
Structural Evaluation of AES and Chosen-Key Distinguisher of
9-round AES-128

Pierre-Alain Fouque1, Jérémy Jean2, , and Thomas Peyrin3

1 Université de Rennes 1, France
2 École Normale Supérieure, France

3 Nanyang Technological University, Singapore

Jeremy.Jean@ens.fr

Abstract. While the symmetric-key cryptography community has now a good experience on how
to build a secure and efficient fixed permutation, it remains an open problem how to design a
key-schedule for block ciphers, as shown by the numerous candidates broken in the related-key
model or in a hash function setting. Provable security against differential and linear cryptanalysis
in the related-key scenario is an important step towards a better understanding of its construction.
Using a structural analysis, we show that the full AES-128 cannot be proven secure unless the
exact coefficients of the MDS matrix and the S-Box differential properties are taken into account
since its structure is vulnerable to a related-key differential attack. We then exhibit a chosen-key
distinguisher for AES-128 reduced to 9 rounds, which solves an open problem of the symmetric
community. We obtain these results by revisiting algorithmic theory and graph-based ideas to
compute all the best differential characteristics in SPN ciphers, with a special focus on AES-like
ciphers subject to related-keys. We use a variant of Dijkstra’s algorithm to efficiently find the most
efficient related-key attacks on SPN ciphers with an algorithm linear in the number of rounds.

Keywords: SPN, Block Cipher, AES, Related-Key, Chosen-Key.

1 Introduction

Block ciphers and hash functions are among the most important primitives in cryptography
and while their respective goals are different, they are related in many ways. For example,
most compression functions, which can in turn be used to define a hash function, are built
upon an internal block cipher thanks to classical constructions [24, 35, 40] such as Davies-Meyer
(DM), Matyas-Meyer-Oseas (MMO) or Miyaguchi-Preneel (MP). One of the main differences
between the two primitives is that in the case of the block cipher, the key input is unknown and
uncontrolled by the attacker, whereas for the compression function, the attacker has full control
over the key schedule (generally called message expansion in that context). Yet, the so-called
related-key attack scenario [5, 7] is interesting for both cases. This model allows the attacker to
incorporate differences not only in the plaintext or ciphertext input, but also in the key input.
While less relevant in practice than the classical single-key model, it is important to analyze
block ciphers in the light of related-key attacks since the secret keys are often updated in security
protocols or differences can be incorporated using fault attacks. Moreover, related-key attacks
are also very important when the block cipher is used as inner primitive of a hash function,
and in that setting one can even consider the known-key [28] or chosen-key models [10] where
the attacker is given knowledge or complete control of the key and his goal is to exhibit some
non-ideal property of the primitive.

Avoiding high-probability related-key differential characteristics is one of the goal of the
key schedule, and so far various directions have been investigated to construct this component.
Resisting to attacks in this setting has been taken into account in the conception of the Piccolo
block cipher [42] or in the Whirlpool hash function [3], the latter proposing to use the same
AES-like permutation for both the internal permutation and the message expansion part, leading

to a strong key schedule in terms of number of Sbox calls, but quite slow as it represents about
half of the total amount of computations. As a complete opposite, the designers of the LED
block cipher [22] chose to use no key schedule at all, at the expense that an important number
of rounds is required. These two functions can both provide provable security with regard to
related-key differential attacks, but they also both suffer from efficiency issues. In general (see
for example AES or PRESENT [15]), key schedules are built by using an ad-hoc and relatively
light function that is quite different from the main permutation, in a hope that this will avoid
any correlation between the two components and enforce low-probability related-key differential
characteristics. However, because of the heuristic design process and the difficulty of the task, no
real security argument is given and this can eventually lead to security issues [9, 11]. To help
designers and cryptanalysts, many automated differential analyses have already been applied to
various primitives [2, 11,12,16,17,26,31,32,39,43,44]

The AES block cipher [18] is currently the most interesting candidate to scrutinize with regard
to related-key, chosen-key attacks or when used as a black-box in cryptosystems: during the NIST
SHA-3 hash function competition, many candidates [4, 6, 20] reused some components from the
AES and related-key attacks on the AES-192 and AES-256 [9, 10] have been discovered. While
differential and linear attacks against the AES in the single-key scenario seem to be mastered
since the design of the cipher focuses in particular to resist to those class of attacks, provable
security against related-key attacks remains more complex to tackle.

Graph traversal algorithms. In [33], Matsui proposes an algorithm to find the best differential
characteristics for DES. The strategy to find the best one on n rounds first starts by computing
the best ones on 1 to n − 1 rounds. The algorithm works by induction and can be seen as a
tree traversal in a depth-first manner, where the tree represents all the possible differential
characteristics in the cipher layered by round. The nodes represent the actual differences and
the edges the possible transitions between them, and are labeled by their probabilities. One
differential characteristic is a path in this tree, and its probability equals the product of all
traversed edges. We are looking for the path with the highest probability in this tree. The
knowledge of the previous best characteristics, i.e. up to some depth in the tree, allows pruning
during the procedure like the A∗ heuristic [23]: the target value being known (the exhaustive
search bound), we can reduce the possibilities for each one-round transition. Using such algorithm,
the complexity is exponential in the number of nodes in the tree, and therefore in the block-size
and the number of rounds, except if the pruning is very efficient.

In modern byte-oriented ciphers, designers ensure there is a fast diffusion and that all actual
differential transitions occur with the same probability: all differences become equivalent. Conse-
quently, Matsui’s search algorithm becomes less efficient since there is no dominant characteristic.
Biryukov and Nikolić propose in [11] to restrict the search to truncated differences to decrease the
number of edges in the tree. They also introduce a nice representation of truncated differences to
consider the branching (combinatorial explosion of differences) in the key schedule.

In this article, we change the tree representation from the previous works into a graph: the
nodes and edges have the same signification as before, but we merge all the nodes representing
the same differences into a single one. Matsui’s tree encodes all the paths of our graph. This
merging allows to view the path search as a Markov process: round i is independent of the paths
in rounds 0 to i− 1. Consequently, the numbers of nodes and edges become linear in the number
of rounds. Finding the best differential characteristics is reduced to a shortest path problem: we
want all the shortest paths in this graph to get all the differential characteristics with the highest
probabilities. We use a variant of Dijkstra algorithm combined with the A∗ heuristic to explore a
kind of graph product in a breadth-first manner. Our algorithm uses a dynamic programming
method, which was considered too costly in terms of memory in [11]. This approach solves the
problem of finding the best related-key characteristics using graph algorithms in polynomial time

in the number of rounds and exponential in the state, whereas the previous best known methods
were exponential in both parameters using Matsui’s algorithm variants (the search in [11] was
made possible thanks to an extreme pruning in the AES tree).

Structural evaluation. By structural evaluation, we mean the domain of cryptography that
analyzes a cryptosystem in terms of generic constructions using black-box elements. We are
interested in how the building blocks of the primitives interact together, while "ignoring their
semantic definitions as particular functions" as in meet-in-the-middle attacks [13].

In this line of research, a major result is the conception of Rijndael, or how to construct
a block cipher provably resistant to differential attacks. Daemen and Rijmen show in [18] a
lower bound Br on the number of active Sboxes for any differential characteristic on r rounds of
Rijndael, when no difference is introduced in the key. For an Sbox with maximal differential
probability pmax, this result allows to upper bound the probability of success of any differential
attack on r rounds by pBr

max. For k-bit keys block ciphers, the resistance to differential cryptanalysis
means p−Br

max > 2k, which gives a criteria on r and pmax for the security of the cipher. In [13],
Biryukov and Shamir analyze the SASAS construction, alternating five layers of non-linear S and
affine A functions. They show that five such rounds are vulnerable to a very efficient structural
attack, even though the adversary does not know anything about the inner structure of both S
and A. Finally, we mention the work by Miles and Viola in [36], where they prove the security of
bounded-input-length pseudo-random functions based on Substitution-Permutation Networks
like the AES. In this article, we study the structural analysis of generic Substitution-Permutation
Networks in the related-key model. Contrary to the single-key model, it seems impossible to
prove anything on the key schedule resistance in the same vein as [18,36], so we build a tool to
study this problem.

Open-key model. The open-key model has been introduced so as to investigate the security of
block ciphers in relaxed versions of the standard model. In [28], Knudsen and Rijmen studied
what they called the known-key model where the key is public and the goal of the adversary
consists in distinguishing the cipher from a random permutation. At Crypto 2009, Biryukov et
al. introduced in [10] a more relaxed version called chosen-key model where the adversary must
exhibit a nontrivial property of the cipher when he has the freedom of the key bytes as extra
parameters. They show how to find differential q-multicollisions for AES-256 in time q · 267. For
an ideal cipher, constructing q-multicollisions would require at least O

(
q · 2

q−1
q+1

128
)
. At Fse 2010,

Gilbert and Peyrin introduced in [21] particular properties for the known-key model by using
high-probability differential characteristics on 8 rounds of the block cipher AES-128. Given a
key k, two known subspaces ∆IN and ∆OUT , they show how to find one pair of inputs (m,m′) to
the block cipher Ek such that m⊕m′ ∈ ∆IN and Ek(m)⊕Ek(m′) ∈ ∆OUT more efficiently than
a generic attack on a random permutation, based on a restricted variant of the birthday paradox.
In this work, given δ, ∆IN and ∆OUT , we are interested in finding a pair of keys (k, k′) and a
pair of messages (m,m′) such that k ⊕ k′ = δ, m⊕m′ ∈ ∆IN and Ek(m)⊕ Ek′(m′) ∈ ∆OUT .

Our contributions. The goal of this article is twofold. First, we describe an efficient and generic
tool that computes all the best differential characteristics for general SPN ciphers, in particular
for AES-like ciphers, and then we apply it to the structure of the AES-128. While our algorithm
also works in the single-key setting and retrieves the tight proven bounds of the AES structure,
we focus this article on the related-key model where the classical XOR difference is the relation
in the keys.

First of all, we give an efficient algorithm that we implemented for the case of AES-128.
This automatic tool can be useful in the future for designers that would like to efficiently test
the security of their candidate in the related-key model. While some of the best differential

characteristics that our tool generated for AES-128 are already known, the goal of this article is
to present a simple, efficient and generic method to evaluate related-key or single-key differential
security of SPN ciphers. The efficiency is improved from several days of computations in [11]
with a depth-first algorithm to a few hours on a single PC using our breadth-first approach.
The memory requirements are not as large as expected by Biryukov and Nikolic in [11]: it is
feasible, but we may need 100GB in the worst case where we want all the actual differential
characteristics for a large number of rounds. Otherwise, the memory needed ranges from 512MB
to 60GB, depending on what type of differences we are dealing with. On top of the algorithm,
we also provide a technique based on a linear system resolution to compute the exact value of
the maximal differential probability of the minimal differential characteristics. We show that
the theoretical upper bound 2−6·17 = 2−102 mentioned in [11] for the best 5-round characteristic
cannot be reached, since the truncated characteristic can only be instantiated with a probability
at most 2−105.

As an application of our tool, we study AES-128 as a particular SPN cipher. First, we
perform a structural analysis in the same vein as the one done in [13]. In our case, we consider the
MDS property of the diffusion layer, but we do not specify its coefficients. The results show that
in order to prove the security of 10 rounds of the cipher in the related-key model, one needs to
consider more than just its structure: one needs in particular to consider the differential properties
of the non-linear Sbox. Secondly, we analyze the structure of AES-128 in the hash function
setting, where the key schedule and the message parts can be attacked somewhat independently
by the adversary. We also show that this setting cannot be proven secure against differential
cryptanalysis unless additionnal information about the instantiation of the SPN cipher are
provided (e.g., the Sbox and the linear layer). Finally, we construct a chosen-key distinguisher for
9 rounds of AES-128 that requires 255 simple operations and 232 words of memory storage: this
was considered an open problem until now, e.g. [11]. Our distinguisher exhibits a non-random
property in the chosen-key setting and such a property for an ideal cipher would be detected
only after 268 encryptions queries. In comparison, the biclique cryptanalysis [14] allows to recover
the key from the full 10 rounds of AES-128, but with a complexity of 2126.2, almost identical to
the generic case. Previously best known distinguishers reached 8 rounds [19,21] and even latest
techniques distinguishing 9 rounds for AES-like permutations [25] cannot apply to AES-128 due
to its small state size.

Organization of the paper. In Section 2, we first introduce definitions regarding the ciphers
studied and the types of differences we analyze. We then describe our generic tool and give some
improvements in the specific case of AES-like ciphers in Section 3. Finally, we present the results
of our structural evaluation in Section 4.1, more specifically on AES-128 in Section 4.2, and we
precise the construction of the chosen-key distinguisher for 9 rounds of AES-128 in Section 4.3.
The details to apply the algorithm to AES-128 are discussed in Appendix B and the system
resolution to instantiate the truncated differential characteristics in Appendix C.

2 Definitions

2.1 SPN and AES-like ciphers description

To keep our reasoning as general as possible, we give in this subsection a generic description of
Substitution-Permutation Network (SPN) ciphers, and we identify the subgroup of the AES-like
ciphers. We refer to the corresponding specifications for a detailed description of the AES [18,37].
We consider that the block ciphers studied here take as input a plaintext or ciphertext of size n
bits, and a key of size k bits. The cipher is composed of R successive applications of a round
function, and we denote respectively si and ki the successive internal states of the block cipher
and the key schedule after the i-th round. The state s0 is initialized with the input plaintext

and k0 with the input key. One round i is itself composed of three layers: a key extraction and
incorporation layer (AK) where a n-bit round-key rki−1 is extracted from ki−1 and xored to si−1,
a block cipher permutation layer BC that updates the n-bit current state of the block cipher after
addition of the subkey, i.e. si = BC(si−1 ⊕ rki−1), and a key schedule transformation layer KS
that updates the k-bit current state of the key schedule, i.e. ki = KS(ki−1). The final ciphertext
is then defined as sR ⊕ rkR.

Definition 1. (SPN cipher) Let a block cipher E whose internal state is viewed as a tBC-cell
vector (where tBC = n

b), each cell representing a b-bit word, and the key schedule as a tKS-cell
vector (where tKS = k

b). The block cipher E is called an SPN cipher when its round function
BC is made of a linear function P and a non-linear permutation S, with BC = P ◦ S, the latter
applying one or distinct b-bit Sboxes to every cell.

In the even more particular case of AES-like ciphers, the internal state of BC can be viewed
as a square matrix of b-bit cells with d rows and d columns (n = d2 · b). A cell of si is denoted
by sx,yi , where x is its row position and y its column position in the square matrix, starting the
counting from 0. Then, the linear layer is itself composed of the ShiftRows transformation (ShR),
that moves each cell by x positions to the left in its own row, and the MixColumns transformation
(MC), that linearly mixes all the columns of the matrix separately. Overall, for AES-like ciphers
we have BC = P ◦ S = MC ◦ ShR ◦ S (Figure 1).

ki−1

rki−1
si−1

d cells

d cells

b bits

S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShR MC

si

ki

BC

KS

AK

Figure 1: One round of the generic SPN and AES-like ciphers.

We also study the more particular AES-like ciphers that have a key schedule internal state
that can be viewed as a b-bit cell matrix of d rows and d columns for a (d2 · b)-bit key (d rows and
1.5d columns for a (1.5d2 · b)-bit key or d rows and 2d columns for a (2d2 · b)-bit key) and whose
key schedule layer KS is the direct generalization of the AES key schedules to the dimension
d (see Figure 2). We denote this class of ciphers total-AES-like ciphers, which encompasses all
versions of AES. We note that the constant addition of the RCON values in the key schedule will
not affect our reasoning: that is why we omit it in the sequel.

2.2 Truncated and actual differences

In this article, we are interested in differential attacks [8]. Usually, in this scenario the attacker
looks for the bitwise difference between two state values. However, here we also consider truncated
differential attacks [27]. That is, for a state of differences, we only consider the presence of
differences in every cell, regardless of their actual values. We call the former actual differences
and the latter truncated differences.

<<S

(a)
AES-128.

<<S

(b) AES-192.

<<S

S

(c) AES-256.

Figure 2: Key schedules of the three variants of the AES. The « stands for a rotation of the column and a
round-dependent constant addition. The S-Box is denoted by S.

Definition 2. Let A = [Ax,y] and B = [Bx,y] two states. We denote their truncated difference
by ∆ = [∆x,y] with ∆x,y = 1 if and only if Ax,y 6= Bx,y (active cell), and ∆x,y = 0 otherwise
(inactive cell). We denote their actual difference by δ = [δx,y] with δx,y = Ax,y ⊕Bx,y.

First, we need analyze the effect of the cipher transformations on the truncated and actual
differences.

The substitution layer. One can easily check that the substitution layer S has no effect on the
truncated difference of a cell: a cell remains in the same active/inactive situation after application
of the transformation. However, S has an effect on the actual difference of every active cells. This
effect can be visualized by the differential distribution table (DDT) of the Sboxes. More precisely,
for each possible pair (δin, δout) of actual difference on the input/output of the Sbox, the table
gives the number DDT(δin, δout) = x of values X that validate this differential transition, i.e.
Sbox(X)⊕Sbox(X ⊕ δin) = δout. Alternatively, x/2b represents the differential probability of the
transition. An important criteria that can be derived from this table is the maximal differential
probability pmax, which is the highest possible differential probability when δin 6= 0 and δout 6= 0.
For example, the Sbox implemented in AES has maximal differential probability pmax = 2−6.

In order to measure the quality of a truncated differential characteristic, we use the classical
counting of the number of active Sboxes appearing in the characteristic, and we denote it | · |.

Definition 3. Let v = [∆i] be a vector of truncated differences. The weight of v is the number
of active differences in v:

∑
∆i 6=0 1. We denote it |v| and generalize the notion to any matrix v.

The permutation layer for AES-like ciphers. Since the ShR layer only moves the cells
around, it only changes the active/inactive cells positions in the internal state, but not their
number. The same reasoning applies to the actual differences. The MC transformation being
linear, the effect on the values and the actual differences is the same and therefore for each column
of the internal state, the output actual differences are simply deduced by the application of the
MC linear matrix. Concerning the truncated differences, the effect depends on the branching
number BMC of the MC matrix. The branching number is the minimum amount of active cells
one can get on both the input and the output of the matrix, excluding the case when there are
both null. This measure of the diffusion is crucial for the security of many cryptography primitives
and, in general, the MC matrix is Maximum Distance Separable (MDS), that is BMC = d+ 1

is maximal. A valid truncated differential transition forcing i cells to be inactive on the output
happens with probability 2−b·i.

3 Generic related-key differential characteristic search tool for SPN ciphers

In this section, we explain the inner workings of our generic related-key differential characteristic
search tool for SPN ciphers. As a first step, we model the problem by assuming that the cipher
round function is a Markov process in regard to the truncated differential characteristic search
(Section 3.1). This allows us to reduce the problem to a shortest path search in a special (r + 1)-
equipartite directed acyclic graph, for which we provide a simple yet powerful algorithm. The
precomputation phase of the process is devoted to building the graphs on which we work on
(Section 3.2), while the online phase looks for the shortest paths (Section 3.3). Finally, we explain
how to tweak the Markov assumption in order to find not only the best truncated differential
characteristics, but also the actual difference ones (in Section B).

3.1 Differential characteristic search as a graph modeling of a Markov process

When an attacker considers truncated differentials, he accepts to loose some information (the
actual value of the difference) in order to make the analysis simpler. In general, when dealing
with truncated differentials for SPN ciphers, most of the attacks actually maintain implicitly
more information than just the presence or absence of difference in a cell. For example, in the
case of the AES-128, the truncated differential characteristics found verify the linear conditions
imposed by the key schedule of the cipher. Therefore, the characteristic actually contains more
information than just active/inactive cells.

We describe a first algorithm that generates for any number of rounds all the related-key
truncated differential characteristics for SPN ciphers with minimal number of active Sboxes. This
analyzes the structure of the cipher in regard to the resistance against related-key attacks. We
make a simple assumption: we would like the search to be a Markov process. More precisely, we
assume that the possible differential transitions through a round from one truncated state to
another one does not depend on previous rounds transitions. If we stick to the real definition
of truncated differentials (i.e. without implicit conditions contained), then this assumption is
verified for SPN ciphers: knowing the truncated input difference of one round represents all the
information needed in order to deduce the possible output ones. We discuss in Section B how to
adapt ourselves to the case of actual differences.

Graph modeling. In order to find the best r-round related-key truncated differential charac-
teristics, we use a graph modeling of the problem. Let G be the 2-equipartite directed acyclic
graph of all the possible one-round transitions. Then all the best r-round related-key truncated
differential characteristics correspond to all the shortest paths in the (r + 1)-equipartite di-
rected acyclic graph Gr built by concatenating r copies of G (see Figure 3). Namely, denoting
G = (V0, V1 ; E0,1) the 2-equipartite graph linking with one cipher round a state in set V0 to a
state in set V1 using some edge in set E0,1, we build the graph Gr representing r rounds of the
cipher by Gr = (V0, . . . , Vr ; E) such that for all i, the subgraph (Vi, Vi+1 ; Ei,i+1) is equal to G.
Note that all edges are oriented from Vi to Vi+1, and that |Vi| = |Vi+1|. The nodes of the graph
stand for all the possible pairs (∆KS, ∆BC) where ∆KS represents the truncated difference on the
key schedule state and ∆BC represents the truncated difference on the block cipher state. Since
we have 2tKS possible values ∆KS and 2tBC possible values ∆BC, all Vi in the graph are composed
of 2(k+n)/b nodes. The edges correspond to a possible one-round related-key truncated differential
characteristic from the input to the output vertex and in the worst case where all differential
transitions are possible, we have 22(k+n)/b edges. A path in Gr is defined as a sequence of r + 1
nodes, one in each of the Vi.

V0

k0

s0

V1

k1

s1

rk0

AK

KS

P S

(a) Graph G.
V0

k0

s0

V1

k1

s1

V2

k2

s2

V3

k3

s3

V4

k4

s4

V5

k5

s5

rk0 rk1 rk2 rk3 rk4

AK

KS

P S

AK

KS

P S

AK

KS

P S

AK

KS

P S

AK

KS

P S

(b) Graph G5.

Figure 3: Examples of simplified versions of the two graphs G and G5. Variables si and ki represent the current
internal permutation/key state respectively, while rki stands for the subkey generated during the round.

Instead of viewing one round with the normal SPN layers ordering AK, S and P, we prefer to
slightly shift the window to the left: P, AK and S, the input key of this new window is the one
that has been incorporated into the block cipher state during the previous round (see Figure 3).
Then, the cost of the round is not associated to the vertices, but to the output nodes. Indeed,
the number of active cells in the output node represents the number of active Sboxes during this
round4. We denote CBC (resp. CKS) the total number of active Sboxes in the internal permutation
part of the block cipher (resp. in the key schedule part) in the whole characteristic. Depending
on the situation considered, one might want to minimize CBC + CKS for classical scenarios, or
instead max{CBC;CKS} for hash function settings, where the key schedule and the block cipher
parts can be attacked attacked sequentially (first the key schedule part, and then the block cipher
one).5

Theorem 1. (Search algorithm) Let E be a SPN cipher on n-bit blocks using a k-bit internal
state in the key schedule. Both states are viewed as vectors of b-bit cells. There exists an algorithm
A with a theoretical time complexity of O(r · 2(2n+k)/b) that finds all the best characteristics on r
rounds of E. �

We emphasize that algorithm A will find all the shortest paths in Gr representing the
differential transitions of r rounds of E . Moreover, we note that the time complexity of A can be
greatly reduced with heuristics.

We describe in the next two sections our tool that searches for the best r-round related-key
truncated differential characteristics. The precomputation phase of the tool constructs the graph
G from which one can virtually build Gr. During the online phase, the tool looks for the best
possible related-key truncated differential characteristics on r rounds by searching for the cheapest
paths of size r in the graph Gr.

4To be able to associate the number of active Sboxes in the key schedule to the output node as well, we make
the weak assumption that one round of the key schedule is composed of an Sbox and a linear layer at most.

5In the case of minimizing max{CBC;CKS}, the algorithm will not be able to find the shortest path since we
loose the total order. However, in most ciphers, CBC > CKS and therefore, we minimize only CBC. For the best
found paths, if max{CBC;CKS} = CBC is verified, we are ensured that we indeed found one of the best paths
minimizing max{CBC;CKS}.

3.2 Precomputation phase

The precomputation phase builds the graph G. It can be built and stored efficiently by observing
its inner structure: the block cipher internal state output depends only on the block cipher
internal state input and the incoming subkey (deduced by the extraction phase from the key
schedule internal state input), while the key schedule internal state output depends only on the
key schedule internal state input. Therefore, G can actually be described as a special product of
two smaller graphs GBC and GKS (see Figure 4), such that an edge (si, kj)→ (si′ , kj′) exists in
G if and only if kj → kj′ exists in GKS and (si, kj)→ si′ exists in GBC.

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

s3

s2

s1

(a) Graph GBC.

k1

k2

k3

k1

k2

k3

(b) Graph GKS.

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

(c) Graph G.

Figure 4: Example of graph product to build G, with three possible internal states s1, s2, s3 and three possible
key states k1, k2, k3, where (si, kj) represents a node. An edge (si, kj) → (si′ , kj′) exists in G if and only if
kj → kj′ exists in GKS and (si, kj)→ si′ exists in GBC.

On the one hand, GBC is a bipartite directed acyclic graph whose input nodes are all the
possible block cipher internal state and subkey pairs, and whose output nodes are all the possible
block cipher internal state. The edges represent input nodes that can be mapped to output nodes
through a valid differential transition. On the other hand, GKS is a 2-equipartite directed acyclic
graph, whose input and output nodes are all the possible key schedule internal states. The edges
represent input nodes that can be mapped to output nodes through a valid differential transition.

This observation slightly reduces the amount of computation/memory to build/store G:
the number of vertices in GBC is vBC = 2tBC+tKS + 2tBC and the number of vertices in GKS is
vKS = 2 × 2tKS . This has to be compared with the 2 × 2tBC+tKS nodes in G. For example, in
the particular case of the AES-128, this trick reduces the number of nodes from 233 in G to
vBC = 232 + 216 in GBC and 216 in GKS and mainly allows to apply an early-abort approach
to prune edges in G in the online phase. More importantly, the total number of edges shrinks
considerably from eBC ·eKS to eG = eBC+eKS, which equals to 233.6+222.15 in the case of AES-128
(these edge numbers are explained in Appendix B.3). At last, since Gr is the concatenation of
r instances of G, we only need to store G to run computations on Gr and this further saves
roughly a factor r.

The graph GBC. It can be built by repeating the three following steps for all the 2tBC possible
truncated differences ∆in on the input and all the 2tBC possible truncated differences ∆out on
the output.

1. Compute all the possible truncated differences ∆x that can be obtained from ∆in through
the P layer (on the backward direction, a truncated difference ∆out stays the same when
inverting the S layer).

2. For every ∆x found, compute all the possible truncated differences ∆k on the key state that
can be obtained from AK−1(∆x ⊕∆out).

3. For every ∆k found, add an edge in GBC from input node (∆k, ∆in) to output node ∆out if
none exists.

Algorithm 1 – Search all shortest paths in Gr.
1: function Search(Gr)
2: Copy all nodes of Gr in a new graph G∗r
3: for all v ∈ V0, c(v)← |v| . Initialize the starting nodes at their weight.
4: for all v ∈ V1, . . . , Vr, c(v)←∞ .The other nodes are not reachable yet.
5: SortList(V0) .The sorting is done according to the cost c(v) of the nodes.
6: for i = 1→ r do . Loop around the r rounds of the cipher.
7: for all v′ ∈ Vi, by increasing c(v′) do .This ordering of the edges ensures the minimization.
8: for all v ∈ succ(v′) do
9: α← c(v′) + |v|
10: if c(v) =∞ then . If the node v have not been visited yet,
11: c(v)← α . we update its cost,
12: Add the edge v′ → v to G∗r . and we add the associated edge to the graph G∗r .
13: else if c(v) = α then . If we can reach it at the same cost,
14: Add the edge v′ → v to G∗r . also add the edge to G∗r .
15: SortList(Vi) . Ensure the next nodes to be considered in increasing costs.
16: return G∗r .The graph of shortest paths is constructed, return it.

The time complexity to build GBC depends on the average branching BP of the P layer and on
the average branching Bxor of the subkey XORing layer. It amounts to 22tBC ·Bxor ·BP operations.
The memory cost to store GBC corresponds to the number of edges eBC of GBC and is upper
bounded by 22tBC · Bxor · BP since one operation on step 3 adds at most one edge. We give in
Appendix A an evaluation of Bxor, and as an example, we estimate BP in the case of AES-128
in Appendix B.3. We denote succBC(s, k) the set of successors of the state s in the graph GBC
using the key k.

The graph GKS. It is built by simply going through all the 2tKS possible key schedule internal
state input truncated differences, checking which output truncated differences can be obtained
through the KS layer and adding edges in GKS accordingly6. The time and memory complexities
depend on the average branching BKS of the KS layer and amounts to 2tKS ·BKS operations. The
number of edges eKS of GKS equals eKS = 2tKS ·BKS. In the sequel, we denote succKS(k) the set
of successors of the key k in graph GKS.

3.3 Online phase

The online phase finds all the shortest paths in Gr with at most r ·(vG2 ·log(vG2)+eG) computations
and memory r · eG, thus linear in the number of rounds r. This is possible because Gr is a
vertex-weighted directed acyclic graph. Since the edges have a constant weight (the number of
active Sboxes, i.e. the weights, are on the nodes and not the edges), the function we want to
minimize for each node v ∈ Vi, i ∈ [1, r] is:

|v|+ min
v′ ∈ pred(v)

(
c(v′)

)
, (1)

where pred(v) ⊆ Vi−1 is the set of all predecessors of v and c(v′) represents the cost of the
shortest path to v′. In other words, assuming that we know the shortest path costs to all the
nodes v′ ∈ Vi−1, we find the shortest path to any v ∈ Vi by choosing the predecessor of v with
the minimal cost.

6We assume that the key schedule is simple: given a truncated difference on the input, one can find each
reachable truncated output difference in constant time. This assumption is weaker than the one from Footnote 4,
and verified by most ciphers since a very complex key schedule would make the whole primitive inefficient anyway.

This can easily be done by creating a list containing all the nodes v′ ∈ Vi−1 sorted increasingly
according to the cost of their shortest path c(v′). Then, starting from the cheapest v′ and ending
to the most expensive one, we set the shortest path cost of all the successors v of v′ to |v|+ c(v′)
if and only if the cost of v was not set yet (see Algorithm 1). This is an improvement over the
simple shortest path computation in a directed acyclic graph using a topological order since we
can take advantage of the vertex-weighted property. In practice, we iteratively build a simpler
vertex-weighted directed acyclic graph G∗r from Gr (all the nodes are the same, but with less
edges), for which each node v ∈ Vi has a cost equal to the cost of the shortest path to v in Gr,
and an edge leading to v ∈ Vi represents one of the shortest paths to v (see Figure 5).

V0 V1 V2 V3 V4 V5

(s, k)

light

node weights

heavy

Figure 5: The dashed edges form an example of a simplified G5. The thick edges describe paths in the subgraph
G∗5 that are shortest paths in G5 to node (s, k). All the nodes in G∗5 are sorted according to their weight, the top
being the cheapest ones.

At this point, in the graph G∗r the costs assigned to all the nodes v in Vr represent the cost of
the shortest path to v in Gr. If vG represents the number of vertices and eG the number of edges
in the graph G, then the complexity of the shortest path search is about r · (vG2 · log(vG2) + eG)
operations: the vG

2 · log(vG2) term comes from the construction of the sorted list of the nodes at
each round, and the eG term is the number of edges visited during each round as we visit all of
them. Note that this is an upper bound on the complexity since we do not need to go through
all vG2 nodes every rounds, but only a subset of them, and we may cut some edges among all
the eG ones. The term eG = eBC + eKS dominates the complexity, and since eBC >> eKS, it can
be approximated by the number eBC ≤ 2(n+k)/b × 2n/b of edges in GBC. Hence, the total time
complexity is O(r · 2(2n+k)/b) for r rounds.

In order to get all the shortest paths in Gr, we need to store at each node v ∈ Vi not only
the first shortest path found to v but all of them (lines 13 and 14 in Algorithm 1). In general,
this number is very small and never exceeds the total number of shortest paths anyway. In the
worst case where all paths are the shortest, it amounts to the total number of edges r · eG.

As explained previously, in practice we do not use the graph G directly, but two separate
graphs GBC and GKS. We can adapt the Algorithm 1 for this setting: in order to build G∗r, we
replace the for all loop of line 8 that iterates over all nodes v′ = (si, ki) ∈ Vi by two for all
loops that describe all ki+1 ∈ succKS(ki) and all si+1 ∈ succBC(si, ki+1).

In [33], Matsui introduces an argument equivalent to the A∗ optimization for path-finding or
graph traversal algorithms [23] that allows to prune the majority of the edges of G and to avoid
the evaluation of many sets of successors. If we know the costs ck of all k-round characteristics,
1 ≤ k ≤ n− 1, and we target an n-round characteristic of cost at least cn, then we can consider
only the nodes from V0 that have a cost at most cn − cn−1, and the ones in V1 that have a cost
at most cn − cn−2. Intuitively, after one round has been passed, we know that we paid at least
c1, and since there are n − 1 remaining rounds to pass, we will need to pay at least cn−1. In

terms of intervals of costs, for each of the Vi, we only need to consider nodes that have costs in
[ci, cn − cn−i], 0 ≤ i ≤ n assuming c0 = 0. To take advantage of the A∗ heuristic, we sort the sets
of successors in both graphs, so that we can perform an extreme pruning of the edges whenever
the updated costs exceed the current interval, in an early-abort manner.

We detail how to efficiently extend this algorithm to the case of AES-like ciphers in Appendix B,
and we continue directly with the consequences of the search for this class of ciphers.

4 Applications to SPN and AES-128

4.1 Structural evaluation of SPN AES-like ciphers

We present here the results on the structural evaluation of the AES-like ciphers in regard to the
related-key model, which provides an estimation of the security provided by their key schedule.
Namely, we ignore the semantic definition of the Sbox and the MDS matrix, and we are only
interested in how they can interact in the related-key settings. The results are measured in terms
of number of active Sboxes as in [28], and presented in Table 1. Lines 2 and 3 of the table provide
the minimum number of active Sboxes (line 2) for any number of rounds when implementing an
AES-like cipher, and the number of truncated characteristics that reach that bound (line 3). In
these two lines, we count the number of active Sboxes in both the state and the subkeys, whereas
in lines 4 and 5 of Table 1, we consider the case of the hash function setting where the block
cipher and its key schedule can be attacked somewhat independently.

Rounds 1 2 3 4 5† 6 7 8† 9 10†

min(CKS + CBC) 0 1 3 9 11 13 15 21 23 25

Truncated Char. (log2) – 4.52 6.58 10.46 5.00 13.26 16.17 21.34 14.90 21.38

min(max(CBC, CKS)) 0 1 3 5 7 9 11 13 15 17

Truncated Char. (log2) – 4.32 6.60 10.26 12.34 14.49 16.03 18.72 20.89 22.96

Table 1: For the AES-128 cipher on r rounds, this table shows: (1) the minimal number CKS + CBC of active
Sboxes in both the key schedule CKS and in the block cipher CBC achievable in truncated differential characteristics;
and (2), the same figures for the minimal number max(CBC, CKS) for the hash function setting. Lines 3 and 5
count the number of distinct truncated characteristics that reach that bound. † For r ∈ {5, 8, 10}, see Appendix E
for the characteristics.

Theorem 2. It is impossible to prove the security of the full AES-128 against related-key
differential attacks without considering both the differential property of the S-Box and the P layer
when two keys verify a certain relation. It is impossible to prove the security of the full AES-128
in the hash function setting without considering both the differential property of the S-Box and
the P layer.

Proof. First, in the case where we consider regular related-key attacks (line 2), we remark
that for 10 rounds there exists a truncated differential characteristic counting only 25 Sboxes.
As we discussed before, this means that a differential analysis would run in p−25max operations.
Consequently, the structure of AES-128 on its own is not enough to prove the resistance to
related-key attacks for any ciphers in this class, we at least need to add a criteria on the Sbox
via pmax.

Secondly, with an S-Box on n bits (n = 8 in the AES), the minimal theoretical pmax that can
be obtained is 2−(n−1): consequently, the largest number of rounds that our structural analysis
could attack for AES-like ciphers is 7 rounds. Indeed, for 7 rounds, the 15 active S-Boxes give a

differential analysis requiring p−15max ≥ 2105 computations, which might be smaller than 2128. We
note that we do not know how to construct an almost-perfect permutation on n bits acting as an
S-Box with pmax = 2−(n−1). The S-Box chosen in the AES implements a composition of an affine
transformation on the inverse mapping, and reach pmax = 2−(n−2). Hence, the largest number of
rounds that our structural analysis could attack is 8 rounds. Indeed, for 8 rounds, the 21 active
S-Boxes give a differential analysis requiring p−21max ≥ 2126 computations, which might be smaller
than 2128. However, when we instantiate the P layer by the one of the AES-128, we observe that
none of the 216.17 characteristics found on 7 rounds by our search algorithm nor the 221.34 ones
for 8 rounds can be instantiated due to linear constraints coming from the key schedule. This
means that proving or disproving the security of the AES-128 in the related-key setting needs
to consider both the differential properties of the Sbox and the linear equations of the P layer.
From an instantiated P layer, we can write a system Q of linear equations whose solutions are
the values of all the truncated differences of the characteristic. Therefore, choosing P such that
Q can be made inconsistent on a small number of rounds brings more security than a random
P. Our tool can be used to write this system of linear equations for any truncated differential
characteristic.

Finally, for 10 rounds in the hash function setting, there exists characteristics with only 17
active Sboxes. For the AES-128, in the best case, the differential probability equals 2−6·17 = 2−102.
In this setting, the adversary is supposed to have full control over the input of both the key
schedule and the block cipher, that is why we considered max(CBC, CKS) as an objective function
to minimize in our search algorithm of Section 3. As the previous structural results, this also
means that one cannot prove the security of the full AES-128 against differential cryptanalysis
by only analyzing its structure. �

Complexity evaluation. Our tool found those results for any number of rounds in a few
seconds on a single regular processor. We also note that the minimal characteristics in the
single-key scenario are also found quasi-instantaneously. As a practical evaluation of the number
of operations in terms of number of costs update (line 9 of Algorithm 1), we measured at most
221.31 updates in this case, for the 10 rounds.

4.2 Differential Characteristics results for AES-128

Theorem 3. After 6 rounds, there is no related-key differential characteristic for AES-128 with
a probability higher than 2−128.

Proof. The related-key differential characteristics presented in the previous section are valid only
when one deals with truncated differences, and these characteristics give an indication on the
structural security provided by the AES-128 key schedule. However, due to the choice of the P
layer in AES-128, it turns out that none of them can be instantiated with actual differences,
because of inconsistencies in some linear constraints. To overcome this difficulty, and at the
cost of a bigger graph G to handle, we first add some more information in the Markov process
both on the representation of the key schedule state and the internal permutation state, and we
then filter the best characteristics obtained and hope to find one that can be instantiated with
actual differences. More details can be found in Appendix B. Our algorithm performs a search
fundamentally different from [11], but it finds again and more efficiently the same results.

By a system resolution, we show that from a truncated differential characteristic, we can decide
whether it can be instantiated with actual differences, and even find an associated differential
characteristic with the greatest probability (see Appendix C). As an example, our tool found
again the best 17-Sbox truncated differential characteristic on 5 rounds of AES-128, and also
found how to achieve the greatest probability 2−105 by instantiating the differences. This has to be

compared with the upper bound of 2−6·17 = 2−102 given in [11] since in the best case, all the AES
active Sboxes have maximal differential probability 2−6. Trying all the possible differences that
instantiate this truncated differential characteristic, we show that we cannot reach that bound,
but we can only set 15 out of 17 Sboxes to the maximal differential probability (see Appendix I
for the actual differential characteristic). The following Table 2 reports the best related-key
characteristics found by our tool on AES-128 up to 5 rounds, with their respective highest
achievable probabilities. Thus, from 6 rounds, there is no related-key differential characteristic
for AES-128 with a probability higher than 2−128. �

Rounds 1 2 3 4 5

min(CKS + CBC) 0 1 5 13 17

max log2(p) 0 -6 -31 -81 -105

Appendix reference – F G H I
Table 2: After 6 rounds, there is no related-key differential characteristic for AES-128 with a probability higher
than 2−128. Our tool retrieved the previous known results but also provides the real differential characteristics
with maximum probability.

Complexity evaluation. For 5 rounds, the online phase of our tool performs 235.36 cost
updates (line 9 of Algorithm 1, for the transition between V0 and V1), which takes about one
hour in a parallelized version of the shortest path finding algorithm on a 12-core machine. The
precomputation step completes in half an hour on this machine and needs 60GB of memory to
store precomputed tables, notably the GKS graph.

4.3 Distinguishing 9 rounds of AES-128

As another application of our tool, we describe a 9-round distinguisher for AES-128 in the
chosen-key model requiring 255 computations and 232 memory. For an ideal cipher, the same
property would be detected after 268 encryption queries. Here, the chosen-key model asks the
adversary to find a pair of keys (k, k′) satisfying k⊕ k′ = δ with a known difference δ, and a pair
of messages conforming to a partially instantiated characteristic in the data part.

We achieve this result by considering the best 5-round related-ley differential characteristic
and propagating it backwards to reach 9 rounds. The 5 last rounds hence count 6 active Sboxes
in the key schedule part and 11 in the data part (rounds 5 to 9 in Figure 6). By the backward
propagation in the key schedule, we reach a total of 15 active Sboxes for the key schedule
differential characteristic, whose probability equals 2−101. Since we have 2128 possible key values,
we expect 227 pairs of keys to conform to the differential characteristic in the key schedule. In
the block cipher part, we prepend three rounds that we plan to control with an average cost of
one computation using the Super-SBox technique [18,21,29], and one more round at the very
beginning that we make as sparse as possible. The entire 9-round differential characteristic is
depicted with colors on Figure 6 and in table form in Table 3.

The distinguishing algorithm. Once this differential characteristic settled, we find inputs
that verify the whole characteristic (see Algorithm 2). We start by finding a pair of keys that
conforms to the whole differential characteristic in the key schedule. There are about 227 expected
such pairs of keys, and we can generate them at an average cost of one computation by picking
random values satisfying all the non-linear transitions and efficiently solve the linear system to
retrieve all the subkeys. We get for instance the pair of keys (k, k′) shown in Appendix D and our
implementation confirms about 227 are found. We note that the difference k ⊕ k′ = δ is already
verified at this stage.

Algorithm 2 – Chosen-key distinguisher for 9 rounds of AES-128
1: function Distinguisher
2: while True do
3: Find (k, k ⊕ δ) conforming to the KS characteristic .

Done in amortized cost 1 ⇒ fixes the permutations
4: for i ∈ {0, . . . , 3} do . About 232 operations in parallel
5: construct the array Ti of the ith Super-SBox
6: for all values of the 5 differences in Sstart do .

Done in 28×5 = 240 simple operations
7: Use tables Ti to get a pair of messages (m,m′) verifying the characteristic from Sstart to Send

8: if backward transition not verified then continue .

Verified with probability 2−7

9: if forward transitions not verified then continue .

Verified with probability 2−6×8 = 2−48

10: return (k,m,m′) . Returns after about 255 operations

AK0

KS

SB

SR MC AK1

KS

SB

SR MC AK2

KS

SB

SR MC

AK3

KS

SB

SR MC AK4

KS

SB

SR MC AK5

KS

SB

SR MC

AK6

KS

SB

SR MC AK7

KS

SB

SR MC AK8

KS

SB

SR MC AK9

δ

∆IN

∆OUT

Sstart S′
start

Send

1 2 3

4 5 6

7 8 9

Legend
0x8E
0x7A
0xF4
0x28
0xA6
0xB3
0x78

No diff.
Trunc. diff.

0x3E
0x66
0x41
0xBF
0x95
0x6F
0x92
0x9C

Figure 6: Differential characteristic of 9-round AES-128 used in the distinguisher. The colors map to actual
values for the differences, whereas hatched bytes are truncated differences and white ones are inactive.

For a pair of keys, we precompute the four arrays Ti containing the paired values of the ith
Super-SBox: those are four parallel 32-bit non-linear applications obtained by reordering the
layers of two rounds of the cipher. To construct the tables Ti, we iterate in parallel over the
232 input values from state Send that corresponds to the ith Super-SBox and propagate the
values backwards until S′start. We note that the difference in Send is completely determined by
our differential characteristic. We store the pair in Ti indexed by its difference7, so that this
precomputation requires 232 simple operations, a memory complexity of 232, and depends on the
selected pair of keys.

We continue by picking random values for the 5-byte difference after the second non-linear
layer in Sstart, which linearly fixes all the differences in S′start. Note that we can repeat this part
about 28·5 = 240 times. From the precomputed tables Ti, we find on average one pair of messages
that verifies the middle rounds from Sstart to Send. The remaining of the process is probabilistic:
backwards, we expect a fraction of 2−7 pairs to pass the unique specified Sbox transition in the
second round up to ∆IN . Forwards, we expect a fraction of 2−6×8 = 2−48 to verify the 5 last

7To simplify, we assume the differences in S′start to be uniformly distributed so that each 32-bit difference
appears once. While this simplification is not true in practice, the cost per solution remains one on average, thus
it does not change the complexity estimation.

Table 3: Differential characteristics used in the distinguisher of 9 rounds of AES-128 (see also Figure 6). The
known differences are represented by their values from 0x00 to 0xFF, and truncated differences as ??, since their
values are unknown, but positive. The two lines for state differences are the respectively the input difference after
key addition and the output difference.

Round State differences Key differences

Plaintext B3??0000 0000??00 28F47A?? ????0000

1
00??0000 0000??00 000000?? ????0000 B3000000 00000000 A6F47A7A 008E0000

00000000 00000000 8EF47A7A ????????

2
00000000 00000000 28000000 ???????? 00000000 00000000 A6F47A7A A67A7A7A

???????? ???????? ???????? ????????

3
???????? ???????? ???????? ???????? 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

??0000?? ????7A7A 8E????7A 0000????

4
??0000?? ????0000 00????00 0000???? 28000000 A67A7A7A 8EF47A7A 00000000

288E0000 8E7A7A7A 00000000 00000000

5
008E0000 00000000 008E0000 008E0000 28000000 8E7A7A7A 008E0000 008E0000

00000000 8EF47A7A 8EF47A7A 8EF47A7A

6
00000000 008E0000 00000000 008E0000 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

8EF47A7A 00000000 8EF47A7A 00000000

7
00000000 008E0000 008E0000 00000000 8EF47A7A 008E0000 8E7A7A7A 00000000

8EF47A7A 8EF47A7A 00000000 00000000

8
00000000 008E0000 00000000 00000000 8EF47A7A 8E7A7A7A 00000000 00000000

8EF47A7A 00000000 00000000 00000000

9
00000000 008E0000 008E0000 008E0000 8EF47A7A 008E0000 008E0000 008E0000

???????? ???????? ???????? 00000000

Ciphertext ???????? ???????? ???????? 787A7A7A 78F47A7A 787A7A7A 78F47A7A 787A7A7A

rounds up to ∆OUT (all 8 transitions have been chosen by our tool to be 8 times the same one
with maximal probability pmax = 2−6). Finally, we expect a fraction 2−7−48 = 2−55 of the pairs
generated in the middle to propagate correctly forwards and backwards.

By repeating this process for all 240 differences in Sstart and for 215 distinct pairs of keys, we
expect to find a solution for the whole characteristic in 215 · (232 + 240) ≈ 255 operations. Note
that the freedom degrees left allows to get up to 212 solutions in 267 operations by exhausting
the remaining 212 valid pairs of keys.

Ideal case. For an ideal cipher, the adversary faces a family of random and independent
permutations

{
πi, i ∈ {0, 1}128

}
. His goal is to find a key k and a pair of messages (m,m′) such

that: m ⊕m′ ∈ ∆IN and πk(m) ⊕ πk⊕δ(m′) ∈ ∆OUT , where δ, ∆IN and ∆OUT are specified
in Figure 6. Namely, δ is a completely determined 128-bit difference, whereas ∆IN and ∆OUT

are two sets of 128-bit differences defined in Appendix D: colored and white bytes are fixed
differences, while hatched bytes can take several difference values. On the output, we constrained
each of the three independent active bytes after the last non-linear layer of the last round
to only 127 reachable difference values (since from a fixed input difference, only 127 output
differences can be reached through the AES Sbox), and the MixColumns layer being linear we
have |∆OUT | = 1273 ' 221. On the input, 4 bytes in ∆IN can take any difference value and 1
byte is constrained to only 127 reachable difference values, thus |∆IN | = 127 · (28 − 1)4 ≈ 239.

The best known method for the attacker to find (k,m,m′) verifying those properties consists
in applying the limited birthday algorithm [21]. The additional freedom left in choosing the key
bits does not help the attacker to find the actual pair of messages that verifies the required
property, since the permutations Fk and Fk⊕δ have to be chosen beforehand. All in all, the

attacker has access to 39 bits of differences at the input and 21 bits in the output, for a pair of
permutations on n = 128 bits. The limited birthday distinguisher on these permutations finds a
solution in time max{min(2IN/2, 2OUT/2), 2IN+OUT−n}, with IN = n− 39 and OUT = n− 21,
which gives a time complexity equivalent to 268 encryption queries.

5 Conclusion and future works

In this article, we have proposed a simple, efficient and generic algorithm that searches for
(truncated) differential characteristics in the single-key, related-key or hash function setting for
SPN ciphers. Thanks to this method, we were able to obtain the first non-trivial distinguisher
of 9-round AES-128 in the chosen-key model, which has been a long-lasting open problem on
this version of AES. We also show that no security proof of AES-128 in the related-key model of
the hash function setting can be based only of its structure: one has to take into consideration
both the Sbox and the linear layer. We believe this tool will be useful for designers that would
like to easily test the security of their own key schedule or message expansion. The research
community has still a lot to learn on the security of key schedules and there are many future
works possible: extend the 9-round result on AES-128 to the full 10 rounds, find a single-key
like security proofs in the related-key model for AES-like ciphers (generic enough to work for
any dimension), provide a formal proof of security against differential/linear cryptanalysis for
AES in the related-key model, and build simpler, more efficient and more secure key scheduling
algorithms.

Acknowledgements

We would like to thank the Martjin Stam, Christian Rechberger and the anonymous referees for
their valuable comments on our paper.

References

1. Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.: Cryptanalysis of AR-
MADILLO2. [30] 308–326

2. Aoki, K., Kobayashi, K., Moriai, S.: Best Differential Characteristic Search of FEAL. In Biham, E., ed.: FSE.
Volume 1267 of Lecture Notes in Computer Science., Springer (1997) 41–53

3. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE, Septem-
ber 2000 Revised May 2003. Available: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
(2009/06/24).

4. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal:
ECHO. Submission to NIST (updated) (2009)

5. Biham, E.: New Types of Cryptoanalytic Attacks Using related Keys (Extended Abstract). In Helleseth, T.,
ed.: EUROCRYPT. Volume 765 of Lecture Notes in Computer Science., Springer (1993) 398–409

6. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST (Round 2) (2009)
7. Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks. [38] 73–96
8. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: CRYPTO’91. (1991)
9. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192 and AES-256. [34] 1–18

10. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full AES-256. In
Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes in Computer Science., Springer (2009) 231–249

11. Biryukov, A., Nikolic, I.: Automatic Search for Related-Key Differential Characteristics in Byte-Oriented
Block Ciphers: Application to AES, Camellia, Khazad and Others. In Gilbert, H., ed.: EUROCRYPT. Volume
6110 of Lecture Notes in Computer Science., Springer (2010) 322–344

12. Biryukov, A., Nikolic, I.: Search for Related-Key Differential Characteristics in DES-Like Ciphers. In Joux,
A., ed.: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer (2011) 18–34

13. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. J. Cryptology 23(4) (2010) 505–518
14. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. [30] 344–371
15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,

C.: PRESENT: An Ultra-Lightweight Block Cipher. In Paillier, P., Verbauwhede, I., eds.: CHES. Volume 4727
of Lecture Notes in Computer Science., Springer (2007) 450–466

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

16. Bouillaguet, C., Derbez, P., Fouque, P.A.: Automatic Search of Attacks on Round-Reduced AES and
Applications. In Rogaway, P., ed.: CRYPTO. Volume 6841 of Lecture Notes in Computer Science., Springer
(2011) 169–187

17. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In Lai,
X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in Computer Science., Springer (2006) 1–20

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer
Verlag, Berlin, Heidelberg, New York (2002)

19. Derbez, P., Fouque, P.A., Jean, J.: Faster Chosen-Key Distinguishers on Reduced-Round AES. In Galbraith,
S., Nandi, M., eds.: INDOCRYPT. Volume 7668 of Lecture Notes in Computer Science., Springer (2012)
225–243

20. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.:
Grøstl – a SHA-3 candidate. Submission to NIST (Round 3) (2011)

21. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations. In Hong, S.,
Iwata, T., eds.: FSE. Volume 6147 of Lecture Notes in Computer Science., Springer (2010) 365–383

22. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. [41] 326–341
23. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis For The Heuristic Determination Of Minimum Cost Paths.

IEEE Transactions on Systems, Science, and Cybernetics SSC-4(2) (1968) 100–107
24. ISO: ISO/IEC 10118-3:2004: Information technology — Security techniques — Hash-functions — Part 3:

Dedicated hash-functions. (feb 2004)
25. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist Grøstl. In Canteaut, A.,

ed.: FSE. Volume 7549 of Lecture Notes in Computer Science., Springer (2012) 110–126
26. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-Oriented Hash Functions.

In Fischlin, M., ed.: CT-RSA. Volume 5473 of Lecture Notes in Computer Science., Springer (2009) 164–181
27. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Fast Software Encryption - Second International

Workshop, Leuven, Belgium, LNCS 1008, Springer-Verlag (1995) 196–211
28. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In Kurosawa, K., ed.:

ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science., Springer (2007) 315–324
29. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound distinguishers: Results on

the full whirlpool compression function. [34] 126–143
30. Lee, D.H., Wang, X., eds.: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference

on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings. In Lee, D.H., Wang, X., eds.: ASIACRYPT. Volume 7073 of Lecture Notes in Computer
Science., Springer (2011)

31. Leurent, G.: ARXtools: A toolkit for ARX analysis. In: Second SHA-3 Conference. (2012)
32. Manuel, S., Peyrin, T.: Collisions on SHA-0 in One Hour. [38] 16–35
33. Matsui, M.: On Correlation Between the Order of S-boxes and the Strength of DES. In Santis, A.D., ed.:

EUROCRYPT. Volume 950 of Lecture Notes in Computer Science., Springer (1994) 366–375
34. Matsui, M., ed.: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory

and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings.
In Matsui, M., ed.: ASIACRYPT. Volume 5912 of Lecture Notes in Computer Science., Springer (2009)

35. Matyas, S., Meyer, C., Oseas, J.: Generating Strong One-Way Functions With Cryptographic Algorithm -
IBM Technical Disclosure Bulletin, Vol. 27, No. 10A (1985)

36. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions, and natural proofs. In
Safavi-Naini, R., Canetti, R., eds.: CRYPTO. Volume 7417 of Lecture Notes in Computer Science., Springer
(2012) 68–85

37. National Institute for Science, Technology (NIST): Advanced Encryption Standard (FIPS PUB 197) (November
2001)

38. Nyberg, K., ed.: Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland,
February 10-13, 2008, Revised Selected Papers. In Nyberg, K., ed.: FSE. Volume 5086 of Lecture Notes in
Computer Science., Springer (2008)

39. Ohta, K., Moriai, S., Aoki, K.: Improving the Search Algorithm for the Best Linear Expression. In Coppersmith,
D., ed.: CRYPTO. Volume 963 of Lecture Notes in Computer Science., Springer (1995) 157–170

40. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In
Stinson, D.R., ed.: CRYPTO. Volume 773 of Lecture Notes in Computer Science., Springer (1993) 368–378

41. Preneel, B., Takagi, T., eds.: Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings. In Preneel, B., Takagi, T., eds.: CHES.
Volume 6917 of Lecture Notes in Computer Science., Springer (2011)

42. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-Lightweight
Blockcipher. [41] 342–357

43. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup, V., ed.: CRYPTO. Volume
3621 of Lecture Notes in Computer Science., Springer (2005) 17–36

44. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In Cramer, R., ed.: EUROCRYPT. Volume
3494 of Lecture Notes in Computer Science., Springer (2005) 19–35

A Evaluating Bxor

Theorem 4. The average branching Bxor in the XOR key addition is:

tBC∑
z=0

tBC∑
i=0

tBC∑
j=0

(
tBC
i

)
2tBC

·
(
tBC
j

)
2tBC

· Pand(tBC, i, j, z) · 2z.

Proof. We would like to estimate the average branching factor Bxor of the subkey XOR layer
in order to be able to evaluate properly the time and memory complexity of the related-key
differential characteristics search tool. We denote X[i] the i-th bit of the word X, and HAM(X)
the hamming weight of the word X. We recall from [1] that for two random k-bit words A and
B of hamming weight a and b respectively, the probability that HAM(A∧B) = i (where ∧ stands
for the bitwise AND function) is given by the formula

Pand(k, a, b, i) =

(
a
i

)(
k−a
b−i
)(

k
b

) =

(
b
i

)(
k−b
a−i
)(

k
a

) . (2)

All the branching in the ⊕ operation between two words A and B comes from the active bits in
A ∧B, and we have 2HAM(A∧B) possibilities. Therefore, we can deduce that

Bxor =

tBC∑
z=0

tBC∑
i=0

tBC∑
j=0

(
tBC
i

)
2tBC

·
(
tBC
j

)
2tBC

· Pand(tBC, i, j, z) · 2z. (3)

In the case of AES-128, this gives us Bxor = 25.15. �

B Enhanced Markov Process for AES-like Ciphers

In this section, we study the special SPN case of AES-like ciphers, where the P layer is composed
of ShR and MC (see Section 2). In this situation, we are able to compress the states by making
some observations on one AES-like round. This saves a significant amount of computations and
memory. Moreover, we also evaluate the number of nodes and edges of the graph GBC (and of
GKS in the case of total-AES-like ciphers) so as to be able to estimate precisely the computations
and memory complexities

B.1 The Markov assumption and actual differences

Our search tool (Section 3) only works because we place ourselves in a Markov process scenario.
Depending on the analysis we want to conduct on the studied block cipher, we may want more
than just pure truncated differentials. This scenario indeed gives a structural evaluation of
the cipher in regard to the related-key model, but we may want to instantiate the truncated
differences into actual differences. With our current approach, the pure truncated characteristics
found may not be valid since the Markov process did not propagate some constraints along
the rounds, which includes equality conditions between actual differences, or their difference, or
linear relations, etc. For example, choosing a subkey transition in one round of the AES-128
key schedule affects the possible choices for the next subkeys because of its strong linearity (see
Figure 7). To address this deeper analysis, we propose two fundamentally different approaches.

The first one is the filtering. By starting with all the best pure truncated differential char-
acteristics we have found with the search tool, we filter them one by one, until we reach one
that fulfills all the implicit necessary conditions imposed by the block cipher. Depending on the
studied block cipher, we may not find one with the minimal cost: this method is not guaranteed
to find the best differential characteristics with all the extra conditions.

MC AK

KS

SB

SR MC AK

Figure 7: Example of linear incompatibility in the case of AES-128: the linearity of the Key schedule imposes all the
active columns [a, b, c, d]T to be equal, which contradicts M·[x, 0, 0, 0]T⊕[x′, 0, 0, 0]T = M·[y, 0, 0, 0]T⊕[0, y′, 0, 0]T

the first key addition (AK).

The second method is to build the very same tool, but propagating all the information such
that the Markov assumption is verified again. Then, we can directly verify the implicit conditions
and eventually be sure that the search finds valid characteristics. In return, the overall search
introduces more complex operations since the graphs GBC and GKS are bigger.

A mix of the two methods seems to be the best strategy in practice and we give in Appendix B
an example with the detailed study of the AES-128. In this case, the overall complexity is the
same as before, except that we perform extra computations for each visited edges to check for
linear consistency by solving small linear systems, which may all be precomputed.

B.2 Block Cipher State Compression

In the case of AES-like ciphers, the search space can be drastically reduced thanks to some
observations on the round function. We introduce a new compressed view of the block cipher
state.

Definition 4. Let ∆ be a state of truncated differences considered as a d-column square matrix
∆ = [∆·,1, . . . ,∆·,d]. We denote ∆̄ the image of ∆ by the non-injective function:

∆ −→ ∆̄ =
[
|∆̄·,1|, . . . , |∆̄·,d|

]
, where: ∀j, ∆̄·, j = |∆·, j |

In the sequel, we call ∆̄ the compressed state of ∆.

A compressed state as defined above only describes the number of active cells there are in
each column of the block cipher internal state. The motivation to introduce such a compressed
representation lies in the MDS property of the underlying matrix M of the MC layer. Indeed, to
get the possible output truncated patterns, we only need the number of active cells on the input,
i.e. the weight of that column.

Theorem 5. Let E be an AES-like cipher with n-bit blocks using a k-bit internal state in the
key schedule. Both states are viewed as vectors of b-bit cells. With state compression, the time
complexity of Algorithm 1 to find all the best differential characteristics for r round of E becomes

O
(
r · 2
√

n
b
log2(

n
b
)+n

b

)
,

with a small hidden constant factor. �

B.3 Evaluating the number of nodes/edges of GBC and GKS

Number of nodes. With this new compressed representation, it is easy to see that the internal
state can now take (d+1)d possible values instead of 2tBC and GBC now contains (d+1)d×(2tKS +1)
nodes; GKS is not affected by the compressed state.

Number of edges in GBC. The average branching factor BP of the P layer for AES-like
ciphers corresponds to the one of the MixColumns layer: for a single column with i ∈ [1, d] active
differences in its input, we may choose the location of j active difference in its output, with
j ∈ [d+ 1− i, d] to respect the MDS property of the underlying d× d matrix M. Alternatively,
we may choose the location of j ∈ [0, i − 1] inactive differences, which leads to the following
formula of BP for the d columns where the leading 1 comes from the full inactive column:

BP =

2−d

1 +
d∑
i=1

(
d

i

) i−1∑
j=0

(
d

j

)d

=

1 +
d∑
i=1

i−1∑
j=0

(
d

i

)(
d

j

)d

. (4)

In the case of AES-128, we obtain an average branching of BP = 22.55 for one column of the
P layer. However, we have to consider not only the P layer but also the subkey XOR layer that
comes right after. We cannot use the value we previously computed for BP since we assumed in
Appendix A that the two words XORed were random. However, in the current situation, the
hamming weight of the column words arriving from the P layer presents a strong bias towards
higher values (this is due to the branching effect that tends to populate more dense than sparse
words). Therefore, we need to tweak a little bit the formula in order to take in account the
hamming weight probability of the column words involved A and B:

Bxor =

(
d∑
z=0

d∑
a=0

d∑
b=0

Pr[HAM(A) = a] · Pr[HAM(B) = b] · Pand(d, a, b, z) · 2z
)d

, (5)

where Pr[HAM(B) = b] =
(
d
b

)
/2d since the subkey column words are not biased, and Pand is

defined in Appendix A. The hamming weight probabilities Pr[HAM(A) = a] concerning the column
words coming from the P layer are computed by

Pr[HAM(A) = a] =

∑d
i=1

(
d
i

)(
d
a

)
· 1a<i

1 +
∑d

i=1

∑i−1
j=0

(
d
i

)(
d
j

) . (6)

In the case of AES-128, the total branching of both P layer and XOR layer amounts to
216.88. One can see that the branching here is very strong compared to the number of nodes that
the graph GBC has, which indicates that this bipartite graph is dense. Therefore, we can instead
upper bound the number of edges eBC by reasoning on the number of nodes eBC ≤ (d+ 1)2d · 2tBC ,
since two nodes cannot share more than one edge. This gives us eBC ≤ 234.6 for AES-128. In
practice, we measured 233.6 edges for GBC.

Number of edges in GKS. In the case of total-AES-like ciphers, we can compute an estimation
of the average branching factor BKS of the KS layer and this allows to evaluate the number of
edges in GKS. Remember that any Sbox application has no effect on the truncated differentials
search branching, so we only need to consider the XOR operations. In order to obtain this
estimation, we model the total-AES-like ciphers key schedule as the following operations:

A′0 = A0 ⊕R0; A′1 = A′0 ⊕R1; · · · A′d−1 = A′d−2 ⊕Rd−1 (7)

where all words represent a d-bit key state column and A0 and all Ri are random d-bit numbers.
If we denote Bi

KS the average branching concerning the i-th operation (i.e. column), then we
have BKS =

∏d−1
i=0 B

i
KS. Note that it is easy to evaluate the average branching B0

KS of the first
operation, but hard to do for the remaining ones. Indeed, in the first operation we consider
that both A0 and R0 are random d-bit numbers, but for the next operations the words A′0, . . .,
A′d−2 are not random looking value anymore as their hamming weight is slightly biased towards

higher values (due to the effect of the branching in the previous operation). This is the very same
problem that appear for combining the branching of the P and the XOR layer in the previous
section.

We then use the same formula (5) to compute Bi
KS, remarking that A0 and Ri are considered

as not biased (thus Pr[HAM(A0) = b] = Pr[HAM(Ri) = b] =
(
d
b

)
/2d), while the biased probabilities

Pr[HAM(A′i) = a] are computed with:

Pr[HAM(A′i) = a] = (8)(
d∑
z=0

d∑
a=0

d∑
b=0

2z∑
y=z

Pr[HAM(A′i−1) = a] · Pr[HAM(Ri) = b] · Pand(d, a, b, z) ·
(

z

y − z

)
· 1i+j−y=a/2z

)d

We can now estimate the number of edges eKS = 2tKS ·BKS in GKS. For AES-128, we obtain an
average branching for the KS layer of BKS = 26.15. Our model and our assumptions seems to be
sound since we measured an average branching of about BKS = 26.22. Overall, building/storing
GKS during the precomputation phase should not require more than eKS = 222.15 computations
and memory.

B.4 Enhanced Markov Process

The related-key differential characteristics presented in Section 4.1 are valid when one only
deals with truncated differences and these characteristics give an indication on the structural
security provided by the AES-128 key schedule. However, it turns out that none of them can
be instantiated with actual differences, because of inconsistencies in some linear constraints.
Therefore, we apply the techniques proposed in Section B.1: at the cost of a bigger graph G to
handle, we first add some more information in the Markov process both on the representation of the
key schedule state and the internal permutation state, and we then filter the best characteristics
obtained and hope to find one that can be instantiated with actual differences.

Block Cipher State Compression. In order to look for actual differences characteristics for
AES-128, we slightly reduce the state compression used for AES-like ciphers.

Definition 5. Let ∆ be a state of truncated differences considered as a d-column square matrix
∆ = [∆·,1, . . . ,∆·,d]. We denote ∆̃ the image of ∆ by the non-injective function:

∆ −→ ∆̃ =
[
|∆̃·,1|, . . . , |∆̃·,d|

]
, where: ∀j, ∆̃·, j =

{
∆·, j if |∆·, j | = 1,

|∆·, j | otherwise.

In the sequel, we call ∆̃ the semi-compressed state of ∆.

A semi-compressed state as defined above only describes the number of active cells there are
in each column of the block cipher internal state, and in the event that there is only one, keep
tracks of its position (see example in Figure 8). The stored position in the particular case of a
single input active cell provides the additional information needed by the Markov process to
construct actual differences characteristics without inconsistencies.

Representation of Truncated Subkeys. Keeping in mind that the unique d2-bit truncated
difference information is not enough for the Markov process to find actual differential characteris-
tics, we provide a more complete coding of the subkeys. Namely, we introduce a representation
that allows to encode some particular cases of linear constraints between the differences.

(a) Truncated state.

2 0

(b) Semi-compressed state.

1 2 0 1

(c) Compressed state.

Figure 8: Example of compressed truncated state (c) and semi-compressed truncated state (b) from a truncated
state (a).

Definition 6. Let δ = [δx,y] be the actual difference in a subkey k and ∆ its truncated counterpart,
where the d actual differences on each column j are related by a possibly empty system of linear
equations Sj. We called semi-truncated difference of the key k, and denote it k̃, the d-column
square matrix such that:

k̃ =
(
b,
[
k̃·, j
])
,where: ∀j, k̃·, j =

x if Sj ∼= Mx = 0, with |x| = 1, (type 1)
(x, y) if Sj ∼= Mx⊕ y = 0, with |x| = |y| = 1, (type 2)
∆·, j otherwise. (type 3)

and b may be > if and only if all columns of the same type are equal in actual differences; it
always equals to ⊥ otherwise. Additionally, we call an extended state a couple (s̃, k̃) of a block
cipher semi-compressed state s̃ and a key schedule semi-truncated difference k̃ and denote

∣∣∣(s̃, k̃)
∣∣∣

its weight.

This definition behaves as a trade-off between the actual differences, which amounts to a total of
2b·d

2 different differences but keeps the whole relations between the differences, and the truncated
differences which compress to the minimum information on each difference, where there are only
2d

2 of them.

As an example, in the case d = 4, the two linear systems S1 : M[a, 0, 0, 0]T = 0 and
S2 : M[0, 0, 0, b]T = 0 falls into the type 1 category but results in two different columns, where
we store [a, 0, 0, 0]T and [0, 0, 0, b]T respectively, or equivalently the position of the only active
difference, 0 and 3. In this case, the bit b cannot give a relation between a and b since the two
columns are not of the same type; but if S2 were S2 : M[c, 0, 0, 0]T = 0, it could, which would
mean that a = c in terms of actual differences.

B.5 Explanations

We explain here the choice of the extra information added in the Markov in comparison to
our preliminary tool. Namely, we keep more information in some special cases to avoid loosing
information of those particular values. In the block cipher, the columns of weight exactly 1
are stored uncompressed (Definition 4); in the key schedule, we encode the position of active
differences in two particular cases (types 1 and 2, Definition 6).

Those enhanced representations come into the picture when iterating over the sets of successors
in the two graphs GBC and GKS. To construct the set succKS(k) of successors of a semi-truncated
key k, we consider in a very straightforward manner the sum of two columns and deduce which
one(s) can be reached trough the key schedule algorithm.

In the graph GBC, we want to find the set succBC(s, k) of successors of a semi-compressed
state s and a semi-truncated difference k. To do so, we first construct the set of all truncated
state after the MC layer and check which truncated state s′ can be obtained after the AK(k). For
each of those s′, we may write a homogeneous system of linear equations corresponding to the
two linear AES transformations MC and AK, using the additional information on the columns of k

to check whether the transition is indeed valid. If the input semi-compressed state s is associated
to n actual truncated state, then we write n systems and check if at least one has non-trivial
solutions. In practice, all the possible systems are precomputed.

Consequently, the cost update function of the Markov process is done as before, with extra
checks on the transitions/edges available with the added information at each node. This enhanced
Markov process thus leads to graphs with more nodes than the one for pure truncated differentials,
but proportionally, there are less edges because of the tighter transition function.

C Finding actual differences

To find the actual differences from the truncated characteristic, we need to write down the system
of linear equations which exists from the cipher definition. In the case of the AES, there are
lots of linear constraints in the key schedule, and others at the MixColumns layer. To express
those equations, we choose a set of independent variables B such that any actual difference of
the differential characteristic can be written as a linear combination of variables from B. In the
case of the AES, we can write all the equations with a basis B of variables from the key schedule;
for example, the d2 − d last cells from the first subkey k0, and each cell of the first column that
goes out of the Sbox in the following subkeys, k1, . . . , kr.

Once the system S of linear equations has been written, we apply the Gauss-Jordan elimination
algorithm to transform it into reduced row echelon form and compute a basis of its kernel. We note
that we want more than a non-trivial solution to the system; namely, we want each subsystems
of S corresponding to each rounds to have non-trivial solutions. This is taken care of by the
enhanced Markov process that we introduced to deal with actual differences. In the event that
the nullity ν of S of the system is not null, we can get as many as 2b·ν different possibilities to
set values for actual differences of the truncated differential characteristic and any of them would
conform to all the linear constraints.

In a second step, we need to take care of the non-linear constraints; namely, that each pair
of input/output actual differences (δin, δout) of the Sbox provide a non-null entry in the DDT.
From the system S, we can write each δin and δout as a linear combinations of variables from the
basis B and gather all the different transitions in a set D =

{
(δkin → δkout)

}
. Depending on the

truncated differential characteristic, there may be several transitions which are equal: in the end,
there are |D| different ones. Finally, we enumerate all the elements of the previously computed
kernel to find one which validates all the transitions in D.

Furthermore, each pair (δkin, δ
k
out) ∈ D with a certain repetition αk in the characteristic goes

along with a certain probability pk (depending on the DDT), which contributes to the probability
of the final differential characteristic p =

∏
pαk
k . Thus, if there are several kernel elements that

validate all the transitions of D, then we may prefer the one that maximize p.

D Tables for the distinguisher for 9 rounds of AES-128

Table 4: Example of a pair of keys conforming to the differential characteristic of our 9-round distinguisher of
AES-128. There are about 227 such pairs.

Round k k′ k ⊕ k′

0 BD219F91 37EBDD3C 623F76DB 34AD0BBB 0E219F91 37EBDD3C C4CB0CA1 34230BBB B3000000 00000000 A6F47A7A 008E0000

1 290A7589 1EE1A8B5 7CDEDE6E 4873D5D5 290A7589 1EE1A8B5 DA2AA414 EE09AFAF 00000000 00000000 A6F47A7A A67A7A7A

2 A40976DB BAE8DE6E C6360000 8E45D5D5 2A730CA1 3492A414 EEB80000 00B1AFAF 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

3 CE0A75C2 74E2ABAC B2D4ABAC 3C917E79 E60A75C2 D298D1D6 3C20D1D6 3C917E79 28000000 A67A7A7A 8EF47A7A 00000000

4 47F9C329 331B6885 81CFC329 BD5EBD50 6FF9C329 BD6112FF 8141C329 BDD0BD50 28000000 8E7A7A7A 008E0000 008E0000

5 0F839053 3C98F8D6 BD573BFF 000986AF 0F839053 B2E282AC 33A34185 8E73FCD5 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

6 2EC7E930 125F11E6 AF082A19 AF01ACB6 A033934A 12D111E6 21725063 AF01ACB6 8EF47A7A 008E0000 8E7A7A7A 00000000

7 1256A749 0009B6AF AF019CB6 00003000 9CA2DD33 8E73CCD5 AF019CB6 00003000 8EF47A7A 8E7A7A7A 00000000 00000000

8 F152C42A F15B7285 5E5AEE33 5E5ADE33 7FA6BE50 F1D57285 5ED4EE33 5ED4DE33 8EF47A7A 008E0000 008E0000 008E0000

9 544F0772 A51475F7 FB4E9BC4 A51445F7 2CBB7D08 DD6E0F8D 83BAE1BE DD6E3F8D 78F47A7A 787A7A7A 78F47A7A 787A7A7A

E Best truncated differential characteristics for AES-128

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

Figure 9: Best truncated differential characteristics for AES-128 when r = 5 rounds with 11 active Sboxes.

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

SB
SR MC AK6

KS

SB
SR MC AK7

KS

SB
SR MC AK8

KS

SB
SR MC AK9

KS

SB
SR MC AK10

KS

Figure 10: Best truncated differential characteristics for AES-128 when r = 10 rounds with 25 active Sboxes.

AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC

AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

Figure 11: Best truncated differential characteristics for AES-128 when r = 8 rounds with 21 active Sboxes.

F Differential characteristic for 2-round AES-128

5 1
2 2
2 2
3 3

AK1

1 1
2 2
2 2
3 3

KS

4
SB
SR

2

MC

1
2
2
3

AK2

1
2
2
3

KS

SB
SR MC AK3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

Figure 12: The best differential characteristic on two rounds of AES-128, which has a probability p = 2−6. The vec-
tor of differences can take as many as 28 values, and for instance: (1,...,5)=(0x1C,0x0E,0x12,0x01,0x1D).

G Differential characteristic for 3-round AES-128

1 9 1
2 a 2
2 d
3 3 C

AK0

1 1
2 2
2 2
3 3

KS

9
a

C

SB
SR

2
6
7
8

MC

5 1
2 2
2 2
3 3

AK1

1 1
2 2
2 2
3 3

KS

4
SB
SR

2

MC

1
2
2
3

AK2

1
2
2
3

KS

SB
SR MC AK3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

1 1 1 1
2 2 2 2
2 2 2 2
3 3 3 3

Figure 13: The best differential characteristic on three rounds of AES-128,
which has a probability p = 2−31. The vector of differences is
(1,...,d)=(0x1C,0x0E,0x12,0x01,0x1D,0x90,0x0D,0x0B,0xB3,0x58,0x45,0xF7,0x4B). Another
one that reaches the same probability is: (0x38,0x1C,0x24,0x02,0x3A,0x12,0x1A,0x16,0x6B,0x2C,
0xAF,0x3F,0xB3).

Table 5: Example of a pair of messages (m,m′) that conforms to the 3-round truncated differential characteristic
for AES-128 of Figure 13 with the second set of differences. The lines in this array contains the values of two
subkeys and internal states before entering the corresponding round, as well as their differences. Note that
discarding the first round provide a test vector for the differential characteristics of Figure 12.

Round k k′ k ⊕ k′

0 95220EA1 3C000000 F5416D13 3E000000 AD3E1285 3C000000 CD5D7137 3E000000 381C1C24 00000000 381C1C24 00000000

1 F7416D13 CB416D13 3E000000 00000000 CF5D7137 F35D7137 3E000000 00000000 381C1C24 381C1C24 00000000 00000000

2 96220E70 5D636363 63636363 63636363 AE3E1254 5D636363 63636363 63636363 381C1C24 00000000 00000000 00000000

3 69D9F58B 34BA96E8 57D9F58B 34BA96E8 51C5E9AF 0CA68ACC 6FC5E9AF 0CA68ACC 381C1C24 381C1C24 381C1C24 381C1C24

Round m m′ m⊕m′

Init. 5970F4AD 572C52B7 F3C5C241 6CB59500 616CE889 3C0052B7 CBD97165 6CB5953F 381C1C24 6B2C0000 381CB324 0000003F

0 CC52FA0C 6B2C52B7 0684AF52 52B59500 CC52FA0C 000052B7 06840052 52B5953F 00000000 6B2C0000 0000AF00 0000003F

1 E8000000 00000000 00000000 00000000 EA000000 00000000 00000000 00000000 02000000 00000000 00000000 00000000

2 1EB99500 3E000000 00000000 00000000 1EB99500 3E000000 00000000 00000000 00000000 00000000 00000000 00000000

End 28AB87DB EE0824E3 7D6104A1 08B3C0BE 10B79BFF D61438C7 457D1885 30AFDC9A 381C1C24 381C1C24 381C1C24 381C1C24

H Differential characteristic for 4-round AES-128

�
 �
�
� AK0

�
�
�
�

KS

 SB
SR

� � �
MC

FFF
� � �
� � � AK1

�F �
� � �
� � �

KS

 SB
SR

� �
MC

F F
� �
� � AK2

F �
� �
� �

KS

 SB
SR

� �
MC

FF
� �
� � AK3

F�
� �
� �

KS

 SB
SR

�
MC

F
�
� AK4

F
�
�

Figure 14: The first best differential characteristic on four rounds of AES-128, which has a probability p = 2−81.
Differences are: � = 0x7A, = 0x8E and F = �⊕ = 0xF4.

FFF
� � �
� � � AK0

�F �
� � �
� � �

KS

 SB
SR

� �
MC

F F
� �
� � AK1

F �
� �
� �

KS

 SB
SR

� �
MC

FF
� �
� � AK2

F�
� �
� �

KS

 SB
SR

�
MC

F
�
� AK3

F
�
�

KS

 SB
SR

� � �
MC

FFF
� � �
� � � AK4

FFFF
F�F�
� � � �
� � � �

� � �F
 �

�
�

Figure 15: The second best differential characteristic on four rounds of AES-128, which has a probability
p = 2−81. Differences are: � = 0x7A, = 0x8E and F = �⊕ = 0xF4.

I Differential characteristic for 5-round AES-128

�
 �
�
� AK0

�
�
�
�

KS

 SB
SR

� � �
MC

FFF
� � �
� � � AK1

�F �
� � �
� � �

KS

 SB
SR

� �
MC

F F
� �
� � AK2

F �
� �
� �

KS

 SB
SR

� �
MC

FF
� �
� � AK3

F�
� �
� �

KS

 SB
SR

�
MC

F
�
� AK4

F
�
�

KS

 SB
SR

� � �
MC

FFF
� � �
� � �

AK5

FFFF
F�F�
� � � �
� � � �

� � �F
 �

�
�

Figure 16: The best differential characteristic on five rounds of AES-128, which has a probability p = 2−105.
Differences are: � = 0x7A, = 0x8E and F = �⊕ = 0xF4.

Table 6: Example of a pair of messages (m,m′) that conforms to the 5-round truncated differential characteristic
for AES-128 of Figure 16. The lines in this array contains the values of the two subkeys and internal states before
entering the corresponding round, as well as their differences. Note that discarding the first or the last round
provide a test vector for the differential characteristics of Figure 14 and Figure 15.

Round k k′ k ⊕ k′

0 6D387102 D0C52A0F 854283FB 208E76EE 17387102 5EBF5075 85CC83FB 200076EE 7A000000 8E7A7A7A 008E0000 008E0000

1 750059B5 A5C573BA 2087F041 000986AF 750059B5 2BBF09C0 AE738A3B 8E73FCD5 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

2 764420D6 D381536C F306A32D F30F2582 F8B05AAC D30F536C 7D7CD957 F30F2582 8EF47A7A 008E0000 8E7A7A7A 00000000

3 047B33DB D7FA60B7 24FCC39A D7F3E618 8A8F49A1 59801ACD 24FCC39A D7F3E618 8EF47A7A 8E7A7A7A 00000000 00000000

4 01F59ED5 D60FFE62 F2F33DF8 2500DBE0 8F01E4AF D681FE62 F27D3DF8 258EDBE0 8EF47A7A 008E0000 008E0000 008E0000

5 724C7FEA A4438188 56B0BC70 73B06790 86B80590 5039FBF2 A244C60A 87CA1DEA F4F47A7A F47A7A7A F4F47A7A F47A7A7A

Round m m′ m⊕m′

Init. 65380101 FDA4FF6F D0424BEF 7A8E35D8 1FB60101 73DE8515 D0424BEF 7A8E35D8 7A8E0000 8E7A7A7A 00000000 00000000

0 08007003 2D61D560 5500C814 5A004336 088E7003 2D61D560 558EC814 5A8E4336 008E0000 00000000 008E0000 008E0000

1 D2D342E8 CA8E7146 E79EA6D7 3B8E48F9 D2D342E8 CA007146 E79EA6D7 3B0048F9 00000000 008E0000 00000000 008E0000

2 91367406 EF8E3E84 9D8E980B 2BD1EE66 91367406 EF003E84 9D00980B 2BD1EE66 00000000 008E0000 008E0000 00000000

3 4331727A 1E004722 172C7D6A B8EE10F1 4331727A 1E8E4722 172C7D6A B8EE10F1 00000000 008E0000 00000000 00000000

4 CE92FA3E B10007E0 A200CBA6 0D002D37 CE92FA3E B18E07E0 A28ECBA6 0D8E2D37 00000000 008E0000 008E0000 008E0000

End 5FBA1C3F E08C4C0F 4BDA87A9 F6890230 25BA1C3F 9A024C0F 31DA87A9 02F3784A 7A000000 7A8E0000 7A000000 F47A7A7A

	Introduction
	Definitions
	SPN and AES-like ciphers description
	Truncated and actual differences

	Generic related-key differential characteristic search tool for SPN ciphers
	Differential characteristic search as a graph modeling of a Markov process
	Precomputation phase
	Online phase

	Applications to SPN and AES-128
	Structural evaluation of SPN AES-like ciphers
	Differential Characteristics results for AES-128
	Distinguishing 9 rounds of AES-128

	Conclusion and future works
	Evaluating Bxor
	Enhanced Markov Process for AES-like Ciphers
	The Markov assumption and actual differences
	Block Cipher State Compression
	Evaluating the number of nodes/edges of GBC and GKS
	Enhanced Markov Process
	Explanations

	Finding actual differences
	Tables for the distinguisher for 9 rounds of AES-128
	Best truncated differential characteristics for AES-128
	Differential characteristic for 2-round AES-128
	Differential characteristic for 3-round AES-128
	Differential characteristic for 4-round AES-128
	Differential characteristic for 5-round AES-128

