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Abstract. In this paper, we introduce a general notion of functional proxy-re-encryption (F-PRE), where
a wide class of functional encryption (FE) is combined with proxy-re-encryption (PRE) mechanism. The
PRE encryption system should reveal minimal information to a proxy, in particular, hiding parameters of
re-encryption keys and of original ciphertexts which he manipulate is highly desirable. We first formulate
such a fully-anonymous security notion of F-PRE including usual payload-hiding properties. We then
propose the first fully-anonymous inner-product PRE (IP-PRE) scheme, whose security is proven under
the DLIN assumption and the existence of a strongly unforgeable one-time signature scheme in the
standard model. Also, we propose the first ciphertext-policy F-PRE scheme with the access structures of
Okamoto-Takashima (CRYPTO 2010), which also has an anonymity property for re-encryption keys as
well as payload-hiding for original and re-encrypted ciphertexts. The security is proven under the same
assumptions as the above IP-PRE scheme in the standard model. For these results, we develop novel
blind delegation and subspace insulation for re-enc key basis techniques on the dual system encryption
(DSE) paradigm and the dual pairing vector spaces (DPVS) approach. These techniques seem difficult
to be realized by a composite-order bilinear group DSE approach.



1 Introduction

1.1 Background

The notions of inner-product encryption (IPE) and attribute-based encryption (ABE) introduced by
Katz, Sahai and Waters [13] and Sahai and Waters [31] constitute an advanced class of encryption,
functional encryption (FE), and provide more flexible and fine-grained functionalities in sharing and
distributing sensitive data than traditional symmetric and public-key encryption as well as identity-
based encryption (IBE). In FE, there is a relation R(v,x), that determines whether a secret key
associated with a parameter v can decrypt a ciphertext encrypted under another parameter z. The
parameters for IPE are expressed as vectors & (for encryption) and ¥ (for a secret key), where R(¥, ¥)
holds, i.e., a secret key with ¥ can decrypt a ciphertext with &, iff ¥- £ = 0. (Here, U - Z denotes the
standard inner-product.) In ABE systems, either one of the parameters for encryption and secret
key is a set of attributes, and the other is an access policy (structure) or (monotone) span program
over a universe of attributes, e.g., a secret key for a user is associated with an access policy and a
ciphertext is associated with a set of attributes, where a secret key can decrypt a ciphertext, iff the
attribute set satisfies the policy.

For some applications for FE, the parameters for encryption are required to be hidden from
ciphertexts. To capture the security requirement, Katz, Sahai and Waters [13] introduced attribute-
hiding (based on the same notion for hidden vector encryption (HVE) by Boneh and Waters [6]), a
security notion for FE that is stronger than the basic security requirement, payload-hiding. Roughly
speaking, attribute-hiding requires that a ciphertext conceal the associated parameter as well as the
plaintext, while payload-hiding only requires that a ciphertext conceal the plaintext. Informally, in
the (fully) attribute-hiding, the secrecy of challenge attribute 2, (1) is ensured against an adversary
having a secret key with v such that R(v,z(?)) = R(v,2(M) holds (even if R(v,z(®)) = 1), i.e., the
adversary cannot guess bit b if the compatibility condition R(v,z(®) = R(v,zM)) for the challenge
holds. (It is a maximal requirement since if the challenge is incompatible for some key query, an
adversary easily guess the challenge bit.) Inner-products for IPE represent a fairly wide class of
relations including equality tests as the simplest case, disjunctions or conjunctions of equality tests,
and, more generally, CNF or DNF formulas. We note, however, that inner-product relations are less
expressive than a class of relations (on span programs) for ABE, while existing ABE schemes for
such a wider class of relations are not attribute-hiding but only payload-hiding. Among the existing
IPE schemes, only the OT12 IPE scheme [29] achieves the full (adaptive) security and fully attribute-
hiding simultaneously. As for ABE, Lewko et.al. and Okamoto-Takashima ABE schemes [14, 27| are
fully secure in the standard model.

Proxy-re-encryption (PRE) is an interesting extension of traditional public key encryption (PKE).
In addition to the normal operations of PKE, with a dedicated re-encryption key (generated by an
original receiver A), a proxy can turn ciphertexts originally destined for user A (called original
ciphertexts) into those for user B. A remarkable property of PRE is that the proxy carrying out the
transform is totally ignorant of the plaintext. PRE was first formalized by Blaze et al. [4] and has
received much attention in recent years. There are many models as well as implementations; refer
to [4,2,8,20,33,19,9,34,35,12,23,22,11, 17] for some examples.

Extending FE with PRE, i.e., functional PRE (F-PRE), improves various aspects of existing FE.
For example, when Alice contacts a local government on tax and social security, she submits encrypted
information to a man to contact (say, Bob) since she has no knowledge on the inner structure of the
government, which is usually a confidential matter. Bob is given a re-encryption key from his manager,
and then re-encrypts the encrypted message on tax to an appropriate department X, and that on
social security to another department Y, while Bob learns nothing on the contents for the privacy of
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Table 1. Comparison of our schemes with existing Ciphertext-Policy (CP)-AB-PRE schemes [19, 22, 18], where g, d,
|U|, ||, £ (resp. £’) and n represent the number of key queries, the number of sub-universes of attributes, the maximum
size of a sub-universe, the number of attributes for the secret key, the number of rows in access matrix for the original
ciphertext (resp.re-enc key or re-enc ciphertext) and the dimension for attribute vectors, respectively. STdM, ROM,
CTDH, ADBDH, DBDH, BDHE, and sUF stand for standard model, random oracle model, complex triple Diffie-
Hellman problem, augment decisional bilinear Diffie-Hellman problem, the decisional bilinear Diffie-Hellman problem,
and the bilinear Diffie-Hellman exponent problem, strongly unforgeable, respectively. (PK, SK, RK, OCT and RCT
stand for public key, secret key, re-encryption key, original ciphertext, re-encrypted ciphertext, respectively.)

| LcLso9 [19] | LHC10[22] | LFWs13[18]° | Proposed \
Primitive CP-AB-PRE CP-AB-PRE CP-AB-PRE IP-PRE® CP-AB-PRE
Security selective selective selective adaptive adaptive
model in STdM in STdM in ROM in STdM in STdM
(large-universe) || . (large-universe)
Access non-monotonic | non-monotonic monotonic inner-product non-monotonic
structures AND gates AND gates span programs relations span programs
. CTDH & DLIN & DLIN &
Assumptuion ADBDH DBDH g-parallel BDHE SUF sig. SUF sig.
Anonymity
against Proxy x X X v v
PK/SK/ O(d)/0(d)/ | oWu]/o@)/ | om/o(r)/ || On)/0(n)/ o(d)/o(|r)/
RK size O(d) o(d) o(r|+1¢) O(n?) O(d+ 1)
OCT/RCT size® 0(d)/0(d) O(1)/0(1) o) /O + 1) O(n)/O(n?) || O)/O(d+ £+ 1)

¢ The large-universe CP-AB-PRE obtained from small-universe one in [17] has similar features as that of [18].

b An efficient version of our fully-anonymous IP-PRE scheme in Section 4.2 by applying the sparse matrix
technique given in [28§]

¢ The number of group elements is given with a common assumption in the ABE/IPE application that the
description of the attribute or policy is not considered a part of SK/RK/OCT/RCT.

Alice. (By using our fully anonymous F-PRE, Bob need not know even the destinations, X or Y.)
Such re-encryption by attributes also deals with personnel changes flexibly: When the department
X (or some of the members) is changed to Y, Bob re-encrypts an encrypted message originally for
X to that destined to Y. As the examples show, F-PRE realizes convenient private communication
even among organizations with unknown or changeable inner structures.

Previously, various combinations of PRE and special classes of FE exist, that is, ID-based PRE
(IB-PRE) [12, 23, 11], broadcast encryption based PRE [10, 38], attribute-based PRE (AB-PRE) [19,
24,22,17,18]. While the notion of AB-PRE covers the existing F-PRE schemes above, the previous
AB-PRE schemes [19,22,17, 18] only achieve a weak security, that is, security in the selective model
(Table 1). Also, access structures which can be treated in the previous AB-PRE [19, 24, 22] are just
conjunctive (AND) formulas, not disjunction (OR) or negation (NOT). Thus, these previous F-PRE
schemes are insufficient from the view point of functionality or security, or both.

In recent applications, usually, the data is outsourced to an outside remote server. Then, since we
do not trust on the server manager, or proxy, any more, another important requirement for PRE is
anonymity for a re-encryption key: As well as an encrypted message, source and target parameters of
a re-encryption key, i.e., v and &’ of rk, ., should be concealed from the prozy. The security property
ensures that we can securely outsource the re-encryption task to the proxy.

Surprisingly, many previous PRE schemes (even of traditional PKE-based) has no anonymity
for a re-encryption key. The first anonymous (PKE-based) PRE scheme was proposed by Ateniese
et al. [1], however, the security is only proven in a weak security model, where only a restricted
adversary is considered. While the weak point was removed in a subsequent work by Shao et al. [36],
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Table 2. Comparison of anonymity properties (“Anonimity” and “Unlinkability”) between our schemes and existing
several anonymous (F-)PRE schemes [1,11, 36, 32, 21]. STdM, ROM, OCT, RCT, RK and AH-RK stand for standard
model, random oracle model, original ciphertext, re-encrypted ciphertext, re-encryption key and attribute-hiding for
re-encryption keys, respectively.

| ABHO9 [1]] SLwL12 [36][] EMO11 [11] | Shao12 [32] || Proposed
Primitive (PK-)PRE IB-PRE IP-PRE || CP-AB-PRE
Security model || in STdM in ROM in ROM in STdM
Anonimity for partial v/
OCT/RCT/RK| ¥ v 4 v v (only for AH-RK)
Unlinkability for partial v/ partial v/
RCT/RK v (only for RK) v (only for RK) v v

% An original ciphertext has an anonymity in the sense that it cannot be linked to the used public key.
b The anonymity for RK is only proven in a weak security model, where an adversary cannot query with the
same parameter twice to the re-encryption key oracle.

the security of their scheme is proven only in the random oracle model. Moreover, anonymous F-
PRE schemes were proposed in [11,32], however, they are less expressive ID-based PRE and the
security is claimed just in the random oracle model. No such kinds of anonymous (including key-
private) expressive inner-product (IP-)PRE exists. Namely, existing anonymous F-PRE constructions
are quite insufficient. See Table 2 for the comparison on anonymous F-PRE.

An anonymous F-PRE scheme should have usual anonymous FE security requirements, that is,
payload-hiding and (fully- )attribute-hiding security for original and re-encrypted ciphertexts. And, as
mentioned, parameters (v,2’), which we call predicate and attribute, respectively, in a re-encryption
key rk, ,+ should be also concealed. The secrecy should be kept against a powerful adversary who can
access a combination of decryption key, re-encryption key, and re-encryption queries. For example,
even using the two types of keys, an original ciphertext should not reveal additional information
on message or attributes. We will give a reasonable security definition including the above basic
requirements (in Section 3) and call it fully-anonymity.

Our first target is an adaptively secure and fully anonymous IP-PRE scheme (Table 2). Among the
above requirements, (full) attribute-hiding property for an original ciphertext is the most challenging
since an adversary can apply queried decryption keys, re-encryption keys, and re-encryption oracle
to the target ciphertext. Even if we use the dual system encryption (DSE) by Waters [37] and its
extension in [29], the main difficulty resides in how to change a (normal) re-encryption key queried
with (7, Z') to a semi-functional re-encryption key, before seeing the challenge (29, Z1), i.e., without
knowing whether R(%, (")) = R(#,Z(1) holds or not. We will explain it below: The previous fully
attribute-hiding IPE security game allows a non-matching key query, and it requires that a decryption
key query ¥ is compatible with the challenge (#(0), 7)), i.e., R(7,#) = R(7,#(V)). (The case that
R(#,79) = R(7,#1)) = 0 is a non-matching one.) While this condition for the challenge and
decryption key queries is common for the previous FE systems, a (fully-anonymous) F-PRE scheme
must also deal with a more complicated condition, i.e.,

R(@,79). R(@',7") = R(#, V) - R(v', 7") (1)

for any re-encryption key query (¥,Z’) and decryption key query ¢’. It reflects one attack strategy
of the adversary, where he (or she) tries to convert the challenge ciphertext to a re-encrypted one by
a queried re-encryption key rkg z/ and then decrypt it by a queried decryption key skz,. We consider
some fixed re-encryption key query (0, Z’) below. If R(7’,Z") = 1 for some decryption key query ¢,
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Eq. (1) is equivalent to R(#, Z©) = R(#, #M)). However, if R(¢’, ') = 0 for any decryption key query
@', Eq. (1) holds unconditionally even in the incompatible case, i.e., R(7,Z) # R(7,#(1). At a first
glance, it looks hard to treat with both the cases simultaneously, since the form of semi-functional
re-encryption key may be different depending on whether R(7,#)) = R(#,#") or not, and the
simulator does not know the fact when the re-encryption key query occurs before the challenge.

Another technically challenging target in this paper is to prove the security under the decisional
linear (DLIN) assumption (on prime order pairing groups) in the standard model.

1.2 Owur Results

1. This paper introduces a new notion of functional proxy-re-encryption (F-PRE). The system
should reveal minimal information to a proxy, in particular, hiding parameters in re-encryption
keys and in original ciphertexts which he manipulates is highly desirable. We first formulate such
a fully-anonymous notion of F-PRE, which includes usual payload-hiding properties. It can be
considered as a natural extension of fully-attribute-hiding FE. The notion consists of the following
security requirements, which are informally described, and more formally defined by the games
against an adversary with access to decryption, re-encrypted key, and re-encryption queries (see
Section 3 for the formal definitions). Here, parameters z,z’ and v are called attributes and a
predicate, respectively.

Attribute-Hiding Security for Original Ciphertexts: An original ciphertext for plaintext
m and attribute x releases no information regarding (m,x) against a user not in possession
of a matching decryption key sk, with R(v,z) =1, or a matching key pair of a re-encryption
key and a decryption key (rky a,sk,) with R(v,z) =1 and R(v',2") = 1. It also releases no
information regarding x against a user in possession of a matching decryption key sk, except
that R(v,z) = 1 or a matching key pair (rk, ,/,sk,) except that R(v,z) =1 and R(v',2') = 1.

Predicate- and Attribute-Hiding Security for Re-encrypted Ciphertexts: A re-encrypted
ciphertext for plaintext m (and original attribute x) and re-encryption key rk, ,» with attribute
2’ releases no information regarding (m, x, v; z') against a user not in possession of a matching
decryption key sk, for 2/, and no information regarding z’ against a user in possession of a
matching decryption key sk, except that R(v',2’) = 1.

Predicate- and Attribute-Hiding Security for Re-encryption Keys: A re-encryption key
for predicate and attribute (v, 2’) releases no information regarding (v, z’) against a user not
in possession of a matching key for z’, and no information regarding z’ against a user in
possession of a matching decryption key sk, except that R(v',z’) = 1.

Unlinkability of Re-encryption Keys: A re-encryption key generated from a decryption key
cannot be linked to the decryption key by any means (unconditional unlinkability).

Unlinkability of Re-encrypted Ciphertexts: A re-encrypted ciphertext generated from a
re-encryption key and an original ciphertext cannot be linked to the re-encryption key or the
original ciphertext by any efficient adversary (computational unlinkability).

Full Anonymity: We say that an F-PRE scheme is fully-anonymous if it satisfies the above
three hiding requirements given in three adaptive security games, and two unlinkability re-
quirements.

2. This paper proposes the first fully-anonymous inner-product proxy-re-encryption (IP-PRE) scheme,
whose security is proven under the DLIN assumption and the existence of a strongly unforgeable
one-time signature scheme in the standard model (Tables 1 and 2, Theorem 1). The IP-PRE
scheme uses an underlying fully attribute-hiding IPE scheme, which was proposed in [29]. It
shows a new significant application of fully attribute-hiding property except for searchable en-
cryption. For achieving the security properties, we use two key techniques, blind delegation and
hidden subspace insulation for (extended) dual system encryption.
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Fig. 1. Basic Conversions among secret key sk,, re-encryption key rk, ./, original ciphertext oct, and re-encrypted
ciphertext rct,s in a high-level description

3. We also propose the first ciphertext-policy (CP-)F-PRE scheme with the access structure class
given by Okamoto-Takashima [27], which includes non-monotone span program access structures.
The construction is based on our IP-PRE schemes. The scheme is proven to be payload-hiding of
original and re-encrypted ciphertexts, attribute-hiding of re-encryption keys, and unlinkable under
the same assumptions as those of our IP-PRE schemes (Tables 1 and 2). Here, hiding attributes of
re-encryption keys is an important requirement for anonymous re-encryption outsourcing. Refer
to Appendix E.

1.3 Key Techniques

As we mentioned in Section 1.1, in our fully-anonymous F-PRE, while a decryption key query v should
satisfy a simple compatibility condition (R(v,z(?)) = R(v,z(")) with the challenge, a re-encryption
key query (v,z’) need satisfy a complicated condition in Eq. (1), which includes an incompatible
case (R(v,z©) # R(v,z(M)). All the previous DSE proofs (including the fully-attribute-hiding one
[29]) use the compatibility condition as an essential logical ingredient. Hence, we need to develop
an extended DSE technique which allows the incompatible case for achieving adaptively secure and
fully-anonymous F-PRE.

CHK Transform and Blind Delegation: As a first attempt, to conceal sk, (including v) from a
malicious proxy, we encrypt it as (Encyy, (sky), FEncy (W1)) in a re-encryption key rk, ,, where Enc
is an ordinary (symmetric) encryption scheme with secret W7, and FEnc is a functional encryption
scheme with parameter 2’. Then, if an adversary has no matching key for 2, he has no information
of sk, nor v.

If these components are also embedded into a re-encrypted ciphertext rct, without modification,
a user with a matching key for 2’ obtains the original sk,. It is not desirable for (F-)PRE, therefore,
modified forms of Encyy, (sk,) (and FEnc,/(W7))) should be embedded into a re-encrypted ciphertext
rct,s. For achieving an appropriate modification, we use two ingredients, the Canetti-Halevi-Katz
(CHK) transformation [7] and blind delegation (see Figure 1). The CHK transformation converts a
ciphertext ct, to cty averk, Where verk is a verification key of a one-time signature scheme, and x A verk
is the conjunction of z (for relation R) and verk (for identity matching). An original ciphertext in
our F-PRE schemes consists of oct, := (cty averk, verk, S) with S is a signature of ctyaverk by a
corresponding signature generation key. Then, a decryptor of oct, first verifies if S is valid under
verk, and if so, correctly decrypts cty averk With a decryption key. By this mechanism, an adversary
cannot modify the challenge ciphertext meaningfully. Using verk in input, a re-encryptor modifies



(or delegates) sk, to skq averk, Which is specialized to cty pverk in the input original ciphertext. Since
Ctz Averk cannot be modified to another meaningful one, modified sk, A verk is only effective to cty A verk-

Here, we have a technical challenge: The re-encryptor should modify Encyy, (sky ) to Encyy, (Sky A verk)
without decrypting Encyy, (sky), i.e., in an encrypted form. For achieving it, in our schemes, we will
include Encyy, (;)K) in a re-encryption key rk, ., where ;)I is a part of the public key. Namely, rk, ,
essentially consists of (Encyy, (sky), FEnc, (W), Encyy, (BI)), and in re-encryption, a re-encryptor del-
egates Encyy, (sky) to Encyy, (sky A verk) using Encyy, (EIZ) in a blind manner. Hence, we call such a new
technique blind delegation. We develop it based on the dual pairing vector spaces (DPVS) framework
[26,27,29]. (See REnc algorithms in Sections 4.1 and 4.2.)

Moreover, in order not to allow a matching key holder for x to decrypt a re-encrypted ciphertext
rctyr (with o' # ), cty averk I an input original ciphertext is encrypted with another secret W5 in re-
encryption. Hence, the re-encrypted ciphertext rct,s essentially consists of (Encyy, (Cty A verk), FEnC,/ (
W3), Encyy, (Sky A verk), FEnc,/ (W1)), where FEnc,/(WW1) is re-randomized for an unlinkability require-
ment (Figure 1). A decryptor with a matching key for 2/ first obtains W and Ws and calculates
Dec(sky A verks Ctz averk) Dy using usual decryption.

Information-Theoretical Insulation of a Subspace for Re-Enc Key Basis: For formal
security proof, we use a novel technique (subspace insulation for re-enc key basis) for realizing DSE
with allowing an incompatible re-encryption key query. In an original DSE security game [37,27],
each queried decryption key is changed to semi-functional, one by one. In our F-PRE, we also change
each queried re-encryption key to semi-functional, one by one. Since a simulator (challenger) does not
know whether the query is compatible or incompatible to the challenge before seeing the challenge
query, the semi-functional form should not depend on the compatibility type. Namely, we need to
give two (or more) different and consistent simulations for the same semi-functional re-encryption
key for (v,2’) with the following requirements:

— If some matching decryption key for 2’ is queried, the adversary obtains the secret W for the
re-encryption key. The challenger must simulate a semi-functional form of a decryption key sk,
which can be decrypted from Encyy, (sk,) by using Wj.

— If no matching decryption keys for 2’ are queried, the adversary has no W for the re-encryption
key. The challenger must simulate Encyy, (sk,) which is consistent with the above semi-functional
form of sk,. For the simulation, we use an insulated subspace since Wi is hidden for the adversary.

To achieve the above simulations, we realize a nice trick based on the DPVS framework. That is, we
can create a (hidden) subspace of a re-enc key basis D} := B* - Wy, which is information-theoretically
insulated from the master key bases (B, B*). We elaborately combine this trick for the second type of
re-encryption key queries, and a similar game change as in the original (and extended) DSE in [27,
29] for the first type key queries based on a pairwise independent argument. For the details of the
technique, refer to Appendix D.1 and Figure 2.

DPVS Framework: Both techniques, i.e., blind delegation and subspace insulation for re-enc key
basis, are built on the DPVS framework, where a ciphertext ¢, and a secret key k;; are encoded on a
random basis B := (b;) and its dual B* := (b}), respectively. For blind delegation, a random matrix
Wy in FNN transforms K} and b} (€ BI) to k™ := kW, and df := biWi(€ Ency, (EE)) in a re-
encryption key, then, REnc delegates k*™ to k:r'/iverk by using d; instead of b;. For the delegation, not
all basis vectors d! (in D*) are included in the re-encryption key, hence, an insulated hidden subspace
from a subbasis of D* := (d) is used for proving adaptive security against an adversary, and the
basis changing technique is crucial for our constructions. In composite-order DSE schemes, a hidden
subspace (subgroup) is given by the order-g subgroup in order-pgr subgroup (with p,q,r primes),
for example. Therefore, while the DPVS approach is suitable for the above subspace insulation, the
composite-order bilinear group approach seems to be difficult to realize them.



1.4 Notations

When A is a random variable or distribution, y & A denotes that y is randomly selected from A

according to its distribution. When A is a set, y & A denotes that y is uniformly selected from
A. We denote the finite field of order ¢ by Fy, and F, \ {0} by F,. A vector symbol denotes a
vector representation over Fy, e.g., ¥ denotes (z1,...,x,) € Fg'. For two vectors ¥ = (x1,...,7,) and

U= (v1,...,v), U denotes the inner-product > ; z;v;. The vector 0 is abused as the zero vector in
F,' for any n. X T denotes the transpose of matrix X. A bold face letter denotes an element of vector
space V, eg,, ¢ € V. When b; € V (i = 1,...,n), span(by,...,b,) C V (resp. span(Zy,...,Z,))
denotes the subspace generated by by,...,b, (resp. Z1,...,T,). For bases B := (by,...,by) and
B* := (b%,...,b%), (x1,...,xN)B = Son ab; and (y1,...,yn)e- = S, yibt. & denotes the
Jj—1 n—j

canonical basis vector (m, l,m) S GL(n,F,;) denotes the general linear group of degree
n over IF,.

2 Dual Pairing Vector Spaces (DPVS)

Definition 1. “Symmetric bilinear pairing groups” (q,G,Grp,G,e) are a tuple of a prime q, cyclic
additive group G and multiplicative group Gt of order q, G # 0 € G, and a polynomial-time com-
putable nondegenerate bilinear pairing e : G x G — Gr i.e., e(sG,tQ) = e(G,G)™ and e(G, Q) # 1.
Let Gppg be an algorithm that takes input 1% and outputs a description of bilinear pairing groups
(¢,G,Gr, G,e) with security parameter X.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [25,26].
constructed by using symmetric bilinear pairing groups given in Definition 1. For the asymmetric
version of DPVS, (¢, V,V* Gr, A, A* e), see Appendix A.2 in the full version of [27].

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,Gr, A, e) by a direct product of symmetric

N
. . . . . yh
pairing groups (¢, G,Gr, G, e) are a tuple of prime q, N-dimensional vector space V:=G x --- x G
i—1
——
over Fy, cyclic group Gr of order q, canonical basis A := (a1, ...,an) of V, where a; :== (0,...,0,G,

N—i
0,...,0), and pairing e : VXV — Gr. The pairing is defined by e(x,y) := Hl]\;l e(Gi, H;) € G where
x:=(G1,..., GN) € Vandy := (Hy,...,Hy) € V. This is nondegenerate bilinear i.e., e(sx,ty) =
e(x,y)* and if e(x,y) =1 for ally € V, then x = 0. For all i and j, e(a;,aj) = e(G, Q)% where
0ij = 1ifi =7, and O otherwise, and e(G,G) # 1 € Gy. DPVS generation algorithm Gqpys takes
input 1* (A € N) and N € N, and outputs a description of param{, := (¢, V,Gr, A, e) with security
parameter X and N-dimensional V. It can be constructed by using Gppg.

For matrix W := (w; ;)i j=1,. N € IFqNXN and element g := (Gy,...,Gy) in N-dimensional V,

gW denotes (27 Giwi,. .. Yoy Giwin) = (7L, winGis -, Yojs; winGi) by a natural mul-
tiplication of a N-dim.row vector and a N x N matrix. Thus it holds an associative law like
(W)Wt =gWw-') =g

3 Functional Proxy-Re-Encryption

In this section, we define a notion of functional proxy-re-encryption, F-PRE, and its security. An
attribute and a predicate are expressed as x and v, respectively. We denote R(v,z) = 1 that a



relation holds for v and z. Informally speaking, F-PRE is functional encryption with re-encryption
mechanism, that is, an FE scheme with additional algorithms, re-encryption key generation (RKG)
and re-encryption (REnc). RKG algorithm, which takes as input a decryption key of FE sk, and an
attribute x’, generates a re-encryption key rk, ,» which is associated with v and 2’. A proxy who
is given a re-encryption key rk, ,» and an original ciphertext with x, can computes a re-encrypted
ciphertext with attribute 2’ from a ciphertext with = using REnc algorithm if R(v,z) = 1.

Definition 3 (Functional Proxy-Re-Encryption: F-PRE). A functional proxy-re-encryption
scheme consists of the following seven algorithms.

Setup: takes as input a security parameter 1* and a format parameter A. It outputs public key pk
and (master) secret key sk.

KG: takes as input the public key pk, the (master) secret key sk, and a predicate v. It outputs a
corresponding decryption key sk,.

Enc: takes as input the public key pk, an attribute x, and a plaintext m in some associated plaintext
space. It outputs an original ciphertext octy.

RKG: takes as input the public key pk, a decryption key sk,, and an attribute x’. It outputs a re-
encryption key rky .

REnc: takes as input the public key pk, a re-encryption key rk, ,/, and an original ciphertext oct,. It
outputs a re-encrypted ciphertext rcty,.

Decoct: takes as input the public key pk, a decryption key sk,, and an original ciphertext oct,. It
outputs either a plaintext m or the distinguished symbol L.

Decict: takes as input the public key pk, a decryption key sk, and a re-encrypted ciphertext rcty:. It
outputs either a plaintext m or the distinguished symbol L.

The correctness for an F-PRE scheme is defined as:

1. For any plaintext m, any (pk, sk) & Setup(1*), any v and x, any decryption key sk, & KG(pk, sk, v),
and any original ciphertext oct, & Enc(pk, z, m), we have m = Decoct(pk, sky, octy) if R(v,z) = 1.
Otherwise, it holds with negligible probability.

2. For any plaintext m, any (pk, sk) & Setup(1*), any v, v/, z, 2/, any decryption key sk, & KG(pk, sk, v),
any re-encryption key rk, & RKG(pk, sky,z"), any original ciphertext oct, & Enc(pk, z, m),
and re-encrypted ciphertext rcty & REnc(pk, rk, ,7,octy), we have m = Decyct(pk, sk, rct,) if
R(v,z) =1 and R(v',2') = 1. Otherwise, it holds with negligible probability.

Definition 4. We introduce a useful (multiplicative) notation “e” for describing our security defi-
nitions (Definitions 5-7) concisely. For any variable X,

X if R(v,z) =1,

X e Blv,z) = {J_ if R(v,x)=0.

Let m @ R(v,z) @ R(v',2") mean (m e R(v,x)) @ R(v',z"). Then, the results of items 1 and 2 in the
above correctness are rephrased as m e R(v,x) = Decoct(pk, sky, oct;) and m e R(v,z) e R(v',z') =
Decyct(pk, sky, rcty), respectively.

Next, we define four security properties of F-PRE.

Definition 5 (Attribute-Hiding for Original Ciphertexts (AH-OC)). The model for defin-
ing the (adaptively) attribute-hiding security for original ciphertexts of F-PRE against adversary A
(under chosen plaintext attacks) is given by the following game:
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Setup. The challenger runs the setup algorithm (pk,sk) &R Setup(1), and it gives the security
parameter A and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.
Decryption key query. For a decryption key query v, the challenger gives sk, & KG(pk, sk, v)
to A.
Re-encryption key query. For a re-encryption key query (v, '), the challenger computes
rky, 2/ & RKG(pk, sky, z") where sk, & KG(pk, sk, v). It gives rk, »» to A.
Re-encryption query. For a re-encryption query (v,z’,octy), the challenger computes rk, 4
& RKG(pk, sky, z") where sk, & KG(pk, sk, v) and rcty & REnc(pk, rky 57, 0cty). It gives rcty
to A.
Challenge. For a challenge query (m(o),m(l), x(o),x(l)) subjected to the following restrictions:
— Any decryption key query v and any re-encryption key query (ve,zy) for £ =1,... vy satisfy
m@eR(v, () =mWDeR(v, (V) and m® e R(vy, () e R(v, 2}) = m) e R(vy, 2(V) e R(v, z7).

The challenger flips a random bit b & {0,1} and gives oct,s) & Enc(pk, z(®, m(®) to A.

Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase and the following addi-
tional restriction for re-encryption queries.

Re-encryption query. For a re-encryption query (v, xy,octy) fort = 1,...,vs, subject to the
following restrictions:
~ m© e R(v, 20) @ R(v', 2}) = m() @ R(vy, 2M)) @ R(v', x}) for any decryption key query for
v if oct; = oct, )
The challenger computes rky, 4/ & RKG(pk, KG(pk, sk, vt), x}) and rcty; & REnc(pk, rkvt’xé,octt).
It gives rcty, to A.
Guess. A outputs its guess b’ € {0,1} for b and wins the game if b=1'.

We define the advantage of A as AdviHO()\) := Pr[b = V] — 3. An F-PRE scheme is attribute-
hiding for original ciphertexts if all polynomial time adversaries have at most negligible advantage
in the above game. For each run of the game, we define three types of variables Sm, Sk ¢, Srenct (£ =
1,...,v9,t=1,...,v3) as follows:

— For challenge plaintexts m©® and m®, sy := 0 if m© £ m® and sy, = 1, otherwise.
— For the {-th re-encryption key query (ve, ) and challenge (m©), ) and (m™, (M),
Seke := 0 if m© e R(w,x(o)) +m) e R(Ug,l'(l)) and sy ¢ :=1 otherwise.
— For the t-th re-encryption query (vg, z},octy) and challenge (m©), z(0) and (m™), z(M),
Srenct = 0 if oct; = oct, ) A m(?) e R(vy, 2(0) # m1) & R(vy, M),
Srenc,t '= 1 if oct; = oct, ) A m(0 o R(vy, x(o)) =m oR(vt,x(l)), and Srenc,t 1= 2 if octy # oct )

The above variables, Sm, Sk ¢, Srenc,t, are used for defining cases in the proof of Theorem 2 in Ap-
pendix D.3.

Definition 6 (Predicate- and Attribute-Hiding for Re-Encrypted Ciphertexts (PAH-
RC)). The model for defining the (adaptively) predicate- and attribute-hiding security for re-encrypted
ciphertexts of F-PRE against adversary A (under chosen plaintext attacks) is given by the following
game:

Setup, Phase 1. They are defined as the same as those in Definition 5, respectively.
Challenge. For a challenge query (m(o),m(l),x(o), x(l),U(O),v(l),m’(o),x/(l)) subjected to the follow-
ing restrictions:
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— (m, 20 ) ¢ R(v, 2/ = (mM), 2V M) @ R(v', 2N for any decryption key query v'.
The challenger flips a random bit b J {0,1} and gives rct ) & REnc(pk, RKG(pk, KG(pk, sk, v(®)),
2'®)), Enc(pk, 2®), m®)). Then it gives rct e to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase.
Guess. A outputs its guess b’ € {0,1} for b and wins the game if b=1'.

We define the advantage of A as AdviARE(N) .= Pr[b = ¥/] — 3. An F-PRE scheme is predicate-
and attribute-hiding for re-encrypted ciphertexts if all polynomial time adversaries have at most
negligible advantage in the above game. For each run of the game, the variable s,y s defined
as Smxy = 0 if (m©@, 2O Oy = (D) 20 M) for challenge (m®, 20 v®) for v = 0,1, and
Smxv := 1, otherwise. The above variable, smxy, 15 used for defining cases in the proof of Theorem 3
in Appendix D. 4.

Definition 7 (Predicate- and Attribute-Hiding for Re-Encryption Keys (PAH-RK)). The
model for defining the (adaptively) predicate- and attribute-hiding security for re-encryption keys of
F-PRE against adversary A (under chosen plaintext attacks) is given by the following game:

Setup, Phase 1. They are defined as the same as those in Definition 5, respectively.
Challenge. For a challenge query (v(o),v(l),x’(o),x’(l)), subject to the following restrictions:
~ 00 e R, 2'0) = v(V) @ R(v/, 2’1 for any decryption key query v'.

The challenger flips a random bit b J {0,1} and computes rk,m) & RKG(pk, KG(pk, sk, v(®)),
2'®). Then it gives rky o)z to A

Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase.

Guess. A outputs its guess b' € {0,1} for b and wins the game if b=1'.

We define the advantage of A as AdviPHRE(N) := Pr[b = ¥] — 1. An F-PRE scheme is predicate-
and attribute-hiding for re-encryption keys if all polynomial time adversaries have at most negligible
advantage in the above game. For each run of the game, the variable s, is defined as sy, = 0 if
v(© #* v for challenge predicates, and s, := 1 otherwise. The above variable sy is used for defining
cases in the proof of Theorem 4 in Appendix D.5.

Definition 8 (Unlinkability). An F-PRE scheme is unlinkable if the following two conditions hold:

(Unconditional) Unlinkability of Re-encryption Keys for all (sk, pk) & Setup(1*,n), all pred-
icates v, all attributes x', distributions (sk, & KG(pk, sk,v), RKG(pk,sky,z')) and
(KG(pk, sk, v), RKG(pk, KG(pk, sk,v),2’)) are equivalent except for negligible probability.

(Computational) Unlinkability of Re-encrypted Ciphertexts Any probabilistic polynomial-
time adversary A has negligible success probability in the following game: The guessing game
is defined between an adversary A and a challenger as in Definitions 5-7, and Setup, Phase
1, Guess phases are the same as those in the definitions. In Challenge phase, A submits a
predicate v, attributes x,x’', and a message m, where R(v',x") = 0 for any decryption key query
v’ in Phase 1. The challenger then calculates sk, & KG(pk, sk, v), flips a coin b & {0,1}, and
gives (rky gz &R RKG(pk, sky, z'), octy & Enc(pk, z, m), REnc(pk, rk, ,/,oct;)) if b =0,
(RKG(pk, sky, z"), Enc(pk,z,m), REnc(pk, RKG(pk, KG(pk,sk,v),z’), Enc(pk,x,m)) if b=1,
to A. (A outputs a guessed bit b’ in Guess phase.) Here, A can ask the challenger to obtain any
decryption key, re-encryption key, re-encrypted ciphertext in Phase 1 and Phase 2 under the
condition that no decryption key query v' matches the challenge 2’ i.e., R(v',z') = 0.
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4 Proposed Inner-Product Proxy-Re-Encryption (IP-PRE) Schemes

A special form of F-PRE formulated in Section 3 is IP-PRE, where decryption key parameter (predi-
cate) v and ciphertext parameter (attribute) = are given by n-dimensional vectors over Fy, i.e., ¥ and
%, and R(7,%) = 1iff -7 = 0. We normalize that 1 = 1 and v,, = 1 for 7 := (2;):=! and 7 := (Ul)l L
In Section 4.1, we describe our basic IP-PRE scheme. Based on it, we propose a fully-anonymous
IP-PRE scheme in Section 4.2. We describe ingredients used for both schemes below.

A Strongly Unforgeable One-Time Signature Scheme. Since the CHK transform is crucial
for our schemes as is described in Section 1.3, we use a strongly unforgeable one-time signature
scheme. Refer to Appendix B.1 for the details. For simplicity, we assume verification key verk is
an element in ;. (We can extend the construction to verification key over any distribution D by
first hashing verk using a collision resistant hash H : D — F,.)

Underlying IPE Schemes. We use a payload-hiding IPE scheme in our basic scheme, and a fully
attribute-hiding (FAH) IPE scheme in our fully anonymous scheme, whose message space is a
matrix space Fév *N (N := 3n+4, 4n+4, respectively). In addition, we tweak the FAH-IPE for our
purpose: An ordinary FAH-IPE scheme consists of four algorithms, (Setup|pg, KGipg, Encipg, Decipg).
Encipg of a tweaked version is composed of two algorithms, Encipe and Encjpg, where Encjpp en-
crypts only attribute vector & and outputs prectz, and Encpg takes as input prectz and plaintext
m and outputs ctz of m. Moreover, we add a re-randomization algorithm for ciphertexts, RRpg.
Namely, it consists of seven algorithms, (Setupipg, KGipg, Encipg, Encipe, Encipg, RRipg, Decipg).
Refer to Appendix B.2 for the details.

Random Dual Orthonormal Basis Generator. We describe random dual orthonormal basis
generator gc'j;E below, which is used as a subroutine in the proposed schemes.

Gob (12, N) : param, := (¢.V, G A e) € Gups (11, N), 4 ¢ By g7 = e(G, G)",
X 1= (xiy) € GL(N,Fy), (9i5) == (X")7", paramy := (paramv,gcr)
b, = Z] 1 Xijaj, B = (by,..,by), b} := ZN Y ja,B* := (b],..,by), return (paramy, B, B").

4.1 Basic IP-PRE Scheme

We describe a construction idea of our basic IP-PRE for our full IP-PRE (in Section 4.2). For the
formal description of the basic IP-PRE scheme and its security, refer to Appendix C.

Setup generates a key pair for the underlying IPE, (pk'"E, sk'PE), and a dual basis pair, (B, B*), of
a (3n +4)-dimensional vector space. The master secret key sk is (bf, sk'PE), and public key pk is
(]/Bg,@*), where B := (bo, .., by, b3n+3),@* = (b7, .., b} 9, b5, 0, .., b5, ). The first dimension is
used for decryption, the next n-dimension for embedding Z and v, the next 2-dimension for CHK
mechanism, the next n-dimension for security proof (hidden subspace), the rest for randomization.

KG takes (pk, sk, ¥)) as input, and generates k* := (1, 67, 02, 0", 77, 0)p=, sk%PE & KG'PE(pk'PE, sk'PE,U),
where § <2 Fy, ﬁ(E [y, and returns sky := (7, k*,sk%PE).

Enc takes (pk,Z, m) as input, and generates (sigk,verk) & SigKG(l’\) Cow, p, @ J F,, and
c:= (¢, wt, p(verk,1), 0™, 0", @), cp:=m- gT, s & Sig(sigk, C'), where C := (Z, ¢, cr), and
returns octz := (C, verk, S), i.e., a CHK converted ciphertext.

RKG takes (pk,sky, #’) as input, and generates W, L GL(3n+4,F,),
k= (k"4 (0, 87, 02, 0", ij’, 0)g-)Wi, cttk < Encipe(pk!PE, &, W1), where & < Fy,ij’ <~ F?,
and ]D)*l‘ = (df = b?Wl)7::17”.7n+2’2n+27”.’3n+3, and returns rky z = (¥, f’,k*'k,ct%l?,]f))’{). k*k s
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the product of (re-randomized) vector k* by matrix Wi, and ctl'f is a ciphertext of W1 with .
Here, k*™ is represented over basis D} := (b} W1)i0... 3013 as k:*rk (1, 6™, 02, On, 7™ ; 0)px
where 6™, 77 ™ are freshly random variables.

REnc takes (pk,rkyz = (7, f’,k*'k,ctgf,ﬁ)’{),octf = (C := (Z,¢,cr),verk, S)) as input, and first
verify that Ver(verk,C,S) = 1, and if so, generates Wy J GL(3n+4,F,) and
k*ene = k40, 8”7, o(—1,verk), 0", 7", 0)pr, " := (c+( (', w'E, p' (verk, 1),0", 0", ¢')5) Wa,

/ R —
c&‘?”c = cT‘g%, ctity < RRipe(p k'PE, trli), ctysr & Encipe(p K'PE 7 , Wa), where 6", 0, (", W', o, ¢’
Y F,, 7" Y Fy, and returns rctz := (&, ™", Ene, kxrene {ct”e"C}Z 12)

k™" is obtained by converted from k* by embedding a CHK tag part o(—1,verk), then, is
specialized for decrypting c™"® only. (c""¢, ¢/f"°) are the products of (re-randomized) (c, cT) by
Ws, respectively, and {ctre S}i=12 are fresh ciphertexts of W7 and W5, respectively, with z'. Here,
k*renc is represented over basis D} as k™" = ( 1, §""v, o(—1,verk), 0", 77", 0)p;, where

.77 "¢ are freshly random, ¢""® and cF"“ are represented over basis Dy := (b;W2)i—0,.. 3n+3 as
crenc — ( ¢rene, wrene g, prenc(verk7 1)’ 0", 0™, SOrenc)ID) and crenc = m- ggenc where (renc, rene prenc
are freshly random.
Decoct takes (pk, sky := (¥, k:*,sk!UPE),octf = (C := (&, ¢, cr),verk, S)) as input, and first verify that
Ver(verk, C,S) = 1, and if so, calculates K := e(c, k*), and returns m := cp/K.
Decyct takes (pk,sky := (W,k*,sk%F,’E), rety = (27, €™, IENC, ke, {ctre"c}Z 1,2)) as input, and cal-

culates W; & Decipe(p k'PE,sk%EE,ct;e:'EJ,C) fori=1,2, K:= e(cre”CI/V2 L k*re"CWfl), and returns
m = re“C/K Here, (k*re”CWfl,cmncwgl) are represented over bases (B,B*) as k*re”CWfl =
( renc—’ ( 1 Verk) OTL’ ﬁ renc’ O)B* and CrencW2*1 — (Crenc’ wrenci:’ prenc(verk’ 1)7 O’I'L7 On’ ()Orenc)B‘

5renc

4.2 Fully-Anonymous IP-PRE Scheme

The basic IP-PRE scheme does not have predicate- and attribute-hiding security for re-encryption
keys because a predicate vector ¢’ and an attribute vector &’ are included in re-encryption key rkg z.
¥ is needed to re-randomize k*™® and 7’ is needed to generate a ciphertext ct’®% in REnc algorithm.
In order to construct IP-PRE scheme with the predicate- and attribute- hldlng for rky z, we modify
the basic IP-PRE scheme as follows: In order to remove ¢’ from rky z and re-randomize k*™ in REnc,
RKG also outputs ki‘a','j which is generated on the basis D} = B*W; (instead of the vector ¥). Then,
the predicate vector ¥ is embedded into k*™ and kX in a hidden form from an adversary who
cannot decrypt cta, i.e., cannot obtain Wj. Similarly, in order to remove &’ from rkyz, RKG also
outputs a pre—(nphertext prect; instead of the attribute vector Z’. From the attribute-hiding security
of the underlying IPE scheme, the vector &’ is hidden from the adversary. In a similar manner, for
attribute-hiding for original ciphertexts, Enc also outputs ¢, instead of an attribute vector & which
is included into octz. REnc re-randomizes ¢ by using ¢an (instead of using Z). Our fully anonymous

IPE scheme is obtained by modifying our basic scheme as below including the above modifications.

The dimension of the vector space for (B, B*) is enlarged to 4n + 4.
An underlying IPE scheme is fully attribute-hiding.

1,..., by are included into sk as well as bg.
For re-randormzatlon in RKG, an additional k7, is included into decryption key sky as well as k*.
For re-randomization in REnc, an additional ¢a, (tesp. k/7¥) is included into original ciphertext
octy as well as ¢ (resp. re-encryption key rkg z as well as k*'k). Moreover, prectz is included into

rkg,f/ .

G W=

We give our fully-anonymous IP-PRE scheme below.



13

Setup(1*,n): (pk'PE, skIPE) & Setupipe(1*, n),
. R
(param,,, B = (bo, . .., bant3), B* = (b),..., b}, 3)) < Gob(1?,4n + 4),
B .= (b07 s 7bn+2’ b4n+3)7 Bi:z/\(b*Jrl? b2+27 b§n+37 AR b1n+2)7
return pk := (1%, pk'"E, param, . B, B*), sk:= by, ..., b5 sk!PE).

KG(pk, sk, #):  skiPE & KGPE(pKPE SkIPE 3), 6, 8ran <= Fy, 77, ffran < F7,
k* = ( 1) 5177 027 02”) ﬁv O)B*v k;kan = ( 07 5ran17a 027 02”7 ﬁranp O)IB*)
return sky := (k*, ki, sk E).

- U . R ~.
Enc(pk, Z,m): ¢, W, Wran, P, Pran, P, Pran < Fq, (sigk, verk) < SngG(l/\),
C = ( Ca Wfa p(verk, 1)7 02“7 0n7 @)B? Cran = ( 07 wranf; pran(verk, 1)7 02“7 0n7 SOran)IBia
cri=m- gr_Cp, C:=(c,cran,cr), S & Sig(sigk, C'), return octz := (C, verk, S).

RKG(pk, sky, @) 7, Tran <= By, 77, iffan < F2,

U /\* * *
Wy~ GL(4An+4,F,), D :=(d; :=bW1)imn+1n+2.3n+3,... 4n+2:
k™ = (k* + 1k, + (0, 07, 02, 02", 77, 0)p~))Wh,

k= (reanks, + (0, 07, 02, 027, 7. 0)g- )W,

ran
R - R T
ctih < Encipe(pk'™5, @, W1),  precty < Encipe(pk'™%, &),

return rky z = (k*k, ks ctgi, precty, D7).

REnc(pk, rky z := (k*r, K ct%",, prectf/,fl)’{),octf := (C := (e, €ran, c1), verk, S)):

ran’

If Ver(verk,C,S) # 1, return L.
r0,CL &0 Ty, 7" Fy, Wa ¢ GL(4n + 4,F,)
fexrenc . — k*rk+T/k*rk+(0, On7 U(—l,verk), 0271’ ﬁ”, O) .

ran
!
c'enc .= (C+§Cran + ( C/, On, p/(verk, 1)7 02n, On, SD/)B)W27 CES"C =cr- 9%7
R IPE R IPE
thg»,c < RRipe(pk ,ct;li), ctgfg»,c — Enc{pe(pk™ =, precty, Wa),
return rctz 1= (€M, F", BT, {cti S bim1,2).-
Decoct(pk, sk := (k*, k;“an,sk%PE), octz := (C := (e, €ran, c1), verk, S)):

If Ver(verk,C,S) # 1, return L, K :=e(c,k*), return m :=cp/K.

Decrer(pk, sk := (k*, ki, SkIPE),  retz = (N<, ¢fene, rrene {ctrenc), o))

rans 2"y’ 1,%

— R . _ — . B -
W; « Decipg (pk'PE, sk%F/)E,thg/c) for i = 1,2, K := e(c™Wy 1, k**"W 1), return m := cf"/ K.

Remark 1 (Representations of (k*™, k/TK) and (k*'e"°, c"®"¢, ¢in°) ).

1. Since components k*™ and k*™ in a re-encryption key are generated from k* and k*_ in a
p ran yp y g ran

decryption key, we show k*™ and kK are uniformly and independently distributed from the

decryption key components. k*™ and k¥ are represented over basis D} := (bW )i—0,. 4n+3 as
k< = (1, ™7, 0%, 0", ™, O)p: and kjgk = (10, &k, 7, 02, 02", 71k O)pr with o™ :=
§+70ran, O = TranOran, 7 := i+ 7Tan +7 , and 7, := rranifi +17 ', Which are uniformly and
independently distributed from sky except when 6,2, = 0, i.e., except for probability 1/q since
Ty Tran, 7 'y 7] ran are uniformly and independently distributed.

2. Components k*"" and (c™"¢, ¢&"°) in a re-encrypted ciphertext are generated from (k*™, kiIK)
in a re-encryption key and (c,cpan,cr) in a ciphertext, respectively. Hence, k*™"¢ is repre-
sented over basis D} as k*°"¢ = ( 1, 0"y, o(—1,verk), 027, i renc, 0)p; with ¢™"¢ :=
ok otk grene = gk g/ tk 45" which are uniformly and independently distributed

ra
from rkyz except when 0'%, = 0, i.e., except for probability 1/¢ since /,77” are uniformly and
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renc renc

independently distributed. ¢ and " are represented over basis Dy := (b;W2)i=0,.. 4n+3 as
crenc — ( Crenc, wrencf7 prenc(verk’ 1), 027147 OTL’ SOI'EI'IC)]D)Q and c&gnc —m - g%‘:enc With Crenc — C + CI,
W = W+ Ewran, P = p + Epran + P, 0™ = © + Epran + ', which are uniformly and in-
dependently distributed from octz except when wean = 0, i.e., except for probability 1/¢ since
¢',&, 0, ¢ are uniformly and independently distributed.

[Correctness of Decot] If -0 =0, K = e(c,k*) = g%wéf'ﬁ = g%.
[Correctness of Decc] (k*re“CW;l, crencwgl) are represented over bases (B,B*) as k*re"CWfl =
(1, 5renc1—f’ a(—l,ver )’ 02n7 ,'7 renc’ O)B* and crencW;l — (Crenc’ wrenc'i:’ prenc(verk’ 1), 02n’ On7 (prenc)B'
Hence, if 7 -7 =0, K= e(cre”CWQ_l, k*fele—l) = ggenc+wrencdrenci'ﬁ = ggprenc.

The DLIN assumption is given in Appendix A, and the OT12 IPE scheme is given in Definition
15 in Appendix B.2.

Theorem 1 (Main Theorem). The proposed IP-PRE scheme is fully-anonymous under the DLIN
assumption provided the underlying signature scheme is a strongly unforgeable one-time signature
scheme and the underlying IPE scheme is given by the OT12 IPE scheme.

Proof. From Corollary 1 (and Theorems 2-4) and Theorem 5, we obtain Theorem 1. O

The proofs of Theorems 2-5 are given in Appendices D.3—D.6 respectively. When the underlying
IPE scheme is given by the OT12 IPE scheme, we have Corollary 1 below.

Theorem 2. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme s a strongly
unforgeable one-time signature scheme and the underlying IPE scheme s fully attribute-hiding.

Theorem 3. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted ci-
phertexts against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-
hiding.

Theorem 4. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.

Corollary 1 The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme is a strongly
unforgeable one-time signature scheme and the underlying IPE scheme is given by the OT12 IPE
scheme.

It is predicate- and attribute-hiding for re-encrypted ciphertexts against chosen plaintext attacks
under the DLIN assumption provided the underlying IPE scheme is given by the OT12 IPE scheme.

It is predicate- and attribute-hiding for re-encryption key against chosen plaintext attacks under
the DLIN assumption provided the underlying IPE scheme is given by the OT12 IPE scheme.

Theorem 5. The proposed IP-PRE scheme is unlinkable.

5 Proposed Ciphertext Policy Functional Proxy-Re-Encryption (CP-F-PRE)
Scheme

We propose a CP-F-PRE scheme with the access structure given by Okamoto-Takashima [27]. The
scheme is payload-hiding for original ciphertexts, payload-hiding for re-encrypted ciphertexts, and
attribute-hiding for re-encryption keys under the DLIN assumption and the existence of a strongly
unforgeable one-time signature scheme (Corollary 3). In addition, the scheme is unlinkable (Theorem
11). For security definitions, the proposed scheme and its security theorems, refer to Appendix E.
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A Decisional Linear (DLIN) Assumption

Definition 9 (DLIN: Decisional Linear Assumption [5]). The DLIN problem is to guess
B € {0,1}, given (paramg, G,(G, kG, G, 0kG, Yp) & QEL'N(Y\), where gﬁDL'N(lA) : paramg :=
(¢,G,Gr,G,e) & Gopg(11), K, 0,&, 0 Y Fo. Yy := (0 + 0)G, Y1 J G, return (paramg, G,&G, kG,
G, o0kG,Yg), for B & {0,1}. For a probabilistic machine £, we define the advantage of € for the
DLIN problem as: AdvBHN(\):= ‘Pr [5(1>‘, 0)—1 ‘g %RgngN(l)‘)} —Pr [5(1)‘, 0)—1 ‘Q & GPHN (1M ] ‘ .

The DLIN assumption is: For any probabilistic polynomial-time adversary £, the advantage AdngL'N()\)
1s negligible in .

B Building Blocks for the Proposed IP-PRE Schemes in Section 4

B.1 One-Time Signatures
Definition 10 (Signature Scheme). A signature scheme consists of the following three algorithms.

SigKG takes as input a security parameter 1* and outputs verification key verk and signing key sigk.

Sig takes as input a message m and a signing key sigk and outputs a signature S.

Ver takes as input a message m, a signature S, and a verification key sigk and outputs a boolean
value accept = 1 or reject =0

A signature scheme should have the following correctness property: for any (verk, sigk) & SigkG(1%),

any message m, and any signature .S & Sig(sigk, m), it holds that 1 = Ver(verk, m, S) with probability
1.
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Definition 11 (Strong Unforgeability). For an adversary, we define Advgf’SUF()\) to be the suc-
cess probability in the following experiment for any security parameter A. A signature scheme is
a strongly unforgeable one-time signature scheme if the success probability of any polynomial-time
adversary is negligible:

1. The challenger runs (verk, sigk) & SigkG(1*) and gives verk to the adversary.

2. The adversary makes signing query on a message m and receives S & Sig(sigk, m) at most ones.
We denote the pair of message and signature (m,.S) if the sining oracle is queried.
3. At the end, the adversary outputs (m’, S’).

We say the adversary succeeds if Ver(verk,m’, S’) = 1 and (m,S) # (m/,S’) (assuming the signing
oracle is queried).

B.2 Underlying Fully Attribute-Hiding IPE

We tweak a usual fully attribute-hiding IPE to be used in our fully-anonymous IP-PRE.

In this subsection, we propose new concept of an IPE scheme. We define relation R(¥, ) = 1 if and
only if ¥-Z = 0. In ordinarily IPE scheme, there are four algorithms (Setuppg, KG,pg, Encipg, Decipg).
In order to construct secure IP-PRE scheme, we introduce new algorithms Encjpp and Encpg to IPE
scheme. Roughly speaking, Encjpg encrypts only attribute vector Z and Encjpg encrypts only plaintext
m by deriving attribute & from Encjpg whereas Enc encrypts both an attribute and a plaintext. We
consider IPE scheme that message space is matrix space Fév *N That is, Encipg is a sequential
composition of Encipg and Enc{pg, which takes as input an attribute Z and a plaintext X € FqNXN,
respectively.

Definition 12. An inner-product encryption scheme consists of the following seven algorithms.

Setupipg: takes as input a security parameter 1% and a positive integer n outputs public key pk and
(master) secret key sk.

KGipg: takes as input a public key pk, a (master) secret key sk, and a predicate vector v. It outputs
a corresponding decryption key skg.

Encipe: takes as input a public key pk and an attribute vector . It outputs a pre-ciphertext prectz.

Encipg: takes as input a public key pk, a pre-ciphertext prectz, a plaintext X € FéVXN m some
associated plaintext space. It outputs a ciphertext ctz.

Encipg: takes as input a public key pk, a plaintert X € FéVXN

i some associated plaintext space,

and an attribute vector T. It outputs a ciphertext cty & Encﬂ!,E(pk'PE, Enci‘PE(kaPE, 7), X).
RRipg: takes as input a public key pk, a ciphertext ctz. It outputs a (re-randomized) ciphertext ctz.
Decipg: takes as input a public key pk, a decryption key skg, and an original ciphertext ctz. It outputs

either plaintext X € FéVXN or the distinguished symbol L.

We require the correctnesses for an IPE scheme: (1) For any plaintext X € Fév *N any (pk, sk) &
Setupipe()), any ¥ and &, any decryption key skz & KGipe(pk, sk, ¥), and any ciphertext ctz &

—

Encipe(pk, X, Z), we have m = Decipg(pk,sky,ctz) if R(¥,Z) = 1. Otherwise it holds with neg-
ligible probability. (2) For any plaintext m, any (pk,sk) & Setupipe(A), any ¢ and Z, any de-
cryption key sk & KGipe(pk, sk, ¥), any pre-ciphertext prectz & Encipoe(pk, @) and any ciphertext
ctz & Encipe(pk, prectz, X), we have m = Decipg(pk, sky, ctz) if R(U,Z) = 1. Otherwise it holds with
negligible probability. The above two conditions also hold for a re-randomized ctz & RRipe(pk, ctz)
instead of an ordinary ciphertext ctz.

We then define fully attribute-hiding security of IPE scheme.
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Definition 13 (Attribute-Hiding Security). The model for defining the fully attribute-hiding
security of IPE against adversary A under chosen plaintext attacks is given as follows:

Setup. The challenger runs the setup algorithm (pk, sk) & Setupipe(1*,n), and it gives the security
parameter A and the public key pk to the adversary A.

Phase 1. The adversary A is allowed to adaptively issue a polynomial number of key queries. For
a decryption key query v, the challenger gives sk, &R KGipe(pk, sk, ¥) to A.

Challenge. For a challenge query (X(O), xX@) #0) f(l)), subject to the following restriction:
1. R(%, 7)) = R(%,#1) = 0 for all the decryption key queries T, or
2. Two challenge plainterts are equal, i.e., X0 = xO) gnd any decryption key query U satisfies

R(#,79)) = R(7,z1).

The challenger flips a random b € {0,1} and computes ctyw) & Encipe(pk, f(b),X(b)). Then it
gives ctzw) to A.

Phase 2. The adversary A is allowed to adaptively issue a polynomial number of key queries. For
a decryption key query v, subject to the restriction given it challenge phase.

Finally, A outputs its guess b’ € {0,1} for b and wins the game if b =b'. We define the advantage
of A as Adv'jE’AH()\) = Prib=10]— % An IPE scheme is fully attribute-hiding if all polynomial time
adversaries have at most negligible advantage in the above game. If item 1 in Challenge is allowed
for A, an IPE scheme is payload-hiding if all polynomial time adversaries have at most negligible
advantage in the game.

Definition 14 ((Unconditional) Unlinkability). An IPE scheme is unconditionally unlinkable
if the following two conditions hold:

Unlinkability of Ciphertexts for all (sk, pk) & Setupipe(1*,n), all attribute vectors &, all plain-
texts X € IF'qNXN, distributions (precty & Encioe(pk, @), Encpe(pk, prectz, X)) and (precty &
Encipe(pk, Z), Encipe(pk, Z, X)) are equivalent except for negligible probability.

Unlinkability of Re-randomized Ciphertexts for all (sk, pk) & Setupipe(1*,n), all attribute
vectors T, all plainterts X € FqNXN, distributions (ctgz & Encipe(pk, #, X)), RRipe(pk,ctz)) and
(ctz & Encipe(pk, #, X), Encipe(pk, Z, X)) are equivalent except for negligible probability.

Fully attribute-hiding IPE scheme which is proposed in [29] is an instantiation of the above un-

derlying IPE scheme. We give specific underlying IPE scheme (Setupipg, KGipg, Encipg, Encipe, Encipg,
RRipg, Decipg) based on fully attribute-hiding IPE scheme proposed in [29].

Definition 15 (The OT12 IPE Scheme). Let E be an injective encoding function from Fy to
Gr. Assume that the security parameter is chosen so that E is an injective function.

Setupipe(1*,n):  (param,,, Bipg = (bo, - . ., bant1), Bipg = (b, - ... bi,i1)) & Gob(1*,4n + 2),
Bipe := (bo, - - ., b, bani1), A@I*PE = (B, Bl Bli1 o, D),
return pk'"E := (1%, param,, Bjpg), sk'PE:= Bjpe-
KGipe(pk'PE, sk'PE. 7): 6 & Fy, ﬁ(—U Fy, k" :=(1, dv, 0%", 17, 0)py,., return skiPE .= k*.
Encloe(pk, Z): w, ¢ eUIFq, c = (0, wZ, 0°", 0", @)ppe, return prect; :=c'.
Encpe (pk, prectz, X := (Xij)ijot,..n € FAXN): €h.0h <X By, o= E)¢ + Phbanti,
fori,j=1,....n, Gj,& ;1 ¢i; & F,,
Cig = &€+ (Gigy 07 0% 0", @) Dapes criy = E(Xiy) - 977,
return ctz := (co, {¢ij, ¢ }ij=1,..n)-
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Encipe(pk, #, X € IF(]]VXN): prect & Encioe(pk, @),  return ctg & Encipe(pk, prectz, X).

=7 T P
RRipe(pk, ctz := (co, {€ij, cTyijtij=1,...n)): &0,%0 < Fyq, €o:=&oco + Pobant1,
. S
for 1,7 :1,...777,, Ci,jafi,jv@i,j%ﬁ?q, _
o~ c = ~ ~ Gij
Cij=Eijco+ (Gig, 0" 0%, 0", @ij)Bee, Crij = cCrij- 97~
return ctz := (€o, {Cij, CT,i ) }ij=1,..,n)- N
Decipe(pk,skif &, ctz):  Kij = e(cij k), E(Xi;) = crij/Kij,

return X := (Xi,j)i,j=1,...n by decoding of E(X; ;).
We obtain a fully attribute-hiding IPE scheme with the above message space based on a fully attribute-
hiding IPE in [29]. We call it the OT12 IPE scheme.
Lemma 1. The OT12 IPE scheme is fully-attribute-hiding under the DLIN assumption.

Proof. The OT12 IPE scheme is equivalent fully-attribute-hiding IPE scheme which is proposed
in [29] except that there exists Encjpg and Encjpg. So, the security proof of fully-attribute-hiding is
also similarly obtained to the security proof in [29]. O

Lemma 2. The OT12 IPE scheme is unconditionally unlinkable.

Proof. Tt holds ¢y = (0, wo®, 02", 0", ¢o)ppe With uniformly and independently distributed wy :=
. U S . .
Ew, o = Ep + ¢f since &), v + Fy, and ¢;; = ( Gy, wi ;@ 0%, 0, ¢;)Bpe With uniformly
and independently distributed (;j,w;; := & ;w, ¢ij = & ;o + ¢; ; except when w = 0, i.e., except
for probability 1/q since (i7j,£7’;7j, QD;L,j s F, for 4,5 = 1,...,n. This completes the unlinkability of
ciphertexts ctz := (co,{¢ij,cr,i}ij=1,..,n). The unlinkability of re-randomized ciphertexts Cty =
(E(], {Ei,jaET,i,j}i,j:l,...,n) 1S Similarly proven. O

C Basic IP-PRE

Setup(1*,n):  (pk'"E, sk!PE) & Setupipe(1*,n),
(param,, B = (bo, ., ban3), B* = (B, bl ys)) < Gop(17, 30+ 4),
B := (bo,...,bny2,b3n43), B* := (b],..., b} 5,05, o,...,b5, ),
return pk := (1*, pk'PE, paramn,I/B\%, I@*), sk := (b, sk!PE).
KG(pk,sk,7): skIPE & KGIPE(pk'PE skIPE ),
§ &Ry, if S F, k* = (1, 66, 02, 07, 77, 0)-,
return skz := (¥, k*, sk%PE).
Enc(pk,Z,m): (,w,p, ¢ J F,, (sigk,verk) & SigKG(1%),
c:= (¢, wZ, p(verk,1), 0", 0", ¢)p,
cri=m - gr_Cp, C:=(Zcer), S & Sig(sigk,C'), return octz := (C,verk, S).

RKG(pk, skg, #): 8 <2 Fy, i’ <2 F, Wy <2 GL(3n + 4,F,),
di :=b;W, fori=1,...,n4+2,2n+3,...,3n+3, D:=(d],...,d} 5, d5, o, ...,d5,  3)
ko= (k*+ (0, &7, 02, 0", 77/, 0)p~) W1,
ct%i & Encipe(pk'PE, &, W), return rkyz = (U, f’,k*rk,ﬁ’{,ctgf).
Remark k*' is represented over basis D} := (b} W1 )i=o...3n+3 as k*™ = (1, 6™%, 02, 0", 77 ™, 0)ps
with 0™ := § 4+ ¢', 77 ™ := 7+ 77/, which are uniformly and independently distributed from
Skg.
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REnc(pk, rky z == (7,2, k*rk,]ﬁ)f,ctgf), octy := (C := (&, ¢, cr), verk, 5)):
If Ver(verk,C, S) # 1, return L.
0" o, W d F,, 77" d [y, Wa J GL(3n+4,F,)
— k "= = /!
krrenc .= k™ 4 (10, 6", o(—1,verk), 0", 7", 0)ps, /
" = (co+ (¢, T, p'(verk, 1), 0", 0", ¢')g)Wo, " :=cp- ggp
ctiens < RRipe(pkIPE, ct), ctis™® < Encipe (pk'PE, 7/, Wa),
return rcty = (&, k™", ", ¢, {ctln Fim1 2).
Remark k*™"¢ is represented over basis D} as k™" = (1, "0, o(—1,verk), 0", 7", 0)ps
with 8¢ ;= §™k 6", qjrenc .= 7 'k 3" which are uniformly and independently distributed
from rky z. €™ and "¢ are represented over basis Dy := (b;W2)i—0,.. 3n+3 as
orenc — ( greneyrenc g prenc(verk’ 1)’ 0", on, ()OrenC)ID)2 and 059"‘: —m. ggenc with
(e =+, W i=w WL P = p+ pf, o™ = p + ¢, which are uniformly
and independently distributed from octz.

Decoct(pk, skg := (7, k:*,sk'gPE),octf = (C:= (¥, ¢c,cr),verk, S)):
If Ver(verk,C,S) # 1, return 1, K :=e(c,k*), return m :=cp/K.

Decct(pk, sky := (07, k*, skljF,)E), rcty := (&, k*e"C, cff"C, ¢, {ct;f%‘f}izl,z)):
w, & Decipe (pk'PE, skif E, ctien) for i = 1,2, K := e(e™" W, ', k*enei; ),
return m := c&?”c/f?.
Remark (k*re"CW; L c'e”CWQ_l) are represented over bases (B,B*) as
krencilml = (1, §neg, o(—1,verk), 0", 7", 0)p- and
crencW;l _ ( rene yrency prenc(verk’ 1)’ o™, 0m, (’Orenc)B‘

Theorem 6. The proposed basic IP-PRE scheme is payload-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption, payload-hiding of underlying IPE scheme and
strong unforgeability of one-time signature.

Theorem 7. The proposed basic IP-PRE scheme is payload-hiding for re-encrypted ciphertexts against
chosen plaintext attacks under payload-hiding of underlying IPE scheme.

Corollary 2 The proposed basic IP-PRE scheme is payload-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption and strong unforgeability of one-time signature
with instantiating underlying IPE by OT12 IPE scheme.

The proposed basic IP-PRE scheme is payload-hiding for re-encrypted ciphertexrts against chosen
plaintext attacks under the DLIN assumption with instantiating underlying IPE by OT12 IPE scheme.

The proof of Theorems 6 and 7 and Corollary 2 are similarly given to Theorems and Corollary
for fully-anonymous IP-PRE in Section D.

D Security Proofs of Theorems 2-5

D.1 Key Technique: Information-Theoretical Insulation of a Subspace for Re-Enc
Key Basis D}

The dual system encryption (DSE) approach is developed by Waters [37] for achieving an adaptively
secure FE schemes, and subsequent works [15, 14, 27,29, 16, 30] successfully apply the approach to
obtain various kinds of adaptively secure schemes. The main key point in the game transformation
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Fig. 2. Overview of Game Changes between Games 1-3-(¢ — 1) and 1-3-¢

of the approach is to interleave a computational change with a conceptual (information-theoretical)
change, in turn for each key query. Usually, the computational one is given by a kind of subspace
assumption on a dual pairing vector space (in a prime-order pairing group) or a composite-order
pairing group, and the conceptual one is based on a pairwise independence argument for key and
ciphertext parameters, e.g., attribute vector ' and predicate vector & in IPE. Lewko-Waters [16] gave
a nice strategy for new applications by replacing the conceptual one by some computational one.
For our application, we develop another instantiation for the above conceptual step, subspace
insulation for basis D]. The basis D] := B*W; is generated in re-encryption key generation. In
Figure 2, a high-level description of game changes between Games 1-3-(¢ — 1) and 1-3-¢ for AH-OC
is given, in particular, (a part of) a normal form reply k*™ (and kj¥) for the /-th re-enc key query
(¥, 2") is changed to a semi-functional one in two different ways depending on sy, = 0 or 1 (Precisely,

the simulator first guesses the value of sy, by using 7 & {0,1} and follows the guess. See Proof
Outline of Lemma 5 near Figure 3 for the details.). Importantly, the obtained semi-functional forms
must be the same to proceed the game transformation in turn since we cannot ramify the challenger’s
simulation depending on all (polynomial number of) values of sy, for £ =1,... 1.

By definition of the AH-OC security game (Definition 5), the /-th re-enc key query (¥, Z') satisfies
that

for any decryption key query @, challenge messages (m(®, m(1)) and attributes (£, (1)),
it holds that m?) e R(7, 7)) e R(?",Z) = m™") & R(7,Z1))  R(¥', 7).

When sy ¢ = 0, it holds that R(¢,2’) = 0 for any decryption key query ¢'. When sy ¢ = 1, it holds
that m©) e R(#7, 7(0) = m(D e R(¥, (V) for challenge (m(?), m™M)) and (£(®), #). The latter condition
is the same as the previous fully-attribute-hiding security condition for IPE schemes, hence, we can
execute the proof in a similar manner to that in [29] based on a pairwise independence argument.
In the former case, since R(¢',2") = 0 for any decryption key query ¢, the adversary cannot
decrypt ctgi, i.e., cannot obtain Wj. Therefore, the adversary has no information on the subspace
basis (dg, ..., d;,, d} ,...,d5, ,). We call this information-theoretical insulation of a subspace for
basis D7, and using this information gap for the adversary, we conceptually change a normal form
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k*™ to a semi-functional one. For the details of the technique, refer to Figures 4 and 6, and their
explanations (“Overview of Sub-Games”) in Appendix D.3.

D.2 Preliminary Lemmas: Lemmas 3—6

Definition 16 (Problem 1). Problem 1 is to guess [, given (param,IB%,I@*,eBJ,{ei}i:zm,n) &K

ggl (1*,n), where

le(l/\,n) : (param,,,B,B*) & Gob(1*,4n + 4),

™* . * * * * U - U = -1
]:B — (bo,.7 n+27b2n+37.7b4n+3), w,’y%]Fq, Z%F;’ 61 — (1,0” ) EF;7

n+3 2n n 1
—_——

€0,1 ::( 07 wgl) 027 ) Ona Y )]E’
€11 ::( 07 U.)éi, 02) 57 Onu Onﬂ Y )]E7

e :=wb; fori=2,...,n,

02n

return (param,,,B,B*, ez 1,{ei}ti=2. ),

for 3 Y {0,1}. For a probabilistic machine B, we define the advantage of B as the quantity Advg(\):=
Pr {B(l)‘, 0)—1 ‘Q <—Rgg’1(1&n)} —Pr[B(l/\7 0)—1 |o %Rgfl(l/\,n)] ‘ )

Lemma 3. For any adversary B, there exist probabilistic machines £, whose running times are
essentially the same as that of B, such that for any security parameter X, Advigt(\) < AdvBHN()) +

5/q.

The proof of Lemma 3 is given in a similar manner to the security proof of Problem 1 in [27] to
DLIN.

T:UD

Definition 17 (Problem 2). Problem 2 is to guess [, given (paramn,@,]B%*,{h;‘37i,ei}i:17,,.,n)
ng(l)‘,n), where

g}?(l*,n) : (param,,,B,B") & Gob(17,4n + 4),
= u
B:= (bo,..,bn+2,b2n+3,..,b4n+3), (S,W,T,J(—Fq,

fori=1,...,n, &:=(0""1,00"%) cFr, i< FL,

n+3 2n n 1
—N——

h’é,i = ( 07 6527 027 O2n7 77@', 0 )E*
h’ii = ( 07 6517 027 Té}, 0n7 77@', 0 )E*
€i = ( 07 wgi? 027 O'é;', Ona Onv 0 )B)

return (param,,, B, B*, {hj ;, €;}i=1,.x),

for B & {0,1}. For a probabilistic adversary B, the advantage of B for Problem 2, Advi?(\), is
similarly defined as in Definition 16.

Lemma 4. For any adversary B, there exists a probabilistic machine £, whose running time is
essentially the same as that of B, such that for any security parameter A, Advlpgz()\) < Adv?LlN(A) +

5/q.
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The proof of Lemma 4 is given in a similar manner to the security proof of Problem 2 in [27] to
DLIN. O
Definition 18 (Problem 3). Problem 3 is to guess [, given (paramn,ﬁ,B*, {hg i»€iti=1.2) &
953(1>‘,n), where

GP3(1Nn) . (param,,B,B*) <X Gop(1), dn + 4),
= U U —
B := (by, .., b2, bants, o banys), S,w, 7,0 < Fy, Z < GL(n,Fy), U= (Z~1H7T,
fori=1,2, & :=(1,0), & :=(0,1) € F2, i < FY,

n+3 2n n 1
- —~ AN
- 1 > 2 =
hEi,L - — ( 0n+ 5 56r“ O 7”L7 77’“ 0 )B*

hi; = ( 0% 66, (7e;,0"7)U, 0", i, 0 s
€; == ( 0n+17 U.)é;‘, (Ugiaon_Q)Za On? On? 0 )IB)
return (param,,, B, B*, {hj ;, €;}i=12),

for B J {0,1}. For a probabilistic adversary B, the advantage of B for Problem 3, Adv?()\), 18
stmilarly defined as in Definition 16.

Lemma 5. For any adversary B, there exists a probabilistic machine £, whose running time s
essentially the same as that of B, such that for any security parameter X, Advig>(\) < AdvBHN()) +
5/q.

The proof of Lemma 5 is given in a similar manner to the security proof of Problem 2 in [27] to
DLIN.

Definition 19 (Problem 4). Problem / is to guess (3, given (paramn,@,IB*, {hz,i,ei, fiti=1,.n)
QE“(I)‘,n), where

T;UD

G5*(1*,n) . (param,,B,B*) EGop(1*, dn + 1),

™ v oom U
B:= (b07 "7bn+27b3n+37 "7b4n+3)7 ]B* = (b07 "7bn+27b2n+37 "7b4n+3)7 T,W,W ,K,K < ]an

fori=1,...,n, &:=(0"11,0"7) eFr, i <Fr,

n+3 2n n 1
—~

L 3 . -
hai T ( ot ) TéEq, Ona i, 0 )IB*

L 3 - -
hii T ( ot ) 0n7 TéEq, i, 0 )B*
€; ::( 0n+37 wlé;;’ w//é;h 071’ 0 )[B?
fi ::( 0n+37 Klgia ’{”é;;a Ona 0 )B?

~
I

return (paramn7 B @*’ {h;’é,ia €, fi}iZl,.A,n)a

for B J {0,1}. For a probabilistic adversary B, the advantage of B for Problem 4, Advlpg“()\), is
similarly defined as in Definition 16.

Lemma 6. For any adversary B, there exists a probabilistic machine £, whose running time is
essentially the same as that of B, such that for any security parameter A, Adv?’()\) < Adv?LlN(x\) +

8/q.

The proof of Lemma 6 is given in a similar manner to the security proof of Problem 3 in [29] to
DLIN. O
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D.3 Proof of Theorem 2 (AH-OC: Attribute-Hiding for Original Ciphertexts)

The variables sm, Sk ¢, Srenc,t in Definition 5 are used for defining cases in the proof of Theorem 2. For
that purpose, the following claims are important, which are deduced from the restriction described
in Challenge phase.

— When s, = 0, it holds that R(v,z(®) = R(v, (1)) = 0 for any decryption key query v.

— When s, = 1, it holds that R(v,z(®) = R(v, z())) for any decryption key query v.

— When sy = 0, it holds that R(v,z};) = 0 for any decryption key query v and the ¢-th re-
encryption key query (vg,x}).

— When sm = 0 and sy = 1, it holds that R(vg, (9 = R(vy, I(l)) = 0 for the ¢-th re-encryption
key query (ve, 7).

— When sy, = 1 and sy = 1, it holds that R(vg, 29) = R(vg, M) for the ¢-th re-encryption key
query (vg, x)).

— When Srenct = 0, it holds that R(v,z}) = 0 for any decryption key query v and the ¢-th re-
encryption query (v, x}, octy).

— When sm = 0 and Srenct = 1, it holds that R(vy, x(o)) = R(vy, x(l)) = 0 for the t-th re-encryption
query (vg, z}, octy).

— When s, = 1 and Srenct = 1, it holds that R(vt,m(o)) = R(vt,x(l)) for the ¢-th re-encryption
query (vr, 7, octy).

Theorem 2 The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks under the DLIN assumption provided the underlying signature scheme is a strongly
unforgeable one-time signature scheme and the underlying IPE scheme is fully attribute-hiding.

For any adversary A, there exist probabilistic machines £’s, whose running times are essentially
the same as that of A, such that for any security parameter X\, the advantage Advﬁ‘H'oc()\) 1S upper-
bounded by the sum of the right hand side of Eq. (4), that of Eq. (5), and that of Eq. (27). The sum

is given by the total of

— one advantage of the strong unforgeability against the underlying one-time signatures,
- 8(vy + v3) advantages of the attribute-hiding security against the underlying IPE scheme, and
- 12(vy + o) + 11lvs + 7 advantages of DLIN

for € algorithms, which are £ machines with parameters (t,h,¢,t,5,1) as described in Lemmas 7,
8, and 17. Here, v1, vo, v3 are the maximum number of A’s decryption key queries, that of A’s
re-encryption key queries, and that of A’s re-encryption queries, respectively.

Proof. For each run of the security game, we define variable Sy as: Syerk := 0 if there exists
a re-encryption query (U,Z',oct := (C,verk,S)) such that Ver(verk,C,S) = 1, oct # oct® and
verk = verk® where oct® := (C*, verk® S*) (then (C,S) # (C*,S*)) is the challenge original
ciphertext, and syek := 1 otherwise.

First, we execute a preliminary game transformation from Game 0 (original game in Definition 5)

to Game 0/, which is the same as Game 0 except that flip a coin Tyerk & {0,1} before setup, and
the game is aborted at the final step if Syerk # Tverk- We define that A wins with probability 1/2
when the game is aborted and the advantage in Game 0" is Pr[A wins] — 1/2 as well. Since Tyerk is
independent from Syerk, the probability that the game is aborted is 1/2. So, the advantage in Game
0’ is a half of that in Game 0, that is Advfg/)(/\) =1/2- Advgl))()\) = 1/2 - AdvAHO¢(\). Moreover,
Pr[A wins] = 1/2(Pr[A wins|ryerk = 0] + Pr[A wins|ryerk = 1]) in Game 0'. Namely,

AGATOC(N) = AdvD () = 2 AV ()
= (Pr[A wins in Game 0 | Tyerk = 0] — 1/2) + (Pr[A wins in Game 0 | Tyerk = 1] — 1/2). (2)
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Then, we execute a second preliminary game transformation from Game 0’ to Game 0", which

is the same as Game 0’ except that flip a coin 7, & {0, 1} before setup, and the game is aborted
in challenge phase if sy # 7m. As before, we define that A wins with probability 1/2 when the
game is aborted and the advantage in Game 0” is Pr[A wins] — 1/2 as well. Since 7y, is inde-
pendent from sp, the probability that the game is aborted is 1/2. So, the advantage in Game
0" when 7yek = 1 is a halt of that in Game 0, that is Pr[A wins in Game 0" | ryex = 1)) — 1/2 =
1/2(Pr[A wins in Game 0’ | 7yerk = 1])—1/2). Moreover, Pr[A wins|ryerk = 1] = 1/2(Pr[A wins|rek =
1 A Tm = 0] + Pr[A wins|ryek =1 A 7m = 1]) in Game 0”. Combining Eq. (2), in Game 0”,

AdVAHOC(\) = (Pr[A wins in Game 0’| 7yerk = 0] — 1/2)
+(Pr[A wins in Game 0" |7y =1 A 7q = 0] — 1/2)
+(Pr[A wins in Game 0" |Tyek =1 A 7y = 1] — 1/2). (3)

The advantage in the case Tyerk = 0 i.e., Pr[A wins in Game 0/ | 7yek = 0] —1/2 is upper-bounded
by the advantage of some machine against strong unforgeability of the underlying one-time signature
scheme in Lemma 7, and the advantages in the case Ty = 1, i.e., Pr[A wins in Game 0" | 7yer =
1 A Tm =0] —1/2 and Pr[A wins in Game 0" |7yek =1 A 7m = 1] — 1/2 are upper-bounded by
those of DLIN in Lemmas 8 and 17, respectively.

This completes the proof of Theorem 2. O

Corollary 1-1. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against
chosen plaintext attacks under the DLIN assumption provided the underlying signature scheme is a
strongly unforgeable one-time signature scheme and the underlying IPE scheme is given by the OT12
IPE scheme.

Proof of Theorem 2 (AH-OC) in the Case Tyerk = 0

Lemma 7. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against cho-
sen plaintext attacks in the case Tyerk = 0 provided an underlying signature scheme is a strongly
unforgeable one-time signature scheme.

For any adversary A, there exist probabilistic machines £, whose running time is essentially the
same as that of A, such that for any security parameter A in Case 0

Pr[A wins in Game 0| renc = 0] — 1/2 < Adv>UF (). (4)

Proof. In order to prove Lemma 7, we construct a probabilistic machine £ against the strong un-
forgeability of the underlying one-time signature using an adversary A in a security game (Game 0’)
as a black box as follows:

1. &€ is given a verification key instance from the challenger of the strong unforgeability, verk®.

2. & plays a role of the challenger in the security game against A.

3. At the first step of the game, £ generates a pair of public and secret key of the IP-PRE scheme,
(pk,sk). £ provides A with a public key pk.

4. When a decryption key query is issued for a vector ¢, £ computes a normal key skz & KG(pk, sk, ¥/)
and provides A with it. Similarly, when a re-encryption key query is issued for (¢, #"), £ computes
a normal re-encryption key rkg z & RKG(pk, KG(pk, sk, ¥), ) and provides A with it.

5. When a re-encryption query is issued for (,2’,oct := (C,verk,S)), if Ver(verk,C,S) # 1, £
returns 1 to A. Otherwise, £ computes a normal form of re-encrypted ciphertext rctz &
REnc(pk, RKG(pk, KG(pk, sk, ¥), &), oct) and provides A with it.
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6. When a challenge query is issued for (9, 21 m(® m™) & picks a bit b & {0,1} and ¢, w, wran,
P, Pran> P, Pran Y F, and computes using verk®,
Cc = ( ¢, Wf(b)a p(verk"', 1): 03n7 @ )]B%a Cran ‘= ( 0, Wranf(b)7 pran(Verkq.a 1)7 03n, Pran )]B;
cr i=m® -g%, and

£ asks the challenger of the strong unforgeability with a signature query for message C* :=
(¢, ¢ran, cr) and obtain the signature S from the challenger. £ sets a challenge ciphertext oct® =
(C*, verk® S%) to A.
7. For a decryption key, re-encryption key, and re-encryption queries after the challenge, £ responds
to A as in the same manner as in steps 4 and 5.
8. A finally outputs bit b'.
If there is a re-encryption query (7, Z, oct := (C,verk, S)) with verk = verk®, (C, S) # (C*, S%)
and Ver(verk, C, S), £ outputs a forgery (C,S). Otherwise, £ aborts the game.
If there is a re-encryption query (@,2’,oct := (C,verk,S)) with verk = verk®, (C,S) # (C*%,5%)
and Ver(verk, C, S), then syerk = 0. Since if Syerk # Tverk(= 0), the game is aborted and A wins with
probability 1/2, i.e., Pr[A wins in Game 0/ | Tyerk =0 A Syerk 7 Tverk] = 1/2,
Pr[A wins in Game 0| 7ye = 0] — 1/2
= Pr[A wins in Game 0" | Tyerk = 0 A Syerk = Tverk] PT[Sverk = Tverk|Tverk = 0]
+Pr[A wins in Game 0" | Tyerk = 0 A Sverk 7 Tverk) PT[Sverk # Tverk|Tverk = 0] — 1/2
= Pr[A wins in Game 0" | Tyerk =0 A Syerk = Tverk] PT[Sverk = Tverk|Tverk = 0]
+1/2(1 - PI'[Sverk = 7—verk‘Tverk = 0]) - 1/2
= (Pr[A wins in Game 0| Tyerk = 0 A Sverk = Tverk] — 1/2) Pr[sverk = Tverk|Tverk = 0]
0S,S
< Pr[Sverk = 7_verk"rverk = O] = AdVg UF()\)-

This completes the proof of Lemma 7. O

Proof of Theorem 2 (AH-OC) in the Case Tyek =1 A Ty = 0

In Lemmas 8-16 and their proofs, we consider only the case Tyexk =1 A 7n = O.

Lemma 8. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks in the case Tyerk = 1 A Tm = 0 under the DLIN assumption provided an underlying
IPE scheme is attribute-hiding.

For any adversary A, there exist probabilistic machines £,-1,&,-2-j,E,-3-4-j, E,-3-B-j, Es-4-A-j, E1-4-B-j,
E16 for o =1,2, j = 1,2, whose running times are essentially the same as that of A, such that for
any security parameter X,

Pr[A Wins|7'verk =1A7mm=0]-1/2

v IPE,AH
Z<Advoum )+ UL TR AR () 4+ T 3 (Ad VEEAH () + AGVBUN (A))

A, (Ad PEAM () AR ()\))) +AdvBUN() + € (5)
where £,-9-p-j(+) = L-2-j(ha )5 Eu-zop-4-5 () = &3 A-g(f ), Ei-3-0-B-j(*) == E3-B-i (4, ), Ergop-n-5(+) =
EL_4_A_j(t, ')agL—4—t—B—j(’) = Cy-4- B—j( ) fOT’ h = 1 , V1, { = 1,...,1/2 and t = 1,...,1/3, € =

(14v1 + 17wy + 17v3 + 15) /q and vi,va,v3 are the mazimum numbers of A’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively.
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| |
| = = I~ ~ = = ~ = |
| |
|| Problem 1 || Problem 2 | | Problem 2 & IPE-AH | | Problem 2, 3 & IPE-AH | :

Fig. 3. Game Transformations for AH-OC Security in the Case Tverk = 1 A 7m = 0.

Proof Outline of Lemma 8. To prove Lemma 8, we consider Tyex = 1 A Tmy = 0 case.

Overview of Game Transformation. We employ Game 0” through Game 2-5. In this proof, there are
main two sequences, the Game 1 sequence and the Game 2 sequence (Figure 3), whose aims are to
change components ¢ and cra, of the challenge ciphertext to independent ones from challenge bit b
(random form), respectively.

We employ Game 0” through Game 1-7 in the Game 1 sequence. In Game 0”, all the replies to A’s
queries are in normal forms (Eqgs.(6)—(10)). In Game 1-1, ¢ of the challenge ciphertext is changed to
semi-functional form in Eq.(11). Let v, 2, v3 be the maximum numbers of A’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively. There are
v1 game changes from Game 1-1 (Game 1-2-0) through Game 1-2-v;. In Game 1-2-h (h=1,...,11),
the reply to the h-th decryption key query is changed to semi-functional form (Eq.(12)). There are v
game changes from Game 1-2-v; (Game 1-3-0) through Game 1-3-v5. In Game 1-3-¢ (¢ =1,...,13),
the reply to the ¢-th re-encryption key query is changed to semi-functional form (Eq.(13)). There are
v3 game changes from Game 1-3-v5 (Game 1-4-0) through Game 1-4-v3. In Game 1-4-t (t =1,...,v3),
the reply to the ¢t-th re-encrypted ciphertext query is changed to semi-functional form (Eq.(14)). In
Game 1-5, ¢ of the challenge ciphertext is changed to random form in Eq.(15).

Then, in Game 1-6, replies to all the decryption key, re-encryption key and re-encrypted ciphertext
queries are changed to a form, which is normal except for component ¢ of the challenge, and the
game is a preparation for the Game 2 sequence. In the Game 2 sequence, ¢, is changed to random
form in Eq.(16) by proceeding similar to game transformations in the Game 1 sequence. In the final
Game 2-5, the advantage of the adversary is zero.

As Figure 3 shows, the advantage gap between Game 0 and Game 1-1 is bounded by the advantage
of Problem 1. The advantage gaps between Games 1-2-(h — 1) and 1-2-h (resp. 2-2-(h — 1) and 2-2-h)
are bounded by the advantage of Problem 2. The advantage gaps between Games 1-3-(¢—1) and 1-3-¢
(resp. Games 2-3-(¢ — 1) and 2-3-¢) are bounded by the advantages of Problem 2 and the attribute-
hiding security of the underlying IPE scheme. The advantage gaps between Games 1-4-(¢ — 1) and
Game 1-4-t (resp. Games 2-4-(t — 1) and 2-4-t) are bounded by the advantages of Problems 2, 3
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Fig. 4. Sub-Games between Games 1-3-(¢ — 1) and 1-3-¢, and Games 1-4-(¢ — 1) and 1-4-¢

Trenc = 2

and attribute-hiding security of the underlying IPE scheme. Since the advantages of Problems 1,
2 and 3 are bounded by that of DLIN, the advantage of A is bounded by those of DLIN and the
attribute-hiding security of the underlying IPE.

Overview of Sub-Games. We employ Sub-Games between Games 1-3-(¢ — 1) and 1-3-¢, and Games
1-4-(t — 1) and 1-4-t as described in Figure 4.

First, Game 1-3-(¢ — 1) is changed to Game 1-3-(¢ — 1)’ which is the same as Game 1-3-(¢ — 1)
except that flip a coin 7y & {0,1} before setup, and the game is aborted if 7k # sk when the
variable sy ¢ is determined at the challenge step or the /-th re-encryption key query step (Definition
4). Since Ty & {0, 1}, the advantage of A in Game 1-3-(£ — 1)’ is a half of that in Game 1-3-(¢ — 1).

When 7« = 0, we employ three intermediate sub-games, Sub-Games 1-3-¢-A-j (j = 1,2,3). In
Game 1-3-¢-A-1, ctgi in the reply to the /-th re-encryption key query is changed to Encipg (pk™%, &/, R)
where R is a random matrix in IE‘(;V *N In Game 1-3-f-A-2, k*™ and k7% of the reply are changed to
semi-functional forms in Eq.(13). In Game 1-3-¢-A-3, ct%k, returns back to normal ct%k, := Encipg (pk™E,
#,W1). When 7 = 1, in Game 1-3-(-B, k*™* and k'K of the reply to the /-th re-encryption key
query are (directly) changed to semi-functional forms in Eq.(13).

Both final games, Game 1-3-¢-A-3 (when 74 = 0) and Game 1-3-¢-B (when 74 = 1) are equivalent

to Game 1-3-¢" which is the same as Game 1-3-¢ except that flip a coin 7 & {0, 1} before setup,
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and the game is aborted if ¢ # sy when the variable sy ¢ is determined at the challenge step or
the (-th re-encryption key query step (Definition 4). Similarly to Game 1-3-(¢ — 1)’, the advantage
of A in Game 1-3-¢" is a half of that in Game 1-3-£.

As Figure 4 shows, when 7, = 0, the advantage gap between Games 1-3-(¢ — 1)’ and 1-3-¢-A-1
(resp. 1-3-¢-A-2 and 1-3-¢-A-3) is bounded by the advantage of the attribute-hiding security of the
underlying IPE scheme. Game 1-3-¢-A-1 (resp. 1-3-¢-A-3) is conceptually changed to Game 1-3-¢-A-2
(resp. 1-3-¢"). When 7 = 1, the advantage gap between Games 1-3-(¢ — 1)’ and 1-3-¢-B is bounded
by the advantage of Problem 2, and Game 1-3-¢-B is conceptually changed to Game 1-3-¢".

For bounding the advantage gap between Games 1-4-(t—1) and 1-4-¢, similar Sub-Games are used
(the lower diagram in Figure 4). The difference from the above is that a ternary coin Tyenc J {0,1,2}
is used, so, the advantage of A in Game 1-4-(t — 1)’ is a third of that in Game 1-4-(¢ — 1). Here,
while the gap is bounded by the advantage of Problem 2 when Tienc = 1, the gap is bounded by that
of Problem 3 when 7yenc = 2.

Proof of Lemma 8. Let 1 be the maximum number of A’s decryption key queries, v5 be the
maximum number of A’s re-encryption key queries and vs be the maximum number of A’s re-
encryption queries. To prove Lemma 8, we consider the following 2(v1 + v2 + v3) + 6 games. In Game
0’, a part framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients which were changed in a game from the previous
game.

Game 0”: We only describe the components which are changed in the other games.
— k* and k!

ran
kE* = ( 17 5177 027 ’ 7 ﬁ? 0 )B*7 k;kan = < 07 5ran177 02’ 7 7 777 0 )3*7 (6)

U . U
where 0, dran < Fy, 17, ran < Fy.

— k% kXK and ctrii of the reply to a re-encryption key query for (¢, ') is:

k= (1, 8™, 0%, 7™, 0 )y, kik = (0, o 7, 07, Tk, 0 )y, (7)

where &', 6tk < Fy, i ™ 706 < B2, Wy <2 GL(4n + 4,F,) and D := B*W.

yrran
— k**"¢ and ct5" of the reply to are-encryption query for (7, 2, octz = (C' := (¢, Cran, 1), S, verk))
is L if Ver(verk, C,S) # 1. Otherwise, the reply is:

ke = (1, 8", o(—1,verk), [07] [07] 7", 0 )p;, ®

where 6 5 LT, i e L Wy &L GL(An 4 4,F,) and DY = B W
— The reply to a challenge query for (20, 21 mO mM) oct® .= (C, verk®, S), is given as:

ci= ([ [wz®] p(verk® 1), [07], [07], 07, ¢ )s, 9)
) Pran(verk*al)y 7 0", 0", ¢ran )B; (10)

of the reply to a decryption key query for ¥/ is:

=
=

Cran ‘= ( 0, wranf(

R ~. . U
cr = ggp, C = (¢, ¢ran, 1), S Slg(Slgk"‘,C, cr)) where b <= {0,1}, {,w,Wran, P, Pran, ¥, Pran

& F, and (sigk®, verk®) & SigkG(1*).
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Game 1-1: Game 1-1 is the same as Game 0" except that the reply to the challenge query for
(2O, 71 mO mM) is

c:= (¢ wi®, p(verk® 1), [@], 07, 0", ¢ )g, (11)

where @ < F g and all the other variables are generated as in Game 0”.
Game 1-2-h  (h=1,...,11): Game 1-2-0 is Game 1-1. Game 1-2-h is the same as Game 1-2-(h—1)
except that the reply to the h-th decryption key query for ¥ is

k* = ( 17 (S,Ua 027 7 Onv 777 0 )B*v k:an = ( 07 5ranl7> 027 7 0n> ﬁrana 0 )B*v (12)

where 7, Tran <—U FZ and all the other variables are generated as in Game 1-2-(h — 1).
Game 1-3-¢/ (/=1,...,12): Game 1-3-0 is Game 1-2-v;. Game 1-3-¢ is the same as Game 1-3-
(¢ — 1) except that the reply to the ¢-th re-encryption key query for (¥, Z) is as follow:

k= (1, 0%, 0% [71] 07 7™, 0 )y, ki i= (0, 65,7, 0%, [ L], 07, 70K, 0)p;, (13)

where 7/, 7 1, & [y and all the other variables are generated as in Game 1-3-(¢ — 1).

Game 1-4- t (t =1,...,v3): Game 1-4-0 is Game 1-3-v5. Game 1-4-¢ is the same as Game 1-4-(t —
1) except that the reply to the t-th re-encryption query for (7, 7', octz = (C' := (¢, €an, 1), verk, S))
is, if Ver(verk, C,S) =1

frrenc . ( 1, 5renc177 a(—l,verk), On —»renc’ 0) ' (14)

where 7/ < [y and all the other variables are generated as in Game 1-4-(t — 1).

Game 1-5: Game 1-5 is the same as Game 1-4-v3 except that the reply to the challenge query for
(@0, 71 m© m) g

= - verk"'l a, [a"], 0", ¢ )B, (15)

where ¢’ J Fo, ', ad" & [y and all the other variables are generated as in Game 1-4-v3.
Game 1-6: Game 1-6 is the same as Game 1-5 except that the reply to every decryption key query
for ¥ is

k* = ( ]-a 6173 027 ﬁv 0) B*, k:an = ( O) 5ran173 027 a ﬁram 0 )B*,

*rk rk—» 2 = =k *rk rk ~» 02 =/ = rk
k =(1 4 07>77 ’O)DT) kran = (0, 63,7, 07, Onvﬂ-ran777ran70)D’f7

where 7/, 7 |, y [Fy and the reply to every re-encryption query for (&', octz = (C := (¢, Cran; cT),
S, verk)) is, if Ver(verk,C,S) =1

P g = // —
Erenc = (1, 60, o(—1,verk), |0, 77| 7" 0 )Df{,

where 7/ <2 [y and all the other variables are generated as in Game 1-5.
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Game 2-1: Game 2-1 is the same as before Game 1-6 except that the reply to the challenge query
for (7, 21 m© m) is

Cran ‘= ( 0; wranf(b)y pran(Verk*al)a a 0n7 Ona 2 )IB7

where yan <B Fg and all the other variables are generated as in Game 1-6.
Game 2-2-h (h=1,...,11): Game 2-2-0 is Game 2-1. Game 2-2-h is the same as Game 2-2-(h—1)
except that the reply to the h-th decryption key query for o, (k*, kf,,), i

* — 2 — — — * . — 2 — — —
k - ( 17 61}7 0 ) 7 ™, n, 0 )B*7 kran = ( 07 5ranU, 0 ) 7 Tran;s Tran, O )IB*)

where 7, Tran <—U FZ and all the other variables are generated as in Game 2-2-(h — 1).
Game 2-3-¢ ({=1,...,15): Game 2-3-0 is Game 2-2-v;. Game 2-3-¢ is the same as Game 2-3-
(¢ — 1) except that the reply to the f-th re-encryption key query for (v, Z), (k*™, kiK), is

*rk rk—» 2 —» rk *rk rk 2 —»/ = > rk
kT ;0 0%, O ER) kean = ( 0, 5ran 0%, 7 7T n» Tran> 0 )D’{7

where 7,7, & [Fy and all the other variables are generated as in Game 2-3-(¢ — 1).

Game 2-4-t (t=1,...,v3): Game 2-4-0 is Game 2-3-1v5. Game 2-4-¢ is the same as Game 2-4-(¢ —
1) except that the reply to the t-th re-encryption query for (v, ¥, octz = (C := (¢, ¢ran, c1), verk, S)),
k*renc ) is, if Ver(verk,C, S) =

*renc ,__ renc = // -/ — renc
k = (1, 0", o(—1,verk), , 7" , 0 )DT7

where 77 ¢ [y and all the other variables are generated as in Game 2-4-(¢ — 1).

Game 2-5: Game 2-5 is the same as Game 2-4-v3 except that the reply to the challenge query for
(@0, 71 m©) m) is:

Cran ‘= ( 07 a p(verk"’, 1)a ﬁa Onv Ona SO )Bv (16)
where @' < [y and all the other variables are generated as in Game 2-4-v3.

Let Advd(0), AdviTD (1), AdvZ M (), A9 (1), AdvE* (1), and AdvT()), be the ad-
vantages of .A in Game 0", -1, ¢-2- h t-3-0, 1-4- t and -5 for ¢ = 1,2, respectively. We will show
eight lemmas (Lemma 9-16) that evaluate the gaps between pairs of neghoboring games. From these
lemmas and Lemmas 3-5, we obtain

Adv)(2) < ‘Adv(j"(x) — AdGV ()

2
3 (S [Ad G 0 — AdGE )| 4 i (AT 0 — Ad O )

=1
S ’Advfi—4'(t_1))()\) - Advff(‘“t)(A)‘ + ‘Adv§‘4‘”3)(A) - Advff("’)(x)‘)

+ ‘Adv“‘f’)(A) - Advj“”(A)‘ +AdvZI ().

2
Z (AdvDL'N )+ o 2 ADREN () 4 32 3 (Ad pEar (/\)+AdvDLELNZ_BJ()\)>

TS0 (AdEEA )+ AdBEY () ) + AdVREN(Y) 4«

1=4-t—A-j L4tB

where € := (14v1 + 179 4+ 17v3 + 15) /q. This completes the proof of Lemma 8. O
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Lemma 9. For any adversary A, there exists a probabilistic machine Bi_1, whose running time is

essentmlly the same as that of A, such that for any security parameter X, \AdvEL\ ,)()\) —Advg_l)()\ﬂ <
AdVEL (M),

Proof. In order to prove Lemma 9, we construct a probabilistic machine Bi-; against Problem 1
using an adversary A in a security game (Game 0” or Game 1-1) as a black box as follows:

1. Bi-1 is given a Problem 1 instance, (paramn,IEB,I?B*,e/g,l, {ei}i=2,..n)-

2. Bi-1 plays a role of the challenger in the security game against A.

3. At the first step of the game, Bi-1 generates a pair of public and secret key of the underlying
IPE scheme, (pk'PE, sk!PE) & Setupipe(1*,n). Bi-1 sets B := (bo, - -, bnt2, banis) and B* =
(BF 4 1,b% 0, b5, 5s .. DY o) and provides A with a public key pk := (\, param,,, B, B*, pk'"F).

4. When a decryption key query is issued for a vector ¥, Bi-1 computes a normal form of decryption
key sky := (k*, k}; sk%PE) using B* of the Problem 1 instance and skg’E & KG|pE(sk|PE,17). Bi-1

ran»
provides A with a decryption key skz.

5. When a re-encryption key query is issued for (U, & ) Bi-1 computes a normal form of re-encryption
key rkgz = (k™™ kK, ctl, precty, ]D)*) using B* of the Problem 1 instance and pk'PE. By
provides A with the re-encryption key rky z .

6. When a re-encryption query is issued for (v, 7, oct := (C := (¢, ¢ran, c1), verk, S)), if Ver(verk, C, S)
# 1, Bi-1 returns L to A. Otherwise, B1-; computes a normal form of re-encrypted ciphertext
rcty = (K", ", ¢F"° {ct }i=1,2) using Problem 1 instance and pk'PE. Bi_1 provides A with

the re-encrypted ciphertext rctw
7. When a challenge query is issued for (#©, 71 m© mM) B, picks a bit b s {0,1} and
C, Py Pran, Wrans Pran Y [, and generates (sigk"’,verk"‘) &K SigkG(1%). Next, Bi-; computes

n
c:=(by + x(lb)eg,l + Z xz(b)el- + pverk"'bnﬂ + pbnt2,
i=2

n
b
Cran ‘= Zwranxz(‘ )bz + pranverk.‘bn—i-l + pranbnt2 + Oranbanys,
i=1
or = m® -g%, and S & Sig;(sigk"’7 (¢, cran, CT)).
Bi-1 provides A with a challenge ciphertext octzw) = (¢, Cran, cr, verk®, S).
8. A finally outputs bit ¢'. If b = V/, Bi-1 outputs 5’ := 0. Otherwise, Bi-1 outputs 3’ :=

Since the challenge ciphertext octys) is of the form Eq.(9) (resp. of the form Eq.(11)) if 8 = 0 (resp.
B = 1), the view of A given by Bj-1 is distributed as Game 0” (resp. Game 1) if 3 = 0 (resp. 8 = 1).
1" - R
Then, [Adv?)(3) — AdviD ()| = PABLL (1. 0) - 1o S GFL(1) ]~ PrBi1 (1% 0) 1] £ g7 (1]
< Advlpgi_l()\). This completes the proof of Lemma 9. O

Lemma 10. For any adversary A, there exist probabilistic machines Bi-o-p-1 and Bi-g-p-o, whose

(1-2—(h—1))(>\)_

running time are essentially the same as that of A, such that for any security parameter X, |Adv
AP < AVRR (VAR (W) +4/q, where By (-) = Biog-i(h, ) and Byaop(-) =
By-o- Q(h, )

Proof. In order to prove Lemma 10, we construct probabilistic machines Bi-o-1 and Bj-2-5 against
Problem 2 using an adversary A in a security game (Game 1-2-(h—1) or Game 1-2-h) as a black box.
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First, we consider the intermediate game Game 1-2-h-1. Game 1-2-h-1 is the same as Game 1-2-(h—1)
except that k* of the reply to h-th decryption key query is of semi-functional form in Eq.(12).

Also, kf,, is the normal form Eq.(6). In order to prove that \Advﬁ_g_(h_l))()\) — Advfi_}h_l)()\ﬂ <
Advgf_2 .-, (A) +2/q, we construct a probabilistic machine Bi-p-1 with an index h against Problem

2 using an adversary A in a security game (Game 1-2-(h — 1) or Game 1-2-h-1) as a black box as
follows:

1. Bi-o-1 is given an index h and a Problem 2 instance, (paramn,IB%*,I/B\%, {hg,iti=t1,.n,{€i}ti=1,..n)-

2. Bi-o-1 plays a role of the challenger in the security game against A.

3. At the first step of the game, B; generates a pair of public and secret key of the underly-
ing IPE scheme, (pk'PE, sk'PE) & Setupipe(1*,n). By sets B = (bo, - -+, bnt2, bapys) and B* =
(b1, 0% 40, b5, 5, -, bl yn) and provides A with a public key pk := (), param,,, B, B*, pk'"F).

4. When the j-th decryption key query is issued for a vector ¢/, Bi-o-1 computes sk%PE é KG”:;E(sk'PE7 0))
and normal form k;,, using B* of the Problem 2 instance,
— in the case of j < h, Bj-2-1 computes semi-functional form k* in Eq.(12) using B* of the
Problem 2 instance.

. . U .
— in the case of j = h, Bi-2-1 chooses 7;,u; < F, fori =1,...,n,

n n
k" :=by+ Z vimih ; + Z ;b3 o1

i=1 i=1
using the Problem 2 instance where ¢ := (vy,...,vy).
— in the case of j > h, Bj-2-1 computes a normal form k* in Eq.(6) using B* of the Problem 2

instance.
Bi-o-1 provides A with a decryption key sky := (k*, k,,, ski'E).

5. When a re-encryption key query is issued for (¥,Z’), Bj-2-1 computes a normal form of re-
encryption key rkg z := (k*, kXK, ctgé, prectfx,I/D\)*{) using B* of the Problem 2 instance and pk'"E.
Bi-2-1 provides A with a re-encryption key rk z.

6. When a re-encryption query is issued for (U, ', octz := (C' := (¢, €ran, 1), verk, S)), if Ver(verk, C,
S) # 1, By-2-1 returns L to A. Otherwise, B1-2-1 computes a normal form of re-encrypted cipher-
text rcty = (K", ™", ", {ctiE°}i—1 2) using Problem 2 instance and pk'PE. Bi_o-1 provides
A with the re-encrypted ciphertex‘é rcty .

7. When a challenge query is issued for (2,1 m© m)) By, picks a bit b & {0,1} and

C, Py Wran, Prans Pran & F, and generates (sigk"’,verk"’) & SigKG(1). Next, Bj-a-1 computes

n
c:=(by+ Z ang)ei +p verk"‘bn+1 ~+ pbpy2,
i=1

n
b
Cran ‘= Zwranxl( )bi ~+ Pran Verk*bn+1 + pranbni2 + Pranbang s,
=1
cr = m(b) -ggp, C:= (C, Cran; CT)a S <_R Slg(Sng*> C)

Bi-2-1 provides A with a challenge ciphertext oct ) = (C, verk®, S).
8. A finally outputs bit ¥'. If b = t/, Bi-o-1 outputs 3’ := 0. Otherwise, Bi-o-1 outputs 3’ := 1.

Since k* of the h-th decryption key is of the form Eq.(6) (resp. of the form Eq.(12)) if 5 = 0 (resp.
B = 1), the view of A given by Bj-9-1 is distributed as Game 1-2-(h — 1) (resp. Game 1-2-h-1) if
B =0 (resp. 8 = 1) except that ¢ defined in Problem 2 is zero i.e., except for probability 1/q (resp.
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1/q).
Then,

(=) — Adv Y ‘ = ‘Pr[B (1Y 0)—1 )@ <—RG§2(1Am)}
_Pr[B(l)\,Q —1 ’Q <_gP2(1>\’n)} ‘ t 2/(] = AdVBl 2-h- 1( ) +2/q. -

Next, in order to prove that |Adv, (1-2-h- 1)()\)— dvfi > h_Q)( A)| < Ade1 ooy (A) T2/, We construct
a probabilistic machine By-o-p-2 agamst Problem 2 using an adversary A in a security game (Game
1-2-h-1 or Game 1-2-h-2) as a black box. Game 1-2-h-2 is the same as Game 1-2-h-1 except that
k., of the reply to the h-th decryption key query is semi-functional form in Eq.(12). That is, Game

ran
1-2-h-2 is Game 1-2-h. Hence, this proof is similar to the above proof. So, we have Advﬁ_}h_l)()\) -

1-2-h-2)
AT < AV, () + 2/
By the hybrid argument, |Adv (1-2-(h— 1))()\)—Advfi_2 P )] < Ade1 e 1()x)—{—AdVB1 ponen (M) T4/

a

Lemma 11. For any adversary A, there exists probabilistic machines Bi-3-p-a-, and By-3-p-p-, (Lt =
1,2), whose running time are essentially the same as that of A, such that for any security parame-

ter A, [AdVG P 0 — AT < AdviEEAM ) + AdvESAT () AVE? (V) +

Bi-3-¢-a-1
Advlpgf_3_€_3_2( ) + 7/(], where Bi-g-pg-ao-,() = Bi-3-a-,({,-) and Bi-3-¢-p-,(-) = Bi-3-p-,(¢,-) for
t=1,2.

Proof. First, we execute a preliminary game transformation from Game 1-3-(¢ — 1) to Game 1-3-

(¢ — 1), which is the same as Game 1-3-(¢ — 1) except that flip a coin 7 s {0,1} before setup, and
the game is aborted when the variable sy ¢ is determined (Definition 5) if Tk # Spk ¢. Since sy ¢ := 0 if
T 7O £0 A Tp-2) £ 0, Sek,¢ is determined at the challenge step if the /-th re-encryption key query
is asked in Phase 1, and at the ¢-th re-encryption key query step if it is asked in Phase 2. We define
that A wins with probability 1/2 when the game is aborted (and the advantage in Game 1-3-(¢ — 1)’
is PrlA wins in Game 1-3-(¢ — 1)’ | — 1/2 as well). Since 7y is independent from sy ¢, the game is
aborted with probability 1/2. Hence, the advantage in Game 1-3-(¢ — 1)’ is a half of that in Game
130~ 1), Le. LAV ) 1/2- Adv'7¥ "D (\). Moreover, Pr[A wins in Game 1-3-(£ — 1)] =

3 (Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 0] + Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 1]), since 7y is
umformly and independently generated. Therefore,

AdVETED () = 2. Adv D ()
= Pr[A wins in Game 1-3-(/—1)" | 7k = 0] + Pr[A wins in Game 1-3-({—1)" | 7 = 1] — 1. (17)

Similarly, we define a new game, Game 1-3-¢”, which is the same as Game 1-3-¢ except that

flip a coin Ty & {0,1} before setup, and the game is aborted when the variable sy ¢ is determined
if Tk # Seke. Note that Game 1-3-¢' aborts if Ty« # Swet+1, which is different from Game 1-3-¢”.
Similarly to Eq. (17),

AdvE () =2 Adv i (N

= Pr[A wins in Game 1-3-¢" | 7,x = 0] + Pr[A wins in Game 1-3-¢" | 7 = 1] — 1. (18)
Case Tk = 0 As for the conditional probability with 7., = 0, we introduce three games as:
Sub-Game 1-3-£-A-1: When 7,4 = 0, Sub-Game 1-3-¢-A-1 is the same as Game 1-3-(¢ — 1)’ except

that the reply to the ¢-th re-encryption key query for (7, #') are

etk <& Encipe(pkPE, 7, [R)), (19)
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where R <~ GL(4n + 4,F,), 7 Jdr y and all the other variables are generated as in Game 1-3-
(¢—1).

Sub-Game 1-3-/-A-2: When 7, = 0, Sub-Game 1-3-¢-A-2 is the same as Sub-Game 1-3-/- A-1 except
that (k*™, k'T%) of the reply to the /-th re-encryption key query for (#,2") are of semi-functional
form as given in Eq.(13).

Sub-Game 1-3-/-A-3: When 7, = 0, Sub-Game 1-3-¢-A-3 is the same as Sub-Game 1-3-/- A-2 except
that ctrxli of the reply to the ¢-th re-encryption key query for (v, 2") is

Ct%b %R EnC|pE(kaPE,.’f/, ), (20)

where W) € GL(4n + 4,F,) is defined in Game 0" and it satisfies that D} := B*W; and all the
other variables are generated as in Sub-Game 1-3-¢-A-2. Note that Sub-Game 1-3-¢-A-3 is the
same as Game 1-3-¢" when 74 = 0.

From Claims 1, 2, and 3,

|Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 0] — Pr[A wins in Game 1-3-¢" | 7y = 0]
< |Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 0] — Pr[A wins in Game 1-3-(-A-1 | 7y = 0]
+ |Pr[A wins in Game 1-3-(-A-1 | 7« = 0] — Pr[A wins in Game 1-3-¢-A-2 | 7 = 0]
+ |Pr[A wins in Game 1-3-¢-A-2 | 7« = 0] — Pr[A wins in Game 1-3-¢-A-3 | 7« = 0]
< AVEEAT )+ AVEEATY  (A) 3/ (21)

Bi-3-4-4-1 Bi-3-4-a-2
Case 1,k = 1 As for the conditional probability with 7., = 1, we introduce a game as:
Sub-Game 1-3-f-B: When 7 = 1, Sub-Game 1-3-/-B is the same as Game 1-3-(£ — 1)’ except that

(k*™, k*TK) of the reply to the /-th re-encryption key query for (#,2’) is of semi-functional form
as given in Eq.(13). Note that Sub-Game 1-3-¢-B is the same as Game 1-3-¢" when 7 = 1.

From Claim 4,

|Pr[A wins in Game 1-3-(¢ — 1)" | 7y = 1] — Pr[A wins in Game 1-3-¢" | 7 = 1]|
= |Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 1] — Pr[A wins in Game 1-3-(-B | 7y = 1]|
< AdvR? (A) + Advi? () +4/q. (22)

81—3-4—3—1 Bl—B—Z—B-Q

Therefore, from Egs. (17), (18), (21), and (22),

AdVT T 00 — AdVIP ()]
= |Pr[A wins in Game 1-3-(¢ — 1) | 7 = 0] + Pr[A wins in Game 1-3-( — 1) | e = 1] — 1
— (Pr[A wins in Game 1-3-¢" | 7« = 0] 4+ Pr[A wins in Game 1-3-0" | 7y = 1] — 1)
= |Pr[A wins in Game 1-3-(¢ — 1)" | 7x = 0] — Pr[A wins in Game 1-3-¢" | 7 = 0]
+ Pr[A wins in Game 1-3-(¢ — 1)" | 7y = 1] — Pr[A wins in Game 1-3-¢" | 7. = 1]|

IPE,AH IPE,AH P2 P2
< Advg 0 (N + Advg =" (AN +Advg . (A +Advg (A +T7/q.
This completes the proof of Lemma 11. O

Claim 1 For any adversary A, there exists a probabilistic machine Bi_3-4-1, whose running time is
essentially the same as that of A, such that for any security parameter A,

| Pr[A wins in Game 1-3-(¢ — 1)’ | 7,k = 0] — Pr[A wins in Sub-Game 1-3-(-A-1 | 7 = 0]] <
Advis =AM (\) +1/q, where Bysp-a1(-) == Big-aa(l, ).

Bi-3-¢-4-1
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Proof. In order to prove Claim 1, we construct a probabilistic machine Bi-3- 4-1 against the attribute-
hiding security of the underlying IPE scheme using an adversary A in a security game (Game 1-3-
(¢ —1)" or Sub-Game 1-3-¢-A-1) as a black box as follows:

1. Bi-s- 4.1 is given an index ¢ and a public key of the IPE, pk'"E, from the challenger for the IPE
attribute-hiding security.

2. Bi-3-a-1 plays a role of the challenger in the security game against A.

3. At the first step of the game, Bj-3-4-1 generates (param,,B = (bo,.. ,banys),B* = (bg, ...,

b)) & Gop(1),4n + 4), and sets B = (bo, .. busa, bants) and BY = (b1, b0, Vo -
b}, ). B1 then provides A with a public key pk := (1%, pk'PE, param,, IB IB%*)

4. When a decryption key query is issued for a vector @, Bi-3-4-1 computes a semi-functional form
(k*,k},,) in Eq.(12), by using B* and ask a key query ¥ to the challenger of the underlying IPE,
then obtain the decryption key sk%PE, and provides A with a decryption key skz := (k*, k; sk%PE).

ran?’
5. When the j-th re-encryption key query is issued for (7,7"), Bi-3-4-1 computes as follows:

— When j < ¥, using B* and W} <£ GL(4n + 4,F,), Bi-3-a-1 computes a semi-functional form
rkgz i= (K*, kiok, ctlh, prectf,,]D) ), where (k*™, k#T€) are given in Eq.(13), and Bj-3-4-1 sends
rkaf/ to A.

— When j = ¢, Biz-a1 generates X = W, X = R d GL(4n + 4,F,), and sends a
challenge query to the challenger of the IPE scheme with (:E'(O) =z = f’,X(O),X(l)),
receives a reply ct%'?. Bi-3-4-1 then computes precty by himself. Using B* and Wi, Bi_3-4-1
computes a normal form (k*™, k/TK), which are given in Eq.(7), and Bj-3-4-1 sends rkgz :=

(K™, Reirk, ctl precty, ]D)*) to A.

— When j > ¢, using B* and Wy & GL(4n +4,F,), Bi-3-a-1 computes a normal form rky z =
(k*, Kk, ct, precty, D}), where (k*™, ki1¥) are given in Eq.(7), and Bi-3-4-1 sends rkzz to

A.
6. When a re-encryption query is issued for (7, 2, octz := (C, verk, S)), if Ver(verk, C, S) # 1, Bi-3-4-1
returns L to A. Otherwise, Bi-3-4-1 computes a re-encrypted ciphertext rctz := (k*™"¢, c™", ¢F"°,

{ctZ 1<"}i=1,2) as in Definition 5. The re-encrypted ciphertext, rctz, is calculated by using (B, B*)
which is given at setup since it does not include a key component of the underlying IPE scheme.
Bi-3-4-1 provides A with rcty.

7. When the challenge query is issued for (f(o),f(l),m(o),m(l)), Bi-3-4-1 calculates the challenge
ciphertext as in Definition 5, and sends it to A.

8. A finally outputs bit b. Bi-3-4-1 then outputs b to the challenger for the IPE attribute-hiding
security game.

Since ct;li of the (-th re-encryption key is of the form Eq.(20) (resp. of the form Eq.(19)) if
B = 0 (resp. B = 1), the view of A given by Bj-3-a-1 is distributed as Game 1-3-(¢£ — 1) (resp.
Sub-Game 1-3-¢-A-1) if 3 = 0 (resp. 8 = 1). Then, |Pr[A wins in Game 1-3-(¢ — 1) | 7y« = 1] —
Pr[A wins in Sub-Game 1-3-¢-A-1 | 7 = 1]| < Adv IPEA:lA (N +1/q,. O
Claim 2 For any adversary A,
|Pr[A wins in Sub-Gamel-3-¢-A-1 | 7 = 0] — Pr[A wins in Sub-Game 1-3-¢-A-2 | 7 = 0]| < 1/q.

Proof. To prove Claim 2, we will show distribution (pk, {sky}, {rkgm}, {rctz},octzw)) in Game 3-£
and Sub-Game 3-/-A-1 are equivalent. In this proof, since we change to the component k:grk of the
{-th re-encryption key using the base D} in Sub-Game 3-/-A-1, we focus the only components D7.
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Note that there does not exist the component using D; which is the dual base of D}. We define new

basis U* of V as follows; We chooses 7:= (r1,...,7r,), 7 = (r],...,7}) s Fg, and set

* . ¥ n A* * . Pk L
ug=dy— >, ridy o Uy i=dy Dt iy o

We set U* := (ug,dj,...,d; i, uy,d;, ,...,dj,  3). The components of {-th re-encryption key,
(kg™ k™) in Sub-Game 3 (-A-1 are expressed over base Dj.

k*rk ( 5rk—» 02 On On —*rk 0) ( 6rk—» 02 - On7 ﬁrk7 0)
k;karrlf ( 5:Ia(n 02 0", On ﬁr;ﬁ’ O)DI :( 5:§n 02 (5:".:“2}”7‘_’, 0", ﬁrz:hv O)U*

where 7,08 v,7 are uniformly and independently distributed except that 6%, = 0, i.e., except for

probability 1/¢ since v,, # 0. Thus, Sub-Game 1-3-¢-A-1 can be conceptually changed to Sub-Game
1-3-¢-A-2 except for probability 1/q. O

Claim 3 For any adversary A, there exists a probabilistic machine Bs-4-2, whose running time is
essentially the same as that of A, such that for any security parameter A,

| Pr[A wins in Sub-Game 1-3-¢-A-2 | 7« = 0] — Pr[A wins in Sub-Game 1-3-¢-A-3 | 1 = 0]| <

Adv Ill;lEdA:IA 2( ) + 1/6], where Bl_g_g_A_Q(') = 81_3_,4_2(6, )

Proof. The game change between Sub-Game 1-3-¢- A-2 and Sub-Game 1-3-/- A-3 is the reverse of that
between Game 1-3-(¢ — 1)’ and Sub-Game 1-3-¢-A-1 (except the form of the ¢-th re-encryption key
(k*™, kT%)). Therefore, Claim 3 is proven in a similar manner to Claim 1. O
Claim 4 For any adversary A, there exists a probabilistic machine Bi-3-p, whose running time is
essentially the same as that of A, such that for any security parameter A,

|Pr[A wins in Game 1-3-(¢ — 1)' | 7,k = 1] — Pr[A wins in Sub-Game 1-3-(-B | 7 = 1]| <

Advi? (A) —|—Adv31 gy N +4/q, where Big--p-,(+) := Bi-3-p(¢,-) for v =1,2.

Bl -3-¢-B-1
Proof. When 7y = 1, only when 7-#(© = 0 and ¢-#() # 0, the game is not aborted by the challenger.

Then, the left hand side of the inequality in Claim 4 is related to the case 7-#® # 0 and 7- 2} #£ 0.
Hence, this claim is proven in a similar manner to that of Lemma 10. O

Lemma 12. For any adversary A, there exists probabilistic machines Bi-4-4-o and Bi-4-4-B, whose
running times are essentially the same as that of A, such that for any security parameter X,

1-4-(t—1 1-4-t IPE AH IPE,AH
AdVG T ) —AdG T ) < AdviE AT (DHAdVEEAT  O)FAVER L (DFAdVEE (V)+
7/q, where By-g-t-a-,(: ) =B, _,_,., (t, ) cmd Bi-g-t-p-.(+) == 831_4_B_L( ) forv=1,2.

Proof. First, we execute a preliminary game transformation from Game 1-4-(t — 1) to Game 1-4-

(t —1)’, which is the same as Game 1-4-(¢ — 1) except that flip a coin 7yenc & {0, 1,2} before setup,
and the game is aborted when the variable Syenc+ is determined (Definition 5) if Trenc # Srenc,t- Since
Srenc,t is defined by %, 72O, 7 oct,, octzs), the value of syenc s is determined at the t-th re-encryption
query step if it is asked in Phase 2. We define that A wins with probability 1/2 when the game is
aborted (and the advantage in Game 1-4-(t — 1) is Pr[A wins in Game 1-4-(t — 1)" | — 1/2 as well).
Since Tyenc is independent from srenc ¢, the game is aborted with probability 2/3. Hence, the advantage

in Game 1-4-(t— 1)’ is a third of that in Game 1-4-(t—1), i.e., Adv}f-(t_l) (A) =1/3-Advy 4_(t 1)()\).
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Moreover, Pr[A wins in Game 1-4-(t —1)'] = %Z?:o Pr[A wins in Game 1-4-(t — 1)’ | Tyenc = ¢] since
Trenc 1s uniformly and independently generated. Therefore,

AV ) = 30 Adv D ()
2
= Pr[A wins in Game 1-4-(t—1)’ | Trenc = ¢] — 3/2. (23)
=0
Similarly, we define a new game, Game 1-4-t”, which is the same as Game 1-4-t except that flip a

€Ooin Trenc <—U {0, 1,2} before setup, and the game is aborted when the variable srenc s is determined if
Trenc 7 Srenc,t- Note that Game 1-4-t' aborts if Trenc 7# Srenc,t+1, which is different from Game 1-4-t".
Similarly to Eq. (23),

2
Advz4_(t_l)(/\) =3-Advi* () = Z Pr[A wins in Game 1-4-t" | Tyenc = ¢] — 3/2.  (24)
=0

Case Trenc = 0 As for the conditional probability with 7yenc = 0, we introduce three games as:

Sub-Game 1-4-t-A-1: When Tyenc = 0, Sub-Game 1-4-t-A-1 is the same as Game 1-4-(¢t — 1) except
that the reply to the t-th re-encryption query for (¥, #’, oct) are

ctien <® Encipe (pk'PE, 7, [R)),

where R <~ GL(4n +4,F,) and all the other variables are generated as in Game 1-4-(t — 1)’
Sub-Game 1-4-t-A-2: When 7renc = 0, Sub-Game 1-4-t-A-2 is the same as Sub-Game 1-4-t-A-1
except that k*"¢ of the reply to the t-th re-encryption query for (¥, Z’, oct) are of semi-functional
form as given in Eq. (14).
Sub-Game 1-4-t-A-3: When 7Trenc = 0, Sub-Game 1-4-t-A-3 is the same as Sub-Game 1-4-t-A-2
except that ctf%? of the reply to the t-th re-encryption key query for (¥, &, oct) is

R )
et <= Encipe(pk'PE, 27, |7 )

where Wi € GL(4n + 4,F,) is defined in Game 0” and it satisfies that D} = B*WW; and all the
other variables are generated as in Sub-Game 1-4-t-A-2. Note that Sub-Game 1-4-t-A-3 is the
same as Game 1-4-t" when Trenc = 0.

From Claims 5, 6, and 7,

}Pr[A wins in Game 1-4-(t — 1)" | Trenc = 0] — Pr[A wins in Game 1-4-t" | Trenc = OH
< |Pr[A wins in Game 1-4-(t — 1)’ | Trenc = 0] — Pr[A wins in Game 1-4-t-A-1 | Trenc = 0]
+ |Pr[A wins in Game 1-4-t-A-1 | Trenc = 0] — Pr[A wins in Game 1-4-t-A-2 | Tyenc = 0]
+ |Pr[A wins in Game 1-4-t-A-2 | Trenc = 0] — Pr[A wins in Game 1-4-t-A-3 | Trenc = 0]|
< AVEEAM ) AVERAT () +3/4. (25)

Bl—4—t—A-1 Bl—4—t-A-2

Case Trenc = 1 or 2 As for the conditional probability with Trenc = 1 or 2, we introduce a game as:

Sub-Game 1-4-t-B: When Tyenc = 1 OF Tyene = 2, Sub-Game 1-4-t-B is the same as Game 1-4-(¢t — 1)’
except that k*"° of the reply to the ¢-th re-encryption key query for (7,7, oct) is of semi-
functional form as given in Eq.(13). Note that Sub-Game 1-4-t-B is the same as Game 1-3-t”
when Tyenc = 1 Or Trenc = 2.
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From Claim 8,

‘Pr[A wins in Game 1-4-(t — 1) | Trenc = 1 OF Trenc = 2]
— Pr[A wins in Game 1-4-t" | Tyenc = 1 OF Trenc = 2]‘
= |Pr[A wins in Game 1-4-(t — 1)’ | Trenc = 1 OT Trenc = 2]
— Pr[A wins in Game 1-4-t-B | Trenc = 1 O Trenc = 2]|
< Adv? () + Advg’ (\) +4/q. (26)

1-4-t—-B- Bl—4-t-B—2

Therefore, from Egs. (23), (24), (25), and (26),
AdVE V() = AdviEE )|
= ’Z%:o Pr[A wins in Game 1-4-(t — 1)" | Trenc = ¢] — 3/2
—(32%_, Pr[A wins in Game 1-4-t" | Trenc = ¢ — 3/2)

= ’Z?:o (Pr[A wins in Game 1-4-(t — 1)’ | Trenc = t] — Pr[A wins in Game 1-4-t" | Tyenc = ¢])

IPE,AH IPE,AH
<Advg n (A FAdv T (M) + Advi® (A +Advg® (A +T7/q.
This completes the proof of Lemma 12. O

Claim 5 For any adversary A, there exists a probabilistic machine Bi-4-A-1, whose running time is
essentially the same as that of A, such that for any security parameter A,

| Pr[A wins in Game 1-4-(t — 1) | Trenc = 0] — Pr[A wins in Sub-Game 1-4-t-A-1 | Trenc = 0]] <
Advig =AM (N +1/g, where Byap-a1(-) = Bia-aa(t, ).

Claim 6 For any adversary A,

|Pr[A wins in Sub-Gamel-4-t-A-1 | Tyenc = 0] — Pr[A wins in Sub-Game 1-4-t-A-2 | Tyenc = 0]| < 1/q.

Claim 7 For any adversary A, there exists a probabilistic machine By-a-2, whose running time is
essentially the same as that of A, such that for any security parameter A,

| Pr[A wins in Sub-Game 1-4-t-A-2 | Trenc = 0] — Pr[A wins in Sub-Game 1-4-t-A-3 | Trenc = 0]| <
Advig =AM (V) 4+ 1/g, where Biogoy-aa () := Biag-aa(t, ).

Claim 8 For any adversary A, there exists a probabilistic machine Bi-4-p-1, whose running time is
essentially the same as that of A, such that for any security parameter A,

|Pr[A wins in Game 1-4-(t — 1)' | Trenc = 1] — Pr[A wins in Sub-Game 1-4-t-B | Tyenc = 1]| <

Advi? (/\) + 2/q, where Bl—4—t—B-1(') = 61_4_3-1(t, )

Bl—4—t—B—1

The proofs of Claims 5-8 are given in similar manners to those of Claims 1-4, respectively.

Claim 9 For any adversary A, there exists a probabilistic machine Bi-4-p-2, whose running time is
essentially the same as that of A, such that for any security parameter A,

|Pr[A wins in Game 1-4-(t — 1)' | Tyenc = 2] — Pr[A wins in Sub-Game 1-4-t-B | Tyenc = 2]| <
AdVZ‘:’_4_t_B_2(/\) + 2/q, where Bl—4—t—B—2(') = 81_4_B-Q(t, )

Proof. The proof strategy of Claim 9 is similar to Theorem 1 in [7]. In order to prove Claim 9, we
construct a probabilistic machine Bi_4-p-o against Problem 3 using an adversary A in a security
game (Game 1-4-(t — 1)’ or Sub-Game 1-4-t-B) as a black box as follows:
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1. Bi-4-B-2 is given an index t and a Problem 3 instance, (paramn,B*,@, {hg,i,€i}i=12)-

Bi-4-p-2 plays a role of the challenger in the security game against .A.

3. At the first step of the game, Bi-4-p-2 generates a pair of public and secret key of the IPE scheme,
(pk'PE, sk'PE) & Setupipe (1}, 1). Bi-sp-g sets B = (b%, 1, bl 4o, Bipisr- - bl so) and provides
A with a public key pk := (), param,,, B, B*, pk'FE).

4. When a decryption key query is issued for a vector v, Bi-4-p-2 computes semi-functional form

(k*, ki,,) and skl £. Bj_4-p-o provides A with the decryption key sky := (k*, ki, skiF E).

5. When a re-encryption key query is issued for (7,#'), Bi-4-p-2 semi-functional form k*™* and k::‘arr‘f
and normal form ctl'f, prect~/ and ]D)1 Bi-4-p-2 provides A with the re-encryption key rkgz :=

(K™, eirk, ctrs, prect , D).
6. When a k-th re- encryptlon query is issued for (7,7, octz = (C := (¢, ¢ran, c1), verk, S)), Bi-4-p-2
executes as follows:
— If Ver(verk, C, S) # 1, then Bj-4-p-o returns L to A.

— If Ver(verk,C,S) = 1 then Bi-4-p-2 normally computes ¢" from (c, cran) and {cti% }iz1,2

from {W; <2 GL(N,Fy)}i—1., and
e when k < t, Bi-4-p-2 computes semi-functional form k*"*"¢ from Eq.(14).

o

e when k =t, Bi_4-p-2 chooses p, u; & F, for ¢ =1,...,n and computes

n n
*renc . (b}j + Z Sv;ib} + p verk b + phly, + Z U¢b§n+2+i> Wi
i=1 =1

e when k > t, Bi-4-p-2 computes normal form k*"*"° from Eq.(8).
Bi-4-p-2 provides A with the re-encrypted ciphertext rctz := (E*"®"¢, "¢, "€, tﬂ?, ct$e).
7. When a challenge query is issued for (:E(O),f(o),m(o),m(l)), Bi-4-p-2 picks a blt b Y {0,1} and
C,p & F, and generates (sigk"',verk"') & SigKG(1%). Next, Bi-4-p-2 computes

n
b
c:=(Cbo + waﬁ 'b; + p verk®e, + pes + Granbins,
i—1

n
b
Cran ‘= Zwranxl( )bz + Pranverk*el + Pran€2 + Pranban3,
i=1
er i=m® . g , C:=(c,cran,cr), s & Sig(sigk"’,C).
Bi-4-p-2 provides A with a challenge ciphertext octzw) := (C, verk® S ).
8. A finally outputs bit b'. If b = V/, Bi-4-p-o outputs 8’ := 0. Otherwise, Bi-4-p-2 outputs ' :=1

Since the t-th re-encrypted ciphertext is of the form Eq.(8) (resp. of the form Eq.(14)) if 8 = 0 (resp.
B = 1), the view of A given by Bj_4-p-o is distributed as Game 1-4-(t — 1)’ (resp. Sub-Game 1-4-t-B)
if 5 =0 (resp. § = 1) except that ¢ defined in Problem 3 is zero (i.e., except for probability 1/¢ (resp.

1/q)). Then, |Pr[A wins in Game 1-4-(t — 1)’ | Trenc = 2] — Pr[A wins in Sub-Game 1-4-t-B | Tyenc = 2|| =

(Pr[zgm, 0)—1 ‘g égg’%ﬂ,m} - Pr[B(l)‘, 0)—1 ‘g <—Rgf3(1k,n)} +2/g <AV, (N+2/¢.0

Lemma 13. For any adversary A, |Advi_4_yg)()\) Adv(1 ) N <1/q.

Proof. To prove Lemma 13, we will show distribution (pk, {sky}, {rkgy .z}, {rctz}, octze)) in Game 4-v3
and that in Game 5 are equivalent. In this proof, since we change to the component c of the challenger
ciphertext octyw) using the base B in the Game 4-v3, we focus the only components using the bases
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B or B*. We deﬁne new basis U of V and U* of V* as follows; We generate F' := (& s)1<i,s<n, F =
(§Z7S)1§Z7S§n ]F"X" 9= (0:i)1<i<n & Iy and set fori=1,...,n

Un424i = bpioti — Y oy (fi,sbs + §z‘,sb2n+2+s> — 0;bo,
. 1% n * * . % n Lk * i Lk n £ o«
Ugy = bO + Zs:lesbn+2+s7 u; = bz + Zs:lgsﬂbn-l—Q-l—s? Uopyo4i = b2n+2+i + Zs:lfsﬂbn-‘rQ-‘rs‘

We set U := (b(], ey bn+2, Unp+3,- .., U2n+2, b2n+3, PN ,b4n+3) and U* := (ua, NN ,u;';, b:L-Fl’ ey b;n—I—Q?
WS, 3,0 US, 0,05 5. b)Y, 3). We then easily verify that U and U* are dual orthonormal, and
are distributed the same as the original bases B and B*.

We note that if (the ¢-th) re-encryption key query (4, ) has a matching decryption key query
v, that is, R(?, Z)) = 1, then matrix W, and converted key k*rka L are included in adversary’s view.
Similarly, if (the ¢-th) re-encryption query (@, Z}, oct) has a matching decryption key query o, that
is, R(7,#}) = 1, then matrix W, and converted key k*"“W L are included in adversary’s view.

Therefore, in Game 1-4-v3, (k*, k,,,) of the decryption key queries, (k*™, k) of the re-encryption

k*renc

key queries with a matching decryption key query, and of the re-encryption queries with a
matching decryption key query are expressed over bases B* and U* as

*=(1, 60, 0%, 7 0", 7, 0)g- = (1, 07, 0%, &, O™, 77, 0 )y-,
k;kan = ( 0, dran?, 02 Trans On ﬁrana 0 )]B* = ( 0, dran?, 02 Wran, On 77: 0) *
KWt = (1, o™5, 0%, 7, 0", 7™ 0) = (1, 6™, 0%, @', 0", i, O)U*
kWi = (0, 057, 0%, o, O nran, 0 )p = (0, 737, 0%, Wy, 07, 7lin, 0 ),
k*l’enCW 1 :( 1 5renc—»’ ( 1 Verk) 07‘[» —*renc’ 0 )B*
= (1, 6%, o(—1,verk), @", 0", 7", 0 )y-,
Where W= F—6v-F' — 5 Wyan ‘= Tran — 6,anv - FT 5 @ =7 — ok FT — 5 Wy =
Tran (52,‘“ FT—§, and @" := 7" — §""7- FT — § are uniformly and independently distributed since
Ty Trans Ty Toans T 4 UIE‘
c and ¢, of the Challenge ciphertext octze) = (C := (c, cran,cT),verk"', S) in Game 1-4-v3 are

expressed over bases B and U as

c=(¢, wi®, plverk® 1), @, 07, 0", ¢)g
=(C+u- 0, wi® + - F, p(verk 1), i, 4- ﬁ, 0", ¢ )u,
Cran = (0, WeanZ, Pran(verk® 1), 07, 0%, 0™, ©ran )B
=(0, WeanZ, pran(verk"', 1), 0", 0", 0", ¢ran U,

where 41+ 5, wZ® + - F and @- F are uniformly and independently distributed except when @ = 0,
i.e., except for probability < 1/q, since 4 J Fys [ Fg, F, e Fg”". In the light of adversary’s
view, both (B, B*) and (U, U*) are consistent with public key pk. Since k*, k*'*, k**"°, and ¢"" can
be expressed in two ways in Game 1-4-v3 over (B,B*) and in Game 1-5 over bases (U, U*). Thus,
Game 1-4-v3 can be conceptually changed to Game 1-5. O

Lemma 14. For any adversary A, there exists a probabilistic machine Bi-5, whose running time is
essentzally the same as that of A, such that for any security parameter A, |Adv(1 5)()\) —Ade_G)(/\)] <
AdvE (N).

1-5

Proof. In order to prove Lemma 14, we construct a probabilistic machine Bi-5 against Problem 4
using an adversary A in a security game (Game 1-5 or Game 1-6) as a black box as follows:
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1. Bi-5 is given a Problem 4 instance, (paramn,@,ﬁ*, {h;; i€ fiti=1,..n)-
Bi-5 plays a role of the challenger in the security game against A.
3. At the first step of the game, Bi-5 generates a pair of public and secret key of the underlying

IPE scheme, (pk'PE,sk!PE) & Setupipe(1*, n). Bis sets B := (by,..., byt2,ban3) and B* =

(b 1,6} 9,b5, 5,...,b}, 5) and provides A with a public key pk := (A, param,, ,B, B*, pk'"F).
4. When a decryption key query is issued/\for a vector ¥ := (v1,...,v,), Bi-5 computes sk%PE —
KG|pE(sk'PE,17) and using {h;)i}i:h“,n,ﬁ* of the Problem 4 instance,

N

k* = by + E?:l(chibf + Wihfa,i + nib§n+2+i)> ki = Z?:l(‘sranvib: + 7Tran,ih;,i + 77ran,ib§n+2+i)7

IPE
ran? Sk )'
5. When a re-encryption key query is issued for (¢ := (vy,... ,vn) 7'), Bi-5 computes ctﬁ,, prect

USiIlg kaPE, ]ﬁf = (d;k = b;(Wl)i:n+1,n+2,3n+3,‘..,4n+2 Wlth W1 (— GL(4Tl + 4,Fq), and

where 9, dran, i, Tran,is iy Nran.i %U [Fy. Bi-5 provides A with the decryption key sky := (k*, k;;

K™= by + > (6™ by + mihy; + V8,0 14);
k;karrl; = E (5:5,1’1)@1)* + 7Tran K B i + nran Zb3n+2+z)

where §™ 5”‘ ol & Fq. Bi-5 provides A with the re-encryption key rkgz =

> ¥ran? ran, Z’n'L 777ranz

(™™, kg, ctts, prects, D).
6. When a re- encryptlon query is issued for (¥ := (v1,...,vp), &, oct := (C := (¢, ¢ran, c1), veErk, S)),
if Ver(verk, C, S) # 1, Bi-5 returns L to A. Otherwise, B1-5 computes a normal form of (c""¢, ¢/f"°

{ctrenc}l 1,2) using C (¢, ¢ran, 1), the Problem 4 instance and pk'PE and

)

B0 = b+ o (b -+ verk i) + I (uib; 1B, )

where §"e"¢, 7/ prenc Y Fy. Bi-5 provides A with the re-encrypted ciphertext rcty := (k*™"¢, ¢™"°,
renc {Ctrenc}l 1 2)

7. When a challenge query is issued for (f(o),f(l),m(o),m(l)), Bi-5 picks a bit b J {0,1} and
C, Py Wran, Prans Pran J [, and generates (sigk®, verk®) & SigKG(1%). Next, Bj-5 computes

C = CbO + Z?:l wxl(b)bi + p(verk"’an + bn+2) + Z?:l (ulyiei + U27Z'f74')’

where (,w, p,u1i, u2; & Fy, and cran, c7, S & Sig(sigk"’,C’) are generated in a normal manner
with C := (¢, €ran, ¢1). Bi-5 provides A with the challenge ciphertext oct,w) := (C, verk®, S).
8. A finally outputs bit ¥'. If b = V/, Bi-5 outputs 5’ := 0. Otherwise, Bi-5 outputs 3’ := 1.

Since all the replies to decryption key, re-encryption key, re-encrypted ciphertext, and challenge
queries are of the form in Game 1-5 (resp. Game 1-6) if 5 = 0 (resp ﬁ =1), (1_5)()\) - Advfi_m()\) =

‘Pr[81_5(1)‘,g)—>1 0 RGP, )] —Pr[815(1’\,g)—>1 0 RgP ”<Adv (). 0

The game changes between Game 1-6 and Game 2-4-v3 is similar to those between Game 0”
and Game 1-4-v3 except the form of the component of the challenge ciphertext cran is changed to
semi-functional form. Therefore, the advantage of between Game 1-6 and Game 2-4-v3 is bounded
by a similar manner to those obtained in Lemmas 9-12.

Lemma 15. For any adversary A, |Advf_4_'j3)()\) - Advf-5)()\)| <1/q.
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Proof. Lemma 15 is proven in similar manner to Lemma 13. g

Lemma 16. For any adversary A, Advff_5)()\) =0.

Proof. The value of b is independent from adversary’s view in Game 2-5. So, Advf{))()\) =0. O

Proof of Theorem 2 (AH-OC) in the Case Tyek =1 A Tm =1
In Lemmas 17-27 and their proofs, we consider only the case Tyerk =1 A Th = 1.

Lemma 17. The proposed IP-PRE scheme is attribute-hiding for original ciphertexts against chosen
plaintext attacks in the case Tyek =1 A Ty = 1 under the DLIN assumption provided the underlying
IPE scheme is attribute-hiding.

For any adversary A, there exist probabilistic machines &,-1,&,-2-j-1,E,-3-4-j,E,-3-B=j-1, E1-4-A-j
Ea-B-1,E-4-0, €126, E1-7 forv =1,2; j=1,2; 1 = 1,2, whose running times are essentially the same
as that of A, such that for any security parameter X in Game 0",

2
PrlA wins|rek = 1 A T = 1] — 1/2< Y (Adng}_'lN(A) 3 2 Y2 AGREN ()

& -2-n-j-1
=1

v IPE,AH
Y2 (Adv () + S AR )

€ -3-0-A-; &, -3-0-B-j-
v IPE,AH
T (ShaAdE A, )+ S AR )+ AR (Y))
+3 12 0AdVEN (A) + Advgt N (A) + €, (27)

where E,9-p-j-1(-) = Ei-g-j-1(h, ), Es3-0-2-5 () := E3-2-5 (L, -), E-3-B4-j1(-) = Ei-3-B-j-1(L, ),
Eiott-n-j(-) = Era-n-j(t, ), Eseat-B-1(0) 1= Ei-a-Bi(t, ), Eveamt-c () = Emac(ty7), E1-6-4 (1) = E1-6(t, ),
€ := (6611 + 7002+ 91v3420)/q and vy, va, v3 are the mazimum number of A’s decryption key queries,
that of A’s re-encryption key queries, and that of A’s re-encryption queries, respectively.

Proof Outline of Lemma 17. To prove Lemma 17, we consider Tyex = 1 A Tm = 1 case.
Overview of Game Transformation. We employ Game 0” through Game 2-5. In this proof, there are
main two sequences, the Game 1 sequence and the Game 2 sequence (Figure 5), whose aims are to
change components ¢ and c¢,a, of the challenge ciphertext to independent ones from challenge bit b
(random form), respectively.

We employ Game 0” through Game 1-7 in the Game 1 sequence. In Game 0", all the replies
to A’s queries are in normal forms (Eqs.(28)-(32)). In Game 1-1, ¢ of the challenge ciphertext is
changed to temporal 1 form given in [29] (Eq.(33)). Let 14, 19,3 be the maximum numbers of A’s
decryption key queries, that of A’s re-encryption key queries, and that of A’s re-encryption queries,
respectively. There are 11 game changes from Game 1-1 (Game 1-2-0) through Game 1-2-v;. In Game
1-2-h (h =1,...,v1), the reply to the h-th decryption key query is changed to temporal 2 form given
in [29] (Eq.(34)). There are v5 game changes from Game 1-2-v; (Game 1-3-0) through Game 1-3-v5.
In Game 1-3-¢ (¢ = 1,...,12), the reply to the ¢-th re-encryption key query is changed to temporal
2 form given in [29] (Eq.(35)). There are v3 game changes from Game 1-3-v5 (Game 1-4-0) through
Game 1-4-v3. In Game 1-4-t (t = 1,...,v3), the reply to the ¢-th re-encrypted ciphertext query is
changed to temporal 2 form in [29] (Eq.(36)) or semi-functional form (Eq.(37)). In Game 1-5, ¢ of
the challenge ciphertext is changed to unbiased form in [29] (Eq.(38)).

Then, through Game 1-6-t (t =0, ...,v3), replies to all the decryption key, re-encryption key and
re-encrypted ciphertext queries are changed to a normal form. In Game 1-7, the challenge ciphertext
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Fig. 5. Game Transformations for AH-OC Security in the case Tvek = 1 A T = 1.

is changed to a normal and unbiased ciphertext (Eq.(39)), and the game is a preparation for the
Game 2 sequence. In the Game 2 sequence, ¢ap is changed to random form in Eq.(40) by proceeding
similar to game transformations in the Game 1 sequence. In the final Game 2-5, the advantage of
the adversary is zero.

As Figure 5 shows, the advantage gap between Game 0” and Game 1-1 is bounded by the
advantage of Problem 1. The advantage gaps between Games 1-2-(h — 1) and 1-2-h (resp. 2-2-(h —1)
and 2-2-h) are bounded by the advantage of Problems 2 and 4. The advantage gaps between Games
1-3-(¢ —1) and 1-3-¢ (resp. Games 2-3-(¢ — 1) and 2-3-¢) are bounded by the advantages of Problems
2, 4 and the attribute-hiding security of the underlying IPE scheme. The advantage gaps between
Games 1-4-(t — 1) and Game 1-4-¢ (resp. Games 2-4-(t — 1) and 2-4-t) are bounded by the advantages
of Problems 2, 3, 4 and attribute-hiding security of the underlying IPE scheme. Since the advantages
of Problems 1, 2, 3 and 4 are bounded by that of DLIN, the advantage of A is bounded by those of
DLIN and the attribute-hiding security of the underlying IPE.

Overview of Sub-Games. We employ Sub-Games between Games 1-3-(¢ — 1) and 1-3-¢, and Games
1-4-(t — 1) and 1-4-t as described in Figure 6.

First, Game 1-3-(¢ — 1) is changed to Game 1-3-(¢ — 1)’ which is the same as Game 1-3-(¢ — 1)
except that flip a coin 7y & {0,1} before setup, and the game is aborted if 7 # s when the
variable sy ¢ is determined at the challenge step or the ¢-th re-encryption key query step (Definition

4). Since Ty & {0, 1}, the advantage of A in Game 1-3-(¢£ — 1)’ is a half of that in Game 1-3-(¢ — 1).

When 7« = 0, we employ three intermediate sub-games, Sub-Games 1-3-¢-A-j (j = 1,2,3). In
Game 1-3-¢-A-1, ctgi in the reply to the /-th re-encryption key query is changed to Encipg (pk™%, &/, R)
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Fig. 6. Sub-Games between Games 1-3-(¢ — 1) and 1-3-¢, and Games 1-4-(t — 1) and 1-4-¢

Game
14-t>
when Tgp; =2

Game
1-4-(t1)y >
when T, =2

Trenc = 2

renc

where R is a random matrix in F(;VXN. In Game 1-3-f-A-2, k*™ and ki

to temporal 2 forms in Eq.(35). In Game 1-3-¢-A-3, ct%‘i returns back to normal ctg‘, := Encipg (pk™E,
Z',W1). When 7 = 1, we employ eight intermediate sub-games, Sub-Games 1-3-¢-B-j-1 (j = 1,2; | =
1,...,4). Through the eight games, in Game 1-3-f-B-2-4, k** and k/T% of the reply to the /-th re-
encryption key query are changed to temporal 2 forms in Eq.(35).

Both final games, Game 1-3-¢-A-3 (when 74 = 0) and Game 1-3-(-B-2-4 (when 7,4« = 1) are
equivalent to Game 1-3-¢” which is the same as Game 1-3-£ except that flip a coin 7 & {0, 1} before
setup, and the game is aborted if 7 # sy ¢ when the variable sy ¢ is determined at the challenge step
or the ¢-th re-encryption key query step (Definition 4). Similarly to Game 1-3-(¢ —1)’, the advantage
of A in Game 1-3-¢" is a half of that in Game 1-3-/.

As Figure 6 shows, when 7, = 0, the advantage gap between Games 1-3-(¢ — 1)’ and 1-3-¢-A-1
(resp. 1-3-¢-A-2 and 1-3-¢-A-3) is bounded by the advantage of the attribute-hiding security of the
underlying IPE scheme. When 7, = 1, the advantage gap between Games 1-3-(¢—1)" and 1-3-¢-B-1-1

of the reply are changed
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(resp. 1-3-¢-B-1-4 and 1-3-¢-B-2-1) is bounded by the advantage of Problem 2, that between Games
1-3-¢-1-2 and 1-3-¢-B-1-3 (resp. 1-3-¢-B-2-2 and 1-3-¢- B-2-3) is bounded by the advantage of Problem
4. All the other games are conceptually changed from the previous one.

For bounding the advantage gap between Games 1-4-(t—1) and 1-4-¢, similar Sub-Games are used

(the lower diagram in Figure 6). The difference from the above is that a ternary coin 7renc & {0,1,2}
is used, so, the advantage of A in Game 1-4-(t — 1)’ is a third of that in Game 1-4-(¢t — 1). And,
when Trenc = 1, there are just four intermediate sub-games. Here, while the gap is bounded by the
advantage of Problems 2 and 4 when 7enc = 1, the gap is bounded by that of Problem 3 when
Trenc = 2.

Proof of Lemma 17. Let v; be the maximum number of A’s decryption key queries, v5 be the
maximum number of A’s re-encryption key queries and vr3 be the maximum number of A’s re-
encryption queries. To prove Lemma 17, we consider the following 2(v; + v2) + 3v3 + 6 games. In
Game 07, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0”: We only describe the components which are changed in the other games.
The reply to a decryption key query for ¢ is:

k* = ( 17 5777 027 Ona 7 ﬁ‘) O )B*7 k:(an = ( 07 (5ranﬁa 027 07L7 ’ ﬁram 0 )B*7 (28)

and skIPE where 9, dran & Fy, 7, Tran & Fy.
kK, k:*rk and ctr/ of the reply to a re-encryption key query for (7, ') is:

ran
k= (1, 6™, 0% 0", 77 O)pe, ki = (0, 05,7, 02, 07, [07], 7,55, O)pz, (29)

where 6,675 2 Fy, 77 ™, 7.0k <2 B2, Wy <2 GL(4n + 4,F,), D} := B*W.
k*enc of the reply to a re-encryption query for (7,7, octz = (C := (e, ¢an, c1), S, verk)) is L if
Ver(verk, C, S) # 1. Otherwise, the reply is:

Lrrenc . ( 1, 6renc6»7 a(—l,verk), On’ 7 ﬁrenc7 0) »

17

(30)

where, 8, g <2 Fy, 77 " & 2, Wy & GL(4n + 4,F,), D} := B*W,.
The reply to a challenge query for (f(o), 71 mO), m(l)) is:

c:= (¢ |wi® | p(verk® 1), , 0", @) (31)
7o ) ,Oran Verk& 1 7 Soran B, (32)

Cran ‘= ( 07 wranx(

=

cr = m(b)-g%, C = (C, Cran, CT), S (—R Sign(sigk"’, C), where b <£ {07 1}7 ¢, W, Wran, P, Pran; P; Pran <
F, and (sigk®, verk®) & SigKG(1*).

Game 1-1: Game 1-1 is the same as Game 0” except that the reply to the challenge query for
GONGORTICIAONEE

c:=(¢, wz® p(verk"‘,l), W2 | w”f(o) + w0, ¢ g, (33)

where o', wjj, wf & [F, and all the other variables are generated as in Game 0”.
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Game 1-2-h (h=1,...,11): Game 1-2-0 is Game 1-1. Game 1-2-h is the same as Game 1-2-(h—1)
except that the reply to the h-th decryption key query for ¥ is

k* = (1, 67, 0%, 0", [6/F), 7, 0)ge, Ky = (0, Srant, 02, 0%, [8'T), Fran, 0)pe, (34)

where &, 8/, & [F, and all the other variables are generated as in Game 1-2-(h — 1).
Game 1-3-¢/ (L =1,...,15): Game 1-3-0 is Game 1-2-v7. Game 1-3-¢ is the same as Game 1-3-
(£ — 1) except that the reply to the ¢-th re-encryption key query for (v, Z’) is as follow:

K= (1, 5rk1—)»7 027 0", 7 ﬁrkv 0 )va k;karrIT = (1, 5::n177 027 0", 5{"::1177 ﬁr;ﬁ? 0 )Dfﬂ (35)

where 5™ ¢ F, and all the other variables are generated as in Game 1-3-(¢ — 1).

Game 1-4-t (t=1,...,v3): Game 1-4-0 is Game 1-3-v5. Game 1-4-t is the same as Game 4-
(t — 1) except that the reply to the t-th re-encryption query for (v, %, oct = (C,verk, S)) is, if
Ver(verk, C, S) =1,

if oct = octw, k= (1, §™"F, o(—1,verk), 07, | 8T, 7", 0 )ps, (36)

(1, 6"F, o(—1,verk), 0", [7"], 7", 0)p

if oct # octyw), K" : :
where g'renc ¢ Fy, 7" & [y and all the other variables are generated as in Game 1-4-(t — 1).
Game 1-5: Game 1-5 is the same as Game 1-4-v3 except that the reply to the challenge query for

@0, 7D, m(©) | (D) js:

c:= (¢, woZ® + w7 |, p(verk"‘, 1), w(l)f(o) + w’lf(l), wga_c’(o) —|—w'1’£’(1), 0", v )m, (38)

where wy, wq %U F, and all the other variables are generated as in Game 1-4-v3.
Game 1-6-0: Game 1-6-0 is the same as Game 1-5 except that the reply to every decryption key
query for v is

k* = (1, 67, 0%, 0%, [07], 7, 0)me, Ko := (0, Gran®, 0, 0", [0"], Fran, 0 e,
and the reply to every re-encryption key query for (¥, %) is as
ko= (1, 07, 0%, 0, [07], 7™, 0)py, Kimki= (1, 0.7, 0%, 07, [07] 7k, 0 )y,
and the reply to every re-encryption query for (v, %, oct = (C, S,verk)) is, if Ver(verk,C,S) =1,
if oct = octywy, k™" = (1, 6""U, o(—1,verk), 0", , 7", 0 )pr,

where all the other variables are generated as in Game 1-5.
Game 1-6-t (t=1,...,v3): Game 1-6-¢ is the same as Game 1-6-(t — 1) except that the reply to
the t-th re-encryption query for (7, Z’, oct = (C, S,verk)) is, if Ver(verk,C,S) =1,

if oct # octyw), K" := (1, §""U, o(—1,verk), 0", , 17", 0 )pr,

where all the variables are generated as in Game 1-6-(t — 1).

Game 1-7: Game 1-7 is the same as Game 1-6-v3 except that the reply to the challenge query for
(@0, 2D m©) ;) is:

c:= (¢ woZ Y + w 7Y, p(verk"’, 1), , 0", ¢ )B, (39)

where wg, w1y &y [F, and all the other variables are generated as in Game 1-6-v3.
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Game 2-1: Game 2-1 is the same as Game 1-7 except that the reply to the challenge query for
(O, 71 m0 mM) is

Cran := (0, wi®, p(verk"‘7 1), |20 |, wé’x( )+w’1’f(1) , 0" ¢ ),

where o/, wjj, w/ & [F, and all the other variables are generated as in Game 1-7.
Game 2-2-h  (h=1,...,1v1): Game 2-1 is Game 2-2-0. Game 2-2-h is the same as Game 2-2-(h—1)
except that the reply to the h-th decryption key query for 9, (k*, k},,), is of the form in Eq. (34),

where &' <2 F, and all the other variables are generated as in Game 2-2-(h — 1).
Game 2-3-¢/ ({=1,...,12): Game 2-3-0 is Game 2-2-v;. Game 2-3-¢ is the same as Game 2-3-
(¢ — 1) except that the reply to the /-th re-encryption key query for (v,Z), (k**, k7K), is of the

ran
form in Eq. (35), where 6" & F, and all the other variables are generated as in Game 2-3-(¢—1).
Game 2-4-t (t=1,...,v3): Game 2-4-0 is Game 2-3-v5. Game 2-4-t is the same as Game 2-4-
(t — 1) except that the reply to the ¢t-th re-encryption query for (0, #, oct = (C, verk, S)), k*™"°,
is given, if Ver(verk, C, S) = 1, of the form in Eq. (36) if oct = octw), or of the form in Eq. (37) if
oct # octyw), where ¢'"° & [, and all the other variables are generated as in Game 2-4-(t — 1).

Game 2-5: Game 2-5 is the same as Game 2-4-v3 except that the reply to the challenge query for
(0, 71 m0 mM) is

Cran = (0, [woZ® 4w @M || p(verk® 1), w()f(o) + Wiz, wgf(o) +uZV ) o)E,  (40)

where wg, w1y <£ [F, and all the other variables are generated as in Game 2-4-v3.

Let Adv(® (1), AdvD (0), Adv@ 2P (1), AV O (0), AVl (0), and Adv® (), be the ad-
vantages of A in Game 0”7, -1, +-2- h 1-3-£, 1-4-t and -5 for « = 1 , 2, respectively. We will show seven
lemmas (Lemmas 18-27) that evaluate the gaps between pairs of neghoboring games. From these
lemmas and Lemma 3-6, we obtain

AdvO () < ‘Adv(j’)(A) — A0SV ()
2

3 (T [AdG 00 = AdGEP )|+ S (A 0 - Ad O )|
=1

Sy AT 00 — Al 00+ ‘Adv(j”“”s)(A) - AdS )])
A0V ) = AdGTO )|+ i AdG T ) - Ad I )

+ ]Adv<1'6‘”3>(A) - Advg{'”(x)] + AV (),

(AdVDLIN "‘Z ?lel?:1AdvDLlN e

\Mw

Em2-p-j-1
IPE,AH
+Z o (AdVERAT )+ AR ()
< IPE,AH
e (Zj AT () + T2 AGEE () + AR (1))

+3 12 oAdvEIN (X) + Adv?l'-_'7N()\) +e,

where € := (6611 + 700 + 913 + 20)/q. This completes the proof of Lemma 17. O
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Lemma 18. For any adversary A, there exists a probabilistic machine By, whose running time is

essentmlly the same as that of A, such that for any security parameter X, |Adv54)()\) - Advfi_l)(/\)] <
AdVEL () +2/g.

Proof. Lemma 18 is proven in similar manner to Lemmas 6 and 7 in [29]. O

Lemma 19. For any adversary A, there exists a probabilistic machine Bi-2-j-2 and Bi-2-j-4 for
j = 1,2 whose running time is essentially the same as that of A, such that for any security parame-

ter A, JAdVG D () — AdVE P ()] < T2 (Advgf L) AR (A)) +20/q, where

Bi-g-p-j-2(+) == Bi-2-j-2(h,-) and By-g-p-j-4(-) := Bi-2-j-4(h, ) f07’] =1,2.

Proof. Lemma 19 is proven in similar manner to Lemmas 7-10 in [29]. We define intermediate games,
Sub-Game 1-2-h-1-1 and Sub-Game 1-2-h-2-¢1 (v := 1...,4) as follows. The purpose of the game
changes between Sub-Game 1-2-h-1-1 and Sub-Game 1-2-h-1-4 (resp. between Sub-Game 1-2-h-2-1
and Sub-Game 1-2-h-2-4) is that the normal form k* (resp. k},,) is changed to temporal 2 form.

Sub-Game 1-2-h-1-1 (h =1,...,v1): Sub-Game 1-2-h-1-1 is the same as Sub-Game 1-2-(h—1)-2-4
except that the reply to the challenge query for (f(o), 720 m O, m(l)) where m(© = m®) is:

c:=(¢, wf(b), p(verk"‘, 1), W70 | wgf(o) +w§’:€(1) , 0" ¢ B,

where o', wjj, w/ & [F, and all the other variables are generated as in Sub-Game 1-2-(h — 1)-2-4.
Sub-Game 1-2-h-1-2 (h =1,...,1v1): Sub-Game 1-2-h-1-2 is the same as Sub-Game 1-2-h-1-1 ex-
cept that the reply to the decryption key query for ¢ is:

k* — ( 17 51—}», 027 ’ On’ ﬁrk’ 0 )B*’ (41)

where &' <2 F, and all the other variables are generated as in Sub-Game 1-2-h-1-1.
Sub-Game 1-2-h-1-3 (h =1,...,1v1): Sub-Game 1-2-h-1-3 is the same as Sub-Game 1-2-h-1-2 ex-

cept that the reply to the challenge query for (Z(©), 1), m© m®) where m©) = m) is:
c:= (¢, wz® p(verk"', 1), w(')x( )+ whz |, wgf(o) —|—w£’:i"'(1), 0", ¢ )B, (42)

where w(), w} & F, and all the other variables are generated as in Sub-Game 1-2-h-1-2.
Sub-Game 1-2-h-1-4 (h =1,...,11): Sub-Game 1-2-h-1-4 is the same as Sub-Game 1-2-h-1-3 ex-
cept that the reply to the decryption key query for ¢ is:

k" = ( 17 5177 027 a ﬁrka 0 )B*a (43)

where 6" & T ¢ and all the other variables are generated as in Sub-Game 1-2-h-1-3.
Sub-Game 1-2-h-2-1 (h=1,...,1v1): Sub-Game 1-2-h-2-1 is the same as Sub-Game 1-2-h-1-4.
That is, Sub-Game 1-2-h-2-1 is the same as Sub-Game 1-2-h-1-4 except that ¢ of the reply
to the challenge query for (#(9, 2D m(© m®) where m©® = m) is temporal 1 form Eq. (33).
Sub-Game 1-2-h-2-2 (h =1,...,v1): Sub-Game 1-2-h-2-2 is the same as Sub-Game 1-2-h-2-1 ex-
cept that the reply to the decryption key query for  is:

ki = (0, Srand, 02, 0™, ik 0) (44)

where 0/, <> F, and all the other variables are generated as in Sub-Game 1-2-h-2-1.

ran
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Sub-Game 1-2-h-2-3 (h =1,...,v1): Sub-Game 1-2-h-2-3 is the same as Sub-Game 1-2-h-2-2.
That is, Sub-Game 1-2-h-2-3 is the same as Sub-Game 1-2-h-2-2 except that ¢ of the reply
to the challenge query for (f(o),:?(l), m(9), m(l)) where m(© = m® is temporal 2 form Eq. (42).
Sub-Game 1-2-h-2-4 (h =1,...,1v1): Sub-Game 1-2-h-2-4 is the same as Sub-Game 1-2-h-2-3 ex-
cept that the reply to the decryption key query for o is:
k*

ran = ( 0, drand, 027 7 ﬁr£ﬁ7 0 )B*7 (45)

where 6" <Y F, and all the other variables are generated as in Sub-Game 1-2-h-2-3.

ran

The advantage gaps between Sub-Game 1-2-h-1-1 and Sub-Game 1-2-h-1-4 (resp. Sub-Game
1-2-h-2-1 and Sub-Game 1-2-h-2-4) are bounded by the advantages of Problem 2 and Problem 4,
respectively. The proof of this lemma is completed in a similar manner to Lemmas 7-10 in [29]. O

Lemma 20. For any adversary A, there exist probabilistic machines By-3-a-; and By-3-p-j- for
j=1,2; 1 = 1,2, whose running time is essentially the same as that of A, such that for any security
parameter A,

Ay D) AT < 2 (AdEEA ) AR
22/q, where 31-3-4-,4-3( ) == Bi-3-4-j (¢, -), 81—3-6-3—]-1( ) == B1-3-B-j-1({, ).

) +AEL )+

Proof. The proof strategy is similar to Lemma 11.
First, we execute a preliminary game transformation from Game 1-3-(¢ — 1) to Game 1-3-(¢ — 1),

which is the same as Game 1-3-(¢ — 1) except that flip a coin 7 J {0, 1} before setup, and the game
is aborted when the variable sy ¢ is determined (Definition 5) if 7k # s ¢. Since sp ¢ := 0 if 7-20 #*
0A 771 #£0,o0r v- 70 =0 A 7.2 =0, Srk,¢ is determined at the challenge step if the /-th re-
encryption key query is asked in Phase 1, and at the /-th re-encryption key query step if it is asked in
Phase 2. We define that A wins with probability 1/2 when the game is aborted (and the advantage in
Game 1-3-(/—1)" is Pr[A wins in Game 1-3-({—1)" | —1/2 as well). Since 7y is independent from sy ¢,
the game is aborted with probability 1/2. Hence, the advantage in Game 1-3-(¢£ — 1)’ is a half of that
in Game 1-3-(¢—1), i.e. Adv1 (=) (AN =1/2 Adv1 3= 1)()\) Moreover, Pr[A wins in Game 1-3-(/—
1)'] = 3 (Pr[A wins in Game 1-3-(0 - 1) | i = 0] + Pr[A wins in Game 1-3-(¢ — 1)’ | 7x = 1]) since
Tk 1S unlformly and independently generated. As in the proof of Lemma 20, Eq. (17) holds.
Similarly, we define a new game, Game 1-3-¢”, which is the same as Game 1-3-¢ except that flip

a coin Ty s {0,1} before setup, and the game is aborted when the variable sy, is determined if
Tek # Srke- Note that Game 1-3-¢ aborts if 7y, # Sy ¢+1, which is different from Game 1-3-¢”. As in
the proof of Lemma 20, Eq. (18) holds.

Case T, = 0 As for the conditional probability with 7, = 0, we introduce three games as:

Sub-Game 1-3-f-A-1: When 74 = 0, Sub-Game 1-3-¢-A-1 is the same as Game 1-3-(¢ — 1)’ except
that the reply to the ¢-th re-encryption key query for (0, %) are

R S,
ct%'f — Enc|pE(pk'PE,$’, ),

where R < GL(4n + 4,F,), & Fy and all the other variables are generated as in Game 1-3-
(L—1).

Sub-Game 1-3-/-A-2: When 7, = 0, Sub-Game 1-3-¢-A-2 is the same as Sub-Game 1-3-/- A-1 except
that (k*™, k%) of the reply to the /-th re-encryption key query for (7, #') is of the form as given

ran

in Eq. (35).
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Sub-Game 1-3-¢-A-3: When 7, = 0, Sub-Game 1-3-¢- A-3 is the same as Sub-Game 1-3-£- A-2 except
that ct of the reply to the (-th re-encryption key query for (7, 7’) is

R —
Ct;zk/ — EnCIPE(kaPE75LJ1 )a

where Wi € GL(4n + 4,F,) is defined in Game 0” and it satisfies that D} = B*W; and all the
other variables are generated as in Sub-Game 1-3-¢-A-2. Note that Sub-Game 1-3-¢-A-3 is the
same as Game 1-3-¢” when 7, = 0.

As in the proof of Lemma 11,

|Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 0] — Pr[A wins in Game 1-3-¢" | 5 = 0]|
< |Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 0] — Pr[A wins in Game 1-3-(-A-1 | 7y = 0]

+ |Pr[A wins in Game 1-3-¢-A-1 | 7 = 0] — Pr[A wins in Game 1-3-¢-A-2 | 7 = 0]]

+ |Pr[A wins in Game 1-3-(-A-2 | 7« = 0] — Pr[A wins in Game 1-3-¢-A-3 | 7 = 0]
<AdvgtM () AdvgtT () +2/4. (46)

Case 1,k = 1 As for the conditional probability with 7,4 = 1, we introduce eight games as in the
proof of Lemma 19:

Eight Sub-Games, i.e., Sub-Game 1-3-¢-B-1-1, ..., Sub-Game 1-3-¢-B-2-4 are defined as in similar
manners to Sub-Game 1-2-h-1-1, ..., Sub-Game 1-2-h-2-4: In Sub-Game 1-3-¢-B’s, the reply to the ¢-
th re-encryption key query, (k*rk k:‘;ﬁ) are transformed to the form Eqgs. (41),(43), and Eqgs. (44),(45),
respectively, instead of (k*, k) used in Sub-Game 1-2-h’s.

ran
As in the proof of Lemma 19, we have

|Pr[A wins in Game 1-3-(¢ — 1)’ | 7 = 1] — Pr[A wins in Game 1-3-¢" | 7y = 1]|

2
<y (Advgf_g_e_B_l_ V) +AE (A)) +20/q. (47)
=1

Therefore, from Egs. (17), (18), (46), and (47),

AT D) — Al )|
= |Pr[A wins in Game 1-3-(¢ — 1)' | 7« = 0] + Pr[A wins in Game 1-3-(¢{ —1)' | e = 1] — 1
— (Pr[A wins in Game 1-3-¢" | 7« = 0] 4+ Pr[A wins in Game 1-3-0" | 7y = 1] — 1)
= |Pr[A wins in Game 1-3-(¢ — 1)" | 7« = 0] — Pr[A wins in Game 1-3-¢" | 7 = 0]
+ Pr[A wins in Game 1-3-(¢ — 1)" | 7y = 1] — Pr[A wins in Game 1-3-¢" | 7. = 1]|

IPE,AH IPE,AH P2
<AdEEMM () FAVERAT )+ ) (Adv31_3_5_3_1_ V) +AVE ()\)) +22/q.

This completes the proof of Lemma 20. O

Lemma 21. For any adversary A, there exists a probabilistic machine Bi-4-a-j, Bi-a-p-j for j =

1,2, and Bi-4-c, whose running times are essentially the same as that of A, such that for any
. 1-4-(t—1 (1-4-t) IPE,AH

security parameter \, |AdvE4 ( ))()\) Adv ( )| < Z p Advg ()\) —l—Ade1 i A F

AdvE? (A) +Advg® (A +24/q,

Bl4tB2

where By-4-4-a-;(*) —Bl4A—]( ), Bi-a-t-B-j(-) == Bi-a-B-j(t,-), Bi-a-t-c() = Bia-c(t,).
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Proof. The proof strategy is similar to Lemma 12.
First, we execute a preliminary game transformation from Game 1-4-(t — 1) to Game 1-4-(t — 1)/,

which is the same as Game 1-4-(t — 1) except that flip a coin Trenc d {0, 1,2} before setup, and the
game is aborted when the variable syenc is determined (Definition 5) if Trenc 7# Srenc,t- SiNCE Srenc,t 1S
defined by @, 0, (1) octy, octzw), the value of Syencs is determined at the ¢-th re-encryption query
step if it is asked in Phase 2. We define that A wins with probability 1/2 when the game is aborted
(and the advantage in Game 1-4-(t — 1)’ is Pr[A wins in Game 1-4-(t — 1)’ | — 1/2 as well). Since
Trenc 1S independent from srenct, the game is aborted with probability 2/3. Hence, the advantage in
Game 1-4-(t — 1)’ is a third of that in Game 1-4-(t — 1), i.e., Adv'y ™' () = 1/3- Adv';" 7D ().
Moreover, Pr[A wins in Game 1-4-(t —1)'] = %Z?:o Pr[A wins in Game 1-4-(t — 1)" | Tyenc = ¢] since
Trenc 1s uniformly and independently generated. Therefore,
AdvTEED () = 3 AdVEEY (0
2
= Pr[A wins in Game 1-4-(t—1)’ | Trenc = ¢] — 3/2. (48)
=0

Similarly, we define a new game, Game 1-4-t”, which is the same as Game 1-4-t except that flip a

€OoiN Trenc <—U {0, 1,2} before setup, and the game is aborted when the variable srenc ¢+ is determined if
Trenc 7 Srenc,t- Note that Game 1-4-t’ aborts if Trenc 7# Srenc,t+1, which is different from Game 1-4-t".
Similarly to Eq. (48),

2
Advjzl_(t*l)()\) =3 Adv}f‘_tu()\) = Z Pr[A wins in Game 1-4-t" | Tyenc = ¢] — 3/2.  (49)
=0
Case Trenc = 0 As for the conditional probability with 7enc = 0, we introduce three games as:
Sub-Game 1-4-t-A-1: When Trenc = 0, Sub-Game 1-4-t-A-1 is the same as Game 1-4-(t — 1) except
that the reply to the t-th re-encryption query for (¥, %, oct) are

ctf%/c & Enqu(pk'PE,:E", ),
where R < GL(4n + 4,F,) and all the other variables are generated as in Game 1-4-(¢ — 1)’.
Sub-Game 1-4-t-A-2: When 7enc = 0, Sub-Game 1-4-t-A-2 is the same as Sub-Game 1-4-t-A-1
except that k*®"¢ of the reply to the ¢-th re-encryption query for (7,7, oct) are of the form as
given in Eq. (36).
Sub-Game 1-4-t-A-3: When 7renc = 0, Sub-Game 1-4-t-A-3 is the same as Sub-Game 1-4-t-A-2
except that ct%'f of the reply to the t-th re-encryption query for (7, 7', oct) is

R -
et < Encipe(pk'™E, @7, [1W7)),

where Wi € GL(4n + 4,F,) is defined in Game 0” and it satisfies that D} = B*WW; and all the
other variables are generated as in Sub-Game 1-4-t-A-2. Note that Sub-Game 1-4-t-A-3 is the
same as Game 1-4-t" when Trenc = 0.

As in the proof of Lemma 12 (Claims 5, 6, and 7),
}Pr[.A wins in Game 1-4-(t — 1) | Trenc = 0] — Pr[A wins in Game 1-4-t" | Tenc = OH
< }Pr[A wins in Game 1-4-(t — 1) | Trenc = 0] — Pr[A wins in Game 1-4-t-A-1 | Trenc = OH
+ |Pr[A wins in Game 1-4-t-A-1 | Trenc = 0] — Pr[A wins in Game 1-4-t-A-2 | Tyenc = 0]
+ |Pr[A wins in Game 1-4-t-A-2 | Trenc = 0] — Pr[A wins in Game 1-4-t-A-3 | Trenc = 0]|
< Advg o)+ Advg T () +2/q. (50)

~4-t-A-1 Bi-g-t- a-2
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Case Trenc = 1 As for the conditional probability with 7,enc = 1, we introduce four new games.

Four Sub-Games, i.e., Sub-Game 1-4-t-B-1, ..., Sub-Game 1-4-t-B-4 are defined as in similar
manners to Sub-Game 1-2-h-1-1, ..., Sub-Game 1-2-h-1-4: In Sub-Game 1-4-t-B’s, the reply to the
t-th re-encryption query, k*"®"¢, are transformed to the form Egs. (41),(34), respectively, instead of
k* used in Sub-Game 1-2-h’s.

As in the proof of Lemma 19, we have

‘Pr[.A wins in Game 1-4-(t — 1)" | Trenc = 1] — Pr[A wins in Game 1-4-t" | Tenc = 1]‘
< AdvB? (A) + Adv? (\) +20/q. (51)

Bl—4—t—B—1 Bl—4—t—B—2

Case Trenc = 2 As for the conditional probability with 7rene = 2, we introduce a game as:

Sub-Game 1-4-t-C': When Trenc = 2, Sub-Game 1-4-t-C is the same as Game 1-4-(¢t — 1) except that
k*renc of the reply to the t-th re-encryption query for (¥, ¥, oct) is of the form as given in Eq.(37).
Note that Sub-Game 1-4-¢-C is the same as Game 1-4-t”” when Trenc = 2.

From Claim 9,
‘Pr[.A wins in Game 1-4-(t — 1) | Trenc = 2] — Pr[A wins in Game 1-4-t" | Trenc = 2”
= |Pr[A wins in Game 1-4-(f — 1)’ | Trenc = 2] — Pr[A wins in Game 1-4-t-B | Tyenc = 2”
< Advg (N +2/q. (52)

Therefore, from Egs. (48), (49), (50), (51), and (52),

Adv D ) — AdviEE )|
- \ZLO Pr[A wins in Game 1-4-(t — 1)’ | Trenc = ¢] — 3/2

—(°2, Pr[A wins in Game 1-4-t" | Tyene = (] — 3/2)

= ‘Z?:o (Pr[A wins in Game 1-4-(t — 1)’ | Trenc = t] — Pr[A wins in Game 1-4-t" | Tyenc = ¢])

IPE,AH IPE,AH P2 P4 P3
SAdvg 770 (A)FAdvg T (A Advg o (A) H A (A) +Advg) (V) + 24/
This completes the proof of Lemma 21. O
Lemma 22. For any adversary A, \Advﬁ_4_u3)()\) — Advfi_m()\)\ <1/q,.
Proof. Lemma 22 is proven in a similar manner to Lemma 11 in [29]. O

Lemma 23. For any adversary A, there exists a probabilistic machine Bi_5, whose running time is
(1-5) (1-6-0)

essentially the same as that of A, such that for any security parameter X, |[Adv " (A)—Adv, M) <
P2

Advg (N

Proof. Lemma 23 is proven in a similar manner to Lemma 14 using Problem 2 instead of Problem

4. O

Lemma 24. For any adversary A, there exists a probabilistic machine Bi-g, whose running time
is essentially the same as that of A, such that for any security parameter X, |Advfi_6_(t_1))()\) —

AV SN < AdVEE (M) +2/q, where By-g-i(-) := Big(t, ).

1-6-t

Proof. Lemma 24 is proven in a similar manner to Claim 9. O
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Lemma 25. For any adversary A, there exists a probabilistic machine B1_7, whose running time is

essentially the same as that of A, such that for any security parameter X, |Adv§i_6)()\) —Advfi_7)(/\)] <
P1

Advg () +2/q.

Proof. Lemma 25 is proven in a similar manner to Lemma 18. a
The game changes between Game 1-7 and Game 2-4-v3 is similar to those between Game 0”

and Game 1-4-v3 except the form of the component of the challenge ciphertext cran is changed to

unbiased form. Therefore, the advantage of between Game 1-7 and Game 2-4-v3 is bounded by a
similar manner to those obtained in Lemmas 18-21.

Lemma 26. For any adversary A, \Advg_4_y3)()\) — Advf_5)()\)| <1/q,.
Proof. Lemma 26 is proven in similar manner to Lemma 11 in [29].

Lemma 27. For any adversary A, Advf_5)(>\) =0.

Proof. The value of b is independent from adversary’s view in Game 2-5. So, Advf_s)()\) =0. O

D.4 Proof of Theorem 3 (PAH-RC: Predicate- and Attribute-Hiding for
Re-Encrypted Ciphertexts)

The variable sy, in Definition 6 is used for defining cases in the proof of Theorem 3. For that
purpose, the following claims are important, which are deduced from the restriction described in
Challenge phase.

~ When smxy = 0, it holds that R(v',2'?)) = R(v',2'()) = 0 for any decryption key query v’

— When smyy = 1, it holds that R(v/,2"(")) = R(v/,2’'") for any decryption key query v'.
Theorem 3. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted cipher-
texts against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.
For any adversary A there exist probabilistic machines &£1-1, £1-2, £2-1 and Es-9 whose running times
are essentially the same as that of A, such that for any security parameter A,

1
AdvPARRC () < Advg_El’AH()\) + Adv'gFi_EQ’AH()\) + i(Adv'gF;_El’AH()\) + Adv'gF;iAH()\)).

Proof. First, we execute a game transformation from the original security game (Game 0) to Game

0 which is the same as Game 0 except flip a coin 7m x v & {0, 1} before setup and game is aborted
if Tmxyv 7 Smxyv. We define that A wins with probability 1/2 when the game is aborted.

Hence the advantage in Game 0/ is a half of that in Game 0’ i.e., Advg‘)/)()\) = 1/2-Adv52)()\) where
Advfg)()\) = AdvPHRE(N). Moreover, Pr[A wins] := 1/2 - (Pr[A wins|Tmxy = 0] + Pr[A wins|rm ., =
1]) in Game 0'.

AdVPAFRE(\) = AdvD (3) = 2 AV ()
= Pr[A wins|mm xv = 0] + Pr[A wins|tmxy = 1] — 1
= (Pr[A wins|mm xv = 0] — 1/2) + (Pr[A wins|mm«yv = 1] — 1/2).

As for the conditional probabilities with 7mxy = 0 and Tmxy = 1, i.e., Pr[A wins|tmx, = 0]
and Pr[A wins|Tmxy = 1], Lemmas 28 and 32 hold. Therefore, Adv7*HRC()) < Advlgpl_El’AH()\) +
Advlglj_E;AH()\) + %(Advlgz_El’AH()\) + Ade_EQ’AH (M\)). This completes the proof of Theorem 3. O

Corollary 1-2. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted
ciphertexts against chosen plaintext attacks under the DLIN assumption provided the underlying IPE
scheme is given by the OT12 IPE scheme.
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Proof of Theorem 3 (PAH-RC) in the Case Tmxy = 0

Lemma 28. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted ci-
phertexts against chosen plaintext attack in the case Tmxy = 0 under the attribute-hiding security of
the underlying IPE scheme.

For any adversary A, there exist probabilistic machines £1-1 and E1-3, whose running times are
essentially the same as that of A, such that for any security parameter X in the case Tmxy = 0,

Pr[A wins|tmxv = 0] —1/2 < AdvIPE AH(/\) + AdvIPE AH()\).

Proof Outline of Lemma 28. The purpose of this game transformation is that {Ctre_,(w}L:LQ are
changed to ciphertexts with a random attribute and a random plaintext. We employ Game 0’, Game 1
and Game 2. In Game 1, {ctreﬂfb) ,=1,2 are changed to {Enqu(pk'PE, 7,, R,) }.,=1,2, respectively, where
7, & Fy and R, & GL(4n +4,F,) for v = 1,2. In the Case Tmxy = 0, the adversary does not make
decryption query @ such that @ - Z(®) = 0. So, {ctr‘i(b)}b 1,2 is changed to {Enqu(pk'PE,FL, R)}i=12
by using the attribute-hiding security of the underlymg IPE scheme.

To prove the advantage gap between Game 0’ and Game 1 is bounded by the advantage of the

attribute-hiding security of the underlying IPE scheme, we construct a simulator of the challenger
of Game 0/ or Game 1 by using an instance with pk'"E of the underlying IPE scheme.

Proof of Lemma 28. To prove Lemma 28, we consider the following 2 games. In Game 0, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0’: Same as a Game 0 except that flip a coin Tmxy & {0, 1} before setup, and the game is
aborted if Tmxv # Smxyv. In order to prove Lemma 28, we consider the case with 7mx, = 0. We
only describe the components which are changed in the other games. k*""¢, ¢'"c {ctr D) Fi=1,2

of the reply to a challenge query for (m(©), m® zO) 1) #0) 1) #(©O) #1)) are:

ke = (1, |50 || o (1, verk®), 0", 0", 7", 0)ps,
crenc . ( , prenc(verk"‘,l), On’ On’ (prenC)DQ’ Cagnc —m (b) gg:enc’
R ) R )
i Enc|pE(pk'PE,, ), cth e < EnCIPE(kaPEaa m% (53)

where W1, Wy <2 GL(4n + 4,F,), Dt := BW;, Dy := BW,.
Game 1: Game 1 is the same as Game 0’ except that the reply to the challenge query for
(m©, M 70 71 §50) 51) 70) 7)) ig

Ctrem,:(b) <—R Enc|pE(pk|PE,, ), Ct;%ﬁ:(b) <_R EnCIPE(kaPE77 )7 <54)

where 71, 7 & Fy and Ry, Ry & GL(4n +4,F;) (R1, Ry are independent from Wy, Ws) and all
the other variables are generated as in Game 0.

Game 2: Game 2 is the same as Game 1 except that the reply to the challenge query for
(mO m® 70 71 F0) 1) 20) #1) s

k*rencz(L o(—1,verk®), 0", 0", 7 ™", 0)p,
renc :_ - prenc verk"’ 1) On On’ SDrenc) Dy Cagnc — m(b) ‘g%renc,



56

where , @’ J Fy, ¢ & F, (¢ is independent from ¢""¢) and all the other variables are generated
as in Game 1.

Let Advfgl)(A),Adin)()\) and Advf)()\) be the advantages of A in Games 0/, 1, and 2, respec-
tively. We will show three lemmas (Lemma 29- 31) that evaluate the gaps between pairs of neghobor-

ing games. We obtain Adv(?”(3) < [Adv(®)(x) — Advﬁ)()\)’ n ‘Advﬁ)()\) — AP ()| + AP () <
AdvIBPliAH()\) + AdeiAH()\). This completes the proof of Lemma 28. O

Lemma 29. For any adversary A, there exists a probabilistic machine B1-1 and Bi-3, whose running

time is essentially the same as that of A, such that for any security parameter X, \Advf )(/\) —
1 IPE,AH IPE,AH

Advi (V)] < Advig S () + Advg EAY ().

Proof. In order to prove to Lemma 29, we construct probabilistic machines Bi-; and Bj-o against
the fully attribute-hiding security using an adversary A in a security game (Game 0’ or Game 1)
as a black box. First, we consider the intermediate game Game 1. Game 1’ is the same as Game
0" except that cts"® of the reply to the challenge re-encrypted ciphertext is of the form in Eq.(54).

In order to prove that \Advg\)l)()\) - Advfi/)()\)\ < AdvII;iAH (A), we construct a probabilistic machine

Bi-1 against the fully attribute-hiding security using an adversary A in a security game (Game 0" or
Game 1’) as a black box as follows:

1. By is given a public key pk'FE of the IPE, from the challenger for the attribute-hiding security
of the underlying IPE.

2. Bi-1 plays a role of the challenger in the security game against A.

3. At the first step of the game, Bj-; generates a public and secret key as follows: (param,,,B =

(bos- -, bans3), B* = (.., bioys)) & Gob(1M4n +4), B := (bo,..., bt binys), B =
(BF 1, b5 ob% sy - -, by o). Finally, Bi_y provides A with pk := (1*, pk'™E, param,,, B, B*).

4. When a decryption key query is issued for a vector ¢, Bi-1 computes a normal form decryption
key k*, k;,, using B* and ask a key query ¢ to the challenger of the underlying IPE, then obtain
the decryption key sklFE, and provides A with a decryption key sky := (k*, kX, skl ©).

5. When a re-encryption key query is issued for (¥, %), Bi-1 computes a normal form re-encryption

key rkyz = (k*™%, kfa'h,]D)* ctl, prectz) using B* and pk!PE. Finally, Bi-; provides A with a
re- encryptlon key rkg z.

6. When a re- encryptlon query is issued for (¥, %, octz = (&, ¢, Cran, T, Verk, S)), if
Ver(verk, (¢, ¢an, c1),S) # 1, Bi-1 returns L to A. Otherwise, B1-; computes a normal form re-
encrypted ciphertext rcty := (kE*", ™", "¢ {ctre”C}L 1,2) using B, B* and pk'PE. B1_1 provides
A with a re-encrypted ciphertext rctz.

7. When the challenge query is issued for (m(o), m), 7O z1) F0) 1) 7(0) :E”(l)), B1-1 picks a bit
b <2 {0,1} and generates (sigk®, verk®) & SigkG(11). Bi-1 computes a normal form k*e"c, ¢renc,
"¢ and ctlka,> using B, B* and pkIPE Next, Bi-1 submits (X(b) = Wa, x(1=b) .— R, 70 =

#®) #1-8) .= ) to the attribute-hiding challenger of the underlying IPE scheme where 7 a Fy

and R ¢¢ GL(4n + 4,F,) and receives ctyp) for & {0,1}. Finally, Bi-; provides A with a
challenge re-encrypted ciphertext rctye) = ("¢, "¢, k*"®"¢ ctrerl,c(,,),ctrerl,(b) = Ctyp).

8. A finally outputs bit b'. Bi-1 outputs S = 0 if ¥’ = b, otherwise outputs 3 = 1.

Since cty of the challenge re-encrypted ciphertext is of the form Eq.(53) (resp. of the form Eq.(54)
if =0 (resp S = 1), the view of A given by Bj-1 is distributed as Game 1’ (resp. Game (') if 3 =0

(resp. # = 1). Then, |Adv (A) — Advyy (A)| < |Prb = ] — 1/2] < Advig=" ().
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Next, in order to prove that ]Advil)()\) AdvA N < AdvIPE AH()\), we construct a probabilistic
machine Bi-o against the fully attribute-hiding security using “an adversary A in a security game
(Game 1’ or Game 1) as a black box. Game 1 is the same as Game 1’ except that ct™ of the reply to
the challenge re-encrypted ciphertext ctf, = Encipe(p KIPE. 7 ' W1) where 7 & Iy . Hence, this proof
is similar to the above proof. So, we have |Advfj/)()\) - Advfi)()\)| < Advll;iAH()\).

By using hybrid argument, we have |Adv52/)()\) - Advg)()\ﬂ < AdvIBPliAH()\) + AdvIPE AH()\). O

Lemma 30. For any adversary A, Ade)(/\) = Advf)(/\)

Proof. The basis of "¢, that is Dy := BW5 is random basis for the adversary A since the informa-
tion of Wy appears only in ¢"® in Game 1. So, from the adversary’s view, (C""°, w™"“Z, p* (verk®, 1),

07,07, ")y, and € := (¢'renC, wreneF, p*(verk®, 1), 07, 0™, ")y, where (/™" Y [F, are informa-

tion theoretically indistinguishable. This completes the proof of Lemma 30 a

Lemma 31. For any adversary A, Advf)()\) =0.

Proof. The value of b is independent from adversary’s view in Game 2. So, Advf)(/\) =0. O

Proof of Theorem 3 (PAH-RC) in the Case Ty =1

Lemma 32. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encrypted cipher-
texts against chosen plaintext attack in the case Tm xy = 1 under the fully-attribute-hiding security of
the underlying IPE scheme.

For any adversary A, there exist probabilistic machines E2-1 and Es-2, whose running times are
essentially the same as that of A, such that for any security parameter \ in the case Tmyxy = 1,

Pr[A wins|mm,, = 1] —1/2 < (Adv';’E AN + Advg SAT (V).

Proof Outline Lemma 32. The purpose of this game transformation is that {Ctreﬁ,(b)}LZLQ are

changed to ciphertexts with the opposite attribute & (1-b)  We employ Game 0’ and Game 1. In
Game 1, {ct’ 4,(5)}L 1,2 are changed to ct'ea,(b) & Encipe(pk'PE, 2/0-0) T,), respectively, by using
the fully- attribute- hiding security of the IPE scheme. For the proof, we construct a simulator of the
challenger of Game 0/ or Game 1 by using an instance with pk'E of the underlying IPE scheme.

Proof of Lemma 32. To prove Lemma 32, we consider the following 2 games. In Game 0, a part
framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0’: Same as a Game 0 expect that flip a coin 7mxy s {0,1} before setup, and the game is
aborted if Tmxv 7 Smxy. In order to prove Lemma 32, we consider the case with 7mxv = 1. We

only describe the components which are changed in the other games. The reply to a challenge
query for (m,Z, 7,70, #MW) with (m, Z,7) := (m®, 70, 50 = (m®, 71 1) is:

R -
ct) ) & Encipe (pk'PE, | #®) | W), cthmm < EnCIPE(PkIPE77 Wa),

where Wy, Wa & GL(4An+4,F,).
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Game 1: Game 1 is the same as Game 0’ except that the reply to the challenge query for
(m,z, 7,70, 70 with (m, Z,7) := (m©, 70 50 = (m® 201 1) is

R IPE | =1(1— R IPE | =1(1—
Ctrerl/(b) — EnC|PE(pk av Wl)a Ct ﬁ/(b) — EnCIPE(pk 77 W2)>

and all the other variables are generated as in Game 0'.

Let Advg)()\) and Advg)(/\) be the advantages of A in Game 0’ and Game 1, respectively. We will
show two lemmas (Lemma 33- 34) that evaluate the gaps between pairs of neghoboring games. We

obtain Adv(y)(3) < |Adv() (0) — Advi ()| + Adv(P (V) < Advig =AM (V) + AdviEEAT (V) + Adv ().

From Lemma 34, Adv( )()\) < %(Adng;AH()\) +Adv|l§E AH(\)) This completes the proof of Lemma 32.
O

Lemma 33. For any adversary A, there exists a probabilistic machine Ba-1 and Ba-a, whose running

time is essentially the same as that of A, such that for any security parameter \, \Advfg )()\) —
1 IPE,AH IPE,AH

Advi (V)] < Advig A () + AdvgEAT ().

Proof. Lemma 33 is proven in similar manner to Lemma 29.
Lemma 34. For any adversary A, Ade)(A) = —Advfg)()\).

Proof. The challenge re-encrypted ciphertext for the opposite bit 1 — b to the challenge bit b and
(1

the others components are normal forms in Game 1 Hence, success probability Pr[Succ}y’] in Game
lisl— Pr[Succfg/)], where Succfgl) is success probability in Game (/. Therefore, we have Advﬁ)()\) =
AV (). 0

D.5 Proof of Theorem 4 (PAH-RK: Predicate- and Attribute-Hiding for
Re-Encryption Keys)

The variable s, in Definition 7 is used for defining cases in the proof of Theorem 4. For that purpose,
the following claims are important, which are deduced from the restriction described in Challenge
phase.

— When s, = 0, it holds that R(v/,2'®) = R(v',2/M) = 0 for any decryption key query v’.
— When s, = 1, it holds that R(v/,2'®) = R(v',2'M) for any decryption key query v’

Theorem 4. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attacks provided the underlying IPE scheme is fully attribute-hiding.

For any adversary A there exist probabilistic machines £1-1, £1-2, £2-1 and Es-9 whose running
times are essentially the same as that of A, such that for any security parameter \,

AVERRRR(N) < Advig SN () + Adv AT (V) + %(Adv'gz_El’AH()\) + Advie AT (V).

Proof. The main proof strategy of Theorem 4 is similar to the proof of the fully attribute-hiding
security for IPE scheme in [29].
First, we execute a game transformation from the original security game (Game 0) to Game 0/

which is the same as Game 0 except flip a coin 7, d {0,1} before setup and game is aborted if
Tv # Sy. We define that A wins with probability 1/2 when the game is aborted.
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Hence the advantage in Game 0 is a half of that in Game 0 i.e., Adv&?l)()\) = 1/2-Adv52)(/\) where
Adv (A) = AdvERHRK()). Moreover, Pr[A wins| = 1/2 - (Pr[A wins|r, = 0] + Pr[A wins|r, = 1]) in
Game 0'.

AdVPAHRK () = AdvD (1) = 2 AV (V)
= Pr[A wins|r, = 0] + Pr[A wins|r, = 1] — 1
= (Pr[A wins|r, = 0] — 1/2) + (Pr[A wins|r, = 1] — 1/2).

As for the conditional probabilities with 7, = 0 and 7, = 1, i.e., Pr[Awins|r, = 0] and Pr[Awins|n, =
1], Lemmas 35 and 39 hold. Therefore, AdvZAHRK(\) < Advie =4 (A) + Advg A (1) + Advig A () +
Advz_Ez’AH()\). This completes the proof of Theorem 4. O

Corollary 1-3. The proposed IP-PRFE scheme is predicate- and attribute- hiding for re-encryption
key against chosen plaintext attacks under the DLIN assumption provided the underlying IPE scheme
is given by the OT12 IPE scheme.

Proof of Theorem 4 (PAH-RK) in the Case , = 0

Lemma 35. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attack in the case 7, = 0 under attribute-hiding security of an underlying
IPE scheme.

For any adversary A, there exist probabilistic machines £1-1 and E1-2, whose running times are
essentially the same as that of A, such that for any security parameter A,

PI"[A Wins|7'v = Q] — 1/2 < AdVI“:PII_E;AH()\) + Adv:‘iiAH ()\)

Proof Outline of Lemma 35. The challenge re-encryption key is (k*™, k;‘;,'ﬁ,ﬁ)’{,ctgf(b), prect ) ).

In the case 7, = 0, the adversary does not issues decryption key query on ¢ such that o - #(© =1 or

¥ - 21 = 1. So, a matrix Wi which is the plaintext of ct’®, and #®) which is an attribute of ctgf(b)

2/(b)
and prect ) are hidden from the adversary by using the payload and attribute-hiding property of the
underlying IPE scheme. So, the basis vectors (dj, ..., d}) are unknown to the adversary. Therefore,
the predicate #® is hidden to the adversary. In the case 7, = 0, we employ Game 0/ through Game

2. In Game 1, ctgﬁ(w = Enc|pE(pk'PE,a_c'(b),W1) and prectze) = EncfPE(pk'PE,a_c'(b)) are changed to
ctgf(b) := Encipe(pk'"E, 7, R) and prectze) = Enci‘PE(pk'PE,fF'), respectively, where 7,7 s [y and

R GL(4n + 4,F,) by using the payload and attribute-hiding property of the underlying IPE.
Next, we show Game 1 can be conceptually changed to Game 2 by using the fact that a part of basis,
(dg,...,dy,dy 5,...,d5, ) are unknown to the adversary.

Proof of Lemma 35. To prove Lemma 35, we consider the following 3 games when 7, = 0. In
Game 0/, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0’: We only describe the components which are changed in the other games. Same as a Game

0 expect that flip a coin 7 J {0,1} before setup, and the game is aborted if 7, # sy. In order
to prove Lemma 35, we consider the case with 7, = 0. The reply to a challenge re-encryption
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kst gy for (70,50, 70, 7 W) is

k*rk — ( 1 5rkﬁ(b) 02 On —rk 0) y k*rk .7( 5rk H() 02 o™ —rk 0)11])*
) 7 17 ) 17

ran ? ran 777ran7
k R IPE | - IPE | -
ctZw < Encipe(pk ,, ), prect ) ¢ Encipg (pk 7)7

where b <2 {0,1}, Wi <X GL(4n + 4,F,) and D} := BWL
Game 1: Game 1 is the same as Game 0’ except that ct'® ) and prect ) of the challenge re-
encryption key rkye) ze)

R - R N
ctg‘,a,) — Enc|pE(pk'PE,, ), prectq, ¢ Encpr(pk'PE,), (55)

where R < GL(4n+4,F,;) and 7, r Y [y, and all the other variables are generated as in Game
0.

Game 2: Game 2 is the same as Game 1 except that k*™* and k:‘ar,'ﬁ of the challenge re-encryption
key rkﬁ(b) 2 ()

ko= (], 0%, 0%, i, Oy, kitk= (@], 0%, 0%, 77K, 0, (56)

where o, 4’ & FZLH and all the other variables are generated as in Game 1.

Let Advd?(A\) ,Adv(\), and Adv(?(A) be the advantage of A in Game 0/, Game 1, and Game 2
when 7, = 0, respectively. We will show two lemmas (Lemma 36 - Lemma 38) that evaluate the

gaps between palrs of neghoborlng games. From these lemmas, we obtain Adv( )( A) < ]Advsfl),)()\) —
IPE,AH IPE,AH
Advi (V)] + [Adv (V) — AdvE ()] + AdvP (1) < AdviETAM () + Advi A% (). O

Lemma 36. For any adversary A, there exists a probabilistic machine B1-1, whose runm'ng time 18
essentially the same as that of A, such that for any security parameter A, |/—\dv(0 )()\) AdvA M| <
AGVEEAH(3) 4 Ady/PEAR ().

Proof. In order to prove to Lemma 36, we construct a probabilistic machine Bi-; and Bj-2 against
the fully attribute-hiding using an adversary A in a security game (Game 0’ or Game 1) as a black
box.

First, we consider the intermediate game Game 1’. Game 1’ is the same as Game 0’ except that
ctgi of the reply to the challenge re-encryption key is of the form in Eq.(55). In order to prove that

|Adv52/)(/\) - Advfj/)()\)| < AdvIBPIiAH()\), we construct a probabilistic machine B;-; against the fully
attribute-hiding using an adversary A in a security game (Game 0’ or Game 1’) as a black box as
follows:

1. By is given a public key pk'FE of the IPE, from the challenger for the attribute-hiding security
of the underlying IPE.

2. Bi-1 plays a role of the challenger in the security game against A.

3. At the first step of the game, Bi-1 generates a public and secret key as follows: (param,,,B =

(Boy- - banrs), B = (b biis) < Gop(13,4n +4), B := (bo,... bpya, bynss), B* =
(b5 1,0y 0, b5, o, ..., bY, o). Finally, Bi-1 provides A with pk := (1*, pk'PE, paramn,@,I/B\%*).

4. When a decryption key query is issued for a vector ¥, Bi-; computes a normal form decryption
key k*, k., using B* and ask a key query v to the challenger of the underlying IPE, then obtain

ran
the decryption key sk%PE, and provides A with a decryption key sky := (k*, kJ,,s k%PE).
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5. When a re-encryption key query is issued for (U, @), By-1 computes a normal form of re-encryption
key rkg z = (ke Kk ]D) ctgi, prectz ). Finally, Bi-1 provides A with a re-encryption key rkg z

ran’
6. When a re-encryption query is issued for (7, 2/, octz = (¢, ¢ran, ¢, verk, S)), if Ver(verk, (¢, ¢ran, c1),
S) # 1, By-1 returns L to A. Otherwise, Bj-; computes a normal form of re-encrypted ciphertext

rcty = (K", ", ¢F"° {ct'e”C}L 1,2). Bi-1 provides A with a re-encrypted ciphertext rctz .

7. When the challenge query is issued for (70, ¢ 2 # (1)) B, chooses b & {0,1}, W1, R J
GL(4n + 4,F,;) and a random vector 7 & Fy. Bi-1 submits (X® = Wy, x(0-0 .= R 7 .=
2O 710 .= 7) to the attribute—hiding challenger and receives ctyps) for j & {0,1}. By
computes a normal form k*", k¥« ]D)* and prect.). Finally, Bi-1 provides A with rkge) z0) =

ran’

(K, kxrk ID)* ct'® D) 1= Ctzs), Prectye) ).

ran’

8. Finally, A outputs b'. Bi-1 outputs = b if b =¥, otherwise, Bi-1 outputs 8 =1 — b.

Since the challenge re-encryption key is of the form ct;?k(ﬁ) & Enc|pE(pk'PE,f/(b), W1) (resp. of the
form ct%kw) & Enc|pE(pk'PE 7, R) if f = b (resp. § = 1 —10), the view of A given by Bi-; is distributed
as Game 1 (resp. Game 0'). Then, |Adv(0 )()\) — Adv} )( A)| < Adv IPE’AH()\).

Next, in order to prove that ]AdvA )()\) — AdvV) A (A)] < Adv IPE AH()\), we construct a probabilistic
machine Bj-o against the fully attribute-hiding securlty usmg “an adversary A in a security game

(Game 1’ or Game 1) as a black box. Game 2 is the same as Game 1’ except that precty of the

kIPE

reply to the challenge re-encryption key prectz = Encipe(p 7) where 7 & Iy . Hence, this proof

is similar to the above proof. So, we have ]Advg)(}\) — Advfi (\)] < Adv IPE AH()\).
. . (0) My IPE AH IPE,AH
By using hybrid argument, we have |[Adv}, '(A) — Adv};’ ()| < Adv (A) + Advg 7 (A). O

Lemma 37. For any adversary A, Ade)()\) = Advf)()\).

Proof. First, we note that since D] and the public key B are independent from adversary A not in
possession of a matrix Wi, we only consider vector element over basis D], now.

We define new dual orthonormal basis (U,U*) of DPVS V below. First we generate U &
ug dy
GL(n+1,F,;), and set =0 ¢ |, and U = (ug, ..., uy,dy .. d, ). Since non-
n d,
zero vectors (1,0%#®)) and (0, #®)) in F2+1 are linearly independent and U & GL(n+1,F,),

ran

*

u

k*rk :( 5rk—»(b) 02 02n —rk 0) (ﬁ 02 02n —rk 0) .
k*rk _( 5rk —(b) 02 02" —rk O)D* _ (ﬁ/ 02. 02" —rk O)IU*
1 ) M )

ran ) ran 777ran7 777ran7

> ¥ran

tributed. Therefore, the view of A in Game 1 can be conceptually changed to that in Game 2. O

where @ := (1,6¢®) . U and @’ := (0,6 #®) . U in F7+1 are uniformly and independently dis-

Lemma 38. Advf)()\) =0.

Proof. The value of b is independent from A’s view in Game 2. Hence, Advf)()\) =0. O
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Proof of Theorem 4 (PAH-RK) in the Case 1, =1

Lemma 39. The proposed IP-PRE scheme is predicate- and attribute-hiding for re-encryption keys
against chosen plaintext attack in the case 7, = 1 under fully-attribute-hiding of the underlying IPE
scheme.

For any adversary A, there exist probabilistic machines Ea-1 and Ea-2, whose running times are
essentially the same as that of A, such that for any security parameter X\, in Game 0.

Pr[A wins|r, = 1] —1/2 < AdVISPQiAH(/\) n AdvlleiAH()‘)'

Proof Outline of Lemma 39. In the case 7, = 1, ctgf(b) and precty ) are changed to ciphertexts
with the opposite attribute 21~ by using the fully attribute-hiding property of the underlying IPE
scheme. Also, the challenge predicates are equal, 7® = (1), by the restriction of the game in this
case. Hence, in the final game, a bit b is hidden to the adversary. In the case 1, = 1, we employ Game
0’ and Game 1. In Game 1, ct}'j(b) = Enc|pE(pk'PE,a_:’(b),W1) and prect ) = EncfPE(pk'PE,a_:’(b)) are

changed to ctgf(b) = Enc|pE(pk'PE, #(1-b) W1) and prectye) = Enci‘PE(pk'PE,:f(l_b)), respectively.

Proof of Lemma 39. To prove Lemma 39, we consider the following 2 games when r, = 1. In
Game 0/, a part framed by a box indicates coefficients to be changed in a subsequent game. In the
other games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0’: Same as a Game 0 expect that flip a coin 7, y {0,1} before setup, and the game is
aborted if 7, # sy. In order to prove Lemma 39, we consider the case with , = 1. We only
describe the components which are changed in the other games. ct;k,(b) and prectz ) of the reply

to a challenge re-encryption key rk; zq) for (7, 7O ZM) where 7 := ¢® = 71 are given as,

k R IPE | = R IPE | =
ctZw < Encipe(pk ,,Wl), prectzu) < Encipg(pk ,),

where b <2 {0,1}, W) < GL(4n + 4,F,).
Game 1: Game 1 is the same as Game 0 except that ctgﬁ(b) and prectz ) of the challenge re-
encryption key rky ) are

Ctrfb(b) & EnCIPE(PkIPEv 00 W), prectye & E“C?PE(PkIPEa),
where b <2 {0,1} and all the other variables are generated as in Game 0'.

Let Advfg,) (\) and Ade) (M) be the advantage of A in Game 0’ and Game 1 when 7, = 1, respectively.
We will show Lemma 39 that evaluate the gaps between Game 0" and Game 1. From Lemmas 40 and
. (0" (0") (1) (1) 1 IPE,AH IPE,AH

41, we obtain Adv, "(A) < |Advy, "(A) — Adv " (A)] 4+ Adv, " (A) < E(AdVBQ_l N+ Advg, (N\). O

Lemma 40. For any adversary A, there exists a probabilistic machine Ba-1 and Ba-a, whose running

time is essentially the same as that of A, such that for any security parameter A, \Advfg)(/\) —
1 IPE,AH IPE,AH

Advi (V)] < Advig A () + AdvgEAT ().

Proof. Lemma 40 is proven in similar manner to Lemma 36.

Lemma 41. Advfi)()\) = —Advﬁ),)()\).

Proof. The challenge re-encryption key for the opposite bit 1 — b to the challenge bit b and the
others components are normal forms in Game 1. Hence, success probability Pr[SuccS)] in Game 1
is 1 — Pr[SuccEg)], where Succ'Y) is success probability in Game 0'. Therefore, we have Advﬁ)()\) =
—Ad (). 0
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D.6 Proof of Theorem 5

Theorem 5 The proposed IP-PRE scheme is unlinkable.

Proof. The item 1 of Remark 1 (Section 4.2) shows the unconditional unlinkability of re-encryption
keys, and, Lemma 42 shows the computational unlinkability of re-encrypted ciphertexts. This com-
pletes the proof of Theorem 5. O

Lemma 42. The proposed IP-PRE scheme is (computationally) unlinkable for re-encrypted cipher-
texts.

For any adversary A, there exist probabilistic machines E1.1,E1.2 and &y, whose running times
are essentially the same as that of A, such that for any security parameter A, for the security game
defined in Definition 8,

Pr[A wins] — 1/2 < Y7 Advie AT () + AdvEEN () + ¢,
where € 1= 6/q

Proof. We show the (computational) unlinkability of re-encrypted ciphertexts. Note that, as shown
in item 2 of Remark 1 (Section 4.2), randomness (¢""¢,w""c, p"nc " W5) used in components
("¢, ¢£"°) in rctgg/(%R REnc(pk, rky 7, octz)) are uniformly and independently distributed from input
octz. From this fact and the (unconditional) unlinkability of re-encryption keys, we need to show
that, for any probabilistic poly-time adversary A in the game, the challenge

(rkyz < RKG(pk,sky, &), rct's) & REnc(pk, rkyz,octz) ) if b=0,
and

(rkaa ¢ RKG(pk,sky, 7), rctly) «X REnc(pk, k), octz) ) if b= 1,
where rk\), <& RKG(pk, sky, 7)

are indistinguishable by A. We define Game 0 as a security game, where a challenger flips a coin

b {0,1}, and gives the upper (resp.lower) instance to A when b = 0 (resp.b = 1) in the challenge
phase, and the rest of the game is the same as in Definition 8. (In particular, any decryption key
query ¥ satisfy R(v",7") = 0 for the challenge #'.) We will show that any probabilistic poly-time A

has no advantage over it. Let components (k*', k:‘ar,'f,ID) t;b) be in rkyz and (k*renc(b),ctf;f(b)) in

rctgf) for b € {0,1}. As is mentioned above, we should show that

(k*rk k*rk ]D)I,th,k*renc( ) Ctre"C( )) and (k*rk k*rk ]D)I,th,k*renc(l),ctrenc(l))

ran’ ran 1,27

renc(b)

are indistinguishable by A, in particular. Here, note that ct; are generated by the re-randomization

of IPE ciphertexts, then, it is distributed as ctrerl,c( ) R Enc|pE( K'PE 7 W( )) We will show the se-
curity by game changes: We consider the followmg 4 games. In Game 0, a part framed by a box
indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a
box indicates coefficients which were changed in a game from the previous game.
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Game 0: We only describe the components which are related for the subsequent game changes.

k= (1,6™0,0%, 07,7, 0)ps,  kins == (0,07%,7,0%,0°" ik, O)px,

-~ IPE
D} := (df == b;W1)iznt1,n+2,3043,... 4n+2,  Ctes < Encipe(pk'"F, 7 ’)’
k*renc(b) — ( 1, (5renc17, a(—l,verk) 02n —»renc O)D’{(b) ,

renc(b
Cth ®) (— EnC|pE(

kIPE’f/, W1(b) ),

where b <~ {0,1}, Wy := WO W EFNN pr = D70 = B Wy, DI =B WY,
Game 1: Game 1 is the same as Game 0 except that ctlk, and ctre”, of the challenge are

R ., b .,
cth < Enc|pE(pk'PE,a:',), ctf;c( )R Encipe(pk'PE, ’,),

where Ry, Ro & IFqN *N and all the other variables are generated as in Game 0.
Game 2: Game 2 is the same as Game 1 except that k*®"(%) of the challenge is

Bt s (1, 5705, (1, verk), [F), 777, 0).00,

U
where 77€"¢ «— qu”.

Game 3: Game 3 is the same as Game 2 except that k*"(?) of the challenge is
k*renc(b) & AV
and all the other variables are generated as in Game 2.

Let Advg)()\) be the advantage of A in Game j (j =0, ..., 3), respectively. From Lemmas 4346,
we obtain Adv(y (A) < 322 | JAdvV () — Advi (V)] + AdVE (V) < 2 AdVEEAR (M) + AdVEE (M) +
1/g < 378 Adve, (V) + AdvE N () +6/g. 0

Lemma 43. For any adversary A, there exist probabilistic machines B1.1 and Bi.a, whose running
times are essentially the same as that of A, such that for any security parameter A, |Adv£2)()\) —

IPE,AH
AdvA N <32 1 Advg ~(A).
Proof. Lemma 43 is proven in similar manner to Lemmas 29 and 36.

Lemma 44. For any adversary A, there exist a probabilistic machine Bo whose running time is

essentmlly the same as that of A, such that for any security parameter A, |AdvA)()\) - Advf)()\ﬂ <
Advgt ().

Proof. Since ctrlﬁ, ctre”, are ciphertexts of random matrices and in Game 1, subbasis (d, (b))i:n+37._,,3n+2

of D*(® are hidden from the adversary’s view. Hence, a simulator with a Problem 1 instance can be
constructed for Lemma 44 as in Lemma 9. O

Lemma 45. [Adv3)(\) — AdviP (V)] < 1/q.
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Proof. A coefficient of k*"(®) gver a hidden subbasis (d:(b))i:n+37m73n+2 of D*®) is given by 7enc,
which is non-zero except for the probability 1/q. Moreover, coefficients of k*™, ki over a hidden
subbasis (d)i=n+3,... 3n+2 are 0. Therefore, k*"*"¢ is uniformly distributed in the whole space V and
independent from other variables since the hidden subbasis vectors (d)i=n+3,.. 3n+2 are uniformly

and independently generated. a

Lemma 46. Advf)(/\) =0.

Proof. The value of b is independent from A’s view in Game 3. Hence, Advf)()\) =0. O

E Ciphertext Policy Functional Proxy-Re-Encryption (CP-F-PRE)

We will construct a CP-F-PRE scheme with the access structure given by Okamoto-Takashima [27].
The scheme has the attribute-hiding security for a re-encryption key, rkr s, as well as usual payload
hiding for original and re-encrypted ciphertexts. In a typical application, I' indicates attributes of
a user who generates rkr s for a proxy, where hiding attributes I' is an important requirement for
anonymous re-encryption outsourcing.

E.1 Span Programs and Non-Monotone Access Structures

Definition 20 (Span Programs [3]). Let {p1,...,pn} be a set of variables. A span program over
F, is a labelled matriz M := (M, p) where M is a (¢ x r) matriz over F, and p is a labelling of
the rows of M by literals from {pi,...,pn,P1,..., “Pn} (every row is labelled by one literal), i.e.,
p:A{L ... 0} = {p1,..y,Pn, DL, -- -y DR}

A span program accepts or rejects an input by the following criterion. For every input sequence
d € {0,1}" define the submatriz My of M consisting of those rows whose labels are set to 1 by the input
0, i.e., either rows labelled by some p; such that 0; = 1 or rows labelled by some —p; such that §; = 0.
(ie., v:{l,.... 0} = {0,1} is defined by v(j) = 1 if [p(j) = pil A [6; = 1] or [p(j) = —pi] A [6; = 0],
and v(j) = 0 otherwise. Ms := (Mj)(j)=1, where M is the j-th row of M.)

The span program M accepts § if and only if T € span(Ms), i.e., some linear combination of the
rows of Mg gives the all one vector I. (The row vector has the value 1 in each coordinate.) A span
program computes a Boolean function f if it accepts exactly those inputs § where f(5) = 1.

A span program is called monotone if the labels of the rows are only the positive literals {p1,...,pn}.
Monotone span programs compute monotone functions. (So, a span program in general is “non”-
monotone.)

We assume that no row M; (i = 1,...,£) of the matrix M is 0. We now introduce a non-
monotone access structure with evaluating map ~ by using the inner-product of attribute vectors,
that is employed in the proposed functional encryption schemes.

Definition 21 (Inner-Products of Attribute Vectors and Access Structures). U; (t = 1,
cooyd and Uy € {0,1}*) is a sub-universe, a set of attributes, each of which is expressed by a pair of
sub-universe id and ny-dimensional vector, i.e., (t,V), where t € {1,...,d} and ¥ € F* \ {0}.

We now define such an attribute to be a variable p of a span program M = (M, p), i.e., p:=(t,7).
An access structure S is span program M := (M, p) along with variables p := (t,v),p' := (¢',0'),...,
i.e., S:= (M, p) such that p: {1,...,¢} = {(t,0), (', 7),..., 2(t,0), (', 0),...}.

Let I' be a set of attributes, i.e., I' := {(t, %) | T € T\ {0},1 <t <d}, where 1 <t < d means
that t is an element of some subset of {1,...,d}.
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When I is given to access structure S, map v : {1,...,£} — {0,1} for span program M = (M, p)
is defined as follows: For i = 1,...,¢, set v(i) = 1 if [p(i) = (¢, ;)] N[(t, &) € T'] A[U; - & = 0] or
[p(i) = = (t,T;)] Al(t, &) € T'] AU - & # 0]. Set y(i) = 0 otherwise.

Access structure S := (M, p) accepts I iff T € span{(M;)(i)=1)-

We now construct a secret-sharing scheme for a non-monotone access structure or span program.
Definition 22. A secret-sharing scheme for span program M = (M, p) is:

1. Let M be ¢ x r matriz. Let column vector f¥ := (fiooo s )T & F;. Then, so := 1T = S req Jr

is the secret to be shared, and 5° := (s1,...,50)" := M - fT s the vector of £ shares of the secret
so and the share s; belongs to p(i).

2. If span program M = (M, p) accept 8, or access structure S := (M, p) accepts I, i.e., 1 €
span{(M;)i)=1) with v : {1,...,€} — {0,1}, then there exist constants {a; € Fy | i € I} such
that I C {i € {1,...,0} | (i) = 1} and }_,c; a;si = so. Furthermore, these constants {a;} can
be computed in time polynomial in the size of matriz M.

We define a CP-F-PRE scheme For access structures, I" and S, given in Definition 21, and its
security below. (Definition 23 is just a specialization of Definition 3 with I" and S.)

Definition 23. A functional proxy-re-encryption scheme consists of the following seven algorithms.

Setup: takes as input a security parameter 1* and a format 7 := (d;ny,...,ng). It outputs public key
pk and (master) secret key sk.

KG: takes as input the public key pk, the (master) secret key sk, and attributes I'. It outputs a
corresponding decryption key skp.

Enc: takes as input the public key pk, an access structure S, and a plaintext m in some associated
plaintext space. It outputs an original ciphertext octs.

RKG: takes as input the public key pk, a decryption key skr, and an access structure S'. It outputs a
re-encryption key rkp s .

REnc: takes as input the public key pk, a re-encryption key rkr s/, and an original ciphertext octs. It
outputs a re-encrypted ciphertext rcty .

Decoct: takes as input the public key pk, a decryption key skr, and an original ciphertext octg. It
outputs either a plaintext m or the distinguished symbol 1.

Decyct: takes as input the public key pk, a decryption key skp/, and a re-encrypted ciphertext rcty . It
outputs either a plaintext m or the distinguished symbol 1.

The correctness for a CP-F-PRE scheme is defined in a similar manner as general F-PRE in Section
3.
Next, we define three security properties of CP-F-PRE.

Definition 24 (Payload-Hiding for Original Ciphertexts). The model for defining the adap-
tively payload-hiding security for original ciphertexts of CP-F-PRE under chosen plaintext attack is
given by the following game:

Setup. The challenger runs the setup algorithm (pk,sk) & Setup(1*,n), and it gives the security
key A and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query ', the challenger gives skp & KG(pk,sk,I")
to A.
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Re-encryption key query. For a re-encryption key query (I',S), the challenger computes rkp s/
RKG(pk, skr, S") where skp & KG(pk,sk,I"). It gives rkp g to A.
Re-encryption query. For a re-encryption query (I',S', octs), the challenger computes rkp s/ &

RKG(pk, skr,S") where skp & KG(pk,sk,T") and rcty & REnc(pk, rkr g/, octs). It gives rctg to
A.
Challenge. For a challenge query (m(o),m(l), S) subjected to the following restrictions:
— Any decryption key query T satisfies R(T',S) = 0, and any re-encryption key query (I',S')
satisfies
o R(I',)S) =0 or
e R(I",S") =0 for any decryption key query I (and no restriction on T')

The challenger flips a random bit b € {0,1} and gives oct(Sb) & Enc(pk,S,m®) to A.

Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase and the following addi-
tional restriction for re-encryption queries.

Re-encryption query. For a re-encryption query (I',S',octs), subject to the following restric-
tions:
- R(I",S') =0 for any decryption key query for T if octs = octéb)
The challenger computes rkp s/ & RKG(pk, KG(pk,sk,T"),S") and rcty & REnc(pk, rkr s/, octs).
It gives rcty to A.
Guess. A outputs its guess b’ € {0,1} for b and wins the game if b=1'.

We define the advantage of A as AdviPFPRE’PH_OC()\) = Prlb = V] — 3. A CP-F-PRE scheme
1s payload-hiding for original ciphertexts if all polynomial time adversaries have at most negligible
advantage in the above game.

Definition 25 (Payload-Hiding for Re-Encrypted Ciphertexts). The model for defining the
adaptively payload-hiding security for re-encrypted ciphertexts of CP-F-PRE under chosen plaintext
attack is given by the following game:

Setup. The challenger runs the setup algorithm (pk,sk) & Setup(1*,n), and it gives the security
key A and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query I', the challenger gives skp & KG(pk,sk,I")
to A.
Re-encryption key query. For a re-encryption key query (I',S'), the challenger computes rkp s/

& RKG(pk, skr, S") where skp & KG(pk,sk,I"). It gives rkp g to A.
Re-encryption query. For a re-encryption query (I',S', octs), the challenger computes rkp s/ &

RKG(pk, skr,S") where skp &K KG(pk,sk,I") and rcty & REnc(pk, rkr g/, octs). It gives rctgy to
A.
Challenge. For a challenge query (m(o),m(l), S,T',S') subjected to the following restrictions:
~ R(I",S") =0 for all the decryption key queries I".
The challenger flips a random bit b € {0,1} and gives rctg & REnc(RKG(pk, T, '), Enc(S, m®)).
Then it gives rcty to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries
and re-encryption queries, subjected to the restriction in challenge phase.
Guess. A outputs its guess b’ € {0,1} for b and wins the game if b=1'.

T=
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We define the advantage of A as AdijFPRE’PH_RC()\) = Pr[b = V/] — . A CP-F-PRE scheme is
payload-hiding for re-encrypted ciphertexts if all polynomial time adversaries have at most negligible
advantage in the above game.

Definition 26 (Attribute-Hiding for Re-Encryption Keys). The model for defining the adap-
tively attribute-hiding security for re-encryption keys of CP-F-PRE under chosen plaintext attack is
given by the following game:

Setup. The challenger runs the setup algorithm (pk,sk) & Setup(1*,n), and it gives the security
key A and the public key pk to the adversary A.
Phase 1. The adversary A is allowed to adaptively issue a polynomial number of queries as follows.

Decryption key query. For a decryption key query I', the challenger gives skp & KG(pk,sk,T")
to A.
Re-encryption key query. For a re-encryption key query (I',S'), the challenger computes rkp s/

& RKG(pk, skr, S") where skp & KG(pk,sk,I"). It gives rkp g to A.
Re-encryption query. For a re-encryption query (I',S', octs), the challenger computes rkp s/ &
RKG(pk, skr,S') where skp <X KG(pk, sk, T') and rcty < REnc(pk, rkp.s/, octs). Tt gives rctg to
A.
Challenge. For a challenge query (F(O),I‘(l), S'), subject to the following restrictions:
~ R(I",S") = 0 for all decryption key queries T".
The challenger flips a random bit b & 10,1} and computes rkpe) g & RKG(pk, KG(pk, sk, ™), §").
Then it gives rkpw) g to A.
Phase 2. The adversary A may continue to issue decryption key queries, re-encryption key queries

and re-encryption queries, subjected to the restriction in challenge phase.
Guess. A outputs its guess b' € {0,1} for b and wins the game if b=1'.

We define the advantage of A as AdijFPRE’AH_RK()\) = Prlb = V| — 3. A CP-F-PRE scheme
18 attribute-hiding for re-encryption keys if all polynomial time adversaries have at most negligible
advantage in the above game.

The unlinkability of a CP-F-PRE scheme is defined in a similar manner to that in Definition 8.

E.2 Underlying Ciphertext-Policy Functional Encryption (CP-FE)

We use a payload-hiding CP-FE scheme with message space IE‘(]]V‘)XNU X +ee X FéVdXNd X X as an
underlying CP-FE scheme, where Ny := 9, {N; := 3n; + 1}=1, . 4 for a format 7 := (d;n,...,nq),
and X is a set of all attributes I' with security parameter .

Definition 27 (Ciphertext-Policy Functional Encryption : CP-FE). A ciphertext-policy func-
tional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format @ =
(d;ny,...,nq) of attributes. It outputs the public parameters pk and a master key sk.

KG This is a randomized algorithm that takes as input a set of attributes, I' := {(t,Z})|7; € F*,1 <
t < d}, pk and sk. It outputs a decryption key.

Enc This is a randomized algorithm that takes as input access structure S := (M, p), a message X
N a message space Fév()XNO X +ee X FéVdXNd X X, and the public parameters pk. It outputs the
ciphertext.



69

Dec This takes as input the ciphertext that was encrypted under access structure S, the decryption
key for a set of attributes I', and the public parameters pk. It outputs either plaintext m or the
distinguished symbol L.

A CP-FE scheme should have the following correctness property: for all (pk, sk) & Setu p(1%, i), all
attribute sets I', all decryption keys skp & KeyGen(pk, sk, I'), all messages X, all access structures S,

all ciphertexts ctg & Enc(pk, S, X), it holds that X = Dec(pk, skr, cts) with overwhelming probability,
if S accepts I

Definition 28. The model for defining the adaptively payload-hiding security of CP-FE under chosen
plaintext attack is given by the following game:

Setup The challenger runs the setup algorithm, (pk,sk) & Setup(1*,7), and gives the public param-
eters pk to the adversary.

Phase 1 The adversary is allowed to issue a polynomial number of queries, I', to the challenger or
oracle KeyGen(pk,sk, -) for private keys, skp associated with T".

Challenge The adversary submits two messages X, X and an access structure, S := (M, p),
provided that the S does not accept any I' sent to the challenger in Phase 1. The challenger flips
a random coin b <2 {0,1}, and computes ctéb) & Enc(pk,S, X®). It gives ctéb) to the adversary.

Phase 2 The adversary is allowed to issue a polynomial number of queries, I', to the challenger or
oracle KeyGen(pk, sk, -) for private keys, skp associated with I, provided that S does not accept T.

Guess The adversary outputs a guess b’ of b.

The advantage of an adversary A in the above game is defined as AdviP'FE’PH(/\) = Pr[t) =

bl — 1/2 for any security parameter A\. A CP-FE scheme is adaptively payload-hiding secure if all
polynomaial time adversaries have at most a negligible advantage in the above game.

We obtain a payload-hiding CP-FE scheme with the above message space based on a payload
hiding CP-FE in [27], with a similar encoding of messages as in Definition 15. We call it the OT10
CP-FE.

E.3 Construction

We assume that z;1 = 1 for & := (24,1,...,2¢y) in attributes I' and v;,, # 0 for T := (vj1,...,vjn)
in an access structure S.

Our CP-F-PRE is constructed with using our IP-PRE schemes as a building block. While payload-
hiding are obtained as in IP-PRE, to achieve the attribute-hiding security, we add dummy compo-
nents (k™ k™ ) for (¢,-) € T in re-encryption-key rkr s, where T is attributes.

t,ran
Setup(1*,7 = (d;n1,...,nq)) : (pk“"FE, skP-FE) & Setupcp_pe (11, 7)
No:=9, Ny:=3n+1fort=1,....d, ¥ <Fr gr:=e(G,G),
fort=0,...,d,
param; := (q, Vy, Gp, Ay, €) & Gapvs(1*, V1),
Xt,1 i1
Xe=| ¢ | = (tag)ig © GL(N,Fy), b= Wiy = (X
Xt,Ne .,

param;; := ({param, };—o..._4, 97),
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by, := Zjvztl Xt,i,j @t Bt == (b1, ..., beny),

?\Iz = Z;V:tl Vijae;, B == (b} 1 - 7b;tk.Nt)7

Iﬁo = (b0,17 ey b0’4, bo’g), Bt ::A(bt,ly cey btﬂlt? tht) for t = 1, e ,d,

BS = (baQ? b6,37 b3,47 53,77 b8,8)a B: = ( ;17 tr b;nﬁ ;Qnt—&-l? cet 7b;3nt) for ¢t = L,....d,

return pk = (1)‘, pk¢P-FE, paramg, {I@t,@,}k}t:(]w’d), sk = (skCP_FE7 bal).

KG(pk,sk,I' = ({(t, )% € Fir \ {0},1 < t < d}) :
sk&PFE R KGCPFE(pkCPFE kCPFE 1) - 5 U Ry, @y L F2, G, <2 F for (t,&) € T

ki := (1, 6, 0%, 0%, o, 0)gs,

ne ne ne 1
———
k: = ( 5515, Ont, C,Bt, 0 )Bf for (tvjt) € F?

return skp := (T, sklgp FE , kg, {kt}(t xt)EF)

Enc(pk m,S=(M,p)) : (sigk,verk) & SigkG(1?),
f(—IFT st = (s1,...,8)7 ::M-fT,s TjjT

u
9 7T,770,€ — qu

Co ‘= ( Cv — S50, W(Verk7 1)7 027 027 Tlo )]BO’ er:=m: g'—%:’

fori=1,...,1,
if p(Z) = (t, U; 1= (Ui.la - 7Ui.nt) S th \ {0})(’01‘77” #* 0),
ne nt ne 1
—
U - .
Oi,mi < Fy,  cii=( si€1+0;v;, 0™, 0, M )Bes
if p(Z) = _‘(t’ 172-),
nt nt nt 1
U N
ni — Fg,  cii=( 8i Ui, 0™, 0, N B

S < Sig(sigk, C = (S, {es}izo,..1, o1),
return octs := (S, {¢; }i=0,...1, cT, verk, S).

RKG (pk SkF = (F SkCP_FE ka{k;ﬁk} tft)EF)a S,):

U
ANV} = = = =
6 5ran <_ Ff]? » Pran <_ F q’ Pt (,Ot ran — Fnt

W10<—GL(9 F,), W1t<—GL(3nt+1 F,) fort=1,....d,

]D)B = (dO'L = b() ZWI 0) =3,4,7,85 Dt = (d;fZ = bs 1W1 t)i Qnt+1 3 for t = 1,...,d,

kit = (kg + (0, &, 0%, &, 0)p) Wi, Kiten = (0, Oans 0%, Flans 0)m=Wip,

k:;”k. (kj + (&', 0™, @, 0)p:)Wig, kit = ( 0lan@, 0™, @) ans 0)mr Wiy for (t,4) €T,
Fertk, ke <—span<d;1,...,dtnt,d;m+1,...,d;;%) for (t,-) €T,

t,ran
R _
ctth < Encep-re(pk“FFE, S, {Wit}i=o,...a: 1)),
return rkp g 1= (S’,{ktrk Jexrk ID)t H=o,..., d,ctg,)

t,ran>
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REnc (pk, rkrgs == (5, {kf'k,k*'k ]IA)I}t:(),Md,ctrSL?), octs := (C := (S, {¢;}i=0,.. 1, cT), verk, S)):

t,ran»

If Ver(verk,C, S) # 1, return L,
T‘aUaW/,U/,C/ & qu QB{) <—U]F3, Cﬁ% (B]th fOI‘ t = 1,...,d,

—

Py - ->T
f & F% g = (8T =M fTs) =117, Wh & GL(9,F,)
kgrene = kg™ + rkgt, 4+ (02, o(—1,verk), 0%, &, 0 )p;
Rirene i kg 4 kgt + (077, 0 )g; for t=1,....d

c(r)enc = (CO + ( C/v - 567 w’(verk, 1)) 027 02’ n,)BO)W2’

R CP-FE _,rk R CP-FE !
ctiy RRcp-re(pk ,ctg)), Ctyg < Enccp-re(pk S W), I i=cp -g%,

fori=1,...,1,
. . - = U
if p(Z) = (t, V; = ('Ui‘ly R 7Ui.nt) S th \ {0})(’1)2'77” 7& 0), (9;, 17; — Fq,

N nt nt 1
L A N
-— /_’ ,_‘ /
cle = ¢+ ( shép1 + 0%, o, o, ; )B:>
f S\ — / u ]F
if p(i) = —(t,7;), ;< Fy,
N nt nt 1
5 e A —_——
-— ,_; /
C;enc = e+ ( sio;, o, 0", m )]E%tu

return I’CtS/ = (S/, S, {k:renc}t:07,,,7d, {C;enc}i:07,,,74, C{Fnc, {thg/c}L:LQ).

Decoct (pk,skr = (I, sk&PFE k¥, {kf}¢,30er), octs = (C := (S,{ci}i=o,..1, cT), verk, S)):
If Ver(verk,C, S) # 1, return L,
If S = (M, p) accepts T := {(t, %)}, then compute I and {a;}ier such that 1 = > icr «iM; where
M is the i-th row of M, and
ITC{ie{l,..,1l}|[p(i) = (t,0i) A(t, %) € T AT = 0]V[p(i) = =(t, Vi) A (¢, %) € T A3 # 0]},

Ki=c(coky) [[  elenkd)  T[  eleik)oe/ s
i€IAp(d)=(t,7;) i€IAp(i)=—(t,7;)

return m’ := cp /K.

Decict (pk, skpv 1= (SklgF_FEv ké? {k?}(t,f;)el“’))
retg = (S, S, {k;"" }i=o,....as {€]" Fizo,...0, B, {ct] S Hi=1,2)):
({/val,t}tzomd, I) & Deccp_FE(kaP'FE,sk%P'FE,ctfg,c), WQ & Deccp_FE(kaP'FE,sk%F'FE,ctg‘fgfc),
If S = (M, p) accepts T' := {(t, %)}, then compute I and {«;}ics such that T =
M; is the i-th row of M, and
IC{ie{l,. ,i}|[pGt) = (tu)A(t,T) € D ANG-Zr = 0|V]p(i) = —(t,05) A (E, ) € T ANU-& # 0]},

jer @ M; where
ki = kWi, ki = kW) for (t,Z) €T, ¢ = cf"™W; ",

K:=e(.ky) [ ek [ el k),

(A T
i€INp(i)=(t,5) i€ INp(i)=—(t,5)

return m’ := cp /K,
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E.4 Security

Theorem 8. The proposed CP-F-PRE scheme is payload-hiding for original ciphertexts against cho-
sen plaintext attacks under the DLIN assumption, payload-hiding of underlying CP-FE scheme and
strong unforgeability of one-time signature.

Theorem 9. The proposed CP-F-PRE scheme is payload-hiding for re-encrypted ciphertexts against
chosen plaintext attacks under payload-hiding of underlying CP-FE scheme.

Theorem 10. The proposed CP-F-PRE scheme is attribute-hiding for re-encryption key against
chosen plaintext attacks under payload-hiding of underlying CP-FE scheme.

Corollary 3 The proposed CP-F-PRE scheme is payload-hiding for original ciphertexts against cho-
sen plaintext attacks under the DLIN assumption and strong unforgeability of one-time signature with
instantiating underlying CP-FE by the OT10 CP-FE scheme.

The proposed CP-F-PRE scheme is payload-hiding for re-encrypted ciphertexts against chosen
plaintext attacks under the DLIN assumption with instantiating underlying CP-FE by the OT10
CP-FE scheme.

The proposed CP-F-PRE scheme is attribute-hiding for re-encryption keys against chosen at-
tribute attacks under the DLIN assumption with instantiating underlying CP-FE by the OT10 CP-FE
scheme.

Theorem 11. The proposed CP-F-PRE scheme is unlinkable.

The proofs of Theorems 8-10 (and Corollary 3) and Theorem 11 are given in the full version of

this paper. They are given in a similar manner to the security proofs for IP-PRE given in Appendix
D.



