
Sieve-in-the-Middle: Improved MITM Attacks (Full Version∗)†

Anne Canteaut1, Maŕıa Naya-Plasencia1, and Bastien Vayssière2

1 Inria Paris-Rocquencourt, project-team SECRET
B.P. 105, 78153 Le Chesnay cedex, France

Anne.Canteaut@inria.fr, Maria.Naya Plasencia@inria.fr
2 Université de Versailles Saint-Quentin-en-Yvelines

45 avenue des Etats-Unis, 78035 Versailles cedex, France
bastien.vayssiere.w@gmail.com

Abstract. This paper presents a new generic technique, named sieve-in-the-middle, which im-
proves meet-in-the-middle attacks in the sense that it provides an attack on a higher number of
rounds. Instead of selecting the key candidates by searching for a collision in an intermediate
state which can be computed forwards and backwards, we here look for the existence of valid
transitions through some middle sbox. Combining this technique with short bicliques allows to
freely add one or two more rounds with the same time complexity. Moreover, when the key size of
the cipher is larger than its block size, we show how to build the bicliques by an improved tech-
nique which does not require any additional data (on the contrary to previous biclique attacks).
These techniques apply to PRESENT, DES, PRINCE and AES, improving the previously known
results on these four ciphers. In particular, our attack on PRINCE applies to 8 rounds (out of 12),
instead of 6 in the previous cryptanalyses. Some results are also given for theoretically estimat-
ing the sieving probability provided by some subsets of the input and output bits of a given sbox.

Keywords. Meet-in-the-middle, block ciphers, bicliques, sbox, matching algorithms.

1 Introduction

Meet-in-the-middle (MITM) attacks are a widely used tool introduced by Diffie and Hellman
in 1977. Through the years, they have been applied for analyzing the security of a substantial
number of cryptographic primitives, including block ciphers, stream ciphers and hash func-
tions, e.g. [36, 8, 21, 24, 23]. They exploit the fact that some internal state in the middle of the
cipher can be computed both forwards from the plaintext and backwards from the cipher-
text, and that none of these computations requires the knowledge of the whole master key.
The attacker then only keeps the (partial) key candidates which lead to a collision in that
internal state and discards all the other keys. This generic attack has drawn a lot of attention
and raised many improvements, including the partial matching, where the computed internal
states are not completely known, the technique of guessing some bits of the internal state [21],
the all-subkeys approach [24], splice-and-cut [3, 4, 22] and bicliques [30]. The most popular
application of bicliques is an accelerated exhaustive search on the full AES [6]. But, besides
this degenerated application where the whole key needs to be guessed, short bicliques usually
allow to increase the number of rounds attacked by MITM techniques without increasing the
time complexity, but with a higher data complexity. Moreover, following [11, 12], low-data
attacks have attracted a lot of attention, motivated in part by the fact that, in many concrete
protocols, only a few plaintext-ciphertext pairs can be eavesdropped. MITM attacks belong

∗Full version of the extended abstract published in the proceedings of CRYPTO 2013.
†Partially supported by the French Agence Nationale de la Recherche through the BLOC project under

Contract ANR-11-INS-011.



to this class of attacks in most cases (with a few exceptions like bicliques): usually, 1 or 2
known plaintext-ciphertext pairs are enough for recovering the key.

Our contribution. This paper first provides a new generic improvement of MITM algo-
rithms, named sieve-in-the-middle, which allows to attack a higher number of rounds. Instead
of looking for collisions in the middle, we compute some input and output bits of a particu-
lar middle sbox S. The merging step of the algorithm then consists in efficiently discarding
all key candidates which do not correspond to a valid transition through S. Intuitively, this
technique allows to attack more rounds than classical MITM since it also covers the rounds
corresponding to the middle sbox S (e.g. two middle rounds if S is a superbox). This new
improvement is related to some previous results, including [3] where transitions through an
ARX construction are considered; a similar idea was applied in [29] in a differential attack,
and in [13] for side-channel attacks. This new generic improvement can be combined with
bicliques, since short bicliques also allow to add a few rounds without increasing the time
complexity. But, the price to pay is a higher data complexity. Here, we show that this in-
creased data requirement can be avoided by constructing some improved bicliques, if the key
size of the cipher is larger than its block size.

These new improvements and techniques are illustrated with 4 applications which improve
previously known attacks. In Section 4, we describe a sieve-in-the-middle attack on 8 rounds
of PRESENT, which provides a very illustrative and representative example of our technique.
This attack applies up to 8 rounds, while the highest number of rounds reached by classical
MITM is only 6. A similar analysis on DES is presented in Section 5; our attack achieves 8
rounds, while the best previous MITM attack (starting from the first one) was on 6 rounds.
The cores of these two attacks have been implemented, confirming our theoretical analysis. In
Section 6, the sieve-in-the-middle algorithm combined with the improved biclique construction
is applied to 8 rounds (out of 12) of PRINCE, with 2 known plaintext-ciphertext pairs, while
the previous best known attack was on six rounds. In Section 7, we show that we can slightly
improve on some platforms the speed-up factor in the accelerated exhaustive search on the
full AES performed by bicliques. The time complexity of the sieve-in-the-middle algorithm
highly depends on the sieving probability of the middle sbox, i.e., on the proportion of pairs
formed by a partial input and a partial output which correspond to a valid transition for S.
We then give some results which allow to estimate the sieving probability of a given sbox. In
particular, we show that the sieving probability is related to the branch number of the sbox,
and we give a lower bound on the minimal number of known input and output bits which
may provide a sieve.

2 The Sieve-in-the-Middle Attack

2.1 Basic idea

The basic idea of the attack is as follows. The attacker knows one pair of plaintext and
ciphertext (P,C) (or several such pairs), and she is able to compute from the plaintext and
from a part K1 of the key candidate an m-bit vector u, which corresponds to a part of an
intermediate state x. On the other hand, she is able to compute from the ciphertext and
another part K2 of the key candidate a p-bit vector v, which corresponds to a part of a
second intermediate state y. Both intermediate states x and y are related by y = S(x), where
S is a known function from Fn

2 into Fn′
2 , possibly parametrized by a part K3 of the key. In

practice, S can be a classical sbox, a superBox or some more complex function, as long as



the attacker is able to precompute and store all possible transitions between the input bits
obtained by the forward computation and the output bits obtained backwards (or sometimes,
these transitions can even be computed on the fly). In particular, the involved intermediate
states x and y usually correspond to partial internal states of the cipher, implying that their
sizes n and n′ are smaller than the blocksize.

K1
Forward computation with K1 F

u

S K3

v

K2
Backward computation with K2 B

K=(K1 U K2, K3, K4)

Middle Sbox with K3

Fig. 1. Generic representation of Sieve-in-the-Middle.

Then, the attacker is able to compute some pairs (u, v) in Fm
2 × Fp

2 and she wants to
determine whether those pairs can be some valid parts of a pair (x, S(x)) for some x ∈ Fn

2

(and for some K3 if S depends on a part of the key). If it appears that no input x ∈ Fn
2 can

lead to a given (u, v), then the keys (K1,K2) from which (u, v) has been obtained do not form
a valid candidate for the key. In such a case, the (m+p) positions corresponding to (u, v) can
be used as a sieve. The sieving probability is then the proportion of pairs (u, v) corresponding
to valid parts of (x, S(x)). Obviously, in classical MITM attacks, u and v correspond to the
same n-bit part of an intermediate state and S = Idn; the sieving probability is then equal
to 2−n. We now define precisely when a pair (I, J) of input and output positions can be used
as a sieve.

Definition 1. Let S be a function from Fn
2 into Fn′

2 . Let I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n′}
be two subsets with respective sizes m and p. The sieving probability of (I, J), denoted by πI,J ,
is the proportion of all elements in Fm+p

2 which can be written as (xi, i ∈ I;Sj(x), j ∈ J) for
some x ∈ Fn

2 . The pair (I, J) is called an (m, p)-sieve for S if πI,J < 1.

The smaller πI,J , the better the sieving, because more candidates will be discarded. If S
depends on a k3-bit value key K3, the definition similarly applies but S must be seen as a
function with (k3 + n) inputs.

When a large number of inputs and outputs of S can be computed by the attacker, they
can be used as a sieve, as shown in the following proposition.

Proposition 1. Any pair (I, J) of sets of size (m, p) with m + p > n is a sieve for S with
sieving probability πI,J ≤ 2n−(m+p).

Proof. For any given u, there exists exactly 2n−m values of x such that (xi, i ∈ I) = u. Thus,
(Sj(x), j ∈ J) can take at most 2n−m different values, implying that πI,J ≤ 2n−(m+p).

However, smaller subsets I and J may provide a sieve even when m+p ≤ n. This issue will be
extensively discussed in Section 8. More generally, u and v may consist of some information
bits of x and y, i.e., of some linear combinations of the bits of x and y. We then define two
linear functions L : x ∈ Fn

2 7→ u ∈ Fm
2 and L′ : y ∈ Fn

2 7→ v ∈ Fp
2. The corresponding sieving



probability π is now the proportion of (u, v) such that there exists x ∈ Fn
2 with L(x) = u

and L′(S(x)) = v. Then, π can be seen as the sieving probability of I = {1, . . . ,m} and
J = {1, . . . , p} for the function L′ ◦S ◦ L̃−1 where L̃ is any linear permutation of Fn

2 such that

(L̃(x)i, i ∈ I) = L(x).

2.2 Description of the attack

We now precisely describe the improved MITM attack and provide its complexity. The secret
key K is divided into four (possibly non-disjoint) parts, K1 to K4. K1 (resp. K2) is the part
of the key used in the forward (resp. backward) computation, while K3 is involved in the
middle S function only (see Fig. 1). The key bits corresponding to K4 are not involved in the
MITM step. In the following, ki denotes the length of the key part Ki, while k is the total
key length. Moreover, K1 ∩K2 denotes the bits shared by K1 and K2, and κ corresponds to
the size of this intersection.

We denote by I (resp. J) the set of input positions of S (resp. output positions) corre-
sponding to u (resp. v). The fact that a pair (u, v) corresponds to a valid pair of inputs and
outputs of S is characterized by a Boolean relation R with (m+ p) inputs defined by

R(u, v) = 1 if and only if ∃x ∈ Fn
2 : (xi, i ∈ I) = u and (S(x)j , j ∈ J) = v .

The attack proceeds as follows.

for all 2κ values of K1 ∩K2 do
Lf ← ∅ and Lb ← ∅
// Forward computation
for all 2k1−κ values of the remaining bits of K1 do

compute u = FK1(P ) and add u to Lf
// Backward computation
for all 2k2−κ values of the remaining bits of K2 do

compute v = BK2(C) and add v to Lb
// Merging step
Merge Lf and Lb with respect to Relation R and return the merged list Lsol.

// Testing the remaining candidates
for all K with (K1,K2) in Lsol do

if EK(P ) = C then
return K

Section 2.3 details some efficient algorithms for merging the two lists Lf and Lb (i.e. for
recovering all the (u, v) which satisfy R(u, v) = 1) with complexity lower than the product of
their sizes. Two representative examples of application on PRESENT and DES are provided
in Section 4 and in Section 5 respectively.

With a single plaintext-ciphertext pair. Obviously, the whole secret key can be recovered
only if the key length does not exceed the blocksize. Otherwise, 2k−b possible keys will be
returned in average where b is the blocksize. The time complexity of the attack is given by:

2κ
(

2k1−κcF + 2k2−κcB + Cmerge

)
+ π2kcE ,

where π is the sieving probability of (I, J) as defined in Definition 1, cE is the cost of one
encryption, while cF and cB correspond to the costs of a partial encryption in the forward



and backward directions. In most cases, cF ' cB ' cE/2. Cmerge is the time complexity of
the merging step, and it depends on k3. Its value is discussed in the following section. The
average time complexity of the attack needs to be compared to 2kcE which is the cost of an
exhaustive search for the key. The memory complexity is mainly determined by the memory
needed in the merging step. In some cases, it can be improved by storing only one among the
two lists Lf and Lb, when the auxiliary lists used in the merging step remain smaller.

With N plaintext-ciphertext pairs. If N plaintext-ciphertext pairs are available to the
attacker, then the average number of keys returned by the attack is 2k−Nb, implying that the
whole key will be recovered when N ≥ k/b. The main modification in the attack concerns the
last step where all key candidates in Lsol are tested: before performing an exhaustive search
over (K1 ∩K2) and K4 for testing all keys with (K1,K2) ∈ Lsol, an additional sieving step
is performed in order to reduce the size of Lsol. Once a new solution (K1,K2) ∈ Lsol has
been found, (N − 1) additional pairs (ui, vi) generated from the other plaintext-ciphertext
pairs are considered, and only the keys for which R(ui, vi) = 1 are kept in Lsol (note that,
in some very particular situations, it might be more efficient to directly include in Lf and
Lb the values u and v generated from several plaintext-ciphertext pairs, and then merge the
lists). The average size of Lsol after this additional sieving step is then πN2k1+k2−2κ . But this
formula should be adapted to the case where S depends on a part of the secret key K3: indeed
the merging step determines a candidate for (K1,K2,K3). Then, the sieving probability of
the additional sieving step π′ differs from π since the value of K3 is now fixed. π′ is then the
sieving probability of (I, J) for SK3 averaged over all K3. Then, in the case of N plaintext-
ciphertext pairs, the cost of the forward and backward computations are multiplied by N ,
while the cost of the testing part decreases:

2κ
(
N2k1−κcF +N2k2−κcB + Cmerge

)
+ π(π′)N−12kcE .

2.3 Merging the two lists efficiently

Very often, the middle function S can be decomposed into several smaller sboxes, and the
merging step can be performed group-wise. The problem of merging two large lists with respect
to a group-wise Boolean relation has been defined and addressed by Naya-Plasencia in [33,
Section 2]. Here, we focus on three algorithms proposed in [33], namely instant matching,
gradual matching and an improvement of the parallel matching due to [19]. We provide
general and precise formulas for the average time and memory complexities of these three
algorithms. Actually, in our case, the lists to be merged may be small. Then, the construction
of some auxiliary tables, which had a negligible cost in [33] for large lists, must now be taken
into account. It might even become the bottleneck of the algorithm. Thus, when the involved
lists are small, it is harder to determine a priori which algorithm is the most efficient in a
given case. Then, in each application, we need to check thoroughly which algorithm provides
the best complexity. The optimal case may even sometimes correspond to the combination of
two algorithms.

In the following, we consider two lists, LA of size 2`A and LB of size 2`B , whose roles are
interchangeable. The elements of both lists can be decomposed into t groups: the i-th group
of a ∈ LA has size mi, while the i-th group of b ∈ LB has size pi. The Boolean relation R can
similarly be considered group-wise: R(a, b) = 1 if and only Ri(ai, bi) = 1 for all 1 ≤ i ≤ t.
The sieving probability π associated to R then corresponds to the product of the sieving



probabilities πi associated to each Ri. Since each Ri corresponds to an sbox Si with ni-bit
inputs, a table storing all (ai, bi) such thatRi(ai, bi) = 1 can be built with time complexity 2ni ,
by computing all (xi, Si(xi)), xi ∈ Fni

2 . The corresponding memory complexity is proportional
to πi2

mi+pi . This cost won’t be included in the cost of the merging algorithm since, in the
sieve-in-the-middle process, the tables will be built once for all and not 2κ times. As we will
see, in some situations, these tables can be built “on-the-fly” with much fewer operations.

We now provide complete description of the three matching algorithms. For the sake of
simplicity, we assume in the description of the algorithms that the lists are sorted, but in
practice we can use standard hash tables for storage and lookup in constant time, since the
keys are integers. It is worth noticing that the size of the list Lsol returned by the matching
algorithm is not included in the memory complexity since each of its elements can be tested
in the attack as soon as it has been found.

Instant Matching. Instant matching successively considers all elements LB: for each b ∈ LB,
a list Laux of all a such that R(a, b) = 1 is built, and each element of Laux is searched within
LA.

Algorithm 1 Instant matching algorithm of LA and LB with respect to R.

1: for j from 1 to t do
2: Build the table Tj such that Tj [vj ] corresponds to all uj with Rj(uj , vj) = 1.
3: for each (b1, . . . , bt) ∈ LB do
4: Laux ← ∅.
5: for j from 1 to t do
6: if Tj [bj ] is empty, then go to 3.
7: Add all tuples (x1, . . . , xt) with xj ∈ Tj [bj ], ∀j, to Laux.
8: for each (x1, . . . , xt) in Laux do
9: if (x1, . . . , xt) ∈ LA then

10: Add (x1, . . . , xt, b1, . . . , bt) to Lsol.
11: Return Lsol.

Time = π2`B+m + π2`A+`B and Memory = 2`A + 2`B .

Gradual Matching. Gradual matching is a recursive procedure as detailed by Algo 2.
All elements are decomposed into two parts, the first t′ groups and the last (t − t′), with
t′ < t. For each possible value β of the first t′ groups, the sublist LB(β) is built. It consists
of all elements in LB whose first t′ groups take the value β. Now, for each α such that
Ri(αi, βi) = 1, 1 ≤ i ≤ t′, LB(β) is merged with the sublist LA(α) which consists of all
elements in LA whose first t′ groups take the value α. Then, we need to merge two smaller

lists, of respective sizes 2`A−
∑t′

i=1mi and 2`B−
∑t′

i=1 pi .

Time =

(
t′∏
i=1

πi

)
2
∑t′

i=1mi+piCmerge and Memory = 2`A + 2`B .

where Cmerge is the cost of merging the two remaining sublists.



Algorithm 2 Gradual matching algorithm of LA and LB with respect to R.

1: for j from 1 to t do
2: Build the table Tj such that Tj [vj ] corresponds to all uj with Rj(uj , vj) = 1.

3: for each β = (β1, . . . , βt′) in (F
∑t′

j=1 pj
2 ) do

4: LB(β)← {b ∈ LB with (b1, . . . , bt′) = β}
5: Laux ← ∅.
6: for each (α1, . . . , αt′) with αj ∈ Tj [βj ], ∀j ≤ t′ do
7: add (α1, . . . , αt′) to Laux.
8: for each α = (α1, . . . , αt′) in Laux do
9: LA(α)← {a ∈ LA with (a1, . . . , at′) = α}

10: Merge LA(α) with LB(β) with respect to R′ =
∏t

j=t′+1Rj .
11: Add the solutions to Lsol.
12: Return Lsol.

Parallel Matching without memory. We give here the first general description of the
memoryless version of parallel matching. The details are provided by Algo 3. This algorithm
applies an idea from [19] to the parallel matching algorithm from [33]: instead of building a
big auxiliary list as in the original parallel matching, we here build small ones which do not
need any additional memory. In parallel matching, the elements in both lists are decomposed
into three parts: the first t1 groups, the next t2 groups, and the remaining (t− t1− t2) groups.
Both lists LA and LB are sorted in lexicographic order. Then, LA can be seen as a collection
of sublists LA(α), where LA(α) is composed of all elements in LA whose first t groups equal
α. Similarly, LB is seen as a collection of LB(β). The matching algorithm then proceeds
as follows. For each possible value α for the first t groups, an auxiliary list Laux is built,
corresponding to the union of all LB(β) where (α, β) satisfies the first t relations Rj . The list
Laux is sorted by its next t2 groups. Then, for each element in LA(α), we check if a match
for its next t2 groups exists in Laux. For each finding, the remaining (t− t1 − t2) groups are
tested and only the elements which satisfy the remaining (t− t1 − t2) relations are returned.

Algorithm 3 Memoryless parallel matching algorithm of LA and LB with respect to R.

1: for j from 1 to t′ do
2: Build the table Tj such that Tj [vj ] corresponds to all uj with Rj(uj , vj) = 1.
3: for each α = (a1, . . . , at1) appearing in LA do
4: LA(α)← {a ∈ LA : (a1, . . . , at1) = α}.
5: // Compute Laux

6: L1 ← {β : Rj(αj , βj) = 1, 1 ≤ j ≤ t1}
7: Laux ← ∅
8: for each β ∈ L1 do
9: LB(β)← {b ∈ LB : (b1, . . . , bt1) = β}.

10: add all elements of LB(β) to Laux.
11: Sort Laux by β′ = (b1+t1 , . . . , bt1+t2).
12: // Merge LA(α) and Laux with respect to the next t2 groups.
13: for each a in LA(α) do
14: L2 ← {β′ : Rj(αj , β

′
j) = 1, t1 < j ≤ t1 + t2}

15: for each β′ ∈ L2 do
16: if β′ ∈ Laux then
17: for each b ∈ Laux with (bt1+1, . . . , bt1+t2) = β′ do
18: if Rj(aj , bj) for all t2 < j ≤ t then
19: Add (a, b) to Lsol.



The time and memory complexities can be evaluated as follows. We first evaluate the
average sizes of all lists involved in the algorithm. For each α, the average size of LA(α) is

2`A−
∑t1

i=1mi . Also, we have

|L1| =

(
t1∏
i=1

πi

)
2
∑t1

i=1 pi , |L2| =

(
t1+t2∏
i=t1+1

πi

)
2
∑t1+t2

i=t1+1 pi

and

|Laux| =

(
t1∏
i=1

πi

)
2`B .

Finally, the average number N of elements b which match with a on the first t1 + t2 groups
and that should be tested at Line 18 in the algorithm is

(∏t1+t2
i=1 πi

)
2`B . Then, the average

time complexity of parallel matching can be decomposed as

Time = 2
∑t1

i=1mi [|Laux|+ |LA(α)| (|L2|+N)]

=

(
t1∏
i=1

πi

)
2`B+

∑t1
i=1mi +

(
t1+t2∏
i=t1+1

πi

)
2
`A+

∑t1+t2
i=t1+1 pi +

(
t1+t2∏
i=1

πi

)
2`A+`B .

It is worth noticing that the two lists L1 and L2 do not need to be stored since their elements
are entirely defined by the tables Tj describing the valid transitions for Sj . The average
memory required by the algorithm then corresponds to

Memory = |LA|+ |LB|+ |Laux| = 2`A + 2`B +

(
t1∏
i=1

πi

)
2`B .

3 Combining Sieve-in-the-Middle and Bicliques

Sieve-in-the-middle, as a generic technique, can be combined with other improvements of
MITM attacks, in particular with bicliques [6, 30]. The general purpose of bicliques is to
increase the number of rounds attacked by MITM techniques. Here, we briefly describe how
bicliques can increase the number of rounds attacked by the previously described sieve-in-
the-middle algorithm. This can be done at no computational cost, but requires a higher data
complexity. In order to avoid this drawback, we then present an improvement of bicliques
which applies when the key length exceeds the block size of the cipher.

3.1 Sieve-in-the-middle and classical bicliques

The combination of both techniques is depicted on Figure 2: the bottom part is covered
by bicliques, while the remaining part is covered by a sieve-in-the-middle algorithm. In the
following, HK8 : X 7→ C denotes the function corresponding to the bottom part of the cipher,
and K8 represents the key bits involved in this part. Then, K8 is partitioned into three disjoint
subsets, K5, K6 and K7. The value taken by Ki with 5 ≤ i ≤ 7 will be represented by an
integer in {0, . . . , 2ki − 1}. A biclique can be built if the active bits in the computation of
HK8(X) when K6 varies and the active bits in the computation of H−1K8

(C) when K5 varies
are two disjoint sets. In this case, an exhaustive search over K7 is performed and a biclique



P

K1
Forward computation with K1 F

K3
S

K2
Backward computation with K2 B

X
K6 K5       K8=(K5,K6,K7)

H

C

Middle Sbox with K3

Bicliques

Fig. 2: Generic representation of Sieve-in-the-Middle and bicliques

is built for each value h of K7 as follows. We start from a given ciphertext C0 and a chosen
key K0

8 = (0, 0, h) formed by the candidate for K7 and the zero value for K5 and K6. We
compute X0

h = H−10,0,h(C0). Next, we compute backwards from C0 the intermediate state

Xi
h = H−1i,0,h(C0) for each possible value i for K5. Similarly, we compute forwards from X0

h the

ciphertext Cjh = H0,j,h(X0
h) for each possible value j of K6. Since the two differential paths

are independent, we deduce that Hi,j,h(Xi
h) = Cjh for all values (i, j) of (K5,K6).

Then, the sieve-in-the-middle algorithm can be applied for each K7 and each value for
(K1 ∩K2). The list Lb of all output vectors v is computed backwards from Xi

h for each value
i of K5 and each value of K2 \ (K1 ∩ K2). The list Lf of all input vectors u is computed

forwards from all plaintexts P jh corresponding to Cjh for each value j of K6 and each value of
K1 \ (K1 ∩K2). We then merge those two lists of respective sizes 2|K2∪K5| and 2|K1∪K6|.

As in classical MITM with bicliques, the decomposition of K8 should be such that the
bits of K5 do not belong to K1, the bits of K6 do not belong to K2 and the bits of K7 should
lie in (K1 ∩K2). The best strategy here seems to choose (K5,K6) such that the bits of K5

belong to K2 \ (K1 ∩K2), and the bits of K6 belong to K1 \ (K1 ∩K2). In this case, we have
to add to the time complexity of the attack the cost of the construction of the bicliques, i.e.,
2k7(2k5 +2k6)cH (very rarely the bottleneck), where cH is the cost of the partial encryption or
decryption corresponding to the rounds covered by the bicliques. The main change is that the
data complexity has increased since the attack now requires the knowledge of all plaintext-
ciphertext pairs (P jh , C

j
h) corresponding to all possible values (j, h) for (K6,K7). The data

complexity then would correspond to 2k6+k7 pairs of plaintext-chosen ciphertexts, but it is
usually smaller since the ciphertexts Cjh only differ on a few positions.

3.2 Improved bicliques for some scenarios

Now, we describe a generic idea for improving bicliques in certain scenarios and reducing the
data complexity to a single plaintext-ciphertext pair. Our improvement usually applies when
the total key size of the cipher is larger than the block size. This occurs for instance when
whitening keys are used. A detailed and successful application is demonstrated on PRINCE in
Section 6. The main idea of our improvement is to gather some parts of the partial exhaustive
search over K7 into different groups such that, within a group, all obtained ciphertexts Cj

are equal to C0.



We consider a biclique repartition of keys consistent with the sieve-in-the-middle part:
we choose K5 ⊂ K2 \ (K1 ∩ K2) as previously, and some set K ′6 ⊂ K1 (this differs from
the classical biclique construction where we had K6 ⊂ K1 \ (K1 ∩ K2)). Let ∆C

6 be the
positions of the bits of C which may be affected by K ′6 when computing forward from X, and
let ∆X

6 be the positions of the bits of X which may be affected by ∆C
6 and K ′6 during the

backward computation. In classical bicliques, the path generated in the backward direction
by the different K5 must be independent from the path generated in the forward direction by
the different K ′6. Here, we also require this first path generated by K5 to be independent from
the backward path generated when the ciphertext bits in positions ∆C

6 vary. For instance,
in the example depicted on Figure 3, H follows the Even-Mansour construction, i.e., it is
composed of an unkeyed permutation H ′ and the addition of two whitening keys Ka and
Kb. The positions of K5 and K ′6 are represented in red and blue respectively, and it can be
checked that the corresponding paths are independent.

X

 
 + 

H' X

Kb
 + 

Δ
6

 x

K
6
'

Ka

K
6
' K

5

C0

Δ
6

 C

Fig. 3: Example of the improved biclique construction.

In this situation, an improved biclique without any additional data can be built if the size
of ∆X

6 is smaller than k′6. In our context, the algorithm has to be repeated for each value
h for K ′7 = K8 \ (K5 ∪ K ′6), but the index h will be omitted in the description. First, we
precompute the values obtained from a chosen C0 when K ′6 takes all possible values. If the
number of information bits in ∆X

6 is less than k′6, all 2k
′
6 transitions can be represented by

several lists Lj , each containing the different values of K ′6 which all map C0 to the same value
of the state X, Xj (see Figure 4(a)). For the sake of simplicity, we assume that all these lists
have the same size 2`. In most cases, we have ` = k′6 − |∆X

6 |. For the example depicted on
Figure 3, we assume that H ′ is such that the function obtained by restricting its inputs to
the positions in ∆X

6 and its outputs to the positions in ∆C
6 is a permutation. Then, it clearly

appears that the number of bits in ∆X
6 is equal to the number of bits of K ′6 ∩Kb, and thus

strictly smaller than the number of bits of K ′6. More precisely, there are exactly 2` values of
K ′6, with ` = |K ′6 ∩Ka| , which provide the same value of X = H ′−1(C0 +Kb) +Ka when K ′6
varies and all other bits are fixed.



Now, for each of the 2k
′
6−` values of Xj , all transitions from C0 to Xj through different

values of K ′6 ∈ Lj can also be seen as the 2` biclique transitions from Xj to C0 through some
particular values of the key K ′6 (these transitions are represented in black on Figure 4(b)).

C0
X0

Xj

X2k6−1

0,K ′6 ∈ L0

...

0,K ′6 ∈ L2k6−1

(a) Step 1

i,Kj

0,Kj C0Xj

Xj +∇i

2k5 − 1,Kj

C0

C0Xj +∇2k5−1

... ...

(b) Step 2: to be repeated for the

2k′6−` values of j

Fig. 4: Improved bicliques construction.

Now, the second step consists in building the bicliques in the other direction: from C0

for each value of Xj . For each of the 2k
′
6−` values of j, we fix the value of K ′6 to a constant

value Kj appearing in Lj . This way, the part of X corresponding to ∆X
6 is the same for

all the transitions of the bicliques, and this property holds even when K5 is modified since
both corresponding paths are independent. We then consider the 2k5 possible values i for
K5 and compute the corresponding X = Xj + ∇i (see Figure 4(b)). We then deduce the
2k5+k

′
6 transitions H(Xj +∇i)(i,K′6) = C0 for all K ′6 ∈ Lj , from (2k

′
6 + 2k

′
6−`+k5) computations

of the function. Indeed, the first term in the complexity corresponds to the precomputation
phase (Step 1), and the second one to the number of lists Lj , 2k

′
6−`, multiplied by the cost

for building the bicliques in the other direction. The main advantage of this construction is
that it can be combined with the sieve-in-the-middle part as previously described, but it now
requires a single plaintext-ciphertext pair, the one formed by (P 0, C0).

Finally, we assume that the bits of K5 belong to K2 \ (K1 ∩K2), the bits of K ′6 belong to
K1 and the bits of K ′7 are the bits from (K1 ∪K2) \ (K5 ∪K ′6), the time complexity of the
attack is:

2k
′
7

(
2k
′
6 + 2k

′
6−`+k5

)
cH + 2k1cF + 2k2cB + 2κCmerge + π2kcE

where Cmerge is the cost of merging the lists of size 2k1−κ and 2k2−κ with respect to the sieving
conditions.

A similar idea can also be used for choosing an appropriate K5 which delays the propa-
gation of the unknown bits during the forward computation. This will be shown in the case
of Prince.



4 Application to PRESENT

We here discuss an application example on the block cipher PRESENT-80, which illustrates
our ideas. The number of rounds reached when using the new improvement will be seven,
while it can be proved that classical meet-in-the-middle attacks do not apply on more than
six rounds. By using bicliques, we can directly extend the attack to 8 rounds with the same
computations and a data complexity of 26 instead of 2. We can similarly apply our attack
to 9 and 10 rounds of PRESENT-128. These results are far from reaching the number of
rounds of the best known attacks, but are the first ones with (very) low data complexity.
Actually, as pointed out in [11, 12], it is important to analyze the primitives when only few data
are available. PRESENT could to some extend be considered as one of the most important
lightweight block ciphers, and PRESENT-like functions might be used in further constructions
as in [10, 15, 31]. Determining the number of rounds which can be attacked with a single (or
only a few) pair of plaintext-ciphertext is then important to better understand its security.

4.1 Brief description of PRESENT

PRESENT is an ultra-lightweight block cipher proposed by Bogdanov et al. [7], which has
been standardized by ISO in 2011. Its original structure has attracted the attention of the
community, and a large number of results on reduced versions have been published [38, 16,
39, 35, 2, 34, 17, 27, 32, 5]. All these attacks need a large number of plaintext-ciphertext pairs,
which in most cases reaches the full codebook.

Two versions of PRESENT have been proposed, with an 80-bit key and with a 128-bit
key. Besides the key length, both versions only differ in the key schedule. PRESENT operates
on 64-bit blocks. For encrypting the plaintext, 31 rounds of the following round-function are
applied, followed by a last whitening subkey addition (sk32).

S S S S S S S S S S S S S S S S

ski

64 bits

Fig. 5: One round of PRESENT.

The round function consists of 3 transformations, as depicted on Figure 5:

1. The subkey addition: at the beginning of each round i, for i ∈ [1, . . . , 31], the corresponding
subkey ski of 64 bits is xored to the internal state.

2. The non-linear transformation: 16 4 × 4-bit sboxes S are applied in parallel to the 16
groups of 4 consecutive bits. PRESENT sbox is represented in hexadecimal notation by:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2



3. A bit-wise permutation P , which operates on the 64 bits as follows:

P (i) =

{
16i mod 63 for 0 ≤ i ≤ 62
63 for i = 63

Key schedule for the 80-bit version. Given an 80-bit key K = k79, . . . , k0, the subkeys,
(sk1, . . . , sk31, sk32) that are xored to the internal state at each round, where sk32 is the
final whitening key, are computed from the key bits in the following way: For i from 1 to 32

1. ski = k79, . . . , k16,
2. k79, k78, . . . , k1, k0 = k18, k17, . . . , k0, k79, . . . , k20, k19,
3. k79k78k77k76 = S(k79k78k77k76),
4. k19k18k17k16k15 = k19k18k17k16k15 ⊕ roundcounter.

4.2 Sieve-in-the-Middle on 7 and 8 rounds of PRESENT-80

The attack exploits the fact that the subkeys do not involve all bits of the key, and also
that the values of some bits in the ”middle” can be computed without knowing the whole
state. Figure 6 represents the consecutive internal states in the MITM attack on 7 rounds of
PRESENT-80. One round at the end will then be added with bicliques. Each square represents
a nibble (of the key or of the state). Colored bits correspond to known bits, and white bits
are unknown. The colored Sboxes in the middle are those involved in the sieve-in-the middle
procedure. In the forward computation, all 80 key bits are known except 9, namely bits 3,
4 and 8 to 14. Then, with the notation introduced in Section 2.2, we have k1 = 71. In the
backward direction, all key bits but 6 (bits 57, 60, 61, 64, 65 and 68) are known, implying
k2 = 74. Clearly, we have κ = |K1 ∩K2| = 65 and k3 = k4 = 0.

047 153163

P

2

3

4’

⊕sk1

1

sbox

perm

sbox

perm

sbox

perm

sbox

⊕sk2

⊕sk3

⊕sk4

S S S S S S S S S S S S S

79 63 47 31

18 2 66 50

16

35

37 21 69 54

56 40 24 8 73

6

S S S

S S S S S S S S S S S S S

75 59 43 27 12

14 78 62 46 31

33 17 1 65 50

52 36 20 4 69

S S S

5’

C

sbox

perm−1

⊕sk5

⊕sk6

⊕sk7

7’

sbox−1

⊕sk8

6’

perm−1

perm−1

perm−1

sbox−1

sbox−1

Fig. 6: MITM attack on 7 rounds of PRESENT.



The middle sieving. Figure 7 focuses on the middle part of the cipher. The size of the
known input vector u is m = 27 and the size of the known output vector v is p = 15. The
middle sbox S is formed by nine independent 4 × 4 sboxes, i.e. t = 9. For six of these small
sboxes, m = 3 input bits and p = 2 output bits are known. For the other three sboxes, we
have m = 3 and p = 1. As the configuration is the same for each of these two groups of sboxes,
the total sieving probability equals π = π31π

6
2, where π1 and π2 are the sieving probability of

the sbox corresponding to p = 1 and p = 2 respectively.

S S S S S S S S S S S S SS SS

Fig. 7: Middle sieving.

An upper bound on the sieving probability π2 can be deduced from Proposition 1 since
n = 4, m = 3 and p = 2. Then, we have that π2 ≤ 1/2. From Prop. 4 in Section 8, we can easily
deduce that equality holds in this particular case. When p = 1, the bound in Proposition 1
is not relevant, but Prop. 4 in Section 8 shows that π1 = 1 − 1

8 = 0.875. Therefore, the
total sieving probability is π = 2−6.58. This means that in the testing phase, we only have
to examine 280−6.58 = 273.42 potential key candidates and a set of 280−64 = 216 possible keys
will be recovered. If two pairs of plaintext-ciphertext are known, a proportion of π2 = 2−13.16

of the keys needs to be tested, and the attack recovers the whole key, instead of a set of 216

candidates.

The merging step in the attack consists in merging two lists LA of size 26, containing
elements formed by t = 9 groups with mi = 3 bits and LB of size 29, containing elements
formed by 6 groups with pi = 2 bits and 3 groups with pi = 1 bits. With these parameters, the
best algorithm among the ones presented in Section 2.3 is the memoryless parallel matching
applied with the following parameters: t1 = 1, t2 = 4, where the first five groups correspond
to the groups with p = 2. From the formula given in Section 2.3, we deduce that the time
complexity of the merging step is 211 + 210 + 210 = 212. For each guess of the 65 bits in
K1∩K2, the cost of merging the two lists is then 212, and we obtain in average 28.42 solutions
corresponding to the possible key candidates, among the 215 initial ones.

The total time complexity of the attack is then: 265(26cF+29cB+212)+273.42cE ' 273.42cE ,
while the cost of the exhaustive key search is 280cE . The memory complexity is 29, and the
data complexity is a single pair of known plaintext-ciphertext.

One more round with bicliques. If an 8th round is added, the differential paths in this
8th round generated by the non-common key bits are independent. Then, this last round can
be covered by classical bicliques, with no additional time complexity and a data complexity
of 26.

Experimental results. These results have been partially implemented, and we have verified
the sieving part as follows: we have assumed that 48 among the 65 bits in K1 ∩ K2 are



known. Then, we succeeded in recovering the 32 remaining key bits with an average predicted
complexity of 229 plus 226 encryptions, proving that our merging phase works as predicted.

The attacks on the 128-bit version are similar to the previous ones, and the highest number
of attacked rounds is 9, and 10 with bicliques, but we only gain a factor two on the exhaustive
key search.

5 Application to DES

The Data Encryption Standard (DES) appeared in 1977, and was replaced as the official
standard of block cipher by the AES in 2000. DES is a 16-round Feistel cipher, which encrypts
64-bit blocks with 56-bit keys. Sixteen balanced Feistel rounds are iteratively applied to the
plaintext block, with a F -function composed of a layer of non-injective SBoxes followed by a bit
permutation. The F -function, described in Figure 8, accommodates a 32-bit input along with

S1 S2 S3 S4 S5 S6 S7 S8

P

E

R

SK

 

F(R,SK)

Fig. 8: F -function used in a DES round.

a 48-bit subkey. The input is expanded into 48 bits, and the expanded input is XORed with
the subkey. Eight groups of 4 bits are computed by eight 6× 4 S-boxes S1,S2,...,S8. Sixteen
subkeys are derived from the key with the algorithm described in Figure 9. The effective key
length is 56 bits. In the meet-in-the-middle cryptanalysis, we consider the master key as its
image under PC1, i.e., the initial content (C0, D0) of the key register of Figure 9.

5.1 Previous MITM cryptanalyses of reduced DES

MITM cryptanalysis was first proposed for analyzing the extension of double DES. This
cryptanalysis proved that the security of double DES would not improve on the security of



C1

PC1

PC2 SK1(48 bits)

PC2 SK2

PC2 SK16

<<< c2

56 bits

<<< c16 <<< c16

<<< c2

<<< c1 <<< c1

C2 D2

D1

C16 D16

K (64 bits)

C0 (28 bits) D0 (28 bits)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Fig. 9: Key scheduling algorithm of DES

DES. Secondly, it was used on the DES itself by Chaum and Evertse [14]. They showed that
a meet-in-the-middle key recovery could be applied to six rounds and they gave an upper
bound of seven DES rounds to the range of their method. Latter in [21] the efficiency of the
meet-in-the-middle was improved for reduced versions of DES to 4, 5, and 6 rounds. Though
there exists a meet-in-the-middle attack on 7 rounds of DES that does not start from the first
round, ours is the first to reach 7 rounds starting from the beginning (and also 8).

Time complexity 4 rounds 5 rounds 6 rounds 7 rounds 8 rounds

MITM [14] 235 245.5 252.9 upper bound
MITM partial matching [21] 220 235.5 251.8

MITM partial matching through S-boxes (this section) 253 253

Table 1. Complexity of previous meet-in-the-middle from the first round on truncated versions of DES

5.2 Sieve-in-the-middle on 7 and 8 rounds (starting from the first one)

As this analysis is very similar to the one on PRESENT, we briefly explain here its procedure.
We first determine the parameters of this attack, which uses a single plaintext-ciphertext pair.
In the forward direction we guess all the key bits but the ones at positions {19, 26, 36, 55}. In
the backward direction, the ones missing are {2, 6, 9, 21}. This means that k1 = k2 = 52 and
κ = |K1 ∪K2| = 48.

With this key decomposition, we can compute 5 input bits of the sbox S7 in the fifth
round for the forward direction, and the four bits of output of the same sbox in the backward



direction. In this case, we have S = S7, and so t = 1. Let us recall here that the DES sboxes
are not bijective, but 6-bit to-4 bit sboxes. Therefore, the knowledge of all 4 output bits does
not determine the input. Instead, for m1 = 5 known input bits and p1 = 4 known output
bits, the sieving probability is π = 2−(n

′−1) = 2−3. Indeed, Proposition 4 implies that any
(n − 1, n′)-sieve has maximal probability 2−(n

′−1) if and only if there is no pair of elements
at Hamming distance 1 which have both the same value under the sbox. This is the case of
all DES Sboxes, which have been designed such that any two inputs which correspond to the
same output always differ on at least 2 positions.

The size of both lists Lb and Lf is 24. We can perform an instant matching (with LA = Lb
and LB = Lf ) for finding the 24+4−3 = 25 solutions with a complexity of 24+1 = 25. The
memory complexity of this phase is determined by the size of both lists, as we do not need
to store the transition tables and we can compute the output for the possible missing input
bit on the fly. The total time complexity of the attack will be:

248(24cF + 24cB + 25 + 25cE) ≈ 253cE ,

so we have won 3 bits on the exhaustive search (256cE).

This attack has been implemented considering 24 of the κ bits of (K1∩K2) as known and
recovering the remaining 32, and we have obtained the expected complexities, verifying our
theoretical approaches.

We can add one additional round with bicliques: with the previously described configura-
tion, the paths generated by K6 and K5 are not independent. For that, we need to transform
one of the bits of K1 \ (K1∩K2) into a a common bit, i.e. also included in K2. In this case the
attack with the biclique covering the 8-th round can be applied in a similar way as before,
with time complexity:

249(23cf + 24cb + 24 + 24cE) ≈ 253cE ,

and a data complexity of 24 plaintext-ciphertext pairs.

6 Application to PRINCE

PRINCE is a lightweight block cipher designed by Borghoff et al. [9]. Though being very
recent, it has already waked the interest of many cryptanalysts [37, 26, 1]. The best known
attacks so far on the proposed cipher, including the security analysis performed by the authors,
reach 6 rounds. In particular, MITM with bicliques (without guessing the whole key) is said to
reach at most 6 rounds (out of 12). In [26], a reduction of the security by one bit is presented,
and in [1] an accelerated exhaustive search using bicliques is presented. Here, we describe
how to build sieve-in-the-middle attacks on 8 rounds with data complexity 1 (or 2 if we want
to the whole key instead of a set of candidates). In addition to the new sieve-in-the-middle
technique, we use the improved method for constructing bicliques presented in Section 3.2.

6.1 Brief description of PRINCE

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit ele-
ments, Ka and Kb. Its structure is depicted on Figure 10. PRINCE is based on the so-
called FX-construction: two whitening keys Win = (Ka + Kb) and Wout = (K ′a + Kb) are
xored respectively to the input and to the output of a 12-round core cipher parametrized



h+ h+-? ?-

RC6 Kb

h+ h+
RC11

-? ?-

-P−1 -M -S−1
B

-

b
b

b
bb

"
"

""-SB
-M -P-

b
b
b

bb

"
"

""

K′a +Kb

h+- ?-

Ka +Kb

h+ h+
RC5

h+h
RC1

+ SB
- M-S−1

B
--R - -? ?- R - -? ?- R−1- R−1-... ...

Kb Kb

Fig. 10: Structure of PRINCE.

by Kb only. The value of K ′a involved in the post-whitening key is derived from Ka by
K ′a = (Ka ≫ 1)⊕ (Ka � 63).

The round function is composed of:

– a non-linear layer SB corresponding to 16 parallel applications of a 4× 4 sbox σ.
– a linear layer P ◦ M , where M is the parallel application of 4 involutive mixcolumns

operations on 16 bits each (defined either by M̂ (0) or by M̂ (1)). This transformation is
then followed by a permutation P of the 16 nibbles defined by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

– the addition of a round constant RCi and of the subkey Kb.

The first 5 rounds in PRINCE correspond to the previously described round permutation R,
while the last 5 rounds are defined by the inverse permutation R−1. The two middle rounds
correspond to the successive applications of SB, M and S−1B .

6.2 Sieve-in-the-middle and improved bicliques on 8 rounds

Sieve-in-the-middle on six rounds. We first describe the sieve-in-the-middle part of the
attack, which covers Rounds 1 to 6 (see Figure 11). The internal state X after Round 6 is
supposed to be known, as well as the plaintext. The sieving step is done with respect to a
function S which covers Round 3 and the SB level of Round 4. This middle function S can
then be decomposed as four 16×16 superboxes: the colored nibbles in the middle of Figure 11
represent the nibbles belonging to the same superbox.

The 128 keybits in PRINCE are then decomposed as depicted on Figure 12:

– K1, i.e. the keybits known in the forward direction, are represented in white and in blue
in Kb and the first whitening key Win. They correspond to all bits Kb and Win except the
11 leftmost bits of the third 16-bit group in Kb.

– K2, i.e. the keybits known in the backward direction, are represented in white and in red
in Kb and Win. They correspond to all bits of Kb and Win except the leftmost nibble
of Kb and the 16 bits at positions 0 and 49 to 63 in Win.

It follows that the intersection (K1 ∩K2) consists of κ = 97 information bits of (Ka,Kb): the
49 white bits in Kb and the 48 white bits in Win.

The algorithm is described on Figure 11, where each nibble which contains ’K’ is known
in the backward computation, each nibble which contains ’k’ is known in the forward com-
putation and ’1’ means that there is a known bit in the nibble. The right part of the figure
represents the key. We will exploit the fact that, for each 16×16 mixcolumns operation, there



k k k k k k k k k k k k k k k k P

SB k k k k k k k k k k k k k k k k 2^4

1 MC
k k k k k k k k k k k k k k k k
k k k k k k k k k k k k k k k k

SR k k k k k k k k k k k k k k k k
Kb

SB k k k k k k k k k k k k k

2 MC
k k k k k k k k k k k k k
k k k k k k k k k k k k

SR k k k k k k k k k k k k
Kb

SB

3 MC  S
SR

Kb

4 SB

 MC
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

K K K K K K K K K K K K
5 SB 1 K K K K K K 1 K K 1 K K 1 K K

Kb
SR 1 K K K K K K 1 K K 1 K K 1 K K

6 MC
1 1 1 1 K K K K K K K K K K K K

K K K K K K K K K K K K K K K
SB K K K K K K K K K K K K K K K

Kb
SR

7 MC

SB O O O O X 2^11
Kb O

SR O O O O

8 MC
O O O O
O O O O

SB O O O O
O O O O

k k k k k k k k k k k k k k k k C

W
in

0,1,4 Cond.

4x 2,5,8 Cond.

2,5,8 Cond.

W
out

Δ
6
 C

Fig. 11: Sieve-in-the-middle attack on 8 rounds of PRINCE with data complexity of 1.

exist 4 output bits (one per nibble), as well as 8 information bits of the output, which do not
depend on a given input nibble. Each of these 8 information bits corresponds to the sum of
two output bits. Indeed, the 16× 16 transformation M̂0 is defined by

a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 7−→

b0 + c0 + d0 a1 + c1 + d1 a2 + b2 + d2 a3 + b3 + c3
a0 + b0 + c0 b1 + c1 + d1 a2 + c2 + d2 a3 + b3 + d3
a0 + b0 + d0 a1 + b1 + c1 b2 + c2 + d2 a3 + c3 + d3
a0 + c0 + d0 a1 + b1 + d1 a2 + b2 + c2 b3 + c3 + d3

 ,

where a, b, c and d represent the four input nibbles. Then, it can be checked for instance
that the four output bits a′0, b

′
1, c
′
2 and d′3 do not depend on nibble a, as well as the eight

information bits b′0 + c′0, b
′
0 + d′0, a

′
1 + c′1, a

′
1 + d′1, a

′
2 + b′2, a

′
2 + d′2, a

′
3 + b′3 and a′3 + c′3. The

same situation holds for every input nibble, as also for the other mixcolumns transformation
M̂1.

In the backward computation, from State X and K2, we can compute 3 nibbles of each
input of the mixcolumns operations at Round 5. Then, we deduce one bit in each nibble of



Kb  

Bits deduced from K2

Bits deduced from K1

 

Ka Bits deduced from K1 ∩ K2
W

in

Wout

Fig. 12: Decomposition of the key in the attack on 8 rounds of PRINCE. Win = Ka⊕Kb and
Wout = (Ka ≫ 1)⊕ (Ka � 63)⊕Kb.

the output of the middle function S, as well as 32 information bits which involve the outputs
of two different superboxes. When considering s < 4 superboxes together, the number of
information bits known is reduced to 8 if s = 2, and to 20 if s = 3.

In the forward computation, from the plaintext P and K1, we compute three input nibbles
of each superbox. From the mixcolumns operation in Round 2 whose input is partially known,
we can also have 4 additional information bits on the input of the middle function S. When
considering s < 4 superboxes together, the number of information bits known is reduced to 0
if s = 2 and to 1 if s = 3.

Then, we need to merge the two lists Lf and Lb of respective sizes 24 and 211. Since
m = 4 × 12 + 4 = 52 input bits and p = 4 × 4 + 32 = 48 output bits are known, the total
sieving probability π is at most 264−(52+48) = 2−36. In the following, the tables Tj providing
all transitions for the four superboxes Sj are supposed to be known1.

We are going to first apply the instant matching on the first two blocks (orange and
green), i.e., we apply Algorithm 1 described on Page 6 with parameters n1 = n2 = 16 and
m1 = m2 = 12 and p1 + p2 = 8 + 8 = 16. The sieving probability of these two superboxes
together is then π1,2 = 232−(24+16) = 2−8. We consider LA = Lb and LB = Lf . From
the corresponding formula in Section 2.3, we get that the time complexity of this step is
2−824+16 + 2−8215 ≈ 212. With this complexity we have found 215π1,2 = 27 input-output
pairs of S which are valid for the first two superboxes. We can now check whether each of
these pairs is also valid for the two remaining superboxes. Now, the sieving probability for
the remaining part is at most 2−36 × 2+8 = 2−28 as the total sieving probability is at most
2−36.

Therefore, at the end of the merging step, for each guess of the κ = 113 bits of (K1∩K2),
we have a probability of 27−28 = 2−21 of finding a correct configuration for the 15 remaining
bits of (K1,K2). This means that the testing step will consider 2113−21 = 292 keys, and it
will recover 264 possible candidates for the whole key. If two plaintext-ciphertext pairs are
available, the testing step will consider 292−36 = 256 keys instead of 292, leading to performing
a test over 256 candidates for recovering the correct key.

Improved bicliques part. Our attack combines the previous sieve-in-the-middle algorithm
with bicliques built as described in Section 3.2, without increasing the data complexity. We
define K ′6 as the five nibbles corresponding to the union of the leftmost nibble of Kb and the
four leftmost nibbles of the whitening key Wout = (K ′a + Kb). Then, ∆C

6 is represented on
Figure 11 by the four ’O’ symbols in the line before C. Also, ∆X

6 then corresponds to the ’O’

1The orange and green superboxes that involve common key bits only can be computed on the fly and will
be used first for the instant matching. For each pair we obtain, the whole key is already known, so we can
repeat the on-the-fly procedure.



symbols in X. Then, |∆C
6 | = 16 and |∆X

6 | = 16. The remaining ’O’ show the path from ∆C
6 to

∆X
6 . All 220 transitions obtained when K ′6 varies correspond, for each one of the 216 possible

values of j, to 24 biclique transitions from Xj to C. Then, K5 is defined as the 11 leftmost
bits of the third 16-bit group of Kb, implying that K5 is equal to K2 \ (K1 ∩K2). The path
generated in the backward direction, represented in red, is then independent from the blue
path generated by K ′6, and also from the path with ’O’ symbols from ∆C

6 to ∆X
6 .

The complete algorithm then consists in performing an exhaustive search over the κ = 97
common bits corresponding to the white bits of Kb and Win in Figure 12. The previously
described bicliques determine 216 states Xj , and 24 transitions from each Xj to C. Then, for
each Xj , we examine the corresponding 24 values of K ′6. For those K ′6, we compute forwards
from the plaintext P the list of all 24 vectors u. It is worth noticing that even if the red bits of
Ka and Kb are unknown in the forward direction, their sum is known (see Fig. 12). Similarly,
the list Lb of all vectors v is computed backwards from the 211 Xi and their associated value
i for K5. From the formula given in Section 3.2, we deduce that, for one plaintext-ciphertext
pair, the time complexity is

Time = 297
(
220 + 216+11

)
cH + 2117cF + 2113cB + 297 × 212 + 2−36 × 2128cE ' 2124cH .

We have then gained more than four bits over the exhaustive search (2128cE). The mem-
ory complexity is of 220, corresponding to the precomputed table in the construction of the
improved bicliques, since the transition tables for the superboxes can be computed on the fly.

7 Application to AES Biclique

In the analysis on the full-round AES-128 proposed by Bogdanov et al. in [6], though the
whole key needs to be guessed, the authors count the number of sboxes which need to be
recomputed for each guess, among all sboxes involved in one encryption. Then, despite a
loop of size 2128, a speed-up factor of 0.27 is obtained, leading to a complexity of 2126.14

encryptions.

Our sieve-in-the-middle technique can be applied and it may improve the complexity on
some platforms. We can consider that the middle function S in our algorithm is defined by a
32× 32 superbox. By precomputing and storing the possible transitions for the superbox in a
table of size 232, we do not need to recompute the five sboxes included in S each time. Instead,
we determine by a table-lookup whether a transition from one known input byte to 4 known
output bytes is possible. If the attack is performed on a platform on which a look-up in a
table of size 232 is faster than five evaluations of the sbox, this variant is slightly faster than
the original attack. Because of the branch number of MixColumns, the corresponding sieving
probability is 2−8, implying that the sieving performed is the same as in the original analysis
(where a collision on 8 bits is considered). Our technique seems similar to the concept of
MITM through linear relations, introduced in [25, 28]. However, in our case, we do not check
linear relations, but possible transitions for a nonlinear function, since the function which
provides the sieving is a superbox and involves sboxes. For this reason, this technique allows
us to decrease the number of sbox evaluations: compared to an exhaustive search for the key,
the proportion of sbox evaluations is now 0.203.

It is worth noticing that the precomputation of the tables has a negligible cost, as they
only need to be computed once for each guess of the 232 values of key bits involved in S. Also,
we are able to choose an S involving a part of the key which does not need to be recomputed.



Though the improvement is very tiny, we believe that our technique can also be useful for
future biclique attacks which aim at an accelerated exhaustive search for the key.

8 Sieving Probability and Related Properties of the Sbox

8.1 General properties

In this section, we focus on the general problem of theoretically estimating the sieving property
provided by two subsets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n′}, with respective sizes m and p, for
a given function S from Fn

2 into Fn′
2 . In particular, we provide some results on the minimal

value of (m + p) for which a sieve exists. In the following, SJ denotes the function from Fn
2

into Fp
2 corresponding to the p coordinates of S defined by J . Also, for any affine subspace W ,

S|W denotes the restriction of S to W , i.e., the function defined on W by S|W (x) = S(x).
Obviously, S|W can be identified with a function of dimW input variables.

For a given input set I, V denotes the linear subspace V = {x ∈ Fn
2 : xi = 0, i ∈ I}. Then,

the sieving probability of (I, J) can be expressed in terms of the sizes of all Range(SJ)|u+V
when u varies.

Proposition 2. Let Ak, 1 ≤ k ≤ 2min(p,n−m), be the number of cosets u + V such that
#Range(SJ)|u+V = k when u varies in Fm

2 . Then, the sieving probability of (I, J) is equal to

πI,J = 2−p + 2−(p+m)
2min(p,n−m)∑

k=2

(k − 1)Ak .

Proof. The value of πI,J is deduced from the number of valid pairs (u, v), which equals

min(2p,2n−m)∑
k=1

kAk = 2m +

min(2p,2n−m)∑
k=2

(k − 1)Ak

where the last equality comes from the fact that the sum of all Ak equals 2m. ut

Then, we deduce the following corollary by using that πI,J = 2−p if and only if A1 = 2m.
This means that SJ is constant on all cosets of V .

Corollary 1. The sieving probability of (I, J) satisfies πI,J ≥ 2−p, with equality if and only
if SJ does not depend on its inputs at positions in {1, . . . , n} \ I.

Link with the branch number of S. We associate to S the (nonlinear) code CS of length
(n + n′) and of size 2n defined by CS = {(x, S(x)), x ∈ Fn

2}. The minimum distance of CS is
the lowest value of wt(x+ y) +wt(S(x) +S(y)) for distinct x, y. It corresponds to the branch
number of S. Obviously, when m+p > n, the sieving probability of any (I, J) of size (m, p) is
at most 2n−(m+p) (see Proposition 1). Now, the following proposition shows that this upper
bound is tight when (m+ p) exceeds some bound depending on the branch number of S.

Proposition 3. Let I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n′} be two subsets with respective sizes
m and p with m+ p ≥ n. Then, the following three statements are equivalent:

(i) πI,J < 2n−(p+m)



(ii) there exist two distinct elements x and y in Fn
2 such that

Supp(x+ y) ⊆ I and Supp(S(x) + S(y)) ⊆ J

(iii) there exist some input difference of the form a = (0I , α) and some output difference
b = (0J , β) such that the entry of index (a, b) in the difference table of S is non-zero.

Most notably, all (m, p)-sieves have probability 2n−(m+p) if and only if m+ p > n+ n′ − dmin

where dmin is the branch number of S (i.e., the minimal distance of CS).

Proof. The last two statements are clearly equivalent. Then, we will prove the equivalence
between the first two. For any u ∈ Fm

2 , the restriction of SJ to u + V can take at most
2n−m values. Then, πI,J = 2n−(m+p) if and only if, for any u ∈ Fm

2 , all values of SJ(x) are
distinct when x varies in u + V . This equivalently means that there is no pair of inputs x1
and x2 which coincide on I (i.e., which have the same u) such that S(x1) and S(x2) coincide
on all positions in J . Thus, πI,J < 2n−(m+p) if and only if there exists x1 and x2 such that
Supp(x1 + x2) ⊂ I and Supp(S(x1) + S(x2)) ⊂ J . Then, the Hamming distance between
(x1, S(x1)) and (x2, S(x2)) equals n − +n′ − (m + p), implying that such a pair of elements
exists if and only if n+ n′ − (m+ p) < dmin. ut

For instance, the branch number of the 4×4 PRESENT sbox is equal to 3. It follows that
any (m, p) sieve with m+ p ≥ 6 has probability 2n−(m+p).

Lower bound on the minimal value of (m+p). Even if the code CS is a nonlinear code,
its dual distance can be defined as follows (if CS is linear, this definition coincides with the
minimum distance of the dual code C⊥S ).

Definition 2. Let C be a code of length N and size M over Fq and A = (A0, . . . , AN ) be its
distance distribution, i.e., Ai = 1

M#{(x, y) ∈ C × C : dH(x, y) = i} .
Let A′ = (A′0, . . . , A

′
N ) be the image of A under the MacWilliams transform, A′(X,Y ) =

A(X+ (q−1)Y,X−Y ) where A(X,Y ) =
∑N

i=0AiX
N−iY i and A′(X,Y ) =

∑N
i=0A

′
iX

N−iY i.
The dual distance of C is the smallest nonzero index i such that A′i 6= 0.

The dual distance of CS is a lower bound on the lowest (m + p) for which an (m, p)-sieve
exists. Indeed, we can use the following theorem due to Delsarte.

Theorem 1. [18] Let C be a code of length N and size M over Fq. Then, the words of C
restricted to any t positions take all the qt possible values exactly M/qt times if and only if
t < d⊥ where d⊥ is the dual distance of C.

Then, we derive the following result.

Theorem 2. Let d⊥ be the dual distance of the code CS. Then, for any (m, p) such that
m+ p < d⊥, there is no (m, p)-sieve for S. Moreover, there exists no (m, p)-sieve for S with
m+ p ≤ n if and only if CS is an MDS code, which cannot occur if S is defined over F2.

Proof. The first part of the theorem is a direct consequence of Delsarte’s theorem (Theorem 1).
The second part comes from the fact that, for m+p = n, (I, J) is not an (m, p)-sieve if and

only if (xi, i ∈ I;Sj(x), j ∈ J) takes all possible values in Fn
q exactly once. From Delsarte’s

theorem, this situation occurs for all (I, J) with m + p = n if and only if the dual distance



of C is greater than or equal to (n + 1). But, as noted in [18, Page 426], d⊥ = n + 1 implies
that the minimum distance of C is also maximal, i.e., dmin = n′ + 1 (or equivalently that C
is MDS). In this case, we deduce from Prop 3 that all (m, p) sieves with m + p ≥ n have
efficiency 2n−(m+p). ut

In some scenarios, S is defined over a larger alphabet, and I and J may be defined as two
sets of byte (or nibble) positions. Then, the previous theorem proves that, if the corresponding
code CS is an MDS code, there is no (m, p)-sieve for m + p ≤ n, and we deduce also from
Proposition 3 that all (m, p)-sieve with m+ p > n have probability 2n−(m+p).

8.2 Sieving probability for some particular values of (m, p)

(m, 1)-sieves and nonlinearity. When p = 1, a pair (I, {j}) of size (m, 1) is a sieve if
and only if Sj is constant on some coset u + V . Therefore, if (I, {j}) is a sieve, then Sj is
(n−m)-normal, i.e. constant on an affine subspace of dimension (n−m). In particular, it can
be approximated by an affine function with a probability at least 1

2(1 + 2−m) [20]. It follows
that, if S provides the best resistance to linear cryptanalysis for even n, then it has no sieve
(I, {j}) with |I| < n

2 − 1. As an example, the AES Sbox does not have any (2, 1)-sieve.

(n − 1, p)-sieves. When m = n− 1, the sieving probability can be easily determined by the
difference table of S.

Proposition 4. Let I = {1, . . . , n} \ {`} and let J ⊂ {1, . . . , n′} with |J | = p. Then,

πI,J = 2−(p−1) − 2−(p+n)
∑

β∈Fn′−p
2

δ(e`, (0J , β)) ,

where δ(a, b) = |{x ∈ Fn
2 : S(x+a)+S(x) = b}| is the element of index (a, b) in the difference

table of S, and e` is the input vector with a 1 at position `. Thus, (I, {j}) is a sieve except if
Sj is linear in x`.

Proof. From Prop. 2, we have

πI,J = 2−p + 2−(p+n−1)A2

where A2 is the number of u such that SJ(x) takes two values when x varies in {u, u + e`}.
We can compute A2 from the difference table of S:

A2 =
1

2
#{x ∈ Fn

2 : S(x+ e`) + S(x) = (αJ , β), with αJ 6= 0}

=
1

2
(2n −#{x ∈ Fn

2 : S(x+ e`) + S(x) = (0J , β)}

=
1

2
(2n −

∑
β∈Fn′−p

2

δS(e`, (0J , β)) .

It follows that (I, {j}) is not a sieve if and only if the function x 7→ Sj(x+ e`) + Sj(x) is the
all-one function. This equivalently means that Sj is linear in x`. ut

For instance, since the branch number of the PRESENT sbox is 3, Prop. 3 implies that
(m, p)-sieves with m+p = 5 exist for this sbox. Indeed, by considering its difference table, we
get that all (I, J) of size (3, 2) correspond to a sieving probability πI,J ∈ {12 ,

1
2 −

1
32 ,

1
2 −

1
16}.

It is worth noticing that the sieve used in the attack presented in Section 4, I = {0, 1, 2}
and J = {0, 1} has probability 1

2 . We also derive from Prop. 4 the exact sieving probability
involved in the attack on the DES presented in Section 5.



9 Conclusions

The main contributions of this paper are a generic improvement of MITM attacks, the sieve-
in-the-middle technique, which allows to attack more rounds, and an improved biclique con-
struction which avoids the need of additional data. These two methods have been applied to
PRESENT, DES, AES and PRINCE. Moreover, some general results on the sieving probabil-
ity of an sbox are given, which allow to theoretically estimate the complexity of the attack.

A future possible line of work is to investigate some possible combinations with other
existing MITM improvements: with the guess of intermediate state bits [21], or with the
all-subkeys approach [24]. A promising direction would be to try to make a first selection
within each of the two lists before the merging step, by keeping only the input values (resp.
output values) which have the lowest probability of corresponding to a valid transition. This
introduces some non-detection probability, since some correct candidates would be discarded,
but the sieving would be improved. Such an approach does not seem easy, but it would surely
be a big step forward for further improving MITM attacks.

Acknowledgements

We thank Dmitry Khovratovich for his valuable comments, and all CryptoExperts members
for their kindness and hospitality.

References

1. Farzaneh Abed, Eik List, and Stefan Lucks. On the Security of the Core of PRINCE Against Biclique
and Differential Cryptanalysis. Cryptology ePrint Archive, Report 2012/712, 2012. http://eprint.iacr.
org/2012/712.

2. Martin R. Albrecht and Carlos Cid. Algebraic Techniques in Differential Cryptanalysis. In FSE 2009,
volume 5665 of Lecture Notes in Computer Science, pages 193–208. Springer, 2009.

3. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In Selected
Areas in Cryptography - SAC 2008, volume 5381 of Lecture Notes in Computer Science, pages 103–119.
Springer, 2008.

4. Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1.
In CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 70–89. Springer, 2009.

5. Céline Blondeau and Benôıt Gérard. Multiple Differential Cryptanalysis: Theory and Practice. In FSE
2011, volume 6733 of Lecture Notes in Computer Science, pages 35–54. Springer, 2011.

6. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the Full
AES. In ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 344–371. Springer,
2011.

7. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES
2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

8. Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the
Lightweight Block Cipher KTANTAN. In Selected Areas in Cryptography - SAC 2010, volume 6544 of
Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

9. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif B. Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor
Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen,
and Tolga Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications. In
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

10. Julia Borghoff, Lars R. Knudsen, Gregor Leander, and Søren S. Thomsen. Cryptanalysis of PRESENT-
Like Ciphers with Secret S-Boxes. In FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages
270–289. Springer, 2011.

11. Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Pierre-Alain Fouque, Nathan Keller, and Vincent
Rijmen. Low-data complexity attacks on AES. IEEE Transactions on Information Theory, 58(11):7002–
7017, 2012.



12. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search of Attacks on Round-
Reduced AES and Applications. In CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 169–187. Springer, 2011.

13. Billy Bob Brumley, Risto M. Hakala, Kaisa Nyberg, and Sampo Sovio. Consecutive S-box Lookups: A
Timing Attack on SNOW 3G. In Information and Communications Security - ICICS 2010, volume 6476
of Lecture Notes in Computer Science. Springer, 2010.

14. David Chaum and Jan-Hendrik Evertse. Crytanalysis of DES with a Reduced Number of Rounds: Se-
quences of Linear Factors in Block Ciphers. In CRYPTO’85, volume 218 of Lecture Notes in Computer
Science, pages 192–211. Springer, 1985.

15. Huiju Cheng, Howard M. Heys, and Cheng Wang. PUFFIN: A Novel Compact Block Cipher Targeted to
Embedded Digital Systems. In DSD, pages 383–390. IEEE, 2008.

16. Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In CT-RSA 2010, volume 5985 of
Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

17. Baudoin Collard and François-Xavier Standaert. A Statistical Saturation Attack against the Block Cipher
PRESENT. In CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science. Springer, 2009.

18. Philippe Delsarte. Four fundamental parameters of a code and their combinatorial signifiance. Information
and Control, 23(5):407–438, December 1973.

19. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient Dissection of Composite Problems,
with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. In CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 719–740. Springer, 2012.

20. Hans Dobbertin. Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity.
In FSE’94, volume 1008 of Lecture Notes in Computer Science, pages 61–74. Springer, 1994.

21. Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved Meet-in-the-Middle Attacks on Reduced-
Round DES. In INDOCRYPT 2007, volume 4859 of Lecture Notes in Computer Science, pages 86–100.
Springer, 2007.

22. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-in-the-Middle Preimage
Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2. In ASIACRYPT 2010,
volume 6477 of Lecture Notes in Computer Science, pages 56–75. Springer, 2010.

23. Takanori Isobe. A Single-Key Attack on the Full GOST Block Cipher. In FSE 2011, volume 6733 of
Lecture Notes in Computer Science, pages 290–305. Springer, 2011.

24. Takanori Isobe and Kyoji Shibutani. All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-
the-Middle Approach. In Selected Areas in Cryptography - SAC 2012, volume 7707 of Lecture Notes in
Computer Science, pages 202–221. Springer, 2012.

25. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block Ciphers XTEA, LED and
Piccolo. In Australasian Conference on Information Security and Privacy - ACISP 2012, volume 7372 of
Lecture Notes in Computer Science, pages 71–86. Springer, 2012.

26. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and Shuang Wu. Security Analysis of PRINCE. In
FSE 2013, Lecture Notes in Computer Science. Springer, 2013. To appear.

27. Stéphanie Kerckhof, Baudoin Collard, and François-Xavier Standaert. FPGA Implementation of a Statis-
tical Saturation Attack against PRESENT. In AFRICACRYPT 2011, volume 6737 of Lecture Notes in
Computer Science, pages 100–116. Springer, 2011.

28. Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-Bicliques: Cryptanalysis of
Full IDEA. In EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 392–410.
Springer, 2012.

29. Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin Schläffer. Cryptanalysis of Luffa
v2 Components. In Selected Areas in Cryptography - SAC 2012, volume 6544 of Lecture Notes in Computer
Science, pages 388–409. Springer, 2010.

30. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In FSE 2012, volume 7549 of Lecture Notes in Computer Science,
pages 244–263. Springer, 2012.

31. Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw. PRINTcipher: A Block
Cipher for IC-Printing. In CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 16–32.
Springer, 2010.

32. Jorge Nakahara, Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin Wang. Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In Cryptology and Network Security - CANS 2009, volume
5888 of Lecture Notes in Computer Science. Springer, 2009.

33. Maŕıa Naya-Plasencia. How to Improve Rebound Attacks. In CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 188–205. Springer, 2011.



34. Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In Selected Areas in
Cryptography - SAC 2009, volume 5867 of Lecture Notes in Computer Science, pages 249–265. Springer,
2009.

35. Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. In Australasian Conference on Information
Security and Privacy - ACISP 2009, volume 5594 of Lecture Notes in Computer Science, pages 90–107.
Springer, 2009.

36. Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to Whirlpool.
IEICE Transactions, 96-A(1):121–130, 2013.

37. Hadi Soleimany, Céline Blondeau, Xiaoli Yu, Wenling Wu, Kaisa Nyberg, Huiling Zhang, Lei Zhang,
and Yanfeng Wang. Reflection Cryptanalysis of PRINCE-like Ciphers. In FSE 2013, Lecture Notes in
Computer Science. Springer, 2013. To appear.

38. Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In AFRICACRYPT 2008, volume
5023 of Lecture Notes in Computer Science, pages 40–49. Springer, 2008.

39. Muhammad Reza Z’aba, H̊avard Raddum, Matthew Henricksen, and Ed Dawson. Bit-Pattern Based
Integral Attack. In FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 363–381. Springer,
2008.


