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Abstract

Several research teams have recently been working toward the development of practical general-
purpose protocols for verifiable computation. These protocols enable a computationally weak verifier to
offload computations to a powerful but untrusted prover, while providing the verifier with a guarantee
that the prover performed the requested computations correctly. Despite substantial progress, existing
implementations require further improvements before they become practical for most settings. The main
bottleneck is typically the extra effort required by the prover to return an answer with a guarantee of
correctness, compared to returning an answer with no guarantee.

We describe a refinement of a powerful interactive proof protocol due to Goldwasser, Kalai, and
Rothblum [21]. Cormode, Mitzenmacher, and Thaler [14] show how to implement the prover in this
protocol in time O(S logS), where S is the size of an arithmetic circuit computing the function of interest.
Our refinements apply to circuits with sufficiently “regular” wiring patterns; for these circuits, we bring
the runtime of the prover down to O(S). That is, our prover can evaluate the circuit with a guarantee
of correctness, with only a constant-factor blowup in work compared to evaluating the circuit with no
guarantee.

We argue that our refinements capture a large class of circuits, and we complement our theoretical re-
sults with experiments on problems such as matrix multiplication and determining the number of distinct
elements in a data stream. Experimentally, our refinements yield a 200x speedup for the prover over the
implementation of Cormode et al., and our prover is less than 10x slower than a C++ program that simply
evaluates the circuit. Along the way, we describe a special-purpose protocol for matrix multiplication
that is of interest in its own right.

Our final contribution is the design of an interactive proof protocol targeted at general data parallel
computation. Compared to prior work, this protocol can more efficiently verify complicated computa-
tions as long as that computation is applied independently to many different pieces of data.

∗Harvard University, School of Engineering and Applied Sciences. Supported by an NSF Graduate Research Fellowship and
NSF grants CNS-1011840 and CCF-0915922.
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1 Introduction

Protocols for verifiable computation enable a computationally weak verifier V to offload computations to a
powerful but untrusted prover P . These protocols aim to provide the verifier with a guarantee that the prover
performed the requested computations correctly, without requiring the verifier to perform the computations
herself.

Surprisingly powerful protocols for verifiable computation were discovered within the computer science
theory community several decades ago, in the form of interactive proofs (IPs) and their brethren, interactive
arguments (IAs) and probabilistically checkable proofs (PCPs). In these protocols, the prover P solves a
problem using her (possibly vast) computational resources, and tells V the answer. P and V then have a
conversation, i.e., they engage in a randomized protocol involving the exchange of one or more messages.
During this conversation, P’s goal is to convince V that the answer is correct.

Results quantifying the power of IPs, IAs, and PCPs represent some of the most celebrated results in
all of computational complexity theory, but until recently they were mainly of theoretical interest, far too
inefficient for actual deployment. In fact, the main applications of these results have traditionally been in
negative applications – showing that many problems are just as hard to approximate as they are to solve
exactly.

However, the surging popularity of cloud computing has brought renewed interest in positive appli-
cations of protocols for verifiable computation. A typical motivating scenario is as follows. A business
processes billions or trillions of transactions a day. The volume is sufficiently high that the business cannot
or will not store and process the transactions on its own. Instead, it offloads the processing to a commercial
cloud computing service. The offloading of any computation raises issues of trust: the business may be con-
cerned about relatively benign events like dropped transactions, buggy algorithms, or uncorrected hardware
faults, or the business may be more paranoid and fear that the cloud operator is deliberately deceptive or has
been externally compromised. Either way, each time the business poses a query to the cloud, the business
may demand that the cloud also provide a guarantee that the returned answer is correct.

This is precisely what protocols for verifiable computation accomplish, with the cloud acting as the
prover in the protocol, and the business acting as the verifier. In this paper, we describe a refinement of an
existing general-purpose protocol originally due to Goldwasser, Kalai, and Rothblum [14, 21]. When they
are applicable, our techniques achieve asymptotically optimal runtime for the prover, and we demonstrate
that they yield protocols that are significantly closer to practicality than that achieved by prior work.

We also make progress toward addressing another issue of existing interactive proof implementations:
their applicability. The protocol of Goldwasser, Kalai, and Rothblum (henceforth the GKR protocol) ap-
plies in principle to any problem computed by a small-depth arithmetic circuit, but this is not the case when
more fine-grained considerations of prover and verifier efficiency are taken into account. In brief, existing
implementations of interactive proof protocols for circuit evaluation all require that the circuit have a highly
regular wiring pattern [14, 40]. If this is not the case, then these implementations require the verifier to per-
form an expensive (though data-independent) preprocessing phase to pull out information about the wiring
of the circuit, and they require a substantial factor blowup (logarithmic in the circuit size) in runtime for
the prover relative to evaluating the circuit without a guarantee of correctness. Developing a protocol that
avoids these pitfalls and applies to more general computations remains an important open question.

Our approach is the following. We do not have a magic bullet for dealing with irregular wiring patterns;
if we want to avoid an expensive pre-processing phase for the verifier and minimize the blowup in runtime
for the prover, we do need to make an assumption about the structure of the circuit we are verifying. Ac-
knowledging this, we ask whether there is some general structure in real-world computations that we can
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leverage for efficiency gains.
To this end, we design a protocol that is highly efficient for data parallel computation. By data paral-

lel computation, we mean any setting in which one applies the same computation independently to many
pieces of data. Many outsourced computations are data parallel, with Amazon Elastic MapReduce1 being
one prominent example of a cloud computing service targeted specifically at data parallel computations.
Crucially, we do not want to make significant assumptions on the sub-computation that is being applied, and
in particular we want to handle sub-computations computed by circuits with highly irregular wiring patterns.

The verifier in our protocol still has to perform an offline phase to pull out information about the wiring
of the circuit, but the cost of this phase is proportional to the size of a single instance of the sub-computation,
avoiding any dependence on the number of pieces of data to which the sub-computation is applied. Similarly,
the blowup in runtime suffered by the prover is the same as it would be if the prover had run the basic GKR
protocol on a single instance of the sub-computation.

Our final contribution is to describe a new protocol specific to matrix multiplication that is of interest in
its own right. It avoids circuit evaluation entirely, and reduces the overhead of the prover (relative to running
any unverifiable algorithm) to an additive low-order term.

1.1 Prior Work

1.1.1 Work on Interactive Proofs.

Goldwasser, Kalai, and Rothblum described a powerful general-purpose interactive proof protocol in [21].
This protocol is framed in the context of circuit evaluation. Given a layered arithmetic circuit C of depth d,
size S(n), and fan-in 2, the GKR protocol allows a prover to evaluate C with a guarantee of correctness in
time poly(S(n)), while the verifier runs in time Õ(n+d logS(n)), where n is the length of the input and the
Õ notation hides polylogarithmic factors in n.

Cormode, Mitzenmacher, and Thaler showed how to bring the runtime of the prover in the GKR pro-
tocol down from poly(S(n)) to O(S(n) logS(n)) [14]. They also built a full implementation of the protocol
and ran it on benchmark problems. These results demonstrated that the protocol does indeed save the veri-
fier significant time in practice (relative to evaluating the circuit locally); they also demonstrated surprising
scalability for the prover, although the prover’s runtime remained a major bottleneck. With the implemen-
tation of [14] as a baseline, Thaler et al. [38] described a parallel implementation of the GKR protocol that
achieved 40x-100x speedups for the prover and 100x speedups for the (already fast) implementation of the
verifier.

Vu, Setty, Blumberg, and Walfish [40] further refine and extend the implementation of Cormode et
al. [14]. In particular, they combine the GKR protocol with a compiler from a high-level programming
language so that programmers do not have to explicitly express computation in the form of arithmetic circuits
as was the case in the implementation of [14]. This substantially extends the reach of the implementation,
but it should be noted that their approach generates circuits with irregular wiring patterns, and hence only
works in a batching model, where the cost of a fairly expensive offline setup phase is amortized by verifying
many instances of a single computation in batch. They also build a hybrid system that statically evaluates
whether it is better to use the GKR protocol or a different, cryptography-based argument system called
Zaatar (see Section 1.1.2), and runs the more efficient of the two protocols in an automated fashion.

A growing line of work studies protocols for verifiable computation in the context of data streaming.
In this context, the goal is not just to save the verifier time (compared to doing the computation without a
prover), but also to save the verifier space. The protocols developed in this line of work allow the client to

1http://aws.amazon.com/elasticmapreduce/
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make a single streaming pass over the input (which can occur, for example, while the client is uploading data
to the cloud), keeping only a very small summary of the data set. The interactive version of this model was
introduced by Cormode, Thaler, and Yi [15], who observed that many protocols from the interactive proofs
literature, including the GKR protocol, can be made to work in this restrictive setting. The observations
of [15] imply that all of our protocols also work with streaming verifiers. Non-interactive variants of the
streaming interactive proofs model have also been studied in detail [12, 13, 23, 27].

1.1.2 Work on Argument Systems.

There has been a lot of work on the development of efficient interactive arguments, which are essentially
interactive proofs that are secure only against dishonest provers that run in polynomial time. A substantial
body of work in this area has focused on the development of protocols targeted at specific problems (e.g.
[2, 5, 16]). Other works have focused on the development of general-purpose argument systems. Several
papers in this direction (e.g. [8, 10, 11, 18]) have used fully homomorphic encryption, which unfortunately
remains impractical despite substantial recent progress. Work in this category by Chung et al. [10] focuses
on streaming settings, and is therefore particularly relevant.

Several research teams have been pursuing the development of general-purpose argument systems that
might be suitable for practical use. Theoretical work by Ben-Sasson et al. [4] focuses on the development of
short PCPs that might be suitable for use in practice – such PCPs can be compiled into efficient interactive
arguments. As short PCPs are often a bottleneck in the development of efficient argument systems, other
works have focused on avoiding their use [3,6,7,19]. In particular, Gennaro et al. [19] and Bitansky et al. [9]
develop argument systems with a clear focus on implementation potential. Very recent work by Parno et
al. [30] describes a near-practical general-purpose implementation, called Pinocchio, of an argument system
based on [19]. Pinocchio is additionally non-interactive and achieves public verifiability.

Another line of implementation work focusing on general-purpose interactive argument systems is due
to Setty et al. [34–36]. This line of work begins with a base argument system due to Ishai et al. [25], and
substantially refines the theory to achieve an implementation that approaches practicality. The most recent
system in this line of work is called Zaatar [36], and is also based on the work of Gennaro et al. [19].
An empirical comparison of the GKR-based approach and Zaatar performed by Vu et al. [40] finds the
GKR approach to be significantly more efficient for quasi-straight-line computations (e.g. programs with
relatively simple control flow), while Zaatar is appropriate for programs with more complicated control flow.

1.2 Our Contributions

Our primary contributions are three-fold. Our first contribution addresses one of the biggest remaining
obstacles to achieving a truly practical implementation of the GKR protocol: the logarithmic factor overhead
for the prover. That is, Cormode et al. show how to implement the prover in time O(S(n) logS(n)), where
S(n) is the size of the arithmetic circuit to which the GKR protocol is applied, down from the Ω(S(n)3)
time required for a naive implementation. The hidden constant in the Big-Oh notation is at least 3, and the
logS(n) factor translates to well over an order of magnitude, even for circuits with a few million gates.

We remove this logarithmic factor, bringing P’s runtime down to O(S(n)) for a large class of circuits.
Informally, our results apply to any circuit whose wiring pattern is sufficiently “regular”. We formalize the
class of circuits to which our results apply in Theorem 1.

We experimentally demonstrate the generality and effectiveness of Theorem 1 via two case studies.
Specifically, we apply an implementation of the protocol of Theorem 1 to a circuit computing matrix mul-
tiplication (MATMULT), as well as to a circuit computing the number of distinct items in a data stream
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(DISTINCT). Experimentally, our refinements yield a 200x-250x speedup for the prover over the state of the
art implementation of Cormode et al. [14]. A serial implementation of our prover is less than 10x slower
than a C++ program that simply evaluates the circuit sequentially, a slowdown that is tolerable in realistic
outsourcing scenarios where cycles are plentiful for the prover. Moreover, a parallel implementation of our
prover using a graphics processing unit (GPU) is roughly 30x faster than our serial implementation, and
therefore takes less time than that required to evaluate the circuit in serial.

Our second contribution is to specify a highly efficient protocol for verifiably outsourcing arbitrary
data parallel computation. Compared to prior work, this protocol can more efficiently verify complicated
computations, as long as that computation is applied independently to many different pieces of data. We
formalize this protocol and its efficiency guarantees in Theorem 2.

Our third contribution is to describe a new protocol specific to matrix multiplication that we believe to be
of interest in its own right. This protocol is formalized in Theorem 3. Given any unverifiable algorithm for
n×n matrix multiplication that requires time T (n) using space s(n), Theorem 3 allows the prover to run in
time T (n)+O(n2) using space s(n)+o(n2). Note that Theorem 3 (which is specific to matrix multiplication)
is much less general than Theorem 1 (which applies to any circuit with a sufficiently regular wiring pattern).
However, Theorem 3 achieves optimal runtime and space usage for the prover up to leading constants,
assuming there is no O(n2) time algorithm for matrix multiplication. While these properties are also satisfied
by a classic protocol due to Freivalds [17], the protocol of Theorem 3 is significantly more amenable for
use as a primitive when verifying computations that repeatedly invoke matrix multiplication. For example,
using the protocol of Theorem 3 as a primitive, we give a natural protocol for computing the diameter of
an unweighted directed graph G. V’s runtime in this protocol is O(m logn), where m is the number of
edges in G, P’s runtime matches the best known unverifiable diameter algorithm up to a low-order additive
term [33, 42], and the total communication is just polylog(n). We know of no other protocol achieving this.

We complement Theorem 3 with experimental results demonstrating its efficiency.

1.3 Roadmap

Section 2 presents preliminaries. We give a high-level overview of the ideas underlying our main results in
Section 3. Section 4 gives a detailed overview of prior work, including the standard sum-check protocol as
well as the GKR protocol. Section 5 contains the details of our time-optimal protocol for circuit evaluation
as formalized in Theorem 1. Section 6 describes our experimental cases studies of the protocol described
in Theorem 1. Section 7 describes our protocol for arbitrary data parallel computation. Section 8 describes
some additional optimizations that apply to specific important wiring patterns. In particular, this section
describes our special-purpose protocol for MATMULT that achieves optimal prover efficiency up to leading
constants. Section 9 concludes.

2 Preliminaries

2.1 Definitions

We begin by defining a valid interactive proof protocol for a function f .

Definition 1 Consider a proverP and verifier V who both observe an input x and wish to compute a function
f : {0,1}n →R for some set R. After the input is observed, P and V exchange a sequence of messages.
Denote the output of V on input x, given prover P and V’s random bits R, by out(V,x,R,P). V can output
⊥ if V is not convinced that P’s claim is valid.
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We say P is a valid prover with respect to V if for all inputs x, PrR[out(V,x,R,P) = f (x)] = 1. The
property that there is at least one valid prover P with respect to V is called completeness. We say V is a
valid verifier for f with soundness probability δ if there is at least one valid prover P with respect to V ,
and for all provers P ′ and all inputs x, Pr[out(V,A,R,P ′) /∈ { f (x),⊥}] ≤ δ . We say a prover-verifier pair
(P,V) is a valid interactive proof protocol for f if V is a valid verifier for f with soundness probability 1/3,
and P is a valid prover with respect to V . If P and V exchange r messages in total, we say the protocol has
dr/2e rounds.

Informally, the completeness property guarantees that an honest prover will convince the verifier that the
claimed answer is correct, while the soundness property ensures that a dishonest prover will be caught with
high probability. An interactive argument is an interactive proof where the soundness property holds only
against polynomial-time provers P ′. We remark that the constant 1/3 used for the soundness probability in
Definition 1 is chosen for consistency with the interactive proofs literature, where 1/3 is used by convention.
In our actual implementation, the soundness probability will always be less than 2−45.

2.1.1 Cost Model

Whenever we work over a finite field F, we assume that a single field operation can be computed in a single
machine operation. For example, when we say that the prover P in our interactive protocols requires time
O(S(n)), we mean that P must perform O(S(n)) additions and multiplications within the finite field over
which the protocol is defined.

Input Representation. Following prior work [12,14,15], all of the protocols we consider can handle inputs
specified in a general data stream form. Each element of the stream is a tuple (i,δ ), where i ∈ [n] and δ is
an integer. The δ values may be negative, thereby modeling deletions. The data stream implicitly defines a
frequency vector a, where ai is the sum of all δ values associated with i in the stream. For simplicity, we
assume throughout the paper that the number of stream updates m is related to n by a constant factor i.e.,
m = Θ(n).

When checking the evaluation of a circuit C, we consider the inputs to C to be the entries of the frequency
vector a. We emphasize that in all of our protocols, V only needs to see the raw stream and not the aggregated
frequency vector a (see Lemma 2 for details). Notice that we may interpret the frequency vector a as an
object other than a vector, such as a matrix or a string. For example, in MATMULT, the data stream defines
two matrices to be multiplied.

When we refer to a streaming verifier with space usage s(n), we mean that the verifier can make a single
pass over the stream of tuples defining the input, regardless of their ordering, while storing at most s(n)
elements in the finite field over which the protocol is defined.

2.1.2 Problem Definitions

To focus our discussion in this paper, we give special attention to two problems also considered in prior
work [14, 38].

1. In the MATMULT problem, the input consists of two n× n matrices A,B ∈ Zn×n, and the goal is to
compute the matrix product A ·B.

2. In the DISTINCT problem, also denoted F0, the input is a data steam consisting of m tuples (i,δ ) from
a universe of size n. The stream defines a frequency vector a, and the goal is to compute |{i : ai 6= 0}|,
the number of items with non-zero frequency.
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2.1.3 Additional Notation

Throughout, [n] will denote the set {1, . . . ,n}, while [[n]] will denote the set {0, . . . ,n−1}.
Let F be a field, and F∗ = F\{0} its multiplicative group. For any d-variate polynomial p(x1, . . . ,xd) :

Fd → F, we use degi(p) to denote the degree of p in variable i. A d-variate polynomial p is said to be
multilinear if degi(p) ≤ 1 for all i ∈ [d]. Given a function V : {0,1}d → {0,1} whose domain is the d-
dimensional Boolean hypercube, the multilinear extension (MLE) of V over F, denoted Ṽ , is the unique
multilinear polynomial Fd → F that agrees with V on all Boolean-valued inputs. That is, Ṽ is the unique
multilinear polynomial over F satisfying Ṽ (x) =V (x) for all x ∈ {0,1}d .

3 Overview of the Ideas

We begin by describing the methodology underlying the GKR protocol before summarizing the ideas un-
derlying our improved protocols.

3.1 The GKR Protocol From 10,000 Feet

In the GKR protocol, P and V first agree on an arithmetic circuit C of fan-in 2 over a finite field F computing
the function of interest (C may have multiple outputs). Each gate of C performs an addition or multiplication
over F. C is assumed to be in layered form, meaning that the circuit can be decomposed into layers, and
wires only connect gates in adjacent layers. Suppose the circuit has depth d; we will number the layers from
1 to d with layer d referring to the input layer, and layer 1 referring to the output layer.

In the first message, P tells V the (claimed) output of the circuit. The protocol then works its way in
iterations towards the input layer, with one iteration devoted to each layer. The purpose of iteration i is to
reduce a claim about the values of the gates at layer i to a claim about the values of the gates at layer i+1,
in the sense that it is safe for V to assume that the first claim is true as long as the second claim is true. This
reduction is accomplished by applying the standard sum-check protocol [29] to a certain polynomial.

More concretely, the GKR protocol starts with a claim about the values of the output gates of the circuit,
but V cannot check this claim without evaluating the circuit herself, which is precisely what she wants to
avoid. So the first iteration uses a sum-check protocol to reduce this claim about the outputs of the circuit to
a claim about the gate values at layer 2 (more specifically, to a claim about an evaluation of the multilinear
extension (MLE) of the gate values at layer 2). Once again, V cannot check this claim herself, so the second
iteration uses another sum-check protocol to reduce the latter claim to a claim about the gate values at layer
3, and so on. Eventually, V is left with a claim about the inputs to the circuit, and V can check this claim on
her own.

In summary, the GKR protocol uses a sum-check protocol at each level of the circuit to enable V to
go from verifying a randomly chosen evaluation of the MLE of the gate values at layer i to verifying a
(different) evaluation of the MLE of the gate values at layer i+ 1. Importantly, apart from the input layer
and output layer, V does not ever see all of the gate values at a layer (in particular, P does not send these
values in full). Instead, V relies on P to do the hard work of actually evaluating the circuit, and uses the
power of the sum-check protocol as the main tool to force P to be consistent and truthful over the course of
the protocol.
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3.2 Achieving Optimal Prover Runtime for Regular Circuits

In Theorem 1, we describe an interactive proof protocol for circuit evaluation that brings P’s runtime down
to O(S(n)) for a large class of circuits, while maintaining the same verifier runtime as in prior implementa-
tions of the GKR protocol. Informally, Theorem 1 applies to any circuit whose wiring pattern is sufficiently
“regular”.

This protocol follows the same general outline as the GKR protocol, in that we proceed in iterations
from the output layer of the circuit to the input layer, using a sum-check protocol at iteration i to reduce
a claim about the gate values at layer i to a claim about the gate values at layer i+ 1. However, at each
iteration i we apply the sum-check protocol to a carefully chosen polynomial that differs from the one used
by GKR. In each round j of the sum-check protocol, our choice of polynomial allows P to reuse work from
prior rounds in order to compute the prescribed message for round j, allowing us to shave a logS(n) factor
from the runtime of P relative to the O(S(n) logS(n))-time implementation due to Cormode et al. [14].

Specifically, at iteration i, the GKR protocol uses a polynomial f (i)z defined over logSi +2logSi+1 vari-
ables, where Si is the number of gates at layer i. The “truth table” of f (i)z is sparse on the Boolean hypercube,
in the sense that f (i)z (x) is non-zero for at most Si of the Si ·S2

i+1 inputs x ∈ {0,1}logSi+2logSi+1 . Cormode et
al. leverage this sparsity to bring the runtime of P in iteration i down to O(Si logSi) from a naive bound of
Ω(Si ·S2

i+1). However, this same sparsity prevents P from reusing work from prior iterations as we seek to
do.

In contrast, we use a polynomial g(i)z defined over only logSi variables rather than logSi + 2logSi+1

variables. Moreover, the truth table of g(i)z is dense on the Boolean hypercube, in the sense that g(i)z (x) may
be non-zero for all of the Si Boolean inputs x ∈ {0,1}logSi . This density allows P to reuse work from prior
iterations in order to speed up her computation in round i of the sum-check protocol.

In more detail, in each round j of the sum-check protocol, the prover’s prescribed message is defined
via a sum over a large number of terms, where the number of terms falls geometrically fast with the round
number j. Moreover, it can be shown that in each round j, each gate at layer i+1 contributes to exactly one
term of this sum. Essentially, what we do is group the gates at layer i+1 by the term of the sum to which
they contribute. Each such group can be treated as a single unit, ensuring that in any round of the sum-check
protocol, the amount of work P needs to do is proportional to the number of terms in the sum rather than
the number of gates Si at layer i.

We remark that a similar “reuse of work” technique was implicit in an analysis by Cormode, Thaler,
and Yi [15, Appendix B] of an efficient protocol for a specific streaming problem known as the second
frequency moment. This frequency moment protocol was the direct inspiration for our refinements, though
we require additional insights to apply the reuse of work technique in the context of evaluating general
arithmetic circuits.

It is worth clarifying why our methods do not yield savings when applied to the polynomial f (i)z used in
the basic GKR protocol. The reason is that, since f (i)z is defined over logSi +2logSi+1 variables instead of
just logSi variables, the sum defining P’s message in round j is over a much larger number of terms when
using f (i)z . It is still the case that each gate contributes to only one term of the sum, but until the number of
terms in the sum falls below Si (which does not happen until round j = logSi + logSi+1 of the sum-check
protocol), it is possible for each gate to contribute to a different term. Before this point, grouping gates by
the term of the sum to which they contribute is not useful, since each group can have size 1.
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3.3 Verifying General Data Parallel Computations

Theorem 1 only applies to circuits with regular wiring patterns, as do other existing implementations of
interactive proof protocols for circuit evaluation [14, 40]. For circuits with irregular wiring patterns, these
implementations require the verifier to perform an expensive preprocessing phase (requiring time propor-
tional to the size of the circuit) to pull out information about the wiring of the circuit, and they require a
substantial factor blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating the
circuit without a guarantee of correctness.

To address these bottlenecks, we do need to make an assumption about the structure of the circuit we are
verifying. Ideally our assumption will be satisfied by many real-world computations. To this end, Theorem
2 will describe a protocol that is highly efficient for any data parallel computation, by which we mean any
setting in which one applies the same computation independently to many pieces of data. See Figure 2 in
Section 7 for a schematic of a data parallel computation.

The idea behind Theorem 2 is as follows. Let C be a circuit of size S with an arbitrary wiring pattern,
and let C∗ be a “super-circuit” that applies C independently to B different inputs before possibly aggregating
the results in some fashion. If one naively applied the basic GKR protocol to the super-circuit C∗, V might
have to perform a pre-processing phase that requires time proportional to the size of C∗, which is Ω(B ·S).
Moreover, when applying the basic GKR protocol to C∗, P would require time Θ(B ·S · log(B ·S)).

In order to improve on this, the key observation is that although each sub-computation C can have
a very complicated wiring pattern, the circuit is “maximally regular” between sub-computations, as the
sub-computations do not interact at all. Therefore, each time the basic GKR protocol would apply the
sum-check protocol to a polynomial derived from the wiring predicate of C∗, we instead use a simpler
polynomial derived only from the wiring predicate of C. This immediately brings the time required by V in
the pre-processing phase down to O(S), which is proportional to the cost of executing a single instance of
the sub-computation. By using the reuse of work technique underlying Theorem 1, we are also able to bring
P’s runtime down from Θ(B ·S · log(B ·S)) to Θ(B ·S · logS), i.e., P’s requires a factor of O(logS) more
time to evaluate the circuit with a guarantee of correctness, compared to evaluating the circuit without such
a guarantee. This O(logS) factor overhead does not depend on the batch size B.

Our improvements are most significant when B� S, i.e., when a (relatively) small but potentially com-
plicated sub-computation is applied to a very large number of pieces of data. For example, given any very
large database, one may ask “How many people in the database satisfy Property P?” Our protocol allows
one to verifiably outsource such counting queries with overhead that depends minimally on the size of the
database, but that necessarily depends on the complexity of the property P.

3.4 A Special-Purpose Protocol for MATMULT

We describe a special-purpose protocol for n×n MATMULT in Theorem 3. The idea behind this protocol is
as follows. The GKR protocol, as well the protocols of Theorems 1 and 2, only make use of the multilinear
extension Ṽi of the function Vi mapping gate labels at layer i of the circuit to their values. In some cases,
there is something to be gained by using a higher-degree extension of Vi, and this is precisely what we
exploit here.

In more detail, our special-purpose protocol can be viewed as an extension of our circuit-checking
techniques applied to a circuit C performing naive matrix multiplication, but using a quadratic extension
of the gate values in this circuit. This allows us to verify the computation using a single invocation of the
sum-check protocol. More importantly, P can evaluate this higher-degree extension at the necessary points
without explicitly materializing all of the gate values of C, which would not be possible if we had used the
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multilinear extension of the gate values of C.
In the protocol of Theorem 3, P just needs to compute the correct output (possibly using an algorithm

that is much more sophisticated than naive matrix multiplication), and then perform O(n2) additional work
to prove the output is correct. SinceP does not have to evaluate C in full, this protocol is perhaps best viewed
outside the lens of circuit evaluation. Still, the idea underlying Theorem 3 can be thought of as a refinement
of our circuit evaluation protocols, and we believe that similar ideas may yield further improvements to
general-purpose protocols in the future.

4 Technical Background

4.1 Schwartz-Zippel Lemma

We will often make use of the following basic property of polynomials.

Lemma 1 ( [32]) Let F be any field, and let f : Fm→ F be a nonzero polynomial of total degree d. Then on
any finite set S⊆ F,

Pr
x←Sm

[ f (x) = 0]≤ d/|S|.

In words, if x is chosen uniformly at random from Sm, then the probability that f (x) = 0 is at most d/|S|.
In particular, any two distinct polynomials of total degree d can agree on at most d/|S| fraction of points in
Sm.

4.2 Sum-Check Protocol

Our main technical tool is the sum-check protocol [29], and we present a full description of this protocol for
completeness. See also [1, Chapter 8] for a complete exposition and proof of soundness.

Suppose we are given a v-variate polynomial g defined over a finite field F. The purpose of the sum-
check protocol is to compute the sum:

H := ∑
b1∈{0,1}

∑
b2∈{0,1}

· · · ∑
bv∈{0,1}

g(b1, . . . ,bv).

In order to execute the protocol, the verifier needs to be able to evaluate g(r1, . . . ,rv) for a randomly
chosen vector (r1, . . . ,rv) ∈ Fv – see the paragraph preceding Proposition 1 below.

The protocol proceeds in v rounds as follows. In the first round, the prover sends a polynomial g1(X1),
and claims that g1(X1) = ∑x2,...,xv∈{0,1}v−1 g(X1,x2, . . . ,xv). Observe that if g1 is as claimed, then H = g1(0)+
g1(1). Also observe that the polynomial g1(X1) has degree deg1(g), the degree of variable x1 in g. Hence
g1 can be specified with deg1(g)+1 field elements. In our implementation, P will specify g by sending the
evaluation of g at each point in the set {0,1, . . . ,deg1(g)}.

Then, in round j > 1, V chooses a value r j−1 uniformly at random from F and sends r j−1 to P . We will
often refer to this step by saying that variable j− 1 gets bound to value r j−1. In return, the prover sends a
polynomial g j(X j), and claims that

g j(X j) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1,X j,x j+1, . . . ,xv). (1)

The verifier compares the two most recent polynomials by checking that g j−1(r j−1) = g j(0)+ g j(1),
and rejecting otherwise. The verifier also rejects if the degree of g j is too high: each g j should have degree
deg j(g), the degree of variable x j in g.
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In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . ,rv−1,Xv). V now checks
that gv(rv) = g(r1, . . . ,rv) (recall that we assumed V can evaluate g at this point). If this test succeeds, and
so do all previous tests, then the verifier accepts, and is convinced that H = g1(0)+g1(1).

Proposition 1 Let g be a v-variate polynomial defined over a finite field F, and let (P,V) be the prover-
verifier pair in the above description of the sum-check protocol. (P,V) is a valid interactive proof protocol
for the function H = ∑b1∈{0,1}∑b2∈{0,1} · · ·∑bv∈{0,1} g(b1, . . . ,bv).

4.2.1 Discussion of costs.

Observe that there is one round in the sum-check protocol for each of the v variables of g. The total com-
munication is ∑

v
i=1 degi(g)+1 = v+∑

v
i=1 degi(g) field elements. In all of our applications, degi(g) = O(1)

for all i, and so the communication cost is O(v) field elements.
The running time of the verifier over the entire execution of the protocol is proportional to the total

communication, plus the amount of time required to compute g(r1, . . . ,rv).
Determining the running time of the prover is less straightforward. Recall that P can specify g j by

sending for each i ∈ {0, . . . ,deg j(g)} the value:

g j(i) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1, i,x j+1, . . . ,xv). (2)

An important insight is that the number of terms defining the value g j(i) in Equation (2) falls geo-
metrically with j: in the jth sum, there are only 2v− j terms, each corresponding to a Boolean vector in
{0,1}v− j. The total number of terms that must be evaluated over the course of the protocol is therefore
O
(

∑
v
j=1 2v− j

)
= O(2v). Consequently, if P is given oracle access to the truth table of the polynomial g,

then P will require just O(2v) time.
Unfortunately, in our applications P will not have oracle access to the truth table of g. The key to our

results is to show that in our applications P can nonetheless evaluate g at all of the necessary points in O(2v)
total time.

4.3 The GKR Protocol

We describe the details of the GKR protocol for completeness, as well as to simplify the exposition of our
refinements.

4.3.1 Notation

Suppose we are given a layered arithmetic circuit C of size S(n), depth d(n), and fan-in two. Let Si denote
the number of gates at layer i of the circuit C. Assume Si is a power of 2 and let Si = 2si . In order to explain
how each iteration of the GKR protocol proceeds, we need to introduce several functions, each of which
encodes certain information about the circuit.

To this end, number the gates at layer i from 0 to Si−1, and let Vi : {0,1}si → F denote the function that
takes as input a binary gate label, and outputs the corresponding gate’s value at layer i. The GKR protocol
makes use of the multilinear extension Ṽi of the function Vi (see Section 2.1.3).

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes which pairs of
wires from layer i+1 are connected to a given gate at layer i in C. We define two functions, addi and multi
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mapping {0,1}si+2si+1 to {0,1}, which together constitute the wiring predicate of layer i of C. Specifically,
these functions take as input three gate labels ( j1, j2, j3), and return 1 if gate j1 at layer i is the addition
(respectively, multiplication) of gates j2 and j3 at layer i+ 1, and return 0 otherwise. Let ˜addi and ˜multi
denote the multilinear extensions of addi and multi respectively.

Finally, let βsi(z, p) denote the function

βsi(z, p) =
si

∏
j=1

((1− z j)(1− p j)+ z j p j) .

It is straightforward to check that βsi is the multilinear extension of the function B(x,y) : {0,1}si×{0,1}si→
{0,1} that evaluates to 1 if x = y, and evaluates to 0 otherwise.

4.3.2 Protocol Outline

The GKR protocol consists of d(n) iterations, one for each layer of the circuit. Each iteration starts with
P claiming a value for Ṽi(z) for some field element z ∈ Fsi . In the first iteration and circuits with a single
output gate, z = 0 and Ṽ1(0) corresponds to the output value of the circuit.

For circuits with many output gates, Vu et al. [40] observe that in the first iteration, P may simply send
V the (claimed) values of all output gates, thereby specifying a function V ′1 : {0,1}s1 → F claimed to equal
V1. V can pick a random point z ∈ Fs1 and evaluate Ṽ ′1(z) on her own in O(S1) time (see Remark 1 in Section
4.3.5). The Schwartz-Zippel Lemma (Lemma 1) implies that it is safe for V to believe that V ′1 indeed equals
V1 as claimed, as long as Ṽ1(z) = Ṽ ′1(z) (which will be checked in the remainder of the protocol).

The purpose of iteration i is to reduce the claim about the value of Ṽi(z) to a claim about Ṽi+1(ω) for
some ω ∈ Fsi+1 , in the sense that it is safe for V to assume that the first claim is true as long as the second
claim is true. To accomplish this, the iteration applies the sum-check protocol described in Section 4.2 to a
specific polynomial derived from Ṽi+1, ˜addi, and ˜multi, and βsi .

4.3.3 Details for Each Iteration

Applying the Sum-Check Protocol. It can be shown that for any z ∈ Fsi ,

Ṽi(z) = ∑
(p,ω1,ω2)∈{0,1}si+2si+1

f (i)z (p,ω1,ω2),

where

f (i)z (p,ω1,ω2)= βsi(z, p)·
( ˜addi(p,ω1,ω2)(Ṽi+1(ω1)+Ṽi+1(ω2))+ ˜multi(p,ω1,ω2)Ṽi+1(ω1) ·Ṽi+1(ω2)

)
. (3)

Iteration i therefore applies the sum-check protocol of Section 4.2 to the polynomial f (i)z . There remains
the issue that V can only execute her part of the sum-check protocol if she can evaluate the polynomial f (i)z

at a random point f (i)z (r1, . . . ,rsi+2si+1). This is handled as follows.
Let p∗ denote the first si entries of the vector (r1, . . . ,rsi+2si+1), ω∗1 the next si+1 entries, and ω∗2 the last

si+1 entries. Evaluating f (i)z (p∗,ω∗1 ,ω
∗
2 ) requires evaluating β (z, p∗), ˜addi(p∗,ω∗1 ,ω

∗
2 ), ˜multi(p∗,ω∗1 ,ω

∗
2 ),

Ṽi+1(ω
∗
1 ), and Ṽi+1(ω

∗
2 ).
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V can easily evaluate β (z, p∗) in O(si) time. For many circuits, particularly those with “regular” wiring
patterns, V can evaluate ˜addi(p∗,ω∗1 ,ω

∗
2 ) and ˜multi(p∗,ω∗1 ,ω

∗
2 ) on her own in poly(si,si+1) time as well.2

V cannot however evaluate Ṽi+1(ω
∗
2 ), and Ṽi+1(ω

∗
1 ) on her own without evaluating the circuit. Instead, V

asks P to simply tell her these two values, and uses iteration i+1 to verify that these values are as claimed.
However, one complication remains: the precondition for iteration i+1 is that P claims a value for Ṽi(z) for
a single z∈ Fsi . So V needs to reduce verifying both Ṽi+1(ω

∗
2 ) and Ṽi+1(ω

∗
1 ) to verifying Ṽi+1(ω

∗) at a single
point ω∗ ∈ Fsi+1 , in the sense that it is safe for V to accept the claimed values of Ṽi+1(ω

∗
1 ) and Ṽi+1(ω

∗
2 ) as

long as the value of Ṽi+1(ω
∗) is as claimed. This is done as follows.

Reducing to Verification of a Single Point. Let ` :F→Fsi+1 be some canonical line passing through ω∗1 and
ω∗2 . For example, we can let ` be the unique line such that `(0) = ω∗1 and `(1) = ω∗2 . P sends a degree-si+1
polynomial h claimed to be Ṽi+1 ◦ `, the restriction of Ṽi+1 to the line `. V checks that h(0) = ω∗1 and h(1) =
ω∗2 (rejecting if this is not the case), picks a random point r∗ ∈ F, and asks P to prove that Ṽi+1(`(r∗)) =
h(r∗). By the Schwartz-Zippel Lemma (Lemma 1), as long as V is convinced that Ṽi+1(`(r∗)) = h(r∗), it
is safe for V to believe that the values of Ṽi+1(ω

∗
1 ) and Ṽi+1(ω

∗
2 ) are as claimed by P . This completes

iteration i; P and V then move on to the iteration for layer i+ 1 of the circuit, whose purpose is to verify
that Ṽi+1(`(r∗)) has the claimed value.

The Final Iteration. Finally, at the final iteration d, V must evaluate Ṽd(ω
∗) on her own. But the vector of

gate values at layer d of C is simply the input x to C. It can be shown that V can compute Ṽd(ω
∗) on her

own in O(n logn) time, with a single streaming pass over the input [15]. Moreover, Vu et al. show how to
bring V’s time cost down to O(n) [40], but this methodology does not work in a general streaming model.
For completeness, we present details of both of these observations in Section 4.3.5.

4.3.4 Discussion of Costs.

Observe that the polynomial f (i)z defined in Equation (3) is an (si +2si+1)-variate polynomial of degree
at most 2 in each variable, and so the invocation of the sum-check protocol at iteration i requires si +
2si+1 rounds, with three field elements transmitted per round. Thus, the total communication cost is
O(d(n) logS(n)) field elements, where d(n) is the depth of the circuit C. The time cost to V is O(n logn+
d(n) logS(n)), where the n logn term is due to the time required to evaluate Ṽd(ω

∗) (see Lemma 2 below),
and the d(n) logS(n) term is the time required for V to send messages to P and process and check the
messages from P .

As for P’s runtime, for any iteration i of the GKR protocol, a naive implementation of the prover in the
corresponding instance of the sum-check protocol would require time Ω(2si+2si+1), as the sum defining each
of P’s messages is over as many as 2si+2si+1 terms. This cost can be Ω(S(n)3), which is prohibitively large
in practice. However, Cormode, Mitzenmacher, and Thaler showed in [14] that each gate at layers i and
i+ 1 of C contributes to only a single term of sum, and exploit this to bring the runtime of the P down to
O(S(n) logS(n)).

2Various suggestions have been put forth for what to do if this is not the case. For example, these computations can always
be done by V in O(logS(n)) space as long as the circuit is log-space uniform, which is sufficient in streaming applications where
the space usage of the verifier is paramount [14]. Moreover, these computations can be done offline before the input is even
observed, because they only depend on the wiring of the circuit, and not on the input [14, 21]. Finally, [40] notes that the cost
of this computation can be effectively amortized in a batching model, where many identical computations on different inputs are
verified simultaneously. See Section 7 for further discussion, and a protocol that mitigates this issue in the context of data parallel
computation.
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4.3.5 Making V Fast vs. Making V Streaming

We describe how V can efficiently evaluate Ṽd(ω
∗) on her own, as required in the final iteration of the GKR

protocol. Prior work has identified two methods for performing this computation. The first method is due
to Cormode, Thaler, and Yi [15]. It requires O(n logn) time, and allows V to make a single streaming pass
over the input using O(logn) space.

Lemma 2 ( [15]) Given an input x ∈ Fn and a vector ω∗ ∈ Flogn, V can compute Ṽd(ω
∗) in O(n logn) time

and O(logn) space with a single streaming pass over the input, where Ṽd is the multilinear extension of the
function that maps i ∈ {0,1}logn to the value of the ith entry of x.

Proof: We exploit the following explicit expression for Ṽd . For a vector b ∈ {0,1}logn let χb(x1, . . . ,xlogn) =

∏
logn
k=1 χbk(xk), where χ0(xk) = 1− xk and χ1(xk) = xk. Notice that χb is the unique multilinear polynomial

that takes b ∈ {0,1}logn to 1 and all other values in {0,1}logn to 0, i.e., it is the multilinear extension of the
indicator function for boolean vector b. With this definition in hand, we may write:

Ṽd(p1, . . . , plogn) = ∑
b∈{0,1}logn

Vd(b)χb(p1, . . . plogn) (4)

Indeed, it is easy to check that the right hand side of Equation (4) is a multilinear polynomial, and that it
agrees with Vd on all Boolean inputs. Hence, the right hand side must equal the multilinear extension of Vd .

In particular, by letting (p1, . . . , plogn) = ω∗ in Equation (4), we see that

Ṽd(ω
∗) = ∑

b∈{0,1}logn

Vd(b)χb(ω
∗). (5)

Given any stream update (i,δ ), let (i1, . . . , ilogn) denote the binary representation of i. Notice that up-
date (i,δ ) has the effect of increasing Vd(i1, . . . , ilogn) by δ , and does not affect Vd(x1, . . .xlogn) for any
(x1, . . . ,xlogn) 6= (i1, . . . , ilogn). Thus, V can compute Ṽd(ω

∗) incrementally from the raw stream by initializ-
ing Ṽd(ω

∗)← 0, and processing each update (i,δ ) via:

Ṽd(ω
∗)← Ṽd(ω

∗)+δ ·χi(ω
∗).

V only needs to store Ṽd(ω
∗) and ω∗, which requires O(logn) words of memory. Moreover, for any i,

χ(i1,...,ilogn)(ω
∗) can be computed in O(logn) field operations, and thus V can compute Ṽd(ω

∗) with one pass
over the raw stream, using O(logn) words of space and O(logn) field operations per update.

The second method is due to Vu et al. [40]. It enables V to compute Ṽd(ω
∗) in O(n) time, but requires

V to use O(n) space.

Lemma 3 (Vu et al. [40]) V can compute Ṽd(ω
∗) in O(n) time and O(n) space.

Proof: We again exploit the expression for Ṽd(ω
∗) in Equation (5). Notice the right hand side of Equation

(5) expresses Ṽd(ω
∗) as the inner product of two n-dimensional vectors, where the bth entry of the first

vector is Vd(b) and the bth entry of the second vector is χb(ω
∗). This inner product can be computed in

O(n) time given a table of size n whose bth entry contains the quantity χb(ω
∗). Vu et al. show how to build

such a table in time O(n) using memoization.
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The memoization procedure consists of logn stages, where Stage j constructs a table A( j) of size
2 j, such that for any (b1, . . . ,b j) ∈ {0,1} j, A( j)[(b1, . . . ,b j)] = ∏

j
i=1 χbi(ω

∗
i ). Notice A( j)[(b1, . . . ,b j)] =

A( j−1)[(b1, . . . ,b j−1)] ·χb j(ω
∗
j ), and so the jth stage of the memoization procedure requires time O(2 j). The

total time across all logn stages is therefore O(∑
logn
j=1 2 j) = O(2logn) = O(n). This completes the proof.

Remark 1 In [41], Vu et al. further observe that if the input is presented in a specific order, then V can
evaluate Ṽd(ω

∗) using O(logn) space. Compare this result to Lemma 2, which requires O(n logn) time for
V , but allows V to use O(logn) space regardless of the order in which the input is presented.

5 Time-Optimal Protocols for Circuit Evaluation

5.1 Protocol Outline and Section Roadmap

As with the GKR protocol, our protocol consists of d(n) iterations, one for each layer of the circuit. Each
iteration starts with P claiming a value for Ṽi(z) for some value z ∈ Fsi . The purpose of the iteration is to
reduce this claim to a claim about Ṽi+1(ω) for some ω ∈ Fsi+1 , in the sense that it is safe for V to assume that
the first claim is true as long as the second claim is true. As in the GKR protocol, this is done by invoking
the sum-check protocol on a certain polynomial.

In order to improve on the costs of the GKR protocol implementation of Cormode et al. [14], we replace
the polynomial f (i)z in Equation (3) with a different polynomial g(i)z defined over a much smaller domain.
Specifically, g(i)z is defined over only si variables rather than si +2si+1 variables as is the case of f (i)z . Using
g(i)z in place of f (i)z allows P to reuse work across iterations of the sum-check protocol, thereby reducing P’s
runtime by a logarithmic factor relative to [14], as formalized in Theorem 1 below.

The remainder of the presentation leading up to Theorem 1 proceeds as follows. After stating a pre-
liminary lemma, we describe the polynomial g(i)z that we use in the context of three specific circuits: a
binary tree of addition or multiplication gates, and a circuit computing the number of non-zero entries of
an n-dimensional vector a. The purpose of this exposition is to showcase the ideas underling Theorem 1 in
concrete scenarios. Second, we explain the algorithmic insights that allow P to reuse work across iterations
of the sum-check protocol applied to g(i)z . Finally, we state and prove Theorem 1, which formalizes the class
of circuits to which our methods apply.

5.2 A Preliminary Lemma

We will repeatedly invoke the following lemma, which allows us to express the value Ṽi(z) in a manner
amenable to verification via the sum-check protocol. This is essentially a restatement of [31, Lemma 3.2.1].

Lemma 4 Let W be any polynomial Fsi → F that extends Vi, in the sense that for all p ∈ {0,1}si , W (p) =
Vi(p). Then for any z ∈ Fsi ,

Ṽi(z) = ∑
p∈{0,1}si

βsi(z, p)W (p). (6)

Proof: It is easy to check that the right hand side of Equation (6) is a multilinear polynomial in z, and that
it agrees with Vi on all Boolean inputs. Thus, the right hand side of Equation (6), viewed as a polynomial in
z, must be the multilinear extension Ṽi of Vi. This completes the proof.
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5.3 Polynomials for Specific Circuits

5.3.1 The Polynomial for a Binary Tree

Consider a circuit C that computes the product of all n of its inputs by multiplying them together via a
binary tree. Label the gates at layers i and i + 1 in the natural way, so that the first input to the gate
labelled p = (p1, . . . , psi) ∈ {0,1}si at layer i is the gate with label (p,0) at layer i−1, and the second input
to gate p has label (p,1). Here and throughout, (p,0) denotes the si + 1-dimensional vector obtained by
concatenating the entry 0 to the end of the vector p. Interpreting p = (p1, . . . , psi) ∈ {0,1}si as an integer
between 0 and 2si − 1 with p1 as the high-order bit and psi as the low-order bit, this says that the first in-
neighbor of p is 2p and the second is 2p+1. It follows immediately that for any gate p ∈ {0,1}si at layer i,
Vi(p) = Ṽi+1(p,0) ·Ṽi+1(p,1). Invoking Lemma 4, we obtain the following proposition.

Proposition 2 Let C be a circuit consisting of a binary tree of multiplication gates. Then Ṽi(z)=∑p∈{0,1}si g(i)z (p),

where g(i)z (p) = βsi(z, p) ·Ṽi+1(p,0) ·Ṽi+1(p,1).

Remark 2 Notice that the polynomial g(i)z in Proposition 2 is a degree three polynomial in each variable
of p. When applying the sum-check protocol to g(i)z , the prover therefore needs to send 4 field elements per
round.

In the case of Proposition 2, the line ` : F→ F2i+1 in the “Reducing to Verification of a Single Point”
step has an especially simple expression. Let r ∈ Fsi be the vector of random field elements chosen by V
over the execution of the sum-check protocol. Notice that `(0) must equal the point (r,0) ∈ Fsi+1 i.e., the
point whose first si coordinates equal r and whose last coordinate equals 0. Similarly, `(1) must equal (r,1).
We may therefore express the line ` via the equation `(t) = (r, t). In this case, Ṽi+1 ◦ ` has degree 1 and is
implicitly specified when P sends the claimed values of Ṽi(r,0) and Ṽi(r,1).

The case of a binary tree of addition gates is similar to the case of multiplication gates.

Proposition 3 Let C be a circuit consisting of a binary tree of addition gates. Then Ṽi(z) =∑p∈{0,1}si g(i)z (p),

where g(i)z (p) = βsi(z, p)
(
Ṽi+1(p,0)+Ṽi+1(p,1)

)
.

Remark 3 The polynomial g(i)z of Proposition 3 has degree 2 in all variables, rather than degree 3 as in
Proposition 2.

5.3.2 The Polynomials for DISTINCT

We now describe a circuit C for computing the number of non-zero entries of a vector a ∈ Fn (this vector
should be interpreted as the frequency vector of a data stream). A similar circuit was used in conjunction
with the GKR protocol in [14] to yield an efficient protocol with a streaming verifier for DISTINCT, and we
borrow heavily from the presentation there. We remark that our refinements enable us to slightly simplify
the circuit used in [14] by avoiding the awkward use of a constant-valued input wire with value set to 1.
This causes some gates in our circuit to have fan-in 1 rather than fan-in 2, which is easily supported by our
protocol.

The circuit C is tailored for use over the field of cardinality equal to a Mersenne prime q = 2k − 1
for some k. Fields of cardinality equal to a Mersenne prime can support extremely fast arithmetic, and as
discussed later in Section 6.2, there are several Mersenne primes of appropriate magnitude for use within
our protocols.
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Figure 1: The first several layers of a circuit for F0 on four inputs over the field F with q = 2k−1 elements.
The first layer from the bottom computes a2

i for each input entry ai. The second layer from the bottom
computes a4

i and a2
i for all i. The third layer computes a8

i and a6
i = a4

i ×a2
i , while the fourth layer computes

a16
i and a14

i = a8
i × a6

i . The remaining layers (not shown) have structure identical to the third and fourth
layers until the value aq−1

i is computed for all i, and the circuit culminates in a binary tree of addition gates.

The circuit C exploits Fermat’s Little Theorem, computing aq−1
i for each input entry ai before summing

the results. As described in [14], verifying the summation sub-circuit can be handled with a one invocation
of the sum-check protocol, or less efficiently by running our protocol for a binary tree of addition gates
described in Proposition 3.

We now turn to describing the part of the circuit computing aq−1
i for each input entry ai. We may write

q−1 = 2k−2, whose binary representation is k−1 1s followed by a 0. Thus, aq−1
i = ∏

k−1
j=1 a2 j

i . To compute

aq−1
i , the circuit repeatedly squares a, and multiplies together the results “as it goes”. In more detail, for

j > 2 there are two multiplication gates at each layer d(n)− j of the circuit for computing aq−1
i ; the first

computes a2 j
by squaring the corresponding gate at layer j− 1, and the second computes ∏

j−1
`=1 a2`−1

i . See
Figure 1 for a depiction.

For our purposes there are k+ 1 relevant circuit layers, all of which consist entirely of multiplication
gates. Layers 1 through k− 1 all contain 2n gates. Number the gates from 0 to 2n− 1 in the natural way.
In what follows, we will abuse notation and use p to refer to both a gate number as well as its binary
representation.

An even-numbered gate p at layer i has both in-wires connected to gate p at layer i + 1, while an
odd-numbered gate p has one in-wire connected to gate p and another connected to gate p− 1. Thus, the
connectivity information of the circuit is a simple function of the binary representation p of each gate at
layer i. If the low-order bit psi of p is 0 (i.e., it is an even-numbered gate), then both in-neighbors at layer
i+ 1 of gate p have binary representation p. If the low-order bit psi is 1 (i.e., it is an odd-numbered gate),
then the first in-neighbor of gate p has binary representation p, and the second has binary representation
(p−si ,0), where p−si denotes p with the coordinate psi removed.

Invoking Lemma 4, the following proposition is easily verified.

Proposition 4 Let C be the circuit described above. For layers i ∈ {1, . . . ,k−1}, Ṽi(z) = ∑p∈{0,1}si g(i)z (p)
where

g(i)z (p) = βsi(z, p)
(
(1− psi)Ṽi+1(p−si ,0) ·Ṽi+1(p−si ,0)+ psiṼi+1(p−si ,1) ·Ṽi+1(p−si ,0)

)
,

where p−si denotes p with the coordinate psi removed.
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Remark 4 To check P’s claim in the final round of the sum-check protocol applied to g(i)z , V needs to know
Ṽi+1(r,0) and Ṽi+1(r,1) for some random vector r ∈ Fsi−1. This is identical to the situation in the case of a
binary tree of addition or multiplication gates, where the “Reducing to Verification of a Single Point” step
had an especially simple implementation.

At layer k, an even-numbered gate p has both in-wires connected to gate p/2 at layer k+ 1, while an
odd-numbered gate p has its unique in-wire connected to gate (p− 1)/2 at layer k+ 1. Thus, for a gate at
layer i = k, if the the low-order bit psi of the gate’s binary representation p is 1 (i.e., it is an odd-numbered
gate), then both in-neighbors at layer i+ 1 of have binary representation p−si . If the low-order bit psi is 0
(i.e., it is an even numbered gate), then the unique in-neighbor of p at layer i+1 has binary representation
p−si .

Invoking Lemma 4, the following is easily verified.

Proposition 5 Let C be the circuit described above. For layer i = k, Ṽi(z) = ∑p∈{0,1}si g(i)z (p) where

g(i)z (p) = βsi(z, p)
(
(1− psi)Ṽi+1(p−si) ·Ṽi+1(p−si)+ psiṼi+1(p−si)

)
,

where p−si denotes p with coordinate psi removed.

Finally, at layer k+1, each gate p has both in-wires connected to gate p at layer k+2 (which is the input
layer). Thus:

Proposition 6 Let C be the circuit described above. For layer i = k+1, Ṽi(z) = ∑p∈{0,1}si g(i)z (p) where

g(i)z (p) = βsi(z, p)Ṽi+1(p) ·Ṽi+1(p).

5.4 Reusing Work

Recall that our analysis of the costs of the sum-check protocol in Section 4.2.1 revealed that, when applying
a sum-check protocol to an si-variate polynomial g(i)z , P only needs to evaluate g(i)z at O(2si) points across
all rounds of the protocol. Our goal in this section is to show how P can do this in time O(2si + 2si+1) =

O(Si +Si+1) for all of the polynomials g(i)z described in Section 5.3. This is sufficient to ensure that P takes
O(∑

d(n)
i=1 Si) = O(S(n)) time across all iterations of our circuit-checking protocol.

To this end, notice that all of the polynomials gz described in Propositions 2-6 have the following prop-
erty: for any r ∈ Fsi , evaluating g(i)z (r) can be done in constant time given β (z,r) and the evaluations of Ṽi+1

at a constant number of points. For example, consider the polynomial g(i)z described in Proposition 4: g(i)z (r)
can be computed in constant time given βsi(z,r), Ṽi+1(r−si ,0), and Ṽi+1(r−si ,1).

Moreover, the points at which P must evaluate g(i)z within the sum-check protocol are highly structured:
in round j of the sum-check protocol, the points are all of the form (r1, . . . ,r j−1, t,b j+1, . . . ,bsi) with t ∈
{0,1, . . . ,deg j(g

(i)
z )} and (b j+1, . . . ,bsi) ∈ {0,1}si− j.

5.4.1 Computing the Necessary β (z, p) Values

Pre-processing. We begin by explaining how P can, in O(2si) time, compute an array C(0) of length 2si of all
values β (z, p) = ∏

si
k=1(pkzk +(1− pk)(1− zk)) for p ∈ {0,1}si . P can do this computation in preprocessing

before the sum-check protocol begins, as this computation does not depend on any of V’s messages. Naively,
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computing all entries of C(0) would require O(si2si) time, as there are 2si values to compute, and each
involves Ω(si) multiplications. However, this can be improved using dynamic programming.

The dynamic programming algorithm proceeds in stages. In stage j, P computes an array C(0, j) of
length 2 j. Abusing notation, we identify a number p in [2 j] with its binary representation in {0,1} j. P
computes

C0, j[p] =
j

∏
k=1

(pkzk +(1− pk)(1− zk))

via the recurrence

C0, j[(p1, . . . , p j)] =C0, j−1[(p1, . . . , p j−1)] · (p jz j +(1− p j)(1− z j)).

Clearly C(0,si) equals the desired array C(0), and the total number of multiplications required over the entire
procedure is O(∑

si
j=1 2 j) = O(2si). We remark that our dynamic programming procedure is similar to the

method used by Vu et al. to reduce the verifier’s runtime in the GKR protocol from O(n logn) to O(n) in
Lemma 3.

Overview of Online Processing. In round j of of the sum-check protocol, P needs to evaluate the polynomial
β (z, p) at O(2si− j) points of the form (r1, . . . ,r j−1, t,b j+1, . . . ,bsi) for t ∈ [deg j(g

(i)
z )] and (b j+1, . . . ,bsi) ∈

{0,1}si− j. P will do this using the help of intermediate arrays C( j) defined as follows.
Define C( j) to be the array of length 2si− j such that for (p j+1, . . . , psi) ∈ {0,1}si− j:

C( j)[(p j+1, . . . , psi)] =

(
j

∏
k=1

(rkzk +(1− rk)(1− zk))

)
·

(
si

∏
k= j+1

(pkzk +(1− pk)(1− zk))

)
,

Efficiently Constructing C( j) Arrays. Inductively, assume P has computed the array C( j−1) in the previous
round. As the base case, we explained how P can evaluate C(0) in O(2si) time in pre-processing. Now
observe that P can compute C( j) given C( j−1) in O(2si− j) time using the following recurrence:

C( j)[(p j+1, . . . , psi)] = z−1
j C( j−1)[(1, p j+1, . . . , psi)] · (r jz j +(1− r j)(1− z j)). (7)

Remark 5 Equation (7) is only valid when z j 6= 0. To avoid this issue, we can have V choose z j at random
from F∗ rather than from F, and this will affect the soundness probability by at most an additive O(d(n) ·
logS(n)/|F|) term.

Remark 6 Since computing multiplicative inverses in a finite field is not a constant-time operation, it is
important to note that z−1

j only needs to be computed once when determining the entries of C( j), i.e., it need
not be recomputed for each entry of C( j). Therefore, across all si rounds of the sum-check protocol, only
Õ(si) time in total is required to compute these multiplicative inverses, which does not affect the asymptotic
costs for P . We discount the costs of computing z−1

j for the remainder of the discussion.

Thus, at the end of round j of the sum-check protocol, when V sends P the value r j, P can compute
C( j) from C( j−1) using Equation (7) in O(2si− j) time.

21



Using the C( j) Arrays. Observe that given any point of the form p = (r1, . . . ,r j−1, t,b j+1, . . . ,bsi) with
(b j+1, . . . ,bsi) ∈ {0,1}si− j, β (z, p) can be evaluated in constant time using the array C( j−1), using the equal-
ity

β (z, p) =C( j−1)[(1, p j+1, . . . , psi)] · z−1
j · (tz j +(1− t)(1− z j)).

As above, note that z−1
j can be computed just once and used for all points p, and this does not affect the

asymptotic costs for P .

Putting Things Together. In round j of the sum-check protocol, P uses the array C( j−1) to evaluate the
O(2si− j) required β (z, p) values in O(2si− j) time. At the end of round j, V sends P the value r j, and P
computes C( j) from C( j−1) in O(2si− j) time. In total across all rounds of the sum-check protocol, P spends
O(∑

si
j=1 2si− j) = O(2si) time to compute the β (z, p) values.

5.4.2 Computing the Necessary Ṽi+1(p) Values

For concreteness and clarity, we restrict our presentation within this subsection to the polynomial g(i)z de-
scribed in Proposition 4. Theorem 1 abstracts this analysis into a general result capturing a large class of
wiring patterns.

Recall that all of the polynomials g(i)z described in Propositions 2-6 have the following property: for any
p∈ Fsi , evaluating g(i)z (p) can be done in constant time given β (z, p) and the evaluations of Ṽi+1 at a constant
number of points. We have already shown how P can evaluate all of the necessary β (z, p) values in O(2si)
time. It remains to show how P can evaluate all of the Ṽi+1 values in time O(2si +2si+1). We remark that in
the context of Proposition 4, si = si+1; however, we still distinguish between these two quantities throughout
this subsection in order to ensure maximal consistency with the general derivation of Theorem 1.

Recall that the polynomial g(i)z in Proposition 4 was defined as follows:

g(i)z (p) = βsi(z, p)
(
(1− psi)Ṽi+1(p−si ,0) ·Ṽi+1(p−si ,0)+ psiṼ (p−si ,1) ·Ṽ (p−si ,0)

)
.

In round j of the sum-check protocol, P needs to evaluate gz at all points in the set

S( j) = {(r1, . . . ,r j−1, t,b j+1, . . . ,bsi) : t ∈ {0, . . . ,deg j(g
(i)
z )} and (b j+1, . . . ,bsi) ∈ {0,1}si− j}.

By inspection of g(i)z , it suffices for V to evaluate Ṽi+1 at the same set of points. To show how to accomplish
this efficiently, we exploit the following explicit expression for Ṽi+1. This expression was derived for the
case i+1 = d in Equation (4) within Lemma 2; we re-derive it here in the general case.

For a vector b ∈ {0,1}si+1 let χb(x1, . . . ,xsi+1) = ∏
si+1
k=1 χbk(xk), where χ0(xk) = 1− xk and χ1(xk) = xk.

With this definition in hand, we may write:

Ṽi+1(p1, . . . , psi+1) = ∑
b∈{0,1}si+1

Vi+1(b)χb(p1, . . . psi+1), (8)

To see that Equation (8) holds, notice that the right hand side of Equation (8) is a multilinear polynomial
in the variables (p1, . . . ,bpi+1), and that it agrees with Vi+1 at all points p ∈ {0,1}si+1 . Hence, it must be the
unique multilinear extension of Vi+1.

The intuition behind our optimizations is the following. In round j of the sum-check protocol, there
are |S( j)| points at which Ṽi+1 must be evaluated. Equation (8) can be exploited to show that each gate at
layer i+1 of the circuit contributes to Ṽi+1(p) for at most one point p ∈ S( j); namely the point p whose last
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si+1− j coordinates agrees with those of p. This observation alone is enough to achieve an O(Si+1 logSi)
runtime for P in total across all iterations of the sum-check protocol, because there are Si+1 gates at layer
i+ 1, and only si = logSi rounds of the sum-check protocol. However, we need to go further in order to
shave off the last logSi factor from P’s runtime. Essentially, what we do is group the gates at layer i+1 by
the point p ∈ S( j) to which they contribute. Each such group can be treated as a single unit, ensuring that
the work P has to do in any round of the sum-check protocol in order to evaluate Ṽi+1 at all points in S( j) is
proportional to |S( j)| rather than to Si+1. Since the size of S( j) falls geometrically with j, our desired time
bounds follow.

Pre-processing. P will begin by computing an array V (0), which is simply defined to be the vector of gate
values at layer i+ 1, i.e., identifying a number 0 < j < Si+1 with its binary representation in {0,1}si+1 , P
sets V (0)[( j1, . . . , jsi+1)] = Vi+1( j1, . . . , jsi+1) for each ( j1, . . . , jsi+1) ∈ {0,1}si+1 . The right hand side of this
equation is simply the value of the jth gate at layer i+ 1 of C. So P can fill in the array V (0) when she
evaluates the circuit C, before receiving any messages from V .

Overview of Online Processing. In round j of of the sum-check protocol, P needs to evaluate the polynomial
Ṽi+1 at the O(2si− j) points in the set S( j). P will do this using the help of intermediate arrays V ( j) defined as
follows.

Define V ( j) to be the length 2si+1− j array such that for (p j+1, . . . , psi+1) ∈ {0,1}si+1− j,

V ( j)[(p j+1, . . . , psi+1)] = ∑
(b1,...,b j)∈{0,1} j

Vi+1(b1, . . . ,b j, p j+1, . . . , psi+1) ·
j

∏
k=1

χbk(rk),

Efficiently Constructing V ( j) Arrays. Inductively, assume P has computed in the previous round the array
V ( j−1) of length 2si+1− j+1.

As the base case, we explained how P can fill in V (0) in the process of evaluating the circuit C. Now
observe that P can compute V ( j) given V ( j−1) in O(2si+1− j) time using the following recurrence:

V ( j)[(p j+1, . . . , psi+1)] =V ( j−1)[(0, p j+1, . . . , psi)] ·χ0(r j)+V ( j−1)[(1, p j+1, . . . , psi)] ·χ1(r j).

Thus, at the end of round j of the sum-check protocol, when V sends P the value r j, P can compute
V ( j) from V ( j−1) in O(2si+1− j+1) time.

Using the V ( j) Arrays. We now show how to use the array V ( j−1) to evaluate Ṽi+1(p) in constant time for
any point of the form p = (r1, . . . ,r j−1, t,b j+1, . . . ,bsi+1) with (b j+1, . . . ,bsi+1) ∈ {0,1}si+1− j. We exploit the
following sequence of equalities:
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Ṽi+1(r1, . . . ,r j−1, t,b j+1, . . . ,bsi) = ∑
c∈{0,1}si+1

Vi+1(c)χc(r1, . . . ,r j−1, t,b j+1, . . . ,bsi+1)

= ∑
(c1,...,c j)∈{0,1} j

∑
(c j+1,...,csi+1 )∈{0,1}

si+1− j

Vi+1(c)χc(r1, . . . ,r j−1, t,b j+1, . . . ,bsi+1)

= ∑
(c1,...,c j)∈{0,1} j

∑
(c j+1,...,csi+1 )∈{0,1}

si+1− j

Vi+1(c)

(
j−1

∏
k=1

χck(rk)

)(
χc j(t)

)( si+1

∏
k= j+1

χck(bk)

)

= ∑
(c1,...,c j)∈{0,1} j

Vi+1(c j+1, . . . ,c j,b j+1, . . . ,bsi+1)

(
j−1

∏
k=1

χck(rk)

)
·χc j(t)

=V ( j−1)[(0,b j+1, . . . ,bsi+1)] ·χ0(t)+V ( j−1)[(1,b j+1, . . . ,bsi+1)] ·χ1(t).

Here, the first equality holds by Equation (8). The third holds by definition of the function χc. The
fourth holds because for Boolean values bk,ck ∈ {0,1}, χck(bk) = 1 if ck = bk, and χck(bk) = 0 otherwise.
The final equality holds by definition of the array V ( j−1).

Putting Things Together. In round j of the sum-check protocol, P uses the array V ( j−1) to evaluate Ṽi+1(p)
for all O(2si− j) points p ∈ S( j). This requires constant time per point, and hence O(2si− j) time across all
points. At the end of round j, V sends P the value r j, and P computes V ( j) from V ( j−1) in O(2si+1− j) time.
In total across all rounds of the sum-check protocol, P spends O(∑

si
j=1 2si− j +2si+1− j) = O(2si +2si+1) time

to evaluate Ṽi+1 at the relevant points. When combined with our O(2si)-time algorithm for computing all
the relevant β (z, p) values, we see P takes O(2si + 2si+1) = O(Si + Si+1) time to run the entire sum-check
protocol for iteration i of our circuit-checking protocol.

5.5 A General Theorem

In this section we formalize a large class of circuits to which our refinements yield asymptotic savings
relative to prior implementations of the GKR protocol. Our protocol makes use of the following functions
that capture the wiring structure of an arithmetic circuit C.

Definition 2 Let C be a layered arithmetic circuit of depth d(n) and size S(n) over finite field F. For every
i ∈ {1, . . . ,d−1}, let in(i)1 : {0,1}si →{0,1}si+1 and in(i)2 : {0,1}si →{0,1}si+1 denote the functions that take
as input the binary label p of a gate at layer i of C, and output the binary label of the first and second
in-neighbor of gate p respectively. Similarly, let type(i) : {0,1}si → {0,1} denote the function that takes as
input the binary label p of a gate at layer i of C, and outputs 0 if p is an addition gate, and 1 if p is a
multiplication gate.

Intuitively, the following definition captures functions whose outputs are simple bit-wise transformations
of their inputs.

Definition 3 Let f be a function mapping {0,1}v to {0,1}v′ . Number the v input bits from 1 to v, and the v′

output bits from 1 to v′. Assume that one machine word contains Ω(v+ v′) bits. We say that f is regular if f
can be evaluated on any input in constant time, and there is a subset of input bits S ⊆ [v] with |S| = O(1)
such that:
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1. Each input bit in [v]\S affects O(1) of the output bits of f . Moreover, given input j ∈ [v]\S , the set
S j of output bits affected by x j can be enumerated in constant time.

2. Each output bit of f depends on at most one input bit.

Our protocol applied to C proceeds in d(n) iterations, where iteration i consists an application of the
sum-check protocol to an appropriate polynomial derived from type(i), in(i)1 , and in(i)2 , followed by a phase
for “reducing to verification of a single point”. For any layer i of C such that in(i)1 , in(i)2 and type(i) are all
regular, we can show that P can execute the sum-check protocol at iteration i in O(Si+Si+1) time. To ensure
that P can execute the “reducing to verification of a single point” phase in O(Si+1) time, we need to place
one additional condition on in(i)1 and in(i)2 .

Definition 4 We say that in(i)1 and in(i)2 are similar if there is a set of output bits T ⊆ [si+1] with |T |= O(1)
such that for all inputs x, the jth output bit of in(i)1 equals the jth output bit of in(i)2 for all j ∈ [si+1]\T .

We are finally in a position to state the class of circuits to which our refinements apply.

Theorem 1 Let C be an arithmetic circuit, and suppose that for all layers i of C, in(i)1 , in(i)2 , and type(i)

are regular. Suppose moreover that in(i)1 is similar to in(i)2 for all but O(1) layers i of C. Then there is a
valid interactive proof protocol (P,V) for the function computed by C, with the following costs. The total
communication cost is |O|+O(d(n) logS(n)) field elements, where |O| is the number of outputs of C. The
time cost to V is O(n logn+d(n) logS(n)), and V can make a single streaming pass over the input, storing
O(log(S(n))) field elements. The time cost to P is O(S(n)).

The asymptotic costs of the protocol whose existence is guaranteed by Theorem 1 are identical to those
of the implementation of the GKR protocol due to Cormode et al. in [14], except that in Theorem 1 P runs
in time O(S(n)) rather than O(S(n) logS(n)) as achieved by [14]. We defer the proof to Appendix A.

5.5.1 Applications

Theorem 1 applies to circuits computing functions from a wide range of applications, with the following
implications.

MATMULT. Consider the following circuit C of size O(n3) for multiplying two n× n matrices A and B.
Let the input gate labelled (0, i, j) correspond to Ai j, and the input labelled (1, i, j) correspond to Bi j. The
layer of C adjacent to the input consists of n3 gates, where the gate labeled (i, j,k) ∈ ({0,1}logn)3 computes
Aik ·Bk j. All subsequent layers constitute a binary tree of addition gates summing up the results and thereby
computing ∑k AikBk j for all (i, j) ∈ [n]× [n].

For layers i ∈ {1, . . . , logn} of this circuit, in(i)1 , in(i)2 , and type(i) are all regular, and moreover in(i)1 is
similar to in(i)2 (see Section 5.3.1 for a careful treatment of this wiring pattern). The remaining layer of the
circuit, layer i = logn+1, is regular, though in(logn+1)

1 and in(logn+1)
2 are not similar. We obtain the following

immediate corollary.

Corollary 1 There is a valid interactive proof protocol for n× n MATMULT with the following costs. The
total communication cost is n2 +O(d(n) logn) field elements, where the n2 term is required to specify the
answer. The time cost to V is O(n2 logn), and V can make a single streaming pass over the input in time
O(n2 logn) and storing O(logn) field elements. The time cost to P is O(n3).
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We note that the costs of Corollary 1 are subsumed by our special-purpose matrix multiplication protocol
presented later in Theorem 3. We included Corollary 1 to demonstrate the applicability of Theorem 1.

DISTINCT. Recall the circuit C over field size q= 2k−1 described in Section 5.3.2 that takes a vector a∈ Fn

as input and outputs the number of non-zero entries of a. This circuit has k+1 relevant layers and consists
entirely of multiplication gates. For any layer i ∈ [k− 1], an even-numbered gate p at layer i has both in-
wires connected to gate p at layer i+1, while an odd-numbered gate p at layer i has one in-wire connected
to gate p at layer i+1 and another connected to gate p−1 (which has binary representation (p−si ,0), where
p−si denotes the binary representation of p with the coordinate psi removed). For these layers, in(i)1 , in(i)2 ,
and type(i) are all regular, and in(i)1 is similar to in(i)2 .

At layer k, an even-numbered gate p is has both in-wires connected to gate p/2 at layer k+ 1, while
an odd-numbered gate p at layer k has its unique in-wire connected to gate (p− 1)/2 at layer k + 1. In
the former case, both in-neighbors of gate p have binary representation p−si . In the latter case the unique
in-neighbor of gate p has binary representation p−si . It is therefore easily seen that in(k)1 , in(k)2 , and type(k)

are all regular, and in(k)1 is similar to in(k)2 . Finally, at layer k+1, both in-wires for gate p are connected to
gate p at layer k+2. It is easily seen that in(k+1)

1 , in(k+1)
2 , and type(k+1) are all regular, and in(k+1)

1 is similar
to in(k+1)

2 . With all layers of C satisfying the requirements of Theorem 1, we obtain the following corollary.

Corollary 2 Let q > max{m,n} be a Mersenne Prime. There is a valid interactive proof protocol over the
field Fq for DISTINCT with the following costs. The total communication cost is O(logn logq) field elements.
The time cost to V is O(m logn), and V can make a single streaming pass over the input, storing O(logn)
field elements. The time cost to P is O(n logq).

To or knowledge, Corollary 2 yields the fastest known prover of any streaming interactive proof protocol
for DISTINCT that also has total communication and space usage for V that is sublinear in both m and n.
The fastest result previously was the O(n · log(n) · log(p))-time prover obtained by the implementation of
Cormode et al. [14]. We remark however that for a data stream with F0 distinct items, the prover in [14]
actually can be made to run in time O(n+F0 · log(n) · log(p)), where the O(n) term is due to the time
required to simply observe the entire input stream. Therefore, for streams where F0 = o(n/ logn), the
implementation of [14] achieves an asymptotically faster prover than implied by Corollary 2.

Remark 7 Cormode et al. in [14, Section 3.2] describe how to extend the GKR protocol to handle circuits
with gates that compute more general operations than just addition and multiplication. At a high level, [14]
shows that gates computing any “low-degree” operation can be handled, and they demonstrate analytically
and experimentally that these more general gates can achieve cost savings for the DISTINCT problem. These
same optimizations are also applicable in conjunction with our refinements. We omit further details for
brevity, and did not implement these optimizations in conjunction with our refinements.

Other Problems. In order to demonstrate its generality, we describe two other non-trivial applications of
Theorem 1.

• Pattern Matching. In the Pattern Matching problem, the input consists of a stream of text T =
(t0, . . . , tn−1) ∈ [n]n and pattern P = (p0, . . . , pm−1) ∈ [n]m. The pattern P is said to occur at loca-
tion i in T if, for every position k in P, pk = ti+k. The pattern-matching problem is to determine the
number of locations at which P occurs in T . For example, one might want to determine the number
of times a given phrase appears in a corpus of emails stored in the cloud.
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Cormode et al. describe the following circuit C for Pattern Matching over the finite field Fq. The
circuit first computes the quantity Ii = ∑

m
j=0(ti+ j− p j)

2 for each i ∈ [[n]], and then exploits Fermat’s
Little Theorem (FLT) by computing M = ∑

n−m
i=1 Iq−1

i . The number of occurrences of the pattern equals
n−m−M.

Computing Ii for each i can be done in logm + 2 layers: the layer closest to the input computes
ti+k− pk for each pair (i,k) ∈ [[n]]× [[q]], the next layer squares each of the results, and the circuit
then sums the results via a depth logm-binary tree of addition gates. The total size of the circuit C is
O(nm+n logq), where the nm term is due to the computation of the Ii values, and the n logq term is
due to the FLT computation. The total depth of the circuit is O(logm+ logq) = O(logq).

We have already demonstrated that Theorem 1 applies to the squaring layer, the binary tree sub-circuit,
and the FLT computation. The only remaining layer of the circuit is the one that computes ti+k− pk
for each pair (i,k) ∈ [[n]]× [[m]]. Unfortunately, Theorem 1 does not apply to this layer of the circuit.
This is because the first in-neighbor of a gate with label (i1, . . . , ilogn,k1, . . . ,klogm) ∈ {0,1}logn+logm

has label equal to the binary representation of the integer i+k, and a single bit i j can affect many bits
in the binary representation of i+ k (likewise, each bit in the binary representation of i+ k may be
affected by many bits in the binary representation of i and k).

However, in Appendix B, we describe how to extend the ideas underlying Theorem 1 to handle this
wiring pattern. The extensions in Appendix B may be more broadly useful, as the wiring pattern
analyzed there is an instance of a common paradigm, in that it interprets binary gate labels as a pair
of integers and performs a simple arithmetic operation (namely addition) on those integers.

We also remark that, instead of going through the analysis of Appendix B, a more straightforward
approach is to simply apply the implementation of [14] to this layer; the runtime for P in the corre-
sponding sum-check protocol is O(nm logn). This does not affect the asymptotic costs of the protocol
if m is constant, since in this case nm logn=O(n logq), and the total runtime of P over all other layers
of the circuit is Θ(n logq).

This analysis highlights the following point: our refinements can be applied to a circuit on a layer-by-
layer basis, so they can still yield speedups even if some but not all layers of a circuit are sufficiently
“regular” for our refinements to apply.

A similar analysis applies to a closely related circuit that solves a more general problem known as
Pattern Matching with Wildcards. We omit these details for brevity.

• Fast Fourier Transform. Cormode et al. [14] also describe a circuit over C for computing the stan-
dard radix-two decimation-in-time FFT. At a high level, this circuit works as follows. It proceeds
in logn stages, where for k = (k1, . . . ,kn) ∈ {0,1}n, the kth output of stage i is recursively defined
as Vi(k1, . . . ,kn) = Vi−1(k1,ki−1,0,ki, . . . ,kn)+ e−2πki/nVi−1(k1, . . . ,ki−1,1,ki+1, . . . ,kn). Theorem 1 is
easily seen to apply to the natural circuit executing this recurrence, and our refinements would there-
fore shave a logarithmic factor off the runtime of P applied to this circuit, relative to the implemen-
tation of [14] (since this circuit is defined over the infinite field C, the protocol is only defined in a
model where complex numbers can be communicated and operated on at unit cost).

6 Experimental Results

We implemented the protocols implied by Theorem 1 as applied to circuits computing MATMULT and
DISTINCT. These experiments serve as case studies to demonstrate the feasibility of Theorem 1 in prac-

27



tice, and to quantify the improvements over prior implementations. While Section 8 describes a specialized
protocol for MATMULT that is significantly more efficient than the protocol implied by Theorem 1, MAT-
MULT serves as an important case study for the costs of the more general protocol described in Theorem
1, and allows for direct comparison with prior implementation work that also evaluated general-purpose
protocols via their performance on the MATMULT problem [14, 30, 35, 36, 38, 40].

Our comparison point is the implementation of Cormode et al. [14], with some of the refinements of Vu
et al. [40] included. In particular, our comparison point for matrix multiplication uses the refinement of [40]
for circuits with multiple outputs described in Section 4.3.2. We did not include Vu et al.’s optimization
from Lemma 3 that reduced the runtime of V from O(n logn) to O(n), because this optimization blows up
the space usage of V to Ω(n), while we want to use a smaller-space verifier for streaming applications such
as DISTINCT.

6.1 Summary of Results

The main takeaways of our experiments are as follows. When Theorem 1 is applicable, the prover in the
resulting protocol is 200x-250x faster than the previous state of the art implementation of the GKR protocol.
The communication costs and the number of rounds required by our protocols are also 2x-3x smaller than
the previous state of the art. The verifier in our implementation takes essentially the same amount of time
as in prior implementations of the GKR protocol; this time is much smaller than the time to perform the
computation locally without a prover.

Most of the observed 200x speedup can be attributed directly to our improvements in protocol design
over prior work: the circuit for 512x512 matrix multiplication is of size 228, and hence our logS factor
improvement the runtime of P likely accounts for at least a 28x speedup. The 3x reduction in the number of
rounds accounts for another 3x speedup. The remaining speedup factor of roughly 2x may be due to a more
streamlined implementation relative to prior work, rather than improved protocol design per se.

We have both a serial implementation and a parallel implementation that leverages graphics processing
units (GPUs). The prover in our parallel implementation runs roughly 30x faster than the prover in our serial
implementation. The ability to leverage GPUs to obtain robust speedups in our setting is not unexpected, as
Thaler, Roberts, Mitzenmacher, and Pfister demonstrated substantial speedups for an earlier implementation
of the GKR protocol using GPUs in [38].

All of our code is available online at [39]. All of our serial code was written in C++ and all experiments
were compiled with g++ using the −O3 compiler optimization flag and run on a workstation with a 64-bit
Intel Xeon architecture and 48 GBs of RAM. We implemented all of our GPU code in CUDA and Thrust [24]
with all compiler optimizations turned on, and ran our GPU implementation on an NVIDIA Tesla C2070
GPU with 6 GBs of device memory.

6.2 Details

Choice of Finite Field. All of our circuits work over the finite field of size q = 261− 1. Several remarks
are appropriate regarding our choice of field size. This field was used in our earlier work [14] because
it supports fast arithmetic, as reducing an integer modulo q can be done with a bit-shift, addition, and a
bit-wise AND. (The same observation applies to any field whose size equals a Mersenne Prime, including
289−1, 2107−1, and 2127−1). Moreover, the field is large enough that the probability a verifier is fooled by
a dishonest prover is smaller than 1/245 for all of the problems we consider (this probability is proportional
to d(n) logS(n)

q ).
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The main potential issue with our choice of field size is that “overflow” can occur for problems such
as matrix multiplication if the entries of the input matrices can be very large. For example, with 512×512
matrix multiplication, if the entries of the input matrices A,B are larger than 226, an entry in the product
matrix AB can be as large as 261, which is larger than our field size. If this is a concern, a larger field size is
appropriate. (Notice that for a problem such DISTINCT, there is no danger of overflow issues as long as the
length of the stream is smaller than 261−2, which is larger than any stream encountered in practice).

A second reason to use larger field sizes is to handle floating-point or rational arithmetic as proposed by
Setty et al. in [35].

All of our protocols can be instantiated over fields with more than q = 261−1 elements, with an imple-
mentation using these fields experiencing a slowdown proportional to the increased cost of arithmetic over
these fields.

6.2.1 Serial Implementation

MATMULT. The costs of our serial MATMULT implementation are displayed in Table 1. The prover in our
matrix multiplication implementation is about 250x faster than the previous state of the art. For example,
when multiplying two 512 x 512 matrices, our prover takes about 38 seconds, while our comparison im-
plementation takes over 2.5 hours. A C++ program that simply evaluates the circuit without an integrity
guarantee takes 6.07 seconds, so our prover experiences less than a 7x slowdown to provide the integrity
guarantee relative to simply evaluating the circuit without such a guarantee.

When multiplying two 512 x 512 matrices A and B, the protocol requires 236 rounds, and the total
communication cost of our protocol is 5.48 KBs (plus the amount of communication required to specify the
answer AB). The previous state of the art required 767 rounds and close to 18 KBs of communication (plus
the amount of communication required to specify AB). Notice that specifying a 512x512 matrix using 8 bytes
per entry requires 2 MBs, which is more than 500 times larger than the 5.48 KBs of extra communication
required to verify the answer.

A serial C++ program performing 512 x 512 matrix multiplication over the integers with floating point
arithmetic (without going through the circuit representation of the computation) required 1.53 seconds, so
our prover runs approximately 25 times slower than a standard unverifiable matrix multiplication algorithm.
A serial C++ program performing the same multiplication over the finite field of size 261−1 required 4.74
seconds, so our serial prover runs about 8 times slower than an unverifiable matrix multiplication algorithm
over the corresponding finite field.

Our verifier takes essentially the same amount of time as in prior work, as in both implementations the
bulk of the work of the verifier is spent evaluating the low-degree extension of the input at a point. This is
more than an order of magnitude faster than the 1.03 seconds required by a serial C++ program performing
the multiplication in an unverified manner over the integers, so the verifier is indeed saving time by using a
prover (relative to doing the computation locally without a prover). We stress that the savings for the verifier
would be larger at larger input sizes, as the time cost to the verifier in our implementation and the prior
implementation of [14] is quasilinear in the input size, which is polynomially faster than all known matrix
multiplication algorithms. Moreover, when streaming considerations are not an issue, we could apply the
refinement of Vu et al. from Lemma 3 to reduce V’s runtime from O(n2 logn) to O(n2) and thereby further
speed up the verifier.

DISTINCT. The costs of our serial DISTINCT implementation are displayed in Table 2. The comparison of
our implementation with prior work is similar to the case of matrix multiplication. Our prover is roughly 200
times faster than the comparison implementation. For example, when computing the number of non-zero
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Implementation Problem Size P Time V Time Rounds Total Communication Circuit Eval Time
Previous state of the art 256 x 256 1054 s 0.02 s 623 14.6 KBs 0.73 s

Theorem 1 256 x 256 4.37 s .02 s 190 4.4 KBs 0.73 s
Previous state of the art 512 x 512 9759 s 0.10 s 767 17.97 KBs 6.07 s

Theorem 1 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s

Table 1: Experimental results for n×n MATMULT with our serial implementation. The Total Communication
column does not count the communication required to specify the answer, only the “extra” communication
required to run the verification protocol.

Implementation P Time V Time Rounds Total Communication Circuit Eval Time
Previous state of the art 3400.23 s 0.20 s 3916 91.3 KBs 1.88 s

Theorem 1 17.28 s 0.20 s 1361 40.76 KBs 1.88 s

Table 2: Experimental results for computing the number of non-zero entries of a vector of length 220 with
our serial implementation.

entries of a vector of length 220, our prover takes about 17 seconds, while our comparison implementation
takes about 57 minutes. A C++ program that simply evaluates the circuit without an integrity guarantee
takes 1.88 seconds, so our prover experiences roughly a 10x slowdown to prove an integrity guarantee
relative to simply evaluating the circuit. Our implementation required 1361 rounds and 40.76 KBs of total
communication, compared to 3916 rounds and 91.3 KBs for the previous state of the art. This is essentially
a 3x reduction in the number of rounds, and a 2.25x reduction in the total amount of communication.

A C++ program that (unverifiably) computes the number of non-zero entries in a vector x with 220

entries takes less than .01 seconds, and our prover implementation runs more than 1,700 times longer than
this. The reason that the slowdown for the prover relative to an unverifiable algorithm is larger for DISTINCT

than for MATMULT is that DISTINCT is a “less arithmetic” problem, in the sense that the size of the arithmetic
circuit we use for computing DISTINCT is more than 100x larger than the runtime of an unverifiable serial
algorithm for the problem. We stress however that, as pointed out in [38], when solving the DISTINCT

problem in practice, an unverifiable algorithm would first aggregate a data stream into its frequency-vector
representation before determining the number of non-zero frequencies. In reporting a time bound of .01
seconds for unverifiably solving DISTINCT, we are not taking the aggregation time cost into account. For
sufficiently long data streams, the slow-down for our prover relative to an unverifiable algorithm would be
much smaller than 1,700x if we did take aggregation time into account.

6.2.2 Parallel Implementation

Our serial implementation demonstrates that P experiences a 10x slowdown in order to evaluate the circuit
with an integrity guarantee relative to simply evaluating the circuit without such a guarantee. The purpose
of this section is to demonstrate that parallelization can further mitigate this slowdown. To this end, we
implemented a parallel version of our prover in the context of the matrix multiplication protocol of Section
5. Our parallel implementation uses a graphics processing unit (GPU).

The high-level idea behind our parallel implementation is the following. Each time we apply the sum-
check protocol to a polynomial g(i)z , it suffices for P to evaluate g(i)z at a large number of points r of the form
p = (r1, . . . ,r j−1, t,b j+1, . . . ,bsi+1) with t ∈ {0, . . . ,deg j(g

(i)
z )} and (b j+1, . . . ,bsi+1) ∈ {0,1}si+1− j. We can

perform each of these evaluations independently. Thus, we devote a single thread on the GPU to each value
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Implementation Problem Size P Time Serial Circuit Eval Time
Theorem 1, Serial Implementation 256 x 256 4.37 s 0.73 s

Theorem 1, Parallel Implementation 256 x 256 0.23 s 0.73 s
Theorem 1, Serial Implementation 512 x 512 37.85 s 6.07 s

Theorem 1, Parallel Implementation 512 x 512 1.29 s 6.07 s

Table 3: Experimental results for n×n MATMULT with our parallel prover implementation.

of (b j+1, . . . ,bsi+1) ∈ {0,1}si+1− j and have that thread evaluate g(i)z (r) at each of the deg j(g
(i)
z )+1 points of

the form (r1, . . . ,r j−1, t,b j+1, . . . ,bsi+1) with the help of the C( j−1) and V ( j−1) arrays described in Section 5.
The one remaining issue is that after each round j of each invocation of the sum-check protocol, we need to
update the arrays, i.e., we need to compute C( j) and V ( j). To accomplish this, we devote a single thread to
each entry of C( j) and V ( j).

All steps of our parallel implementation achieve excellent memory coalescing, which likely plays a
significant role in the large speedups we were able to achieve. For example, if two threads are updating
adjacent entries of the array V ( j), the only memory accesses that the threads need to perform are to adjacent
entries of the array V ( j−1).

The results are shown in Table 3: we obtained about a 30x speedup for the prover relative to our serial
implementation. The reported prover runtime does count the time required to copy data between the host
(CPU) and the device (GPU), but does not count the time required to evaluate the circuit, which our imple-
mentation does in serial for simplicity. While our implementation evaluates the circuit serially, this step can
in principle be done in parallel one layer at a time, as these circuits have only logarithmic depth. Notice that
when the circuit evaluation runtime is excluded, our parallel prover implementation runs faster in the case
of 512x512 matrix multiplication than the time required to evaluate the circuit sequentially.

It is possible that we would observe slightly larger speedups at larger input sizes, but our parallel im-
plementation exhausts the memory of the GPU at inputs larger than 512x512. This memory bottleneck was
also experienced by Thaler, Roberts, Mitzenmacher, and Pfister [38], who used the GPU to obtain a parallel
implementation of the protocol of Cormode et al. [14], and helps motivate the importance of the improved
space usage of the special purpose MATMULT protocol we give later in Theorem 3. For comparison, the
GPU implementation of [38] required 39.6 seconds for 256 x 256 matrix multiplication, which is about
175x slower than our parallel implementation.

We also mention that Thaler, Roberts, Mitzenmacher, and Pfister [38] demonstrate that equally large
speedups via parallelization are achievable for the (already fast) computation of the verifier. These results
directly apply to our protocols as well, as the verifier’s runtime in both implementations is dominated by the
time required to evaluate the MLE of the input at a random point [14, 38].

7 Verifying General Data Parallel Computations

In this section, our goal is to extend the applicability of the GKR protocol. While the GKR protocol ap-
plies in principle to any function computed by a small-depth circuit, this is not the case when fine-grained
efficiency considerations are taken into account. The implementation of Cormode et al. [14] required the
programmer to express a program as an arithmetic circuit, and moreover this circuit needed to have a regular
wiring pattern, in the sense that the verifier could efficiently evaluate the polynomials ˜addi and ˜multi at a
point. If this was not the case, the verifier would need to do an expensive (though data-independent) pre-
processing phase to perform these evaluations. Moreover, even for circuits with regular wiring patterns, this
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implementation caused the prover to suffer an O(log(S(n))) factor blowup in runtime relative to evaluating
the circuit without a guarantee of correctness. The results of Sections 5 and 8 asymptotically eliminate the
blowup in runtime for the prover, but they also only apply when the circuit has a very regular wiring pattern.

The implementation of Vu et al. [40] allows the programmer to express a program in a high-level lan-
guage, but compiles these programs into potentially irregular circuits that require the verifier to incur the
expensive preprocessing phase mentioned above, in order for the verifier to evaluate the polynomials ˜addi

and ˜multi at a point. They therefore propose to apply their system in a “batching” model, where multiple in-
stances of the same sub-computation are applied independently to different pieces of data. More specifically,
their system applies the GKR protocol independently to each application of the computation, and relies on
the ability of the verifier to use a single ˜addi and ˜multi evaluation for all instances of the sub-computation,
thereby amortizing the cost of this evaluation across the instances. To clarify, this use of a single ˜addi and

˜multi evaluation for all instances as in [40] is only sound if all of the instances are checked simultaneously.
If the instances are instead verified one after the other, then P knows V’s randomness in all but the first
instance, and can use that knowledge to mislead V .

The batching model of Vu et al. is identical to the data parallel setting we consider here. However, a
downside to the solution of Vu et al. is that the verifier’s work, as well as the total communication cost of
the protocol, grows linearly with the “batch size” – the number of applications of the sub-computation that
are being outsourced. We wish to develop a protocol whose costs to both the prover and verifier grow much
more slowly with the batch size.

7.1 Motivation

As discussed above, existing interactive proof protocols for circuit evaluation either apply only to circuits
with highly regular wiring patterns or incur large overheads for the prover and verifier. While we do not have
a magic bullet for dealing with irregular wiring patterns, we do wish to mitigate the bottlenecks of existing
protocols by leveraging some general structure underlying many real-world computations. Specifically, the
structure we focus on exploiting is data-parallelism.

By data parallel computation, we mean any setting in which the same sub-computation is applied in-
dependently to many pieces of data, before possibly aggregating the results. Crucially, we do not want to
make significant assumptions on the sub-computation that is being applied (in particular, we want to handle
sub-computations computed by circuits with highly irregular wiring patterns), but we are willing to assume
that the sub-computation is applied independently to many pieces of data. See Figure 2 for a schematic of a
data parallel computation.

We have already seen a very simple example of a data parallel computation: the DISTINCT problem. The
circuit C from Section 5 used to solve this problem takes as input a vector a and computes aq−1

i mod q for
all i (this is the data parallel phase of the computation), before summing the results (this is the aggregation
phase). Notice that if the data stream consists of a sequence of words, then the DISTINCT problem becomes
the word-count problem, a classic data parallel application.

By design, the protocol of this section also applies to more complicated data parallel computations.
For example, it applies to arbitrary counting queries on a database. In a counting query, one applies some
function independently to each row of the database and sums the results. For example, one may ask “How
many people in the database satisfy Property P?” Our protocol allows one to verifiably outsource such
a counting query with overhead that depends minimally on the size of the database, but that necessarily
depends on the complexity of the property P.
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Figure 2: Schematic of a data parallel computation.

7.2 Overview of the Protocol

Let C be a circuit of size S(n) with an arbitrary wiring pattern, and let C∗ be a “super-circuit” that applies C
independently to B different inputs before aggregating the results in some fashion. For example, in the case
of a counting query, the aggregation phase simply sums the results of the data parallel phase. We assume that
the aggregation step is sufficiently simple that the aggregation itself can be verified using existing techniques,
and we focus on verifying the data parallel part of the computation.

If we naively apply the GKR protocol to the super-circuit C∗, V might have to perform an expensive pre-
processing phase to evaluate the wiring predicate of C∗ at the necessary locations – this would require time
Ω(B ·S). Moreover, when applying the basic GKR protocol to C∗, P would require time Θ(B ·S · log(B ·S)).
A different approach was taken by Vu et al [40], who applied the GKR protocol B independent times, once
for each copy of C. This causes both the communication cost and V’s online check time to grow linearly
with B, the number of sub-computations.

In contrast, our protocol achieves the best of both prior approaches. We observe that although each
sub-computation C can have a complicated wiring pattern, the circuit is maximally regular between sub-
computations, as the sub-computations do not interact at all. Therefore, each time the basic GKR protocol
would apply the sum-check protocol to a polynomial derived from the wiring predicate of C∗, we can instead
use a simpler polynomial derived only from the wiring predicate of C. By itself, this is enough to ensure
that V’s pre-processing phase requires time only O(S), rather than O(B · S) as in a naive application of the
basic GKR protocol. That is, the cost of V’s pre-processing phase is essentially proportional to the cost of
applying the GKR protocol only to C, not to the super-circuit C∗.

Furthermore, by combining this observation with the methods of Section 5, we can bring the runtime
of P down to O(B · S · logS). That is, the blowup in runtime suffered by the prover, relative to performing
the computation without a guarantee of correctness, is just a factor of logS – the same as it would be if the
prover had run the basic GKR protocol on a single instance of the sub-computation.
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7.3 Technical Details

7.3.1 Notation

Let C be an arithmetic circuit over F of depth d and size S with an arbitrary wiring pattern, and let C∗ be the
circuit of depth d and size B · S obtained by laying B copies of C side-by-side, where B = 2b is a power of
2. We assume that the in-neighbors of all of the Si gates at layer i can be enumerated in O(Si) time. We will
use the same notation as in Section 5, using ∗’s to denote quantities referring to C∗. For example, layer i of
C has size Si = 2si and gate values specified by the function Vi, while layer i of C∗ has size S∗i = 2s∗i and gate
values specified by the function V ∗i . We denote the length of the input to C∗ by n∗ = Bn.

7.3.2 Main Theorem

Our main theorem gives a protocol for compute Ṽ ∗1 (z), for any point z ∈ Fs∗1 . The idea is that the verifier
would first apply simpler techniques (such as the protocol of Theorem 1) to the aggregation phase of the
computation to obtain a claim about Ṽ ∗1 (z), and then use our main theorem to verify this claim. Hence, in
principle V need not look at the entire output of the data parallel phase, only the output of the aggregation
phase, which we anticipate to be much smaller.

Theorem 2 For any point z ∈ Fs∗1 , there is a valid interactive proof protocol for computing Ṽ ∗1 (z) with the
following costs. V spends O(S) time in a pre-processing phase, and O(n∗logn∗+d ·log(B·S)) time in an
online verification phase, where the n∗ logn∗ term is due to the time required to evaluate the multilinear
extension of the input to C∗ at a point. P runs in total time O(S ·B · logS). The total communication is
O(d · log(B ·S)) field elements.

Proof: Consider layer i of C∗. Let p = (p1, p2) ∈ {0,1}si ×{0,1}b be the label of a gate at layer i of C∗,
where p2 specifies which “copy” of C the gate is in, while p1 designates the label of the gate within the copy.
Similarly, let ω = (ω1,ω2) ∈ {0,1}si+1 ×{0,1}b and γ = (γ1,γ2) ∈ {0,1}si+1 ×{0,1}b be the labels of two
gates at layer i+1.

It is straightforward to check that for all (p1, p2) ∈ {0,1}si×{0,1}b,

V ∗i (p1, p2) = ∑
ω1∈{0,1}si+1

∑
γ1∈{0,1}si+1

h(i)(p1, p2,ω1,γ1),

where

h(i)(p1, p2,ω1,γ1) =

( ˜addi(p1,ω1,γ1)
(
Ṽ ∗i+1(ω1, p2)+Ṽ ∗i+1(γ1, p2)

)
+ ˜multi(p1,ω1,γ1)

(
Ṽ ∗i+1(ω1, p2) ·Ṽ ∗i+1(γ1, p2)

))
.

Essentially, this equation says that an addition (respectively, multiplication) gate p=(p1, p2)∈{0,1}si+b

is connected to gates ω = (ω1,ω2) ∈ {0,1}si+1+b and γ = (γ1,γ2) ∈ {0,1}si+1+b if and only if p,ω, and γ are
all in the same copy of C, and p is connected to ω and γ within the copy.

Lemma 4 then implies that for any z ∈ Fs∗i ,

Ṽ ∗i (z) = ∑
(p1,p2,ω1,γ1)∈{0,1}si×{0,1}b×{0,1}si+1×{0,1}si+1

βs∗i (z,(p1, p2)) ·h(i)(p1, p2,ω1,γ1).
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Thus, in iteration i of our protocol, we apply the sum-check protocol to the polynomial g(i)z given by
g(i)z (p1, p2,ω1,γ1) = βs∗i (z,(p1, p2)) · h(i)(p1, p2,ω1,γ1). The communication costs of this protocol are im-
mediate.

Costs for V . In order to run her part of the sum-check protocol of iteration i, V only needs to perform the
required checks on each of P’s messages. V’s check requires O(1) time in each round of the sum-check
protocol except the last. In the last round of the sum-check protocol, V must evaluate the polynomial g(i)z at
a single point. This requires evaluating βs∗i , ˜addi, ˜multi, and Ṽ ∗i+1 at a constant number of points. The Ṽ ∗i+1
evaluations are provided by P in all iterations i of the protocol except the last, while the βs∗i evaluation can
be done in O(log(B ·S)) time.

The ˜addi and ˜multi computations can be done in pre-processing in time O(Si) by enumerating the in-
neighbors of each of the Si gates at layer i [14, 40]. Adding up the pre-processing time across all iterations i
of our protocol, V’s pre-processing time is O(∑i Si) = O(S) as claimed.

In the final iteration of the protocol, P no longer provides the Ṽ ∗i+1 evaluation for V; instead, V must
evaluate the multilinear extension of the input at a point on her own. This can be done in a streaming manner
using space O(logn∗) in time O(n∗ logn∗). The time cost for V in the online phase follows.

Costs for P . It remains to show that P can perform the required computations in iteration i of the protocol
in time O((Si + Si+1) ·B · log(S)). To this end, notice g(i)z is a polynomial in v := si + 2si+1 + b variables.
We order the sum in this sum-check protocol so that the si + 2si+1 variables in p1, ω1, and γ1 are bound
first in arbitrary order, followed by the variables of p2. P can compute the prescribed messages in the first
si +2si+1 = O(logS) rounds exactly as in the implementation of Cormode et al. [14]. They show that each
gate at layers i and i+ 1 of C∗ contributes to exactly one term in the sum defining P’s message in any
given round of the sum-check protocol, and moreover the contribution of a given gate can be determined in
O(1) time. Hence the total time devoted required by P to handle these rounds is O(B · (Si + Si+1) · logS).
It remains to show how P can compute the prescribed messages in the final b rounds of the sum-check
protocol while investing O((Si +Si+1) ·B) across all rounds of the protocol.

Recall that in order to computeP’s message in round j of the sum-check protocol applied to the v-variate
polynomial g(i)z , it suffices for P to evaluate g(i)z at 2v− j points of the form (r1, . . . ,r j−1, t,b j+1, . . . ,bv), with
t ∈ {0, . . . ,deg j(g

(i)
z )} and (b j+1, . . . ,bv) ∈ {0,1}v− j. Each of these evaluations of g(i)z can be computed in

O(1) time given the evaluations of βs∗i , ˜addi, ˜multi, and Ṽ ∗i+1 at the relevant points.

Notice that once the variables in p1, ω1, and γ1 are bound to specific values, say r(p)
1 , r(ω)

1 , and r(γ)1 ,
˜addi(p1,ω1,γ1) and ˜multi(p1,ω1,γ1) are themselves bound to specific values, namely ˜addi(r

(p)
1 ,r(ω)

1 ,r(γ)1 )

and ˜multi(r
(p)
1 ,r(ω)

1 ,r(γ)1 ). So P only needs to evaluate these polynomials once, and both of these evaluations
can be computed by P in O(Si) time. Thus, the ˜addi, ˜multi evaluations in the last b rounds require just O(Si)
time in total.
P can evaluate the function βs∗i at the relevant points exactly as in the proof of Theorem 1 using the C( j)

arrays to ensure that this computation is done quickly. The array C(0) has size 2s∗i = O(Si ·B), and C( j−1)

gets updated to C( j) whenever a variable in p1 or p2 becomes bound. This ensures that across all rounds of
the sum-check protocol, the βs∗i evaluations require O(Si ·B) time in total.

Likewise, the Ṽ ∗i+1 evaluations can be handled exactly as in Theorem 1, using the the V ( j) arrays to ensure
that this computation is done quickly. The array V (0) has size 2s∗i+1 = O(Si+1 ·B), and V ( j−1) gets updated
to V ( j) whenever a variable in ω1 becomes bound (and similarly for the variables in γ1). This ensures that
across all rounds of the sum-check protocol, the Ṽ ∗i+1 evaluations take O((Si +Si+1) ·B) in total.

Reducing to Verification of a Single Point. After executing the sum-check protocol at layer i as
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described above, V is left with a claim about Ṽi+1(ω1, p2) and Ṽi+1(γ1, p2), for ω1,γ1 ∈ Fsi , and p2 ∈ Fb.
This requires P to send Ṽi+1(`(t)) for a canonical line `(t) that passes through (ω1, p2) and (γ1, p2). It is
easily seen that Ṽi+1(`(t)) is a univariate polynomial of degree at most si. Here, we are exploiting the fact
that the final b coordinates of (ω1, p2) and (γ1, p2) are equal.

Hence P can specify Ṽi+1(`(t)) by sending Ṽi+1(`(t j)) for O(si) many points t j ∈ F. Using the method
of Lemma 3, P can evaluate Ṽi+1 at each point `(t j) in O(Si+1) time, and hence can perform all Ṽi+1(`(t j))
evaluations in O(Si+1 ·si)=O(Si+1 · logS) time in total. This ensures that across all iterations of our protocol,
P devotes at most O(S ·B · logS) time to the “reducing to verification of a single point” phase of the protocol.
This completes the proof.

In practice we would expect the results of the data parallel phase of computation represented by the
super-circuit C∗ to be aggregated in some fashion. We assume this aggregation step is amenable to verifi-
cation via other techniques. In the case of counting queries, the aggregation step simply sums the outputs
of the data parallel step, which can be handled via Theorem 1, or slightly more efficiently via Proposition
7 described below in Section 8. More generally, if this aggregation step is computed by a circuit C′ of size
O(S ·B · logS/ logB) such that V can efficiently evaluate the multilinear extension of the wiring predicate of
C′, then we can simply apply the basic GKR protocol to C′ with asymptotic costs smaller than those of the
protocol described in Theorem 2. This application of the GKR protocol to C′ ends with a claim about the
value of Ṽ ∗1 (z) for some z ∈ Fs∗1 . The verifier can then invoke the protocol of Theorem 2 to verify this claim.

We stress that the protocol of Theorem 2 can be applied if there are multiple data parallel stages inter-
leaved with aggregation stages.

8 Extensions

In this section we describe two final optimizations that are much more specialized than Theorems 1 and 2,
but have a significant effect in practice when they apply. In particular, Section 8.2 culminates in a protocol
for matrix multiplication that is of interest in its own right. It is hundreds of times faster than the protocol
implied by Theorem 1 and studied experimentally in Section 6.

8.1 Binary Tree of Addition Gates

Cormode et al. [21] describe an optimization that applies to any circuit C with a single output that culminates
in a binary tree of addition gates; at a high level, they directly apply a single sum-check protocol to the entire
binary tree, thereby treating the entire tree as a single addition gate with very large fan-in. In contrast, the
optimization described here applies to circuits with multiple outputs and allows the binary tree of addition
gates to occur anywhere in the circuit, not just at the layers immediately preceding the output.

At first blush, our optimization might seem quite specialized since it only applies to circuits with a
specific wiring pattern. However, this is one of the most commonly occurring wiring patterns, as evidenced
by its appearance within the circuits computing MATMULT, DISTINCT, Pattern Matching, and counting
queries. Notice that our optimization also applies to verifying multiple independent instances of any problem
with a single output whose circuit ends with a binary tree of sum-gates, such as verifying the number of
distinct items in multiple distinct data streams, or posing multiple separate counting queries to a database.
This is because, similar to Theorem 2, one can lay the circuits for each of the individual problem instances
side-by-side and treat the result as a single “super-circuit” culminating in a binary tree of addition gates with
multiple outputs.
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Implementation Problem Size P Time V Time Rounds Total Communication Circuit Eval Time
Theorem 1 256 x 256 4.37 s 0.02 s 190 4.4 KBs 0.73 s

Proposition 7 256 x 256 2.52 s 0.02 s 35 0.76 KBs 0.73 s
Theorem 1 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s

Proposition 7 512 x 512 22.98 s 0.10 s 39 0.86 KBs 6.07 s

Table 4: Experimental results for n× n MATMULT, with and without the refinement of Section 8.1. As
in Table 1, the Total Communication column does not count the n2 field elements required to specify the
answer.

The starting point for our optimization is the observation of Vu et al. [40] mentioned in Section 4.3.2:
in order to verify that P has correctly evaluated a circuit with many output gates, P may simply send V
the (claimed) values of all output gates, thereby specifying a function V ′1 : {0,1}s1 → F claimed to equal
V1. V can pick a random point z ∈ Fs1 and evaluate Ṽ ′1(z) on her own in O(S1) time. An application of the
Schwartz-Zippel Lemma (Lemma 1) implies that it is safe for V to believe that V1 is as claimed as long as
Ṽ1(z) = Ṽ ′1(z). Our protocol as described in Section 5 would then proceed in iterations, with one iteration
per layer of the circuit and one application of the sum-check protocol per iteration. This would ultimately
reduce P’s claim about the value of Ṽ1(z) to a claim about Ṽd(z′) for some z′ ∈ Fsd , where d is the input
layer of the circuit.

Instead, our final refinement uses a single sum-check protocol to directly reduce P’s claim about Ṽ1(z)
to a claim about Ṽd(z′) for some random points z′ ∈ Fsd .

Proposition 7 Let C be a depth-d circuit consisting of a binary tree of addition gates, 2k inputs, and 2k−d

outputs. For any points z ∈ Fk−d , Ṽ1(z) = ∑p∈{0,1}k gz(p), where

gz(p) = Ṽd(z, pk−d+1, . . . , pk).

Proof: At layer i of C, the gate with label p ∈ {0,1}si is the sum of the gates with labels (p,0) and (p,1) at
layer i+1. It is then straightforward to observe that the for any p ∈ {0,1}k−d , the pth output gate has value

V1(p1, . . . , pk−d) = ∑
(pk−d+1,...,pd)∈{0,1}d

Ṽd(p1, . . . , pk−d , pk−d+1, . . . , pk). (9)

Notice that the right hand side of Equation (9) is a multilinear polynomial in the variables (p1, . . . , pk−d)
that agrees with V1(p1, . . . , pk−d) at all Boolean inputs. Hence, the right hand side is the (unique) multilinear
extension Ṽ1 of the function V1 : {0,1}k−d →{0,1}. The theorem follows.

In applying the sum-check protocol to the polynomial gz in Proposition 7, it is straightforward to use the
methods of Section 5.4.2 to implement the honest prover in time O(2k). We omit the details for brevity.

Experimental Results. Let C be the circuit for naive matrix multiplication described in Section 5.5.1. To
demonstrate the efficiency gains implied by Proposition 7, we modified our MATMULT implementation of
Section 6.2.1 to use the protocol of Proposition 7 to verify the sub-circuit of C consisting of a binary tree of
addition gates. The results are shown in Table 4. Our optimizations in this section shave P’s runtime by a
factor of 1.5x-2x, the total number of rounds by a factor of more than 5, and the total communication (not
counting the cost of specifying the output of the circuit) by a factor of more than 5.
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8.2 Optimal Space and Time Costs for MATMULT

We describe a final optimization here on top of Proposition 7. While this optimization is specific to the MAT-
MULT problem, its effects are substantial and the underlying observation may be more broadly applicable.

Suppose we are given an unverifiable algorithm for n×n matrix multiplication that requires time T (n)
and space s(n). Our refinements reduce the prover’s runtime from O(n3) in the case of Sections 5 and 8.1 to
T (n)+O(n2), and lowers P’s space requirement to s(n)+ o(n2). That is, in the protocol the prover sends
the correct output and performs just O(n2) more work to provide a guarantee of correctness on top. It is
irrelevant what algorithm the prover uses to arrive at the correct output – in particular, algorithms much
more sophisticated than naive matrix multiplication are permitted. This runtime and space usage for P are
optimal even up to the leading constant assuming matrix multiplication cannot be computed in O(n2) time.

The final protocol is extremely natural, as it consists of a single invocation of the sum-check protocol.
We believe this protocol is of interest in its own right. The proof and technical details are in Section 8.2.2.

Theorem 3 There is a valid interactive proof protocol for n×n matrix multiplication over the field Fq with
the following costs. The communication cost is n2 +O(logn) field elements. The runtime of the prover is
T (n)+O(n2) and the space usage is s(n)+o(n2), where T (n) and s(n) are the time and space requirements
of any (unverifiable) algorithm for n× n matrix multiplication. The verifier can make a single streaming
pass over the input as well as over the claimed output in time O(n2 logn), storing O(logn) field elements.

Using the observation of Vu et al. described in Lemma 3, the runtime of the verifier can be brought down
to O(n2) at the cost of increasing V’s space usage to O(n2). Furthermore, by Remark 1, the runtime of the
verifier can be brought down to O(n2) while maintaining the streaming property if the input matrices are
presented in row-major order.

The prover’s runtime in Theorem 3 is within an additive low-order term of any unverifiable algorithm
for matrix multiplication; this is essential in many practical scenarios where even a 2x slowdown is too steep
a price to pay for verifiability. Notice also that the space usage bounds in Theorem 3 are in stark contrast
to protocols based on circuit-checking: the prover in a general circuit-checking protocol may have to store
the entire circuit, and this can result in space requirements that are much larger than those of an unverifiable
algorithm for the problem. For example, naive matrix multiplication requires time O(n3), but only O(n2)
space, while the provers in our MATMULT protocols of Sections 5 and 8.1 require both space and time O(n3).
As implementations of interactive proofs become faster, the prover is likely to run out of space long before
she runs out of time.

8.2.1 Comparison to Prior Work

It is worth comparing Theorem 3 to a well-known protocol due to Freivalds [17]. Let D∗ denote the claimed
output matrix. In Freivalds’ algorithm, the verifier stores a random vector x ∈ Fn, and computes D∗x and
ABx, accepting if and only if ABx = D∗x. Freivalds showed that this is a valid protocol. In both Freivalds’
protocol and that of Theorem 3, the prover runs in time T (n)+O(n2) (in the case of Freivalds’ algorithm,
the O(n2) term is 0), and the verifier runs in linear or quasilinear time.

We now highlight several properties of our protocol that are not achieved by prior work.

Utility as a Primitive. A major advantage of Theorem 3 relative to prior work is its utility as a primitive
that can be used to verify more complicated computations. This is important as many algorithms repeatedly
invoke matrix multiplication as a subroutine. For concreteness, consider the problem of computing A2k

via
repeated squaring. By iterating the protocol of Theorem 3 k times, we obtain a valid interactive proof pro-
tocol for computing A2k

with communication cost n2 +O(k log(n)). The n2 term is due simply to specifying
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the output A2k
, and can often be avoided in applications – see for example the diameter protocol described

two paragraphs hence. The ith iteration of the protocol for computing A2k
reduces a claim about an eval-

uation of the multilinear extension of A2k−i+1
to an analogous claim about A2k−i

. Crucially, the prover in
this protocol never needs to send the verifier the intermediate matrices A2k′

for k′ < k. In contrast, applying
Freivalds’ algorithm to this problem would require O(kn2) communication, as P must specify each of the
intermediate matrices A2i

.
The ability to avoid having P explicitly send intermediate matrices is especially important in settings

where an algorithm repeatedly invokes matrix multiplication, but the desired output of the algorithm is
smaller than the size of the matrix. In these cases, it is not necessary for P to send any matrices; P can
instead send just the desired output, and V can use Theorem 3 to check the validity of the output with only
a polylogarithmic amount of additional communication. This is analogous to how the verifier in the GKR
protocol can check the values of the output gates of a circuit without ever seeing the values of the “interior”
gates of the circuit.

As a concrete example illustrating the power of our matrix multiplication protocol, consider the funda-
mental problem of computing the diameter of an unweighted (possibly directed) graph G on n vertices. Let
A denote the adjacency matrix of G, and let I denote the n×n identity matrix. Then it is easily verified that
the diameter of G is the least positive number d such that (A+ I)d

i j 6= 0 for all (i, j). We therefore obtain
the following natural protocol for diameter. P sends the claimed output d to V , as well as an (i, j) such that
(A+ I)d−1

i j = 0. To confirm that d is the diameter of G, it suffices for V to check two things: first, that all
entries of (A+ I)d are non-zero, and second that (A+ I)d−1

i j is indeed non-zero.
The first task is accomplished by combining our matrix multiplication protocol of Theorem 3 with

our DISTINCT protocol from Theorem 1. Indeed, let d j denote the jth bit in the binary representation of
d. Then (A+ I)d = ∏

dlogde
j (A+ I)d j2 j

, so computing the number of non-zero entries of (A+ I)d can be
computed via a sequence of O(logd) matrix multiplications, followed by a DISTINCT computation. The
second task, of verifying that (A+ I)d−1

i j = 0, is similarly accomplished using O(logd) invocations of the
matrix multiplication protocol of Theorem 3 – since V is only interested in one entry of (A+ I)d−1, P need
not send the matrix (A+ I)d−1 in full, and the total communication here is just polylog(n).
V’s runtime in this diameter protocol is O(m logn), where m is the number of edges in G. P’s runtime

in the above diameter protocol matches the best known unverifiable diameter algorithm up to a low-order
additive term [33, 42], and the communication is just polylog(n). We know of no other protocol achieving
this.

As discussed above, the fact that P’s slowdown is a low-order additive term is critical in the many
settings in which even a 2x slowdown to achieve verifiability is unacceptable. Moreover, for a graph with
n = 1 million nodes, the total communication cost of the above protocol is on the order of KBs – in contrast,
if P had to send the matrices (I +A)d or (I +A)d−1 explicitly (as required in prior work e.g. Cormode et
al. [13]), the communication cost would be at least n2 = 1012 words, which translates to terabytes of data.

Small-Space Streaming Verifiers. In Freivalds’ algorithm, V has the store the random vector x, which
requires Ω(n) space. There are methods to reduce V’s space usage by generating x with limited randomness:
Kimbrel and Sinha [26] show how to reduce V’s space to O(logn), but their solution does not work if V must
make a streaming pass over arbitrarily ordered input. Chakrabarti et al. [12] extend the method of Kimbrel
and Sinha to work with a streaming verifier, but this requires P to play back the input matrices A,B in a
special order, increasing proof length to 3n2. Our protocol works with a streaming verifier using O(logn)
space, and our proof length is n2 +O(logn), where the n2 term is due to specifying AB and can be avoided
in applications such as the diameter example considered above.
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8.2.2 Protocol Details

The idea behind the optimization is as follows. All of our earlier circuit-checking protocols only make use
of the multilinear extension Ṽi of the function Vi mapping gate labels at layer i of the circuit to their values.
In some cases, there is something to be gained by using a higher-degree extension of Vi, and this is precisely
what we exploit here. By using a higher-degree extension of the gate values in the circuit, we are able to
apply the sum-check protocol to a polynomial that differs from the one used in Section 5. In particular, the
polynomial we use here avoids referencing the βsi polynomial used in Section 5. Details follow.

When multiplying matrices A and B such that AB = D, let A(i, j), B(i, j) and D(i, j) denote functions
from {0,1}logn×{0,1}logn → Fq that map input (i, j) to Ai j, Bi j, and Di j respectively. Let Ã, B̃, and D̃
denote their multilinear extensions.

Lemma 5 For all (p1, p2) ∈ Flogn×Flogn,

D̃(p1, p2) = ∑
p3∈{0,1}logn

Ã(p1, p3) · B̃(p3, p2)

Proof: For all (p1, p2) ∈ {0,1}logn×{0,1}logn, the right hand side is easily seen to equal D(p1, p2), using
the fact that Di j =∑k AikBk j and the fact that Ã and B̃ agree with the functions A(i, j) and B(i, j) at all Boolean
inputs. Moreover, the right hand side is a multilinear polynomial in the variables of (p1, p2). Putting these
facts together implies that the right hand side is the unique multilinear extension of the function D(i, j).

Lemma 5 implies the following valid interactive proof protocol for matrix multiplication: P sends a ma-
trix D∗ claimed to equal the product D=AB. V evaluates D̃∗(r1,r2) at a random point (r1,r2)∈Flogn×Flogn.
By the Schwartz-Zippel lemma, it is safe for V to believe D∗ is as claimed, as long as D̃∗(r1,r2) = D̃(r1,r2)
(formally, if D∗ 6= D, then D̃∗(r1,r2) 6= D̃(r1,r2) with probability 1− 2logn/q). In order to check that
D̃∗(r1,r2) = D̃(r1,r2), we invoke a sum-check protocol on the polynomial gr1,r2(p3) = Ã(r1, p3) · B̃(p3,r2).
V’s final check in this protocol requires her to compute gr1,r2(r3) for a random point r3 ∈ Flogn. V can

do this by evaluating both of Ã(r1,r3) and B̃(r3,r2) with a single streaming pass over the input, and then
multiplying the results.

The prover can be made to run in time T (n)+O(n2) across all rounds of the sum-check protocol using
the V ( j) arrays described in Section 5 to quickly evaluate Ã and B̃ at all of the necessary points. The V ( j)

arrays are initialized in round 0 to equal the input matrices themselves, and there is no need forP to maintain
an “uncorrupted” copy of the original input (though in practice this may be desirable). Thus, the V ( j) arrays
can be computed using the storageP initially devoted to the inputs, andP needs to store just O(1) additional
field elements over the course of the protocol (P does not even need to store the messages sent by V , as P
need not refer to the jth message once the array V ( j) is computed). The claimed s(n)+ o(n2) space usage
bound for P follows.

Remark 8 Let C be the circuit for naive matrix multiplication described in Section 5. Notice that the 3logn-
variate polynomial h(p1, p2, p3) = Ã(p1, p3) · B̃(p3, p2) extends the function Vi mapping gate labels at layer
i = logn of C to their values. However, h is not the multilinear extension of Ṽi, as h has degree two in the
variables of p3.

Informally, Theorem 3 cannot be said to perform “circuit checking” on C, since it is not necessary for P
to evaluate all of the gates in C; indeed, the prover in Theorem 3 can run in sub-cubic time using fast matrix
multiplication algorithms. However, the use of a low-degree extension of the gate values at layer logn of C
allows one to view the protocol of Theorem 3 as a direct extension of the circuit-checking methodology.
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Implementation Problem Size Naive Matrix Multiplication Time Additional Time for P V Time Rounds
Theorem 3 210×210 2.17 s over Z 0.03 s 0.67 s 11

9.11 s over Fq

Theorem 3 211×211 18.23 s over Z 0.13 s 2.89 s 12
73.65 s over Fq

Table 5: Experimental results for the n×n MATMULT protocol of Theorem 3.

Remark 9 Consider the problem of computing a matrix power M2k
via repeated squaring. We may apply the

protocol of Theorem 3 in k iterations, with the ith iteration applied to inputs A = B = M2k−i
. The ith iteration

of this protocol reduces a claim about an evaluation of the multilinear extension of M2k−i+1
to an analogous

claim about the multilinear extension of M2k−i
at two points of the form (r1,r3), (r3,r2) ∈ Flogn×logn. We can

further reduce the claims about (r1,r3), (r3,r2) to a claim about a single point exactly as in the “Reducing
to Verification of a Single Point” step of the GKR protocol. We then move onto iteration i+ 1. Notice in
particular that the verifier only needs to observe the output matrix M2k

and the input matrix M to run this
protocol; in particular, P does not need to explicitly send the intermediate matrices M2k−i

to V .

We implemented the protocol just described (our implementation is sequential). The results are shown
in Table 5, where the column labelled “Additional Time for P” denotes the time required to compute P’s
prescribed messages after P has already computed the correct answer. We report the naive matrix multi-
plication time both when the computation is done using standard multiplication of 64-bit integers, as well
as when the computation is done using finite field arithmetic over the field with q = 261−1 elements. The
reported verifier runtime is for the O(n2 logn) time reported in Theorem 3. The verifier’s runtime could be
improved using Lemma 3 at the cost of increasing V’s space usage to O(n), but we did not implement this
optimization. Moreover, if the input matrices are presented in row-major order, then the observation of Vu
et al. described in Remark 1 improves V’s runtime with no increase in space usage.

The main takeaways from Table 5 are that the verifier does indeed save substantial time relative to
performing matrix multiplication locally, and that the runtime of the prover is hugely dominated by the time
required simply to compute the answer.

9 Conclusion

We believe our results substantially advance the goal of achieving a truly practical general purpose imple-
mentation of interactive proofs. The O(logS(n)) factor overhead in the runtime of the prover within prior
implementations of the GKR protocol is too steep a price to pay in practice, and our refinements (formal-
ized in Theorem 1) remove this logarithmic factor overhead for circuits with regular wiring patterns. Our
experiments demonstrate that this protocols yields a prover that is less than 10x slower than a C++ program
that simply evaluates the circuit, and that our protocols are highly amenable to parallelization. Exploiting
similar ideas, we have also extended the reach of prior interactive proof protocols by describing an efficient
protocol (formalized in Theorem 2) for general data parallel computation, and given a protocol for matrix
multiplication in which the prover’s overhead (relative to any unverifiable algorithm) is just a low-order
additive term. The latter is a powerful primitive for verifying the many algorithms that repeatedly invoke
matrix multiplication. A major message of our results is that the more structure that exists in a computation,
the more efficiently it can be verified, and that this structure exists in many real-world computations.

We believe two directions in particular are worthy of future work. The first direction is to build a full-
fledged system implementing our protocol for data parallel computation. Our vision is to combine our
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protocol with a high-level programming language allowing the programmer to easily specify data parallel
computations, analogous to frameworks such as MapReduce. Any such program could be automatically
compiled in the manner of Vu et al. [40] into a circuit, and our protocol could be run automatically on
that circuit. The second direction is to further enable such a compiler to automatically take advantage
of our other refinements, which are targeted at computations that are not necessarily data parallel. These
refinements apply to a circuit on a layer-by-layer basis, so they may yield substantial speedups in practice
even if they apply only to a subset of the layers of a circuit.

Acknowledgements. The author is grateful to Frank McSherry for raising the question of outsourcing
general data parallel computations, and to Michael Mitzenmacher and Graham Cormode for discussions
and feedback that greatly improved the quality of this manuscript.
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A Proof of Theorem 1

Proof: Consider layer i of the circuit C. Since in(i)1 and in(i)2 are regular, there is a subset of input bits Si ⊆ [v]
with |Si| = ci for some constant ci such that each input bit in [v] \S affects O(1) of the output bits of in(i)1

and in(i)2 . Number the input variables so that the numbers {1, . . . ,ci} correspond to variables in Si.
Let ρ ∈ {0,1}ci be an assignment to the variables in S, and let Iρ : {0,1}si →{0,1} denote the indicator

function for ρ . For example, if ci = 3 and ρ = (1,0,1), then Iρ(x) = 1 if x1 = 1,x2 = 0, and x3 = 1, and
Iρ(x)= 0 otherwise. Let Ĩρ denote the multilinear extension of Iρ . In the previous example, Ĩρ = x1(1−x2)x3.
Finally, let in(i)1,ρ and in(i)2,ρ denote the functions in(i)1 and in(i)2 with the variables in Si fixed to the assignment

ρ , and for k ∈ {1,2}, let bρ,k, j denote the jth output bit of in(i)k,ρ .
By regularity, for each assignment ρ ∈ {0,1}ci to the variables in Si, the jth output bit bρ,k, j of ink

ρ

depends on only one variable xq(ρ,k, j) ∈ [si] \ Si for some function q(ρ,k, j). Let b̃ρ,k, j(xq(ρ,k, j)) : F→ F
denote the multilinear extension of the function bρ,k, j(xq(ρ,k, j)) : {0,1} → {0,1}. If bρ,k, j is not identically
0 or identically 1, then either b̃ρ,k, j(xq(ρ,k, j)) = xq(ρ,k, j) or b̃ρ,k, j = 1− xq(ρ,k, j).

For any ρ ∈ {0,1}si , define ĩn(i)1,ρ to be the concatenation of the b̃ρ,1, j functions for all j ∈ [si+1]. Under

this definition, ĩn(i)1,ρ is a collection of si+1 linear polynomials, where each of the polynomials depends on a
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single variable, and we may view ĩn(i)1,ρ as a single function mapping Fsi to Fsi+1 . We define ĩn(i)2,ρ and ˜type(i)ρ

analogously to ĩn1.
Now let

W (i)(p) =

∑
ρ∈L(i)

Ĩρ(p) ·
(

˜type(i)ρ (p) ·Ṽi+1

(
ĩn(i)1,ρ (p)

)
·Ṽi+1

(
ĩn(i)2,ρ (p)

)
+
(

1− ˜typeρ

(i) (p)
)(

Ṽi+1

(
ĩn(i)1,ρ (p)

)
+Ṽi+1

(
ĩn(i)2,ρ (p)

)))
.

It is easily checked that for all p ∈ {0,1}si , Vi (p) = W (i)(p). Lemma 4 then implies that Ṽi(z) =
∑p∈{0,1}si g(i)z (p), where g(i)z (p) = βsi(z, p) ·W (i)(p). Our protocol follows precisely the description of Sec-

tion 5.1, with P and V applying the sum-check protocol to the polynomial g(i)z at iteration i.

Communication Costs and Costs to V . Notice that our polynomial g(i)z (p) = β (z, p) ·W (i)(p) has de-
gree O(1) in each variable. Indeed, β (z, p) has degree 1 in each variable. Moreover, W (i)(p) is a sum of
polynomials that each have degree O(1) in each variable, and hence W (i)(p) itself has degree O(1) in each
variable.

This latter fact can be seen by observing that for each assignment ρ ∈ {0,1}ci to the variables in Si, it
holds that Ĩρ(p), ˜type(i)ρ (p), Ṽi+1

(
ĩn(i)1,ρ (p)

)
and Ṽi+1

(
ĩn(i)2,ρ (p)

)
all have constant degree in each variable.

That Ṽi+1

(
ĩn(i)1,ρ (p)

)
and Ṽi+1

(
ĩn(i)2,ρ (p)

)
have constant degree in each variable follows from the facts that

Ṽi+1 is a multilinear polynomial, and that each input variable j ∈ [si]\Si affects at most a constant number
of outputs for ĩn1,ρ and ĩn2,ρ by Property 1 of Definition 3.

Since g(i)z (p) has degree O(1) in each variable, the claimed communication cost and the costs to the ver-
ifier follow immediately by summing the corresponding costs of the sum-check protocols over all iterations
i ∈ {1, . . . ,d(n)} (see Section 4.2).

Time Cost for P . It remains to demonstrate how P can compute her prescribed messages when applying
the sum-check protocol to the polynomial g(i)z in time O(Si +Si+1). It will follow that P’s runtime over all
d(n) invocations of the sum-check protocol is O(∑

d(n)
i=1 Si) = O(S(n)).

As in our analysis of Section 5.4, it suffices to show how P can quickly evaluate g(i)z at all points in S( j),
where S( j) consists of all points of the form p = (r1, . . . ,r j−1, t, p j+1, . . . , psi) with t ∈ {0,1, . . . ,deg j(g

(i)
z )}

and (p j+1, . . . , psi)∈ {0,1}si− j. As g(i)z (p) = βsi(z, p) ·W (i)(p), it suffices for P to evaluate βsi(z, ·) and W (·)
at all such points p. The βsi(z, ·) computations can be done in O(Si) total time across all iterations of the
sum-check protocol, exactly as in Section 5.4.1.

To see how P can efficiently evaluate all of the W (i)(p) values efficiently, notice that for any fixed
point p ∈ Fsi , W (i)(p) can be computed efficiently given ˜type(i)ρ (p), Ṽi+1(ĩn1,ρ(p)), and Ṽi+1(ĩn2,ρ(p)) for
all ρ ∈ {0,1}ci . As |Si|= ci = O(1), modulo a constant-factor blowup in runtime it suffices to explain how
to perform these evaluations for a fixed restriction ρ ∈ {0,1}ci to the variables in Si.

It is easy to see that ˜type(i)ρ (p) can be evaluated in constant time, since this function depends on only 1
input variable xq(ρ,3,1). All that remains is to show how P can evaluate Ṽi+1(ĩn1,ρ(p)) quickly; the case for
Ṽi+1(ĩn2,ρ(p)) is similar.

To this end, we follow the approach of Section 5.4.2.
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Pre-processing. P will begin by computing an array V (0), which is simply defined to be the vector of gate
values at layer i+ 1 i.e., identifying a number 0 < j < Si+1 with its binary representation in {0,1}si+1 , P
sets V (0)[( j1, . . . , jsi+1)] = Vi+1( j1, . . . , jsi+1) for each ( j1, . . . , jsi+1) ∈ {0,1}si+1 . The right hand side of this
equation is simply the value of the jth gate at layer i+ 1 of C. So P can fill in the array V (0) when she
evaluates the circuit C, before receiving any messages from V .

Overview of Online Processing. Assume without loss of generality that the output bits of ĩn1,ρ(p) are
labelled in increasing order of the input bits they are affected by. So for example if p1 affects 2 output bits
of ĩn1,ρ and p2 affects 3 output bits, then the bits affected by p1 are labelled 1 and 2 respectively, while the
bits affected by p2 are labelled 3, 4, and 5.

In round j of of the sum-check protocol, P needs to evaluate the polynomial Ṽi+1 at the O(2si+1− j) points
in the sets ĩn1,ρ(S( j)) and ĩn2,ρ(S( j)). P will do this using the help of intermediate arrays as follows.

Efficiently Constructing V ( j) Arrays. Let a j−1 denote the total number of output bits affected by the first
j−1 input variables. Inductively, assume P has computed in the previous round an array V ( j−1) of length
2si+1−a j−1 , such that for each p = (pa j−1+1, . . . , psi+1) ∈ {0,1}si+1−a j−1 , the pth entry of V ( j−1) equals

V ( j−1)[(pa j−1+1, . . . , psi+1)]= ∑
(c1,...,ca j−1 )∈{0,1}

a j−1

Vi+1(c1, . . . ,ca j−1 , pa j−1+1, . . . , psi+1)·
j−1

∏
k=1

χck(b̃ρ,1,k(rq(ρ,1,k))),

where recall that q(ρ,1,k) is the input bit that output bit k of in1,ρ depends on. As the base case, we
explained how P can fill in V (0) in the process of evaluating the circuit C.

Let x1, . . . ,xsi denote the input variables to in1, and let b1, . . . ,bsi+1 denote the outputs of in1. Intuitively,
at the end of round j of the sum-check protocol, P must “bind” input variable x j to value r j ∈ F. This has
the effect of binding the output variables affected by x j, since each such output variable depends only on
x j. For illustration, suppose the variable x1 affects output variable b1; specifically, suppose that b1 = 1− x1.
Then binding x1 to value r1 has the effect of binding b1 to value 1− r1. V ( j) is obtained from V ( j−1) by
taking this into account. We formalize this as follows.

Assume that variable x j affects only one output variable bρ,1,a j−1+1, and thus a j = a j−1 +1; if this is not
the case, we can compute V ( j) by applying the following update once for each output variable affected by
x j. Observe that P can compute V ( j) given V ( j−1) in O(2si+1−a j−1) time using the following recurrence:

V ( j)[(pa j+1, . . . , psi+1)]=V ( j−1)[(0, pa j+1, . . . , psi+1)]·χ0(b̃ρ,1,a j(r j))+V ( j−1)[(1, pa j+1, . . . , psi+1)]·χ1(b̃ρ,1,a j(r j)).

Thus, at the end of round j of the sum-check protocol, when V sends P the value r j, P can compute
V ( j) from V ( j−1) in O(2si+1−a j−1) time.

Using the V ( j) Arrays. We now show how to use the array V ( j−1) to evaluate Ṽi+1(ĩn1,ρ(p)) in constant time
for any point p of the form p = (r1, . . . ,r j−1, t, p j+1, . . . , psi) with (p j+1, . . . , psi) ∈ {0,1}si− j. In order to
ease notation in the following derivation, we make the simplifying assumption that b̃ρ,1,k(xq(ρ,1,k)) = xq(ρ,1,k)
for all output bits k ∈ [si+1]. The derivation when this assumption does not hold is similar.

We exploit the following sequence of equalities:
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Ṽi+1(ĩn1,ρ(p)) = ∑
c∈{0,1}si+1

Vi+1(c)χc(ĩn1,ρ(p))

= ∑
(c1,...,ca j−1 )∈{0,1}

a j−1
∑

(ca j−1+1,...,csi+1 )∈{0,1}
si+1−a j−1

Vi+1(c)χc(ĩn1,ρ(p))

= ∑
(c1,...,ca j−1 )∈{0,1}

a j−1
∑

(ca j−1+1,...,csi+1 )∈{0,1}
si+1−a j−1

Vi+1(c)

(
a j−1

∏
k=1

χck(b̃ρ,1,k(rq(ρ,1,k)))

)(
a j

∏
k=a j−1+1

χck(b̃ρ,1,k(t))

)(
si+1

∏
k=a j+1

χck(pq(ρ,1,k))

)

= ∑
(c1,...,ca j )∈{0,1}

a j

Vi+1(c j+1, . . . ,ca j , pq(ρ,1,a j+1), . . . , pq(ρ,1,s j+1))

(
a j−1

∏
k=1

χck(rk)

)
·

(
a j

∏
k=a j−1+1

χck(t)

)

= ∑
(pa j−1+1,...,pa j )∈{0,1}

a j−a j−1

V ( j−1)[(pq(ρ,1,a j−1+1), . . . , pq(ρ,1,s j+1))] ·
a j

∏
k=a j−1+1

χpk(t)

Here, the first equality holds by Equation (8). The third holds by definition of the functions χc and
ĩn1, as well as the assumption that b̃ρ,1,k(xq(ρ,1,k)) = xq(ρ,1,k) for all k ∈ [si+1]. The fourth holds because for
Boolean values ck, pq(ρ,1,k) ∈ {0,1}, χck(pq(ρ,1,k)) = 1 if ck = pq(ρ,1,k), and χck(pq(ρ,1,k)) = 0 otherwise. The
final equality holds by definition of the array V ( j−1).

The final expression above can be computed with O(2a j−a j−1) time given the array V ( j−1). Since a j−
a j−1 is constant by Property 1 of Definition 3, O(2a j−a j−1) = O(1).

Putting Things Together. In round j of the sum-check protocol,P uses the array V ( j−1) to evaluate Ṽi+1(ĩn1(p))
for all O(2si− j) points p∈ S( j), which requires constant time per point and hence O(2si− j) time over all points
in S( j). At the end of round j, V sends P the value r j, and P computes V ( j) from V ( j−1) in O(2si+1−a j−1)
time. By ordering input variables in such a way that a j > a j−1 for all j, we ensure that in total across
all rounds of the sum-check protocol, P spends O(∑

si
j=1 2si− j + 2si+1− j) = O(2si + 2si+1) time to evaluate

Ṽi+1 at the relevant points. When combined with our O(2si)-time algorithm for computing all the relevant
β (z, p) values, we see that P takes O(2si +2si+1) = O(Si +Si+1) time to run the entire sum-check protocol
for iteration i of our circuit-checking protocol.

Reducing to Verification of a Single Point. After executing the sum-check protocol at layer i as
described above, V is left with a claim about Ṽi+1(ω1) and Ṽi+1(ω2) from two points ω1,ω2 ∈ Fsi+1 . If i
is a layer for which in(i)1 and in(i)2 are similar (see Definition 4), we run the reducing to verification of a
single point phase exactly as in the basic GKR protocol. This requires P to send Ṽi+1(`(t)) for a canonical
line `(t) that passes through the points ω1 and ω2. Because in(i)1 and in(i)2 are similar, it is easily seen
that Ṽi+1(`(t)) is a univariate polynomial of constant degree. Hence P can specify Ṽi+1(`(t)) by sending
Ṽi+1(`(t j)) for O(1) many points t j ∈ F. Using the method of Lemma 3, P can evaluate Ṽi+1 at each point
`(t j) in O(Si+1) time, and hence can perform all Ṽi+1(`(t j)) evaluations in O(Si+1) time in total.

Let c = O(1) be the number of layers i for which in(i)1 and in(i)2 are not similar. At each such layer i, we
skip the “reducing to verification at a single point” phase of the protocol. Each time we do this, it doubles
the number of points ω ∈ Fsi+1 that must be considered at the next iteration. However, we only skip the
“reducing to verification at a single point” phase c times, and thus at all layers i of the circuit, V needs to
check Ṽi(ω j) for at most 2c = O(1) points. This affects P’s and V’s runtime by at most a 2c = O(1) factor,
and the O(S) time bound for P , and the O(n logn+d(n) logS(n)) time bound for V follow.

47



B Analysis for Pattern Matching

Let C be the circuit for pattern matching described in Section 5.5.1. Our goal in this appendix is to handle
the layer of the circuit adjacent to the input layer. Call this layer `. Layer ` computes ti+k− pk for each pair
(i,k) ∈ [[n]]× [[q]]. We want to show how to use a sum-check protocol to reduce a claim about the value
of Ṽ`(z) for some z ∈ Fs` to a claim about Ṽ`+1(r) for some r ∈ Fs`+1 , while ensuring that P runs in time
O(S`) = O(nm).

The idea underlying our analysis here is the following. The reason Theorem 1 does not apply to layer
` is that the first in-neighbor of a gate with label p = (i1, . . . , ilogn,k1, . . . ,klogm) ∈ {0,1}logn+logm has label
equal to the binary representation of the integer i+ k, and a single bit ik can affect many bits in the binary
representation of i+ k (likewise, each bit in the binary representation of i+ k may be affected by many bits
in the binary representation of i and k). In order to ensure that each bit of p affects only a single bit of
y = in(`)1 (p), we introduce logn dummy variables (c1, . . . ,clogn) and force the jth dummy variable c j to have
value equal to the jth carry bit when adding numbers i and k in binary. Now each bit of p affects only one
output bit, and each output bit y j is only affected by at most three “input bits”: i j,k j, and c j if j≤ logm, and
just i j and c j if j > logm.

To this end, let φ : {0,1}4→{0,1} be the function that evaluates to 1 on input (i1,k1,c0,c1) if and only
if c1 = 0 and i1 + k1 + c0 < 2 or c1 = 1 and i+ k+ c0 ≥ 2. That is, φ outputs 1 if and only if c1 is equal to
the carry bit when adding i1,k1, and c0. Let φ̃ be the multilinear extension of φ . Notice φ̃ can be evaluated
at any point r ∈ F4 in O(1) time.

Now let (i,k,c) denote a vector in Flogn×Flogm×Flogn, and define

Φ(i,k,c) :=
logn

∏
j=1

φ̃(i j,k j,c j−1,c j),

where it is understood that c−1 = 0 and k j = 0 for j > logm.
For any Boolean vector (i,k,c)∈{0,1}logn×{0,1}logm×{0,1}logn, it is easily verified that Φ(i,k,c)= 1

if and only if for all j, c j equals the jth carry bit when adding numbers i and k in binary.
Finally, let γ : {0,1}3 → {0,1} be the function that evaluates to 1 on input (i1,k1,c1) if and only if

i1 + k1 + c1 = 1 mod 2. Let γ̃ be the multilinear extension of γ . Notice γ̃ can be evaluated at any point
r ∈ F3 in O(1) time.

Now consider the following logn+ logm-variate polynomial over the field F:

W (`)(i,k)= ∑
(c1,...,clogn)∈{0,1}logn

Φ(i,k,c)·
(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃(k1, . . . ,klogm)

)
,

where again it is understood that c−1 = 0 and k j = 0 for j > logm. Here, T̃ is the multilinear extension
of the input T , viewed as a function from {0,1}logn to [n], and P̃ is the multilinear extension of the input
pattern P, viewed as a function from {0,1}logm to [n].

It can be seen that for all Boolean vectors (i,k) = {0,1}logn×{0,1}logm, W (`)(i,k) = V`(i,k). This is
because for any (i,k) ∈ {0,1}logn×{0,1}logm, Φ(i,k,c) will be zero for all c except the c consisting of the
correct carry bits for i and k, and for this input c, T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1)) will equal
T (i+ k) when interpreting i,k as integers in the natural way.

Lemma 4 then implies that for all z ∈ Flogn+logm,

Ṽ`(z) = ∑
(i,k)∈{0,1}logn×{0,1}logm

βlogn+logm(z,(i,k)) ·W (`)(i,k)
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= ∑
(i,k,c)∈{0,1}logn×{0,1}logm×{0,1}logn

βlogn+logm(z,(i,k))·Φ(i,k,c)·
(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃( j1, . . . , jlogm)

)
.

Therefore, in order to reduce a claim about Ṽ`(z) to a claim about T̃ (r1) and P̃(r2) for random vectors
r1 ∈Flogn and r2 ∈Flogm, it suffices to apply the sum-check protocol to the 2logn+ logm-variate polynomial

gz(i,k,c)= βlogn+logm(z,(i,k))·Φ(i,k,c)·
(
T̃ (γ̃(i1 + k1 + c0), . . . , γ̃(ilogn + klogn + clogn−1))− P̃( j1, . . . , jlogm)

)
.

It remains to show how to extend the techniques underlying Theorem 1 to allow P to compute all of the
required messages in this sum-check protocol in O(nm) time. For brevity, we restrict ourselves to a sketch
of the techniques.

The first obvious complication is that the sum defining P’s message in a given round of the sum-check
protocol has as many as 22logn+logm = Ω(mn2) > nm terms. Fortunately, the Φ polynomial ensures that
almost all of these terms are zero: when considering any Boolean setting of the variables i j,k j, and c j−1,
the only setting of c j that P must consider is the one corresponding to the carry bit of i j + k j + c j−1 i.e.,
the unique setting of c j such that φ(i j,k j,c j−1,c j) = 1. This ensures that at round 3 j, 3 j + 1, and 3 j + 2
of the sum-check protocol applied to gz, P must only evaluate gz at O(2logn+logm− j) terms, which is falling
geometrically quickly with j.

We now turn to explaining how P can evaluate gz at all necessary points in round 3 j, 3 j+1 and 3 j+2
in total time O(2logn+logm− j). To accomplish this, it is sufficient for P to evaluate βlogn+logm at the necessary
points, as well as Φ, T̃ , and P̃ at the necessary points. The βlogn+logm evaluations are handled exactly as
in Theorem 1 i.e., by using C( j) arrays (but these arrays only get updated every time a variable i j or k j

gets bound within the sum-check protocol; no update is necessary when a variable c j gets bound). The P̃
evaluations are also handled exactly as in Theorem 1, using V ( j) arrays that only need to be updated when a
variable k j gets bound.

The T̃ evaluations require some additional explanation on top of the analysis of Theorem 1. We want P
to be able to use V ( j) arrays as in Theorem 1 to evaluate T̃ at the necessary points in constant time per point,
but we need to make sure that P can compute array V ( j) from V ( j−1) in time that falls geometrically quickly
with j. In order to do this, it is essential to choose a specific ordering for the sum in the sum-check protocol.

Specifically, we write the sum as:

∑
i1

∑
k1

∑
c1

∑
i2

∑
k2

∑
c2

· · ·∑
ilogn

∑
clogn

gz(i,k,c).

This ensures that, e.g., (i1,k1,c1) are the first three variables in the sum-check protocol to become bound
to random values in F. The reason we must do this is so that every 3 rounds, another value γ̃(i j + k j +
c j−1) feeding into T̃ becomes bound to a specific value (and moreover the outputs of γ̃(i j′ + k j′ + c j′−1)
are unaffected by the bound variables for all j′ > j). This is precisely the property we exploited in the
protocol of Theorem 1 to ensure that the V ( j) arrays there halved in size every round, and that V ( j) could be
computed from V ( j−1) in time proportional to its size. So we can use V ( j) arrays to efficiently perform the
T̃ evaluations, updating the arrays every time another value γ̃(i j +k j +c j−1) feeding into T̃ becomes bound
to a specific value.

Finally, the Φ evaluations can be handled as follows. Consider for simplicity round 3 j of the protocol.
Recall that P only needs to evaluate Φ at points for which φ j′(i j′ ,k j′ ,c j′−1,c j′) = 1 for all j′ > j. Thus,
for all j′ > j, φ j′ does not affect the product defining Φ. So in order to evaluate Φ at the relevant points, it
suffices for P to evaluate the φ j′s for j′ ≤ j. Now at round 3 j of the protocol, all triples (i j′ ,k j′ ,c j′) for j′ < j
are already bound, say to the values (r(i)j′ ,r

(k)
j′ ,r

(c)
j′ ), and hence all the φ j′ functions for j′ < j are themselves

49



already bound to specific values. So in order to quickly determine the contribution of the φ j′s for j′ < j to
the product defining Φ, it suffices for P to maintain the quantity ∏ j′< j φ j′(r

(i)
j′ ,r

(k)
j′ ,r

(c)
j′ ) over the course of

the protocol, which takes just O(logn) time in total. Finally, the contribution of φ j to the product defining
Φ can be computed in constant time per point. This completes the proof that Φ can be evaluated by P at all
of the necessary points in O(1) time per point over all rounds of the sum-check protocol, and completes the
proof of the theorem.
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