
Analysis and Improvement of the Generic
Higher-Order Masking Scheme of FSE 2012?

Arnab Roy and Srinivas Vivek

University of Luxembourg, Luxembourg
{arnab.roy,srinivasvivek.venkatesh}@uni.lu

Abstract. Masking is a well-known technique used to prevent block ci-
pher implementations from side-channel attacks. Higher-order side chan-
nel attacks (e.g. higher-order DPA attack) on widely used block cipher
like AES have motivated the design of efficient higher-order masking
schemes. Indeed, it is known that as the masking order increases, the
difficulty of side-channel attack increases exponentially. However, the
main problem in higher-order masking is to design an efficient and se-
cure technique for S-box computations in block cipher implementations.
At FSE 2012, Carlet et al. proposed a generic masking scheme that can
be applied to any S-box at any order. This is the first generic scheme for
efficient software implementations. Analysis of the running time, or mask-
ing complexity, of this scheme is related to a variant of the well-known
problem of efficient exponentiation (addition chain), and evaluation of
polynomials.

In this paper we investigate optimal methods for exponentiation in F2n

by studying a variant of addition chain, which we call cyclotomic-class
addition chain, or CC-addition chain. Among several interesting prop-
erties, we prove lower bounds on min-length CC-addition chains. We
define the notion of F2n -polynomial chain, and use it to count the num-
ber of non-linear multiplications required while evaluating polynomials
over F2n . We also give a lower bound on the length of such a chain for any
polynomial. As a consequence, we show that a lower bound for the mask-
ing complexity of DES S-boxes is three, and that of PRESENT S-box
is two. We disprove a claim previously made by Carlet et al. regarding
min-length CC-addition chains. Finally, we give a polynomial evalua-
tion method, which results into an improved masking scheme (compared
to the technique of Carlet et al.) for DES S-boxes. As an illustration we
apply this method to several other S-boxes and show significant improve-
ment for them.

Keywords: block cipher, S-box, masking complexity, addition chain, polynomial
evaluation, side-channel attack.

? This paper has been published at CHES 2013. The final publication is available at
www.springerlink.com. This is the full version.



1 Introduction

Side-channel attacks are considered to be an important class of cryptanalysis
techniques in modern cryptography. These attacks exploit various types of phys-
ical leakage of information including power consumption, running time, electro-
magnetic emission etc. during the execution of cryptographic algorithm on a
target device [11]. In practice they are often more successful than the black-box
cryptanalysis, and many such practical attacks were demonstrated against well-
known ciphers. Hence it is a natural concern to protect a cryptosystem against
these attacks.

Masking is a widely used technique to protect block cipher implementations
from side-channel attacks. Goubin and Patarin proposed one such scheme for
DES [7]. Many other techniques for both hardware and software implementation
were later proposed, especially for AES (see [4] and references therein). Most of
these schemes have masking order one and, as a result, they are only resilient
against first-order side-channel attacks. However in the past years, higher-order
side-channel attacks have been proposed against well-known ciphers like AES.
Motivated by these attacks, several higher-order masking schemes have been
proposed.

In a higher-order masking scheme each sensitive variable (e.g. variables in-
volving secret keys) is randomly split into d + 1 shares, where d is known as
the masking order. Chari et al. [5] showed that the complexity of side-channel
attacks increases exponentially with the masking order. However implementing
a higher-order masking scheme will also affect the performance of the crypto-
graphic algorithm. Hence an algorithm resilient to higher-order attacks aims at
designing efficient masking techniques for block ciphers.

Higher-Order Masking: Although many masking techniques have been
proposed in literature, there are only a few that deal with higher-order masking.
Schramm and Paar [18] generalized the first-order table recomputation method
given in [1,12]. Their method can be applied to protect any S-box, but a third-
order attack was shown against this scheme by Coron et al. [6]. Rivain et al.
also proposed a scheme with formal security proofs but their method only gives
second-order security [15]. Ishai et al. [8] provided the first dth-order masking
method that can be applied to any S-box, for arbitrary d. However, applying
this technique for masking S-boxes in software becomes inefficient. Rivain and
Prouff [16] presented an efficient technique for masking AES S-box for any order.
Further Kim et al. [9] extended this scheme based on an approach of [17]. In FSE
2012, Carlet et al. [4] presented the first generic dth-order masking scheme, suit-
able for software implementation, that can be applied to any S-box. Currently,
this is the only such generic scheme.

Masking, Polynomial Evaluation, and Addition Chains An (n, m)-
S-box is a function from {0, 1}n to {0, 1}m, where m ≤ n. For most of the
well-known ciphers, n is 4, 6 or 8. To design a generic masking scheme, Carlet
et al. [4] consider a polynomial representation of an (n, m)-S-box over F2n . The
n-bit and m-bit strings are identified with elements of F2n in a natural way, if
necessary, by appending m-bit strings with leading zeros. Such a polynomial can



be easily computed from the S-box table by applying Lagrange interpolation

method. The polynomial will be of the form
∑2n−1
i=0 ai x

i, where ai ∈ F2n . Hence
the evaluation of an S-box reduces to evaluating the corresponding polynomial
for some element in F2n . Operations involved in this polynomial evaluation are:
addition, multiplication by a scalar (from F2n), squaring, and multiplications
that are not squaring. Except the last one, all the above operations are affine
in F2n . In this masking scheme only the non-linear multiplications are signifi-
cant. Because the dth-order masking of an affine operation requires O(d) logical
operations, whereas a non-linear multiplication requires O(d2) operations [4].
Hence the masking complexity of a S-box is defined as the minimum number of
non-linear multiplications needed to evaluate its corresponding polynomial.

Efficient methods for polynomial evaluation is a well-studied area [10, Section
4.6.4]. Of particular interest is the evaluation of a power function (i.e. xα),
because of its simplicity. Not only are these functions of theoretical interest,
there are also studies on the suitability of S-boxes based on power functions
[13]. Formal analysis of the optimal methods to evaluate these powers has led
to a detailed study of addition chains [22,10, Section 4.6.3]. The length of these
chains correspond to the number of multiplications needed for the corresponding
exponentiation. However, to analyze the number of non-linear multiplications
required to evaluate an S-box, we need to investigate a variant of addition chain
introduced in [4]. We call this variant as cyclotomic-class addition chain, or in
short, CC-addition chain to distinguish it from the usual addition chain. Also,
CC-addition chains more accurately model the cost of exponentiations in F2n .
This is because squaring is very efficient in F2n , and we can also use the relation
x2

n

= x to our advantage.

Our Results

In this article we analyze and improve the generic higher order masking scheme
proposed by Carlet et al. at FSE 2012 [4]. We start by establishing several
interesting properties of CC-addition chain. We prove a lower bound on the min-
length CC-addition chain of any integer, which turns out to be logarithmic in the
Hamming weight of the integer. As a consequence, we disprove the claim in [4,
pp. 373] saying that integers of the form 2n−2 have the longest min-length CC-
addition chain than any other lesser number. We give an elegant mathematical
proof showing that the masking complexity of AES is at least four, which was
previously established by the brute-force method in [4]. We also give a result on
the monotonicity property of the min-length CC-additions of an integer.

We propose and define the notion of F2n -polynomial chain. Although the
notion of CC-addition chain helps to evaluate the masking complexity of power
functions, in case of general polynomials the idea of F2n-polynomial is more nat-
ural and useful. Such a notion is necessary to formally define and establish lower
bounds on the masking complexity of an S-box. We prove a lower bound on the
minimum number of non-linear multiplications required to evaluate a polynomial
in F2n . This lower bound is related to the min-length CC-addition chains of the
integers present in the exponents of the polynomial. As a corollary we show that



the masking complexity of DES (S-box) is at least three and that of PRESENT
is at least two. Previously no such lower bounds were known. We prove that
the notion of masking complexity is invariant of the way of representing the
corresponding field. One can argue that the linearity of the field isomorphism
reasoning given in [4] is incomplete.

Finally, we give a polynomial evaluation technique which improves the effi-
ciency of generic higher-order masking of S-boxes. For DES this algorithm gives
improvement over the previously proposed algorithm in [4] and automatically
improves the upper bound on the masking complexity of DES S-boxes to 7,
from 10. We apply this technique to other well-known ciphers to demonstrate
the efficiency of this technique (cf. Table 1). When applied to AES this technique
gives the optimal masking complexity.

2 Results on Cyclotomic-Class Addition Chains

2.1 Definitions

Let N be the set of positive integers and Z be the set of integers. ν(n) refers
to the number of bits that are one in the binary representation of n, i.e. the
Hamming weight of n. For a binary string z in {0, 1}∗, 〈z〉2 denotes the binary
representation of some non-negative integer. Let us recollect the standard notion
of addition chain.

Definition 1. [Addition Chain [10, Section 4.6.3]] An addition chain S for α
(α ∈ N) is a sequence of integers

a0 = 1, a1, a2, . . . , ar = α, (1)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i such that

ai = aj + ak.

The length of S, denoted by L (S), is r.

Thus in an addition chain, any element in the sequence (except the first) must
be a sum of some previous two elements. The length of a shortest addition chain
for α is denoted by l(α). Formally,

l(α) = min {L (S) : S is an addition chain for α} . (2)

Intuitively, l(α) represents the minimum number of “multiplications” needed to
compute xα from x (x is an element of a monoid).

The notion of “addition chain” has been generalized to q-addition chain (q ∈
N) in [21]. In this generalization of the “usual” addition chains the multiple of
an element by q can be computed in a single step. Note that an (usual) addition
chain is a 2-addition chain.

The q-addition chains are more relevant than (2-)addition chains in the case
of exponentiations in finite fields Fqn of characteristic q 6= 2. In such a field it is
possible to compute xq very efficiently, often “free” [21].



In this work we study another variant of addition chain introduced in [4].
Before we describe the variant, let us first see the following definition.

Definition 2. [Cyclotomic Class [4]] Let n ∈ N and α ∈ {0, 1, . . . , 2n − 2}. The
cyclotomic class of α (w.r.t. n), denoted by Cα, is defined as

Cα =
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
.

The intuition for introducing the above definition comes from the following sce-
nario. Let g be a generator of the multiplicative group F×2n . Given x = gα, the
set

{
x, x2, x4, x8, . . . ,

}
is the same as

{
gi | i ∈ Cα

}
. Note that x2

n

= x in F×2n .
Since 2n ≡ 1 (mod 2n − 1), therefore |Cα| ≤ n. It is easy to see that the relation
R on set {0, 1, . . . , 2n − 2}, defined as (α, β) ∈ R iff β ∈ Cα, is an equivalence
relation. Hence the collection of cyclotomic classes forms a partition of the set
{0, 1, . . . , 2n − 2}. Since |Cα| ≤ n, we obtain the following observation.

Remark 1. The number of cyclotomic classes w.r.t. n is at least 2n−1
n .

In [4], the exact count of the number of cyclotomic classes (w.r.t. n) is given as∑
δ|(2n−1)

φ(δ)
µ(δ) , where φ is the Euler’s totient function and µ(δ) is the multiplicative

order of 2 modulo δ. However, no lower bound on this expression was given there.

The simple observation in Remark 1 shows that
∑

δ|(2n−1)

φ(δ)
µ(δ) ≥

2n−1
n .

A variant of addition chain proposed in [4] is the cyclotomic-class addition
chain, in short, CC-addition chain.

Definition 3. [CC-Addition Chain [4]] Let n ∈ N, α ∈ {1, 2, . . . , 2n − 2}, and
C = {Ci : i = 0, 1, . . . , 2n − 2} be the collection of cyclotomic classes w.r.t. n,
A cyclotomic-class addition chain SC of α (w.r.t. n) is a sequence of cyclotomic
classes

Ca0 = C1, Ca1 , Ca2, . . . , Car = Cα, (3)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i, βi ∈ Cai ,
βj ∈ Caj , and βk ∈ Cak such that

βi ≡ βj + βk (mod 2n − 1) .

The length of SC , denoted by LCn (SC), is r.

Formally, a shortest CC-addition chain for α (w.r.t. n), denoted by mn(α), is
defined as

mn(α) = min {LCn (SC) : SC is an addition chain for α (w.r.t. n)} . (4)

The phrase “masking complexity of α” has been used in [4] to describemn(α).
CC-addition chains describe a way to compute xα from x ∈ F×2n , where squaring
operations are considered free and hence not counted. These sort of chains model
the complexity of exponentiation in F2n more accurately than (2-)addition chains
when squaring is implemented very efficiently using a special representation of



field elements [21]. CC-addition chains also model exactly the number of non-
linear multiplications required to mask S-boxes that are represented by power
functions [4]. An important difference between q-addition chains, in particular
2-addition chains, and CC-addition chains is that the former is a sequence of
positive integers while the latter is a sequence of classes. It is for this reason
that we refer to the latter chain as “cyclotomic-class addition chain” and not
just 2-addition chain as done in [4]. The notion of CC-addition chains can be
extended in a natural way to Fqn to obtain q-CC-addition chain, analogous to
q-addition chain. Accordingly, the CC-addition chain in Definition 3 may also
be referred to as 2-CC-addition chain. In this work, we restrict ourselves to (2-
)CC-addition chains, particularly keeping applications to higher-order masking
in mind.

Note that mn(α) is not necessarily equal to the minimum number of non-
doubling steps in all of addition chains for α, though mn(α) ≤ l(α). That is,
every CC-addition chain does not necessarily need to be derived from an addition
chain by not explicitly writing the doubling steps. This is a consequence of the
fact that there exist α, n1 and n2 such that mn1

(α) 6= mn2
(α). For example,

m5(23) = 2 but m6(23) = 3. We refer to the table of values for mn(α) for n ≤ 11
in [4].

Nevertheless, we can obtain upper bounds on the value of mn(α) using pre-
vious results on addition chains in a straightforward way. Note that for a given
value of α, mn(α) is defined only for those n such that α ≤ 2n − 2. Hence we
require n ≥ dlog2 (α+ 2)e.

Upper bound for mn(α) A trivial upper bound mn(α) ≤ ν(α)−1 is obtained
from the binary method [10, Section 4.6.3]. Let α = bt2

t+bt−12t−1+. . .+b121+b0,
where t = blog2 αc, bi ∈ {0, 1} ∀i = 1, . . . , t, and bt = 1. An addition chain
obtained from the binary method is as follows

bt = 1, bt2, bt2 + bt−1, 2 (bt2 + bt−1) , bt2
2 + bt−12 + bt−2, . . . , α.

The above addition chain yields a CC-addition chain for α (w.r.t. any n ≥
dlog2 (α+ 2)e). Hence the length of such a chain is ν(α)−1. Note that we count
only those additions that are not doublings.

An improved upper bound for mn(α) is possible if we use the techniques
of Brauer [3]. In [3], addition chains much shorter than those from the binary
method have been constructed. This result on (2-)addition chains has also been
extended to q-addition chains in [21]. See also [23,10, Section 4.6.3].

Brauer’s method of constructing addition chains is a generalization of the
binary method mentioned above. Instead of working in the base-2 expansion of
α, we now work with base-2k expansion (k ∈ N). Let z = 2k and α = btz

t +
bt−1z

t−1 + . . . + b1z
1 + b0, where t = blogz αc, bi ∈ {0, 1, . . . , z − 1} ∀i =



0, 1, . . . , t, and bt 6= 0. The corresponding addition chain is

1, 2, . . . , z − 2, z − 1,

bt2, bt4, . . . , btz, btz + bt−1,

(btz + bt−1) 2, (btz + bt−1) 4, . . . , (btz + bt−1) z, btz
2 + bt−1z + bt−2,

. . . bzt + bt−1z
t−1 + . . .+ b1z

1 + z0.

The total length of the above addition chain is z − 2 + t(k + 1). The number

of non-doubling steps is (z − 2)/2 + t = 2k−1 − 1 +
⌊
log2 α
k

⌋
, which is also the

length of the corresponding CC-addition chain for α (w.r.t. any n). This value is
minimized when k ≈ log2 log2 α− 2 log2 log2 log2 α and the corresponding value

is about log2 α
log2 log2 α−2 log2 log2 log2 α

+ log2 α

2(log2 log2 α)
2 − 1. Hence as α→∞, we obtain

mn(α) ≤ log2 α

log2 log2 α
(1 + o(1)) . (5)

2.2 Lower bound

No non-trivial lower bounds have been previously known for mn(α). In this
article we show that mn(α) ≥ dlog2(ν(α))e. Recall that ν(α) is the Hamming
weight of α in the binary notation. The basic idea is to first show that Hamming
weight is invariant in a cyclotomic class. To obtain the bound, we then use this
result along with the simple fact that when two positive integers are added, then
the Hamming weight of sum is at most the sum of the Hamming weights. Similar
techniques have been used in [21].

Lemma 1. Let n ∈ N, α ∈ {0, 1, . . . , 2n − 2}, and Cα be the cyclotomic class
of α (w.r.t. n). If β ∈ Cα, then ν(β) = ν(α).

Proof. This follows from a well-known observation that the multiplication of α by
2 modulo 2n−1 is same as the cyclic left shift of the n-bit binary representation
of α.

As an illustration, consider the cyclotomic class C3 of α = 3 w.r.t. n = 5.
C3 = {3, 6, 12, 24, 17}. Note that 17·2 ≡ 3 (mod 31). In the binary representation,

C3 = {〈00011〉2 , 〈00110〉2 , 〈01100〉2 , 〈11000〉2 , 〈10001〉2} . (6)

The following proposition gives a lower bound for mn(α).

Proposition 1. mn(α) ≥ dlog2(ν(α))e.

Proof. From Lemma 1 and, the fact that the Hamming weight of sum of two
positive integers is at most the sum of the Hamming weights, we obtain that
the CC-addition chain of length at most r (3) can only contain integers having
Hamming weight at most 2r. This is because elements of C1 have Hamming
weight 1 and at each step the Hamming weight can at most double. Therefore,
in order for α to be present in a CC-addition chain, then the chain’s length must
be at least dlog2(ν(α))e. ut



As a consequence of the above proposition, we now disprove the claim made
in [4, pp. 373]. Their claim was that given a (fixed) value of n, mn(2n − 2) ≥
mn(α) ∀α = 1, . . . , 2n − 3, i.e., 2n − 2 has the longest min-length CC-addition
chain among the integers modulo 2n − 1.

Proposition 2. Let n = 2t+1 for some t ∈ N and t > 2. Then mn(2n−2) = t.
In particular, m9(510) = 3 < m9(508) = 4.

Proof. In Appendix A.

2.3 Monotonicity of mn(α)

It is natural to ask how the value of mn(α) varies with n. As mentioned pre-
viously, mn(α) is defined only for n ≥ dlog2 (α+ 2)e. Is the value of mn(α)
independent of n for a given value of α? This is not true since we have al-
ready seen the counterexample m5(23) = 2 but m6(23) = 3. The example
m7(83) = 3 but m9(83) = 2 shows that mn(α) can also decrease as n in-
creases. We can generalize the above examples to obtain infinitely many ex-

amples. For instance, consider mn

(〈
10 . . . 0︸ ︷︷ ︸
n−4

111
〉
2

)
= mn

(〈
0 . . . 0︸ ︷︷ ︸
n−4

1111
〉
2

)
= 2

but mn+1

(〈
010 . . . 0︸ ︷︷ ︸

n−4

111
〉
2

)
= mn+1

(〈
0 . . . 0︸ ︷︷ ︸
n−4

11101
〉
2

)
= 3, where n ≥ 5.

But we can still show that mn(α) ≤ mn′(α) if n |n′, i.e. if n divides n′.

Theorem 1. Let α, n, n′ ∈ N, n |n′ and dlog2 (α+ 2)e ≤ n ≤ n′. Then mn(α) ≤
mn′(α) .

Proof. In Appendix B.

Theorem 1 suggests that, to find a minimum length CC-addition chain w.r.t.
n′, first try to find one w.r.t. a divisor n of n′. Since F2n is a smaller field than
F2n′ , it may be advantageous to work in F2n . Once a minimum length CC-
addition chain w.r.t. n′ is found, then check if it is a CC-addition chain w.r.t.
n′. If it is the case, then it will be a minimum length chain.

3 Polynomial Evaluation and Masking Complexity

3.1 F2n-Polynomial Chain

The masking complexity of an S-box (Definition 5) corresponds to the min-
length CC-addition chain of the exponent when it can be represented as a power
function. However when the S-box has a general polynomial representation, a
notion similar to CC-addition chain is required. For evaluating polynomials (over
R) the notion of polynomial chain is given in [10, Section 4.6.4]. In case of
polynomials in F2n [x], we define the notion of F2n -polynomial chain, where we
do not count addition, scalar multiplication and squaring operations. Note that
if x, y ∈ F2n , then x2

n

= x and (x+ y)2 = x2 + y2.



Definition 4. A F2n-polynomial chain S for a polynomial P (x) ∈ F2n [x] is
defined as

λ−1 = 1, λ1 = x, . . . , λr = P (x) (7)

where

λi =


λj + λk −1 ≤ j, k < i,
λj · λk −1 ≤ j, k < i,
αi � λj −1 ≤ j < i, αi is a scalar,
λ2j −1 ≤ j < i.

Note that here · and � both perform the same operation, multiplication in F2n .
However in order to differentiate the non-linear operation we use � for scalar
multiplication. Here λj · λk denotes a non-linear multiplication. Let the number
of non-linear multiplications involved in chain S be N (S). Then the non-linear
complexity of P (x) (over F2n), denoted byM(P (x)), is defined asM(P (x)) =
min
S
N (S), where S computes P (x).

Proposition 3. Let P (x) :=
∑2n−1
i=0 ai x

i be a polynomial in F2n [x]. Then

M(P (x)) ≥ max
0<i<2n−1

ai 6=0

mn(i).

Proof. To prove the proposition, we just need to prove the following claim. Let
σnk := {α |mn(α) ≤ k}. We claim that, with at most k non-linear multiplications,
we can evaluate only those polynomials of the form

∑
i aix

i, where i ∈ σnk and
ai ∈ F2n . It is easy to see that with zero non-linear multiplications, only those
polynomials of the form

∑
i aix

i, where i ∈ σn0 = {2j | 0 ≤ j ≤ n − 1}. Let
us assume that the above claim is true up to k − 1 non-linear multiplications.
Consider the set of polynomials T :=

{
p(x) | p(x) =

∑
j bjx

j , j ∈ σnk−1, bj ∈
F2n
}

. Since squaring is a linear operation in F2n [x], the set T is closed under
additions, scalar multiplications and squaring operations. Hence if we allow only
one more non-linear multiplication, then exponents in the resulting polynomial
can only be from σnk . Note that mn(α) is defined only for 0 < α < 2n − 1 and
x2

n−1 = 1 if x 6= 0. This proves the claim. ut

3.2 Masking Complexity: Well-definedness and Lower Bounds

The masking complexity of an S-box is formally defined as follows.

Definition 5. [Masking Complexity] Let m,n ∈ N with m ≤ n. The masking
complexity of an (n,m)-S-box is the non-linear complexity of P (x), where P (x)
is the polynomial representation of the S-box over F2n .

Note that the above definition has been intuitively described in [4, Definition
1] as the minimum number of non-linear multiplications needed to evaluate the
polynomial representation. Once the bit strings are identified naturally with
the elements of F2n (given a field representation), then we can apply Lagrange
interpolation technique to compute the (unique) polynomial of degree at most
2n − 1 representing the S-box in the corresponding field.



Well-definedness The well-definedness and relevance of the above definition
of masking complexity is guranteed because of the following reasons.

1. A natural question is - does masking complexity change with the irreducible
polynomial used to represent F2n? Note that under the natural mapping of
bit strings to the field elements, the same S-box may correspond to different
polynomials over F2n for different representations of the field. However we
show in Theorem 2 that masking complexity does not depend on the field
representation.

2. It is relatively straightforward to mask affine functions. In F2n , squaring is
linear, and affine functions are free from any “non-linear” multiplications.

The n-bit strings can be naturally mapped to field elements of F2n repre-
sented as polynomials over F2 modulo a degree n irreducible polynomial f1(y).
Formally, B1 : {0, 1}n → F2[y]/f1(y) is defined as

B1 (〈bn−1bn−2 . . . b0〉) :=

n−1∑
i=0

bi y
i + (F2[y] · f1(y)) , (8)

where bi ∈ {0, 1}. The m-bit strings (m ≤ n) are appended with leading zeros to
identify them with n-bit strings. Later we shall see that it suffices if B1 is some
F2-linear bijection. Note that ({0, 1}n,⊕) may be viewed as a vector space over
F2.

Remark 2. It was claimed in [4, Remark 3] that the property of independence
of masking complexity w.r.t. the irreducible polynomial used to represent F2n

follows from the fact that field isomorphisms are F2-linear bijections. This reason
is not enough and a formal proof requires more arguments, as we shall see in the
proof of Theorem 2.

Let f1(y) and f2(z) be two irreducible polynomials of degree n over F2. Then
F2[y]/f1(y) and F2[z]/f2(z) are two representations for F2n . Let B1 : {0, 1}n →
F2[y]/f1(y) be as in (8), and B2 : {0, 1}n → F2[z]/f2(z) be analogously defined
for f2(z). Note that B1 and B2 are F2-linear isomorphisms between vector spaces.
The corresponding inverse maps B−11 and B−12 are also F2-linear isomorphisms
of vector spaces.

Let U : {0, 1}n → {0, 1}n be any function on n-bit strings. For instance, U
may represent an (n,m)-S-box (upon padding m-bit strings with leading zeros).
The maps U and B1 will “induce” a map U1 : F2[y]/f1(y) → F2[y]/f1(y). More
precisely,

U1 = B1 ◦ U ◦ B−11 . (9)

Similarly we can define

U2 = B2 ◦ U ◦ B−12 . (10)

Let P1(x) and P2(x) be the polynomial representations (of degree at most 2n−1)
of U1 and U2, respectively. We now prove the following theorem.



Theorem 2. M (P1(x)) = M (P2(x)), where P1(x) and P2(x) are as defined
above. In other words, the masking complexity of an S-box (in general, any func-
tion on bit strings) is invariant w.r.t. field representations.

Proof. In Appendix C.

Lemma 2. [4, Proposition 1] The masking complexity of an S-box (in general,
any function) cannot increase when it is composed with affine functions. When
composed with affine bijections, then masking complexity remains the same.

Remark 3. Note that Lemma 2 holds only when the evaluation of affine func-
tions over F2ndoes not involve any non-linear multiplication. For the sake of
completeness, this property is proved in Lemma 6.

Note that in the proof of Theorem 2 the only property of the maps B1 and
B2 used is that they are F2-linear bijections. Hence if B1 and B2 are any linear
bijections, even then the masking complexity of an S-box remains invariant.

Lower Bounds We represent the fields F24 , F26 and F28 using irreducible
polynomials y4 + y3 + 1, y6 + y4 + y3 + y + 1, y8 + y4 + y3 + y + 1 ∈ F2[y],
respectively. From Theorem 2, we know that the masking complexity is invariant
w.r.t. the field representations.

The polynomials corresponding to eight DES S-boxes are polynomials of
degree 62 in F26 [x], and the one for the PRESENT S-box is a polynomial of
degree 14 in F24 [x]. Since m6(62) = 3 and m4(14) = 2, from Proposition 3 we
obtain the following corollary.

Corollary 1. Masking complexity of a DES S-box is at least 3, and that of the
PRESENT S-box is at least 2.

The AES S-box can be written as an affine permutation composed with the
polynomial x254 ∈ F28 [x]. From Lemma 2, the masking complexity of AES S-
box is M

(
x254

)
over F28 . Using arguments similar to the proof of Lemma 4 (in

Appendix A), we obtain the following corollary.

Corollary 2. Masking complexity of the AES S-box is at least 4.

The above corollary was shown by exhaustive search in [4].

4 Improved Generic Higher-Order Masking of S-boxes

In [4], Carlet et al. used the cyclotomic class method to get a masking scheme for
S-boxes. They also gave parity-split method to evaluate polynomials efficiently.
In this section we apply a divide-and-conquer method to obtain an efficient so-
lution to the same problem. The main idea of this approach is to express the
polynomial(say, having degree N) as a function of several lower degree polyno-
mials, each of degree at most k (for some fixed k).



Let P (x) be the polynomial of degree N which we want to evaluate. Then we
start by dividing the polynomial with xkt where N = k(2t− 1). The remainder
obtained by this will have degree at most kt−1 and degree of the quotient will be
kt− t = k(t− 1). Next we can add the term xk(t−1) to the remainder and divide
the sum by the quotient. This allows us to express the remainder by polynomials
having degree at most k−1 and k(t−1)−1. Now the term xk(t−1) together with
the other lower degree polynomials will allow us to apply the method recursively
when t = 2l.

In [14] this divide-and-conquer approach for monic polynomials is proposed.
For the sake of completeness, a brief description of this general method is given
in the Appendix D. However, we observe that in our case the restriction of
polynomial being monic is not necessary. Also it turns out that we can adapt
that algorithm even if the condition N = k(2t− 1) is not satisfied. We describe
this with specific examples of DES, AES and some other well-known S-boxes.

4.1 DES S-boxes

Let PDES(x) be the polynomial in F26 [x] corresponding to an S-box of DES.
Note that for all the S-boxes the corresponding polynomial has degree 62. We
express PDES as

PDES(x) = q(x) · x36 +R(x) (11)

where deg(R) ≤ 35 and deg(q) = 26. Now if we divide the polynomial R(x)−x27
with q(x), we get c(x) and s(x) satisfying

R(x)− x27 = c(x) · q(x) + s(x) (12)

where deg(c) ≤ 9 and deg(s) ≤ 25. Substituting (12) in (11), we get

PDES(x) = (x36 + c(x)) · q(x) + x27 + s(x) (13)

Further continuing in the same way we first divide q(x) with x18 to obtain

q(x) = q1(x) · x18 +R1(x), (14)

and then divide R1(x)− x9 by q1(x) to obtain

R1(x)− x9 = c1(x) · q1(x) + s1(x). (15)

Combining (14) and (15) we get

q(x) = (x18 + c1(x)) · q1(x) + x9 + s1(x). (16)

Where deg(R1) ≤ 17, deg(q1) = 8, deg(c1) ≤ 9 and deg(s1) ≤ 7. Similarly
proceeding with x27 + s(x), we get q2(x), R2(x), c2(x), and s2(x) satisfying

x27 + s(x) = q2(x) · x18 +R2(x)

R2(x)− x9 = c2(x) · q2(x) + s2(x)
(17)



where deg(R2) ≤ 17, deg(q2) = 9, deg(c2) ≤ 8 and deg(s2) ≤ 8. Combining them
we get

x27 + s(x) = (x18 + c2(x)) · q2(x) + x9 + s2(x) (18)

Finally combining equations (18), (16) and (13), we obtain

PDES(x) =(x36 + c(x)) ·
(

((x18 + c1(x)) · q1(x)) + (x9 + s1(x))
)

+
(

(x18 + c2(x)) · q2(x) + (x9 + s2(x))
) (19)

In (19) the number of non-linear multiplications equals 3 + l′, where l′ is the
number of non-linear multiplications involved in evaluating the monomials in
(19) of degree at most 9, together with monomials x18 and x36.
Consider the monomials x, x2, x3, . . . , x9. The number of non-linear multiplica-
tions required to evaluate them is 4. From x9, we can compute x18 = (x9)2

and x36 = (x18)2 using only squarings. Hence l′ = 4. Therefore the number of
non-linear multiplications for evaluating PDES is 3 + 4 = 7. Note that this also
improves an upper bound on the masking complexity of DES S-boxes.

4.2 AES and other 8-bit S-boxes

Applying the above technique for 8-bit S-boxes leads to significant reduction
in the number of non-linear multiplications required, in majority of the cases.
To compute the polynomials corresponding to 8-bit S-boxes, we use the field
representation F28 = F2[y]/(y8 + y4 + y3 + y + 1).

CAMELLIA cipher [2] uses four 8-bit S-boxes and all the corresponding
polynomials have degree 254. On the other hand, CLEFIA cipher [20] uses two
8-bit S-boxes and one of the corresponding polynomials (for S-box S0) has degree
252 while the other has degree 254. We treat the above polynomials as if they
are having degree 255 = 17 ×

(
24 − 1

)
and start by dividing with x136 (and

then adding the term x119). The process continues as done for DES above. For
polynomials of degree 254, we need to precompute the powers xi (1 ≤ i ≤
17), whereas for the polynomial of degree 252 we need to precompute until
x19. As Table 1 indicates, we require 15 non-linear multiplications for all the
corresponding S-boxes except the S-box S0 (corresponding to the polynomial of
degree 252) of CLEFIA, which requires 16 non-linear multiplications. Previously,
these S-boxes required 22 non-linear multiplications by the parity-split method
of [4].

The polynomial PAES(x) corresponding to the non-linear function of AES
S-box is x254 ∈ F28 [x]. Initially compute x, x2, x4, x8, x16, x17 = x16 · x,

x34 =
(
x17
)2

, x68 =
(
x34
)2

and x136 =
(
x68
)2

. To compute this list only one
non-linear multiplication is required. Write PAES(x) = x254 = q(x) · x136, where
q(x) = x118. Further, q(x) = x118 = q1(x) · x68, where q1(x) = x50. Finally,
q1(x) = x50 = x16 · x34. Hence

PAES(x) =
((
x16 · x34

)
· x68

)
· x136.



Table 1. Comparison of the number of non-linear multiplications required for masking
various S-boxes

S-box(es)
Method AES CAMELLIA CLEFIA DES PRESENT SERPENT

Cyclotomic [4] 4 33 33 11 3 3

Parity-Split [4] 6 22 22 10 4 4

This Paper 4 15 16 (S0)/15 (S1) 7 3 3

Given the initially computed list of powers, the above computation can be done
with three non-linear multiplications. So four non-linear multiplications are re-
quired all together for the AES S-box, which is exactly equal to its masking
complexity. The cyclotomic method of [4] also achieves the optimal number.

4.3 PRESENT and SERPENT S-boxes

We have also considered the application of above techniques to 4-bit S-boxes of
PRESENT and SERPENT ciphers. PRESENT cipher has a single S-box, whose
corresponding polynomial over F24 [x] is of degree 14. We use the representation
F24 = F2[y]/(y4 + y + 1). SERPENT uses eight 4-bit S-boxes and the corre-
sponding polynomials have degree 14 (for two polynomials), 13 (for five) or 12
(for one). In all the cases we require 3 non-linear multiplications. The cyclotomic
method also requires the same number.

An outline of the method is as follows. Initially compute the list x, x2,

x3 = x2 · x, x4, x5 = x4 · x, x6 =
(
x3
)2

, x10 =
(
x5
)2

, using two non-linear
multiplications. Divide the polynomial by x10, and proceed as done in the case
of DES. This process stops at the first level itself, requiring only one non-linear
multiplication. This method totally requires three non-linear multiplications.

4.4 Cost of linear operations

The technique presented in this section to evaluate the polynomials correspond-
ing to specific S-boxes has lead to an improvement (or remain the same) in the
number of non-linear multiplications required. We would like to note that this
method does not incur significant overhead with respect to the linear opera-
tions. For instance, in the case of DES S-boxes, we need about 63 additions, 58
scalar multiplications, and 6 squarings. Both the cyclotomic method as well as
the parity-split method of [4] require about 62 additions and 62 scalar multipli-
cations. The number of squarings for the cyclotomic method is about 50, and it
is about 7 for the parity-split method.

An estimate in general for the two methods of [4] is as follows. The number
of additions required by both the methods is equal to the number of terms
in the polynomial less one, while the number of scalar multiplications is the
number of non-monic coefficients less one (for the constant term). Hence for
dense polynomials (where most of the 2n terms are present) both these quantities



will be about the degree of the polynomial. The number of squarings for the
cyclotomic method is about 2n − 1 less the number of cyclotomic classes, while

for the parity-split method it is about 2d
n
2 e−1 +

⌊
n
2

⌋
(for dense polynomials).

In our case, if the degree d of a polynomial is approximately k ·(2m − 1), then
the number of additions is about (k + 1) · (2m − 1). The number of non-linear
multiplications is about k ·(2m − 1). The number of squarings is about k

2 +logk d.

Hence if k ≈
√
d, then this is about

√
d
2 + 2. Hence for dense polynomials (as is

the case for many S-boxes), there is no significant overhead with respect to the
linear operations.

5 Conclusion

In this work we have formalized the idea of polynomial chain in F2n . Using this
notion we give bounds on the masking complexity of polynomials corresponding
to several S-boxes. The idea of polynomial chain is more generic (in the context
of polynomial evaluation). This gives a better way of analyzing the masking
complexity for S-boxes which do not correspond to some power function, as is
the case for many S-boxes used in popular block ciphers. The polynomial eval-
uation method described in Section 4 results into more efficient generic higher-
order masking scheme for many S-boxes, compared to the algorithms/heuristics
provided in [4]. Also our analysis gives insight into the polynomial evaluation
methods in F2n , which could be of independent interest.

Acknowledgements. We would like to thank Jean-Sébastien Coron and Praveen
K. Vadnala for suggesting us the FSE 2012 paper of Carlet et al.. We are thank-
ful to the anonymous reviewers of CHES 2013 for their valuable comments and
suggestions. We also like to thank Jurgen Pulkus for pointing out an error in
a previous version of the proof of Lemma 6. Second author would also like to
thank Srinivas Karthik for useful discussions.

References

1. Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and aes,
secure against some attacks. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, CHES, volume 2162 of Lecture Notes in Computer Science, pages
309–318. Springer, 2001.

2. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mo-
riai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable
for multiple platforms - design and analysis. In Douglas R. Stinson and Stafford E.
Tavares, editors, Selected Areas in Cryptography, volume 2012 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2000.

3. Alfred Brauer. On addition chains. Bull. Amer. Math. Soc, 45(10):736–739, 1939.
4. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu

Rivain. Higher-order masking schemes for s-boxes. In Anne Canteaut, editor, FSE,
volume 7549 of Lecture Notes in Computer Science, pages 366–384. Springer, 2012.



5. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Wiener [24], pages 398–
412.

6. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel crypt-
analysis of a higher order masking scheme. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 28–44. Springer, 2007.

7. Louis Goubin and Jacques Patarin. Des and differential power analysis (the ”du-
plication” method). In Çetin Kaya Koç and Christof Paar, editors, CHES, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

8. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

9. HeeSeok Kim, Seokhie Hong, and Jongin Lim. A fast and provably secure higher-
order masking of aes s-box. In Bart Preneel and Tsuyoshi Takagi, editors, CHES,
volume 6917 of Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

10. Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, 1997.

11. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Wiener [24], pages 388–397.

12. Thomas S. Messerges. Securing the aes finalists against power analysis attacks. In
Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science,
pages 150–164. Springer, 2000.

13. Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. Algebraic immunity of
s-boxes based on power mappings: analysis and construction. IEEE Transactions
on Information Theory, 55(9):4263–4273, 2009.

14. Mike Paterson and Larry J. Stockmeyer. On the number of nonscalar multiplica-
tions necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–66, 1973.

15. Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block ciphers imple-
mentations provably secure against second order side channel analysis. In Kaisa
Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer Science, pages
127–143. Springer, 2008.

16. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
aes. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

17. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact rijn-
dael hardware architecture with s-box optimization. In Colin Boyd, editor, ASI-
ACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 239–254.
Springer, 2001.

18. Kai Schramm and Christof Paar. Higher order masking of the aes. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science,
pages 208–225. Springer, 2006.

19. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980.

20. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher clefia (extended abstract). In Alex Biryukov, editor, FSE,
volume 4593 of Lecture Notes in Computer Science, pages 181–195. Springer, 2007.

21. Joachim von zur Gathen. Efficient and optimal exponentiation in finite fields.
Computational Complexity, 1:360–394, 1991.



22. Joachim von zur Gathen and Michael Nöcker. Exponentiation in finite fields:
Theory and practice. In Teo Mora and Harold F. Mattson, editors, AAECC,
volume 1255 of Lecture Notes in Computer Science, pages 88–113. Springer, 1997.

23. Joachim von zur Gathen and Michael Nöcker. Computing special powers in finite
fields. Math. Comput., 73(247):1499–1523, 2004.

24. Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer,
1999.

25. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W.
Ng, editor, EUROSAM, volume 72 of Lecture Notes in Computer Science, pages
216–226. Springer, 1979.

A Proof of Proposition 2

Proposition Let n = 2t + 1 for some t ∈ N and t > 2. Then mn(2n − 2) = t.
In particular, m9(510) = 3 < m9(508) = 4.

Proof. The proof proceeds in two steps. In lemma 3 below, we first show that
mn(2n − 2) = t. As a result, m9(510) = 3. Then in Lemma 4, we prove that
m9(508) = 4. This will complete the proof of the proposition. ut

Lemma 3. mn(2n − 2) = t, where n = 2t + 1, t ∈ N and t > 2.

Proof. From Proposition 1, we have mn(2n − 2) ≥ log2(ν(2n − 2)) = t. A CC-
addition chain of length t for 2n − 2 (w.r.t. n) can be constructed as follows

C1, C22−1, C24−1, C28−1, . . . , C22t−1 = C2n−2. (20)

Note that C22t−1 = C2n−2 because 2n − 2 = 2
(

22
t − 1

)
. Why the above se-

quence is indeed a CC-addition chain can be readily seen if we look at the n-
bit-representations of the representatives of the cyclotomic classes in the above
sequence. In the proof of Proposition 1 and the example in (6), we have observed
that all the elements of a given cyclotomic class can be obtained by (left) cyclic
shifts of the n-bit-representation of any one element of the class. Consider an
integer sequence

〈1〉2
×→ 〈10〉2

+→ 〈11〉2
×→ 〈1100〉2

+→ 〈1111〉2 →

. . . → 〈11 . . . 11︸ ︷︷ ︸
2t

〉2
×→ 〈11 . . . 11︸ ︷︷ ︸

2t

0〉2. (21)

In the above sequence, those arrows marked with × correspond to multiplying
by a power of 2 (i.e. left shift) and hence such a step is not a separate step in
the corresponding CC-addition chain. But those marked with + correspond to
addition of two distinct integers and hence count as one step in the CC-addition
chain. This shows that the sequence in (20) is a CC-addition chain for 2n − 2
(w.r.t. n), and hence mn(2n − 2) = t. ut



Lemma 4. m9(508) = 4.

Proof. From Proposition 1, we have m9(508) ≥ dlog2(7)e = 3. We now rule out
the possibility that m9(508) = 3. Let there be a CC-addition chain for 508 (w.r.t.
9) of length 3. The only possibility is that in such a chain, the Hamming weight
doubles after each of the first two (addition) steps. But in the last step, we must
have two integers a =

〈
a8 . . . a0

〉
2

and b =
〈
b8 . . . b0

〉
2

such that 508 = a + b,
ν(a) = ν(b), and both must come from the same cyclotomic class. Hence the
bit-patterns of a and b must be cyclic shifts of each other. We just need to make
sure that the bit-pattern 508 = 〈111111100〉2 cannot be obtained. There are four
possible cases:

1. a0 = b0 = 1: then a1 = 1 or b1 = 1 (but not both). Hence with remaining
5 ones, it is not possible to obtain ones at the remaining 7 positions in the
sum.

2. a0 = b0 = 0 and a1 = b1 = 0: now there are 8 ones for 7 positions. Hence a
zero will appear in the sum when there is a one in the same position.

3. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 1: in this case it is not possible to
get ones in 6 positions in the sum with only 4 ones.

4. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 0: by symmetry, we can set
a3 = 1 and b3 = 0. Now there are 2 ones for a that can occur in any of
the five remaining positions. Hence there are

(
5
2

)
= 10 choices. Once the two

positions are fixed for a, then for b, the remaining three ones must be in the
other three remaining positions of the sum. One can easily check in all the
10 cases that a and b are not cyclic shifts of each other.

Hence we obtain m9(508) > 3. The CC-addition chain

〈1〉2
×→ 〈10〉2

+→ 〈11〉2
×→ 〈1100〉2

+→ 〈1111〉2
×→ 〈111100〉2

+→ 〈111111〉2
×→ 〈1111110〉2

+→ 〈1111111〉2
×→ 〈111111100〉2.

shows that m9(508) ≤ 4. Hence m9(508) = 4 ut

B Proof of Theorem 1

Theorem Let α, n, n′ ∈ N, n |n′ and dlog2 (α+ 2)e ≤ n ≤ n′. Then mn(α) ≤
mn′(α) .

Proof. The basic idea is to transform any CC-addition chain for α w.r.t. n′ into
a CC-addition chain for α w.r.t. n such that the length of the resulting chain is
at most the length of the original one. This implies that mn(α) ≤ mn′(α). Let

C ′b0 = C ′1, C
′
b1 , C

′
b2, · · · , C

′
br = C ′α (22)

be a CC-addition chain for α w.r.t. n′. Let ai := bi (mod 2n − 1) and Cai be the
cyclotomic class of ai w.r.t. n, ∀i = 0, 1, . . . , r. Consider the sequence



Ca0 , Ca1 , Ca2, · · · , Car . (23)

The claim is that the above sequence in (23) is a CC-addition chain for α w.r.t. n.
In particular, we need to prove that the sequence in (23) satisfies two properties.
First is the CC-addition chain property (w.r.t. n), i.e. Definition 3, and the
second one is Car = Cα (w.r.t. n).

Claim. The sequence in (23) satisfies Definition 3 w.r.t. n.

Proof. First we need to show that the mapping C ′bj 7→ Caj is well-defined. This

is because the cyclotomic class C ′bj may be represented as C ′βj′′
, where βj′′ ∈ C ′bj .

From Definition 3, βj′′ ∈ C ′bj iff βj′′ = bj · 2j
′′
(

mod 2n
′ − 1

)
for some j′′ ∈ N.

Since bj ≡ aj (mod 2n − 1), we have βj′′ ≡ bj · 2j
′′ ≡ aj · 2k (mod 2n − 1), where

k := j′′ (modn). This proves the well-definedness property of the mapping of
cyclotomic classes. Next, to prove the additivity property, observe that for every
i = 1, 2, . . . , r, there exist 0 ≤ j, k < i, βi′ ∈ C ′bi , βj′ ∈ C ′bj , and βk′ ∈ C ′bk

such that βi′ ≡ βj′ + βk′
(

mod 2n
′ − 1

)
. This is because the sequence in (22) is

a CC-addition chain (w.r.t. n′). From the reasoning above, we can write βi′ ≡
ai · 2i

′
(mod 2n − 1), βj′ ≡ aj · 2j

′
(mod 2n − 1) and βk′ ≡ ak · 2k

′
(mod 2n − 1).

Since n |n′, we have 2n−1 | 2n′−1. Hence βi′ ≡ βj′+βk′ (mod 2n − 1) .Therefore,

ai · 2i
′ ≡ aj · 2j

′
+ ak · 2k

′
(mod 2n − 1) . This proves the additivity property of

the sequence in (23). ut

Claim. Car = Cα.

Proof. Since C ′br = C ′α (w.r.t. n′) from (22), we have α ≡ br2
t
(

mod 2n
′ − 1

)
for some t ∈ N and t < n′. Since 2n − 1 | 2n′ − 1, we have α ≡ br2

t ≡
ar2

t′ (mod 2n − 1). Therefore, Car = Cα. ut
This completes the proof of Theorem 1. ut

C Proof of Theorem 2

Theorem M (P1(x)) = M (P2(x)), where P1(x) and P2(x) are as defined in
Section 3.2. In other words, the masking complexity of an S-box (in general, any
function on bit strings) is invariant w.r.t. field representations.

Proof. Let the maps B1, B2, U , U1 and U2 be as defined in (9) and (10). Since two
finite fields of the same order are isomorphic, there exists a field isomorphism ψ :
F2[y]/f1(y)→ F2[z]/f2(z). Note that the map ψ is also an F2-linear isomorphism
between vector spaces that is compatible with the multiplication operation of
the fields. Let H : F2[y]/f1(y)→ F2[z]/f2(z) be defined as

H = B2 ◦ B−11 . (24)



Since B1 and B2 are F2-linear bijections, so will be H. Note that H need not be
a field isomorphism. Also define the maps H∗,U∗1 : F2[z]/f2(z)→ F2[z]/f2(z) as

H∗ = H ◦ ψ−1, (25)

U∗1 = ψ ◦ U1 ◦ ψ−1. (26)

Intuitively, the maps H∗ and U∗1 are analogues of H∗ and U∗1 that are maps from
F2[z]/f2(z) to itself. From (9), (10), (24) and (26), we have

U1 = ψ−1 ◦ U∗1 ◦ ψ = H−1 ◦ U2 ◦ H.

Hence from (26), we get
U2 = H∗ ◦ U∗1 ◦ H∗

−1. (27)

Let PH∗(x), PH∗−1(x) and PU∗1 (x) be polynomials over F2[z]/f2(z) of degree

at most 2n − 1 representing H∗, H∗−1 and U∗1 , respectively. From the above
relation, we obtain

P2(x) = PH∗
(
PU∗1 (PH∗−1(x))

)
. (28)

It is precisely to get the above relation that we had to introduce the maps H∗
and U∗1 . The following two lemmas show that M

(
PU∗1 (x)

)
= M (P1(x)) and

M (PH∗−1) =M (PH∗) = 0.

Lemma 5. M
(
PU∗1 (x)

)
=M (P1(x)).

Proof. Let P1(x) =
∑2n−1
i=0 ai x

i, where ai ∈ F2[z]/f2(z). From the definition of

U∗1 in (26), it follows that PU∗1 (x) =
∑2n−1
i=0 ψ(ai)x

i. Using the field isomorphisms
ψ and ψ−1, any polynomial chain to evaluate P1(x) can be converted to one that
evaluates PU∗1 (x), and vice-versa. Hence the lemma follows. ut

Lemma 6. Let A : F2[z]/f2(z) → F2[z]/f2(z) be an F2-affine function and
PA(x) be the corresponding polynomial representation of degree at most 2n − 1.

Then PA(x) =
∑n−1
i=0 ai x

2i + a−1, for some ai ∈ F2[z]/f2(z) (0 ≤ i ≤ n − 1),
and M (PA(x)) = 0.

Proof. Since A is an F2-affine function, it can be written as A = A′+a−1, where
A : F2[z]/f2(z) → F2[z]/f2(z) is an F2-linear map, and a−1 ∈ F2[z]/f2(z). It is
enough to show that the polynomial PA′(x) corresponding to A′ is of the form∑n−1
i=0 ai x

2i . Suppose that there exists a term xm in PA′(x) whose coefficient is
non-zero, and m 6= 2j for 0 ≤ j ≤ n−1. Let xm be the largest among such terms
and write m = 2t · k, where k > 1 is odd. Define the bivariate polynomial

P ′(x, y) = PA′(x+ y)− PA′(x)− PA′(y).

We have P ′(x, y) 6≡ 0 since the coefficient of the term x2
t(k−1) · y2t is 1.This can

be easily seen from the fact that (x+ y)2
tk =

(
x2

t

+ y2
t
)k

, and then using the



binomial expansion and the fact that the characteristic of F2n is two. By the
linearity of A′, we require P ′(α, β) = 0 for all α, β ∈ F2[z]/f2(z). But this is not
possible since the total degree of P ′(x, y) is m < 2n, and from the Schwartz-
Zippel lemma (cf. Appendix E), the polynomial P ′(x, y) can have at most m ·
2n roots. Hence P ′(x, y) ≡ 0 and PA′(x) =

∑n−1
i=0 ai x

2i and M (PA′(x)) =
M (PA(x)) = 0. By the linearity of PA′(x), we have PA′(0) = 0. Hence the
lemma follows. ut

From (28), Lemma 5 and Lemma 6, we have M (P2(x)) ≤M (P1(x)). From
(27), we get U∗1 = H∗−1 ◦ U2 ◦ H∗. Hence M (P1(x)) ≤ M (P2(x)). Therefore,
M (P1(x)) =M (P2(x)). This completes the proof of Theorem 2. ut

D Divide-and-Conquer Strategy for Polynomial
Evaluation

Let P (x) be a polynomial having degree N = k(2t− 1). We divide P (x) by xkt

and express P (x) as following

P (x) = Q(x) · xkt +R(x) (29)

where Q is monic and deg(Q) = k(t − 1), deg(R) ≤ kt − 1. Now we divide
R(x)− xk(t−1) by Q(x) and obtain C(x), R1(x) as following

R(x)− xk(t−1) = C(x) ·Q(x) +R1(x) (30)

where deg(C) ≤ k − 1, deg(R1) ≤ k(t− 1)− 1. So P (x) can be written as

P (x) = (xkt + c(x)) ·Q(x) + xk(t−1) +R1(x) (31)

Note that (xk)t+c(x)) is already a function of polynomials having degree at most
k. Assume that t = 2i−1, then having computed x2, x3, ..., xk we can compute
xkt for “free”(without non-linear multiplications).

Next we apply the same technique to Q(x) and xk(t−1) +R1(x) (both having
degree k(t − 1)) recursively. In general, if i ≤ m then the number of non-linear
multiplications can be calculated from the relation

T (k(2i − 1)) = 2T (k(2i−1 − 1)) + 1 (32)

where T (γ) is the number of non-linear multiplications required to evaluate a
polynomial having degree γ, using the above technique. This gives T (k(2m −
1)) = 2m−1− 1 ≈ N/2k. Hence the total number of non-linear multiplications is
about 1

2 (k +N/k).

E Schwartz-Zippel Lemma

Lemma 7. [Schwartz-Zippel [25,19]] Let F be a finite field. Let Q ∈ F[X1, . . . ,
Xk] be a non-zero multivariate polynomial of (total) degree at most d. Then the
number of zeroes of Q (over F) is at most d · |F|k−1.


	Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012

