 ' 1
22n

↓
If n ≥ 3, Adv3 = 1

22n

(
3.22n−12.2n+4
(2n−1)(2n−2)

)
Adv3 ' 3

22n

From hm we get the exact value for Advm by using Theorem 5 (and Theorem 4 to get the value of
h̃m).

A.1 m = 1

By definition, h1 is the number of P1, Q1 ∈ In such that P1 ⊕ Q1 = b1. Therefore, h1 = 2n. Now
from Adv1 = 1

22n
∑

b1∈In |h1 − h̃1| and h̃1 = 2n, we get: Adv1 = 0.

A.2 m = 2

By definition, h2 is the number of P1, P2, Q1, Q2 ∈ In such that: P1 6= P2, Q1 6= Q2, P1 ⊕Q1 = b1
and P2 ⊕Q2 = b2. We have Q1 6= Q2 ⇔ P1 ⊕ P2 6= b1 ⊕ b2.
Case 1. b1 6= b2. Then h2 = 2n(2n − 2) (because for P1 we have 2n possibilities, and then for P2,
we have 2n − 2 possibilities).
Case 2. b1 = b2. Then h2 = 2n(2n − 1) (because for P1 we have 2n possibilities, and then for P2,
we have 2n − 1 possibilities).

Now from Adv2 = 1
2.[2n(2n−1)]2

∑
b1,b2∈In |h2 − h̃2| and h̃2 = [2n(2n−1)]2

22n
= (2n − 1)2, we get: Adv2 =

1
2n(2n−1) '

1
22n

.
Standard deviation for m = 2

Les σ be the standard deviation of h2 when b1, b2 ∈R In. σ =
√
V (h2) =

√
E(h2 − h̃2)2. Let σ′ be

the average deviation of h2 when b1, b2 ∈R In. σ′ = E(|h2 − h̃2|).

V (h2) =
1

22n
[2n(2n − 1)2 + 2n(2n − 1)] = 2n − 1
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Therefore σ =
√

2n − 1 ' h̃2
21.5n

.

σ′ =
1

22n
[2n(2n − 1) + 2n(2n − 1).1]

Therefore σ′ = 2(2n−1)
2n ' 2h̃2

22n
. We see that here σ′ ' 2σ√

2n
.

So σ is much larger than σ′ when n is large. This is one of the reasons that explains that when m is
fixed and small the approximation of Adv obtained by Bienaymé-Tchebichev from σ (used in [13])
gives when m is fixed and small only Adv ≤ O( 1

2n ) while the real Advantage is in O( 1
22n

).

A.3 m = 3

In section 4 we have sen that (orange equation):

hα+1 = (2n − 2α+ |M |)hα +
∑
i/∈M

∑
j /∈M,j 6=i

h′α(i, j)

with M = {i, 1 ≤ i ≤ α, bi = bα+1}.
With α = 2, this formula will give us h3 from h2 and h′2.
M = {i, 1 ≤ i ≤ 2, bi = b3}.
Case 1. b1, b2, b3 are pairwise distinct. Then |M | = 0 and h3 = (2n − 4)h2 + 2h′2. h3 = (2n −
4).2n.(2n − 2) + 2.2n.

h3 = 2n(22n − 6.2n + 10) and since h̃3 = [2n(2n−1)(2n−2)]2
23n

= 23n − 6.22n + 13.2n − 12 + 4
2n , we have

h3 − h̃3 = −3.2n + 12 − 4
2n . Therefore, when n ≥ 2, we have h3 < h̃3 in this case 1 (and without

loss of generality, we can assume n ≥ 2 since for n = 1 we have only two values in In but here the
number m of queries is m = 3).
Case 2. We have b1 = b3 6= b2. Then |M | = 1, h3 = (2n − 3)h2, h3 = (2n − 3).2n(2n − 2),
h3 = 2n(22n − 5.2n + 6). Here h3 − h̃3 = 22n − 7.2n + 12− 4

2n = (2n − 2)(2n − 5 + 2
2n ). Therefore,

when n ≥ 3, we have h3 > h̃3, and when n = 3, we have h3 < h̃3.
Case 2 bis. We can check that when b1 = b2 6= b3 we obtain the same value (this is obvious by
symmetry of the hypothesis but not obvious from the orange equation).
Here |M | = 0 and h3 = (2n − 4)h2 + 2h′2.
h3 = (2n − 4).2,(2n − 1) + 2.2n

h3 = 2n(22n − 5.2n + 6) as in Case 2.
Case 3. b1 = b2 = b3. Here |M | = 2 and h3 = (2n − 2)h2 = (2n − 2)2n(2n − 1) So h3 =
2n(22n − 3.2n + 2) and h3 − h̃3 = 3.22n − 11.2n + 12 − 4

2n and it is easy to see that this is always
≥ 0 if n ≥ 0. (We can also say that we have

h3 ≥ h̃3 ⇔ 2n(2n − 1)(2n − 2) ≥ [2n(2n−1)(2n−2)]2
23n

⇔ 22n ≥ (2n − 1)(2n − 2)

since n ≥ 2 since we have m = 3 queries). Therefore h3 is always ≥ h̃3 in Case 3.
Finally, from

Adv3 =
1

2.[2n(2n − 1)(2n − 2)]2

∑
b1,b2,b3∈In

|h3 − h̃3|
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or from

Adv3 =
1

[2n(2n − 1)(2n − 2)]2

∑
b1,b2,b3/h3<h̃3

(h̃3 − h3)

we obtain, if n ≥ 3

Adv3 =
1

[2n(2n − 1)(2n − 2)]2
2n(2n − 1)(2n − 2)(3.2n − 12 +

4

2n
)

Adv3 =
1

22n(2n − 1)(2n − 2)
(3.22n − 12.2n + 4) ' 3

22n

We did not need the value h′3 to compute h3. However these values are directly given from section 6:
“first purple equations”.
With α = 2, h′′2 = 0, X : P1 ⊕ Q3 = b4, b4 6= b1, b4 6= b3, we get : h′3 = h2 + (−2 + µ + ξ + ν).2n,
with µ = 1 if b3 = b2, ξ = 1 if b4 = b2 and ν = 1 if b1 ⊕ b2 ⊕ b3 ⊕ b4 = 0.

The stabilization formulas
We can check these values with the “Stabilization formulas” (i.e. Theorem 9 and Theorem 10).

The stabilization formula for h3 is: ∑
b3∈In

h3 = (2n − 2)2h2

• If b1 6= b2, this gives: (2n − 2).2n(22n − 6.2n + 10) + 2.2n(22n − 5.2n + 6) = (2n − 2)2.2n(2n − 2).
• If b1 = b2, this gives: (2n − 1).2n(22n − 5.2n + 6) + (22n − 3.2n + 2) = (2n − 2)2.2n(2n − 1).

The stabilization formula for h′3 is:∑
b4 /∈{b1,b3}

h′3 = h3 (since X is P1 ⊕Q3 = b4)

There are 4 special values for b4: b1, b2, b3 and b1 ⊕ b2 ⊕ b3 (h′3 = 0 if b4 = b1 or b4 = b3).
• If b1, b2, b3 are pairwise distinct, this gives: (2n−4).2n(2n−4)+2.2n(2n−3) = 2n(22n−6.2n+10).
• If b1 = b2 6= b3, this gives: (2n − 2).2n(2n − 3) = 2n(22n − 5.2n + 6).
• If b1 = b2 = b3, this gives: (2n − 1).2n(2n − 2) = 2n(22n − 3.2n + 2).

B Example of unusual values for hm

hm; or more precisely, hm(b),is the number of (P1, P2, . . . , Pm, Q1, . . . , Qm) ∈ I2mn such that

1. The Pi are pairwise distinct.

2. The Qi are pairwise distinct.

3. ∀i, 1 ≤ i ≤ m, Pi ⊕Qi = bi.
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The average value of hm, when (b1, . . . , bm) ∈ Imn is:

h̃m =
(2n(2n − 1) . . . (2n −m+ 1))2

2nm
(cf Theorem 4)

Theorem 14 When bi is a constant, i.e. ∀i, 1 ≤ i ≤ m, bi = b1, we have:

hm = 2n(2n − 1) . . . (2n −m+ 1)

Proof. We have to choose the Pi pairwise distinct, and then the values Qi are fixed and pairwise
distinct by: ∀i, 1 ≤ i ≤ m,Qi = b1 ⊕ Pi. �

This value 2n(2n−1) . . . (2n−m+1) is the maximum possible value for hm, since when P1, . . . , Pm
are fixed, there is at most one possibility for Q1, . . . , Qm.
Remark. Il is conjectured that the minimum value for hm is obtained when the values b1, . . . , bm
are pairwise distinct. When m is small (for example m ≤

√
2n), this is proven, but when m = 2n

for example, no proof of this conjecture is known.
From the results above, when bi is a constant, we have:

hm/h̃m =
2nm

2n(2n − 1) . . . (2n −m+ 1)
=

1

(1− 1
2n )(1− 2

2n ) . . . (1− m−1
2n )

It is easy to see that this expression can tend to infinity when m is large and
√

2n � m ≤ 2n (by
taking the log of hm/h̃m for example). Therefore, we see that hm/h̃m is not bounded in general.
Unlike this result, hm is generally ≥ h̃m(1− ε) where ε is small (see the results of this paper, when

m� 2
2n
3 for example).

6

-0

h̃m − ε
h̃m

Figure 4: The different values hm

Figure 4 illustrate these results. (This figure is a classical figure in “Mirror Theory”, i.e. it
appears often when we deal with sets of linear equalities and linear non equalities).
It is also interesting to notice that very large values hm exist, but do not occur often, and that very
large values hm will affect more the standard deviation σ(hm) of hm than the average deviation
σ′(hm) of hm. (σ(hm) =

√
E(h− hm)2 and σ′(hm) = E(|h− hm|)).
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C Summary of our notation and of our General Proof Strategy

In this Appendix C we will summarize the proof strategy and the main notations used in this paper.

• m and n are two integers. In = {0, 1}n. (From a cryptographic point of view, m will be the
number of queries, and n is the number of bits of the inputs and outputs of each query).

• Hm (cf section 3) denotes the number of (f, g) ∈ B2
n such that ∀i, 1 ≤ i ≤ m, (f⊕g)(ai) = bi.

Hm is a compact notation for Hm(b1, b2, . . . , bm).

• hm (cf section 3) denotes the number of (P1, P2, . . . , Pm, Q1, Q2, . . . , Qm) ∈ I2mn such that:
the Pi are pairwise distinct, the Qi are pairwise distinct, and: ∀i, 1 ≤ i ≤ m, Pi ⊕ Qi = bi.
hm is a compact notation for hm(b1, b2, . . . , bm). (Hm and hm are equal up to a multiplicative

constant: Hm = hm.
|Bn|2

(2n(2n−1)...(2n−m+1))2
, cf Theorem 2 of section 3).

• h̃m denotes (2n(2n−1)...(2n−m+1))2

2nm . h̃m is the average value of hm when b ∈R Imn .

Our aim is to prove that: when m� 2n then for most values b, hm
>∼ h̃m (C1)(where a

>∼ b means
a ≥ b or a ' b), because then, from Theorem 6 (standard “H technique theorem”) we will get
CPA-2 security. In fact we will often prove a stronger property: that: when m � 2n then for all

values b, hm
>∼ h̃m (C2).

In order to prove (C1) or (C2), we proceed in this paper with what we call the “usual proof strategy
in Mirror Theory” or the “colored proof strategy”. (“Mirror Theory” is the theory that analyses
the number of solutions of sets of affine equalities (=) and affine non equalities ( 6=) in finite fields).
Essentially the two main ideas of this “colored proof strategy” are:

1. To compare hα+1

hα
with h̃α+1

h̃α
and to use

hα =
hα
hα−1

.
hα−1
hα−2

.
hα−2
hα−3

. . .
h2
h1
h1

instead of studying hα globally.

2. To look carefully if the affine equations that will appear in the analysis of hα+1

hα
are indepen-

dent, consequences, or in contradiction with the linear equalities in hα.

More precisely, here, with hα values, this “colored proof strategy” is this one:

1. We get an equation (called the “orange equation”) that evaluates hα+1 from hα and h′α where
h′α(X) denotes the number of solutions that satisfy the conditions hα plus one equation X:
Qα+1 ⊕ P1 = bα+1, when this equation X is linearly independent with the non equalities of
hα. h′α denotes any such value h′α(X). This was done in section 4 of this paper.

2. We get an equation (called the “first purple equation”) that evaluates h′α from hα−1, h
′
α−1

and h′′α−1 (where in h′′α−1 we have introduced two extra and independent affine equations from
the λα−1 conditions). This was done in section 6 of this paper.

3. We get the equations (called “all purple equations”) that evaluate h
(d)
α from h

(d−1)
α−1 , h

(d)
α−1, and

h
(d+1)
α−1 , (where in h

(d)
α−1, we have introduced d extra and independent affine equations from

the hα−1 equations).
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Figure 5: General view of the “colored proof strategy” used in this paper

hα+1 hα hα−1 hα−2 hα−3 : orange relations

h′α h′α−1 h′α−2 h′α−3 : first purple relations

h′′α−1 h′′α−2 h′′α−3

h
(3)
α−2 h

(3)
α−3

h
(4)
α−3

4. Now, from these evaluations we are able to compare hα+1

hα
with h̃α+1

h̃α
and therefore hα from

h̃α.

D About my Conjecture on H2n

In [5] in 1952 (and independently in [15] in 1979) it was proved that:

∀f ∈ Fn, if ⊕x∈In f(x) = 0, then∃(g, h) ∈ B2
n such that f = g ⊕ h

([5] was pointed to me by J.F. Dillon).
A new conjecture
Since 2008, I conjectured a stronger property.
Conjecture: ∀f ∈ Fn, if ⊕x∈Inf(x) = 0, then the number H of (g, h) ∈ B2

n such that f = g ⊕ h
satisfies H ≥ |Bn|

2

2n.2n
.

Variant: I also conjectures that this property is true in any group (commutative or not), not only
with Xor.
In this paper I have proved results involving m equations with m � O(2n) instead of all the 2n

equations. These results were sufficient for the cryptographic security wanted (cf Figure 6).

√
2n 2n

3
2n−1 2n

Zone 1 Zone 2 Zone 3 Zone 4

Figure 6: The different cases for the values m

Zone 1: (i.e. “below the birthday bound”): when 1 ≤ m�
√

2n.
Zone 2: (i.e. the cryptographic zone “above the birthday bound”): when

√
2n ≤ m ≤ 2n

3 : the
properties of this zone are the main subject of this paper.
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Zone 3: 2n

3 ≤ m ≤ 2n − 1: this zone was not studied carefully in this paper. Our proof technique
may also give some results in this zone, but this was not studied.
Zone 4: m = 2n − 1 and m = 2n: the zone of the new conjecture, and of [5] and [13].

Equivalent Conjectures

Let H̃α = |Bn|2
2nα be the average value of Hα.

Theorem 15 The new conjecture given above is equivalent to each of these (not proved properties):

1. ∀f ∈ Fn, if ⊕x∈Inf(x) = 0, then H2n(f) ≥ |Bn|
2

2n.2n
(= H̃2n)

2. ∀f ∈ Fn, H2n−1(f) ≥ H̃2n−1

2n (= |Bn|2
2n.2n

)

3. ∀f ∈ Fn, ∀α, 1 ≤ α ≤ 2n − 1, Hα(f) ≥ H̃α
2n

4. ∀α, 1 ≤ α ≤ 2n − 1, ∀b1, . . . , bα, hα(b1, . . . , bα) ≥ h̃α
2n

Proof of Theorem 15.

• (1) is the conjecture given above.

• H̃2n−1 = H̃2n

2n and if
⊕

x∈In f(x) = 0 then the last value of f is fixed when all the other values
of f are given, and therefore if

⊕
x∈In f(x) = 0, then H2n(f) = H2n−1(f). So (1)⇔ (2).

• (3)⇒ (2) is obvious (just take α = 2n − 1).

• Let assume that (2) is true. Then ∀α, 1 ≤ α ≤ 2n − 1, ∀f ∈ Fn,

Hα(f) =
∑

bα+1,...,b2n−1

[Number of (g, h) ∈ B2
n / g ⊕ h = f ′]

where ∀i, 1 ≤ i ≤ α, f ′(ai) = f(ai) and ∀i, α+ 1 ≤ i ≤ 2n − 1, f ′(ai) = bi.

So from (2): Hα ≥ (2n)2
n−α−1 H̃2n−2

2n = 2n.2
n

2n.2αn .
|Bn|2
2n.2n

= H̃α
2n . Therefore (2)⇒ (3).

• Finally since Hα = hα.
|Bn|2

[2n(2n−1)...(2n−α)]2 , we have: (3)⇔ (4)

Remark 1. The coefficient 2n in (3) looks a bit artificial, and even stronger properties may be
true (as suggested by our simulations done in [16]).
Remark 2. If we compare the conjecture above with the results of section 6, we see that:

. Section 6 is stronger when m� 2
3n
4 since it shows that Hα ' H̃α (instead of ≥ H̃α

2n ).

. The conjecture is stronger when m� 2
3n
4 since Hα ≥ H̃α

2n implies that Hα 6= 0 for example.
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