
Hybrid Approach for the Fast Verification for
Improved Versions of the UOV and Rainbow

Signature Schemes

Albrecht Petzoldt

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany
apetzoldt@cdc.informatik.tu-darmstadt.de

Abstract. Multivariate cryptography is one of the main candidates to
guarantee the security of communication in the post-quantum era. Espe-
cially in the area of digital signatures, multivariate cryptography offers
a wide range of practical schemes. In [17] and [18] Petzoldt et al. showed
a way to speed up the verification process of improved variants of the
UOV and Rainbow signature schemes. In this paper we show how we can
do even better by a slight variation of their algorithms.

Keywords: Multivariate Cryptography, UOV Signature Scheme, Rainbow Sig-
nature Scheme, Key Size Reduction, Fast Verification

1 Introduction

When quantum computers arrive, classical public-key cryptosystems such as
RSA and ECC will be broken [1]. The reason for this is Shor’s algorithm [19]
which solves number theoretic problems like integer factorization and discrete
logarithms in polynomial time on a quantum computer. So, to guarantee the se-
curity of communication in the post-quantum era, we need alternatives to those
classical schemes. Besides lattice-, code-, and hash-based cryptosystems multi-
variate cryptography seems to be a candidate for this.
Additionally to its (believed) resistance against quantum computer attacks, mul-
tivariate cryptosystems are very fast, especially for signatures [2,3]. Furthermore
they require only modest computational resources, which makes them attractive
for the use on low-cost devices like smartcards and RFID chips.
In [17] and [18] Petzoldt et al. showed a way to speed up the verification process
of improved versions of the UOV and Rainbow signature schemes. The key idea
for this is to evaluate the public polynomials by computing matrix-vector prod-
ucts and using the structure of the public key to speed up these computations.
By doing so, they achieved a speed up of the verification process by factors of 5
(UOV) and 2 (Rainbow) respectively.
In this paper we present a slight variation of their algorithms (called hybrid ap-
proach). The key idea is to evaluate the structured part of the public polynomials

2 Albrecht Petzoldt

by computing matrix-vector products and the random looking part by using the
Macauley matrix of the public key. By our new approach, we get an additional
speed up of the verification process of about 10-20 %. We derive our results both
theoretically and show them using a C implementation of the schemes.
The structure of this paper is as follows: In Section 2 we give a short overview
on multivariate cryptography and describe the UOV and Rainbow signature
schemes. Section 3 reviews the approach of [14] and [16] to create UOV and
Rainbow schemes with structured public keys. In Section 4 we demonstrate how
we can use this special structure to speed up the verification process of the
schemes. In Subsection 4.1 we look hereby on structured versions of the UOV
scheme, whereas Subsection 4.2 deals with improved versions of Rainbow. Sec-
tion 5 presents the results of our experiments and Section 6 concludes the paper.

2 Multivariate Public Key Cryptography

The basic idea behind multivariate cryptography is to choose a system F of m
quadratic polynomials in n variables which can be easily inverted (central map).
After that one chooses two affine invertible maps S and T to hide the struc-
ture of the central map. The public key of the cryptosystem is the composed
quadratic map P = S ◦ F ◦ T which is supposed to be difficult to invert. The
private key consists of S, F and T and therefore allows to invert P.
Due to this construction, the security of multivariate cryptosystems is based on
two mathematical problems:

Problem MQ: Solve the system p(1) = . . . = p(m) = 0, where each p(i) is
a quadratic polynomial in the n variables x1, . . . , xn with coefficients and vari-
ables in F.

The MQ-problem is proven to be NP-hard even for quadratic polynomials over
GF (2) [8].

Problem EIP (Extended Isomorphism of Polynomials): Given a class of central
maps C and a map P expressible as P = S ◦ F ◦ T , where S and T are affine
maps and F ∈ C, find a decomposition of P of the form P = S ′ ◦ F ′ ◦ T ′, with
affine maps S ′ and T ′ and F ′ ∈ C.

In this paper we concentrate on the case of multivariate signature schemes.
The standard process for signature generation and verification works as shown
in Figure 1.

Signature Generation To sign a document d, we use a hash functionH : {0, 1}∗ →
Fm to compute the value h = H(d) ∈ Fm. Then we compute x = S−1(h),
y = F−1(x) and z = T −1(y). The signature of the document is z ∈ Fn. Here,
F−1(x) means finding one (of the possibly many) pre-image of x under the
central map F .

Hybrid Approach for Fast Verification 3

d -H h ∈ Fm - x ∈ Fm - y ∈ Fn - z ∈ Fn

6

P

S−1 F−1 T −1

Fig. 1: Signature generation and verification

Verification To verify the authenticity of a document, one simply computes
h′ = P(z) and the hash value h = H(d) of the document. If h′ = h holds, the
signature is accepted, otherwise rejected.

There are several ways to build the central map F of multivariate schemes.
In this paper we concentrate on the so called SingleField constructions. In con-
trast to BigField schemes like Matsumoto-Imai [11] and MiddleField schemes
like `iC [6], here all the computations are done in one (relatively small) field.
In the following two subsections we describe two well known examples of these
schemes in detail.

2.1 The Unbalanced Oil and Vinegar (UOV) Signature Scheme

One way to create an easily invertible multivariate quadratic system is the prin-
ciple of Oil and Vinegar, which was proposed by J. Patarin in [13].
Let F be a finite field. Let o and v be two integers and set n = o + v. We
set V = {1, . . . , v} and O = {v + 1, . . . , n}. We call x1, . . . , xv the Vinegar
variables and xv+1, . . . , xn Oil variables. We define o quadratic polynomials
f (k)(x) = f (k)(x1, . . . , xn) of the form

f (k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi +η(k) (1 ≤ k ≤ o).

(1)
Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.
The map F = (f (1)(x), . . . , f (o)(x)) can be easily inverted. First, we choose the
values of the v Vinegar variables x1, . . . , xv at random. Therefore we get a sys-
tem of o linear equations in the o variables xv+1, . . . , xn which can be solved
e.g. by Gaussian Elimination. If the system does not have a solution, one has to
choose other values of x1, . . . , xv and try again.
The public key of the scheme is given as P = F ◦ T , where T is an affine map
from Fn to itself. The private key consists of the two maps F and T and there-
fore allows to invert the public key.

4 Albrecht Petzoldt

Remark: In opposite to other multivariate schemes the second affine map S is
not needed for the security of UOV. So it can be omitted.

In his original paper [13] Patarin suggested to choose o = v (Balanced Oil and
Vinegar (OV)). After this scheme was broken by Kipnis and Shamir in [10], it
was recommended in [9] to choose v > o (Unbalanced Oil and Vinegar (UOV)).
The UOV signature scheme over GF(256) is commonly believed to be secure for
o ≥ 28 equations [20] and v = 2 · o Vinegar variables. For UOV schemes over
GF(31) we set (o, v) = (33, 66) (80 bit security).

2.2 The Rainbow Signature Scheme

In [4] J. Ding and D. Schmidt proposed a signature scheme called Rainbow,
which is based on the idea of (Unbalanced) Oil and Vinegar [9].

Let F be a finite field and V be the set {1, . . . , n}. Let v1, . . . , vu+1, u ≥ 1
be integers such that 0 < v1 < v2 < . . . < vu < vu+1 = n and define the
sets of integers Vi = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi and
Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Vi is vi and we
have |Oi| = oi. For k = v1+1, . . . , n we define multivariate quadratic polynomials
in the n variables x1, . . . , xn by

f (k)(x) =
∑

i∈Ol, j∈Vl

α
(k)
ij xixj +

∑
i,j∈Vl, i≤j

β
(k)
ij xixj +

∑
i∈Vl∪Ol

γ
(k)
i xi + η(k), (2)

where l is the only integer such that k ∈ Ol. Note that these are Oil and Vinegar
polynomials with xi, i ∈ Vl being the Vinegar variables and xj , j ∈ Ol being
the Oil variables.
The map F(x) = (f (v1+1)(x), . . . , f (n)(x)) can be inverted as follows. First, we
choose the values of x1, . . . , xv1 at random. Hence we get a system of o1 lin-
ear equations (given by the polynomials f (k) (k ∈ O1)) in the o1 unknowns
xv1+1, . . . , xv2 , which can be solved by Gaussian Elimination. The so computed
values of xi (i ∈ O1) are substituted into the polynomials f (k)(x) (k > v2) and a
system of o2 linear equations (given by the polynomials f (k) (k ∈ O2)) in the o2
unknowns xi (i ∈ O2) is obtained. By repeating this process we can get values
for all the variables xi (i = 1, . . . , n) 1.

The public key of the scheme is given as P = S ◦ F ◦ T with two invertible
affine maps S : Fm → Fm and T : Fn → Fn . The private key consists of S, F
and T and therefore allows to invert te public key.
In the following, we restrict ourselves to Rainbow schemes with two layers (i.e.
u = 2). For this, F = GF (256), (v1, o1, o2) = (17, 13, 13) provides 80-bit secu-
rity under known attacks [15]. For Rainbow schemes over GF(31), we choose
(v1, o1, o2) = (14, 19, 14).
1 It may happen, that one of the linear systems does not have a solution. If so, one

has to choose other values of x1, . . . xv1 and try again.

Hybrid Approach for Fast Verification 5

In this paper we restrict ourselves to Rainbow schemes with 2 layers. However,
the results can be extended to Rainbow schemes with more layers in a natural
way.

3 Improved versions of UOV and Rainbow

In [14] and [16] Petzoldt et al. presented an approach to create UOV- and
Rainbow-based schemes with structured public keys, by which they could reduce
the public key size of these schemes by up to 83 %. In this paper we describe
only the key idea of their construction and refer to [14] and [16] for the details.

The main idea of the approach is to insert a structured matrix B into the
Macauley matrix MP of the public key. This matrix can be chosen by the user.
In this paper we consider to types of structured matrices, namely

– partially circulant matrices (used for cyclicUOV and cyclicRainbow)
To create an m×n matrix of this type, we choose randomly a vector b ∈ Fn.
The rows of the matrix B are then given by

B[i] = Ri−1(b) (i = 1, . . . ,m), (3)

with Ri(b) being the cyclic right shift of the vector b by i positions.

– matrices generated by a Linear Recurring Sequence (LRS) (used for UOVLRS2
and RainbowLRS2)
To create an m × n matrix of this type, we choose randomly a vector
γ = (γ1, . . . , γm) ∈ Fm. The elements of this vector have to be pairwise
distinct. The rows of the matrix B are given by

B[i] = (1, γi, γ
2
i , . . . , γ

n−1
i) (i = 1, . . . ,m). (4)

To insert a structured matrix B into MP , the authors of [14] used the relation
P = F ◦ T between a UOV public and private key, which translates into the
matrix equation

MP = MF ·A (5)

between the Macauley matrices of public key and central map. The elements of
the matrix A in equation (5) are given as quadratic functions in the coefficients
of the affine map T . If this matrix is invertible, one can compute the matrix
MF in such a way that MP has the form MP = (B|C) with a structured matrix
B and a matrix C without visible structure. Figure 2 shows the layout of the
resulting matrix MP for UOV and Rainbow.
In Figure 2 we have

D :=
v · (v + 1)

2
+ o · v

6 Albrecht Petzoldt

M
(UOV)
P = B C

D N

M
(Rainbow)
P = B1

B2 C2

C1
o1

D2D1 N

Fig. 2: Matrices MP for structured versions of UOV (left) and Rainbow. The
structured part is marked gray.

for UOV and

Di =
vi · (vi + 1)

2
+ oi · vi (i ∈ {1, 2})

for Rainbow. The number N is defined as

N :=
(n+ 1) · (n+ 2)

2
.

4 The verification process

The central part of the verification process for multivariate signature schemes
is the evaluation of the public polynomials. Basically, there are two different
strategies for this step.

Standard approach For a given (valid or invalid) signature z = (z1, . . . , zn) ∈
Fn one first computes an (n+1)·(n+2)

2 vector mon, which contains the values of
all monomials of degree ≤ 2, i.e.

mon = (z2
1 , z1z2, . . . , z

2
n, z1, . . . , zn, 1). (6)

Then we have

P(z) =

 MP [1] ·monT

...
MP [m] ·monT

 , (7)

with MP [i] being the i-th row of the Macauley matrix MP and · being the
standard scalar product.
Evaluating a system P of m equations in n variables in this way needs

– n·(n+1)
2 field multiplications to compute the vector mon of equation (6) and

– m ·
(

n·(n+1)
2 + n

)
multiplications to compute the scalar products of equation

(7).

Altogether, we need therefore
n

2
· ((m+ 1) · (n+ 1) + 2 ·m) (8)

field multiplications to evaluate the system P.

Hybrid Approach for Fast Verification 7

Alternative approach For each of the public polynomials

p(k)(x1, . . . , xn) =
n∑

i=1

n∑
j=i

p
(k)
ij · xixj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 (k = 1, . . . ,m) (9)

we define an upper triangular matrix M̃P
(k)

by

M̃P
(k)

=



p
(k)
11 p

(k)
12 p

(k)
13 . . . p

(k)
1n p

(k)
1

0 p
(k)
22 p

(k)
23 . . . p

(k)
2n p

(k)
2

0 0 p
(k)
33 p

(k)
3n p

(k)
3

...
. . .

...
...

0 0 . . . 0 p
(k)
nn p

(k)
n

0 0 . . . 0 0 p
(k)
0


. (10)

For a (valid or invalid) signature z = (z1, . . . , zn) of the message we define the
extended signature vector

sign = (z1, . . . , zn, 1). (11)

With this notation we can write the evaluate the polynomial p(k) by computing
the matrix vector product

sign · M̃P
(k)
· signT (k ∈ {1, . . . ,m}). (12)

Evaluating a single polynomial in this way needs

– (n+1)·(n+2)
2 − 1 field multiplications to compute the matrix-vector product

sign · M̃P
(k)

and
– n+ 1 multiplications to compute value hk.

Altogether, we need therefore

m ·
(

(n+ 1) · (n+ 4)
2

− 1
)

(13)

field multiplications to evaluate the system P.

In this paper we propose a new way of doing the evaluation process called hybrid
approach which combines standard and alternative approach.

Hybrid approach For structured versions of the UOV and Rainbow signature
schemes, we combine both strategies as follows: While the random looking part
of the public polynomials is evaluated by the standard approach, we evaluate
the structured part using the alternative approach. By using the rich structure
of our polynomials, this step can be sped up significantly. In the following two
subsections we show how this can be done for improved versions of UOV and
Rainbow.

8 Albrecht Petzoldt

4.1 UOV

Let z = (z1, . . . , zn) be a (valid or invalid) signature.
For k = 1, . . . , o we define v×n matrices MP (k) containing the public coefficients
of the quadratic monomials xi · xj (1 ≤ i ≤ v, i ≤ j ≤ n) by

MP (k) =


p
(k)
1,1 p

(k)
1,2 . . . p

(k)
1,v p1,v+1 . . . p

(k)
1,n−1 p

(k)
1,n

0 p
(k)
2,2 . . . p

(k)
2,v p

(k)
2,v+1 . . . p

(k)
2,n−1 p

(k)
2,n

0 0
. . .

...
0 . . . 0 p

(k)
v,v p

(k)
v,v+1 . . . p

(k)
v,n−1 p

(k)
v,n

 . (14)

Additionally we compute a vector mon ∈ FN−D containing the values of the
quadratic monomials xixj (v+1 ≤ i ≤ j ≤ n), the values of the linear monomials
xi (1 ≤ i ≤ n) and the value of the constant monomial, i.e.

mon = (z2
v+1, zv+1zv+2, zv+1zv+3, . . . , zv+1zn, z

2
v+2, . . . , z

2
n, z1, z2, . . . , zn, 1).

(15)
With this notation we have

p(k)(x1, . . . , xn) = (x1, . . . , xv) ·MP (k) · (x1, . . . , xn)T︸ ︷︷ ︸
structured part

+C[k] ·monT︸ ︷︷ ︸
random part

(16)

where C is the submatrix consisting of the last N −D columns of the Macauley
matrix MP (see Figure 2).
In the following, we show how the structured part can be evaluated more effi-
ciently for cyclicUOV and UOVLRS2.

cyclicUOV In the case of cyclicUOV [14], the matrices MP (k) are of the form
shown in Figure 3. We have

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v, j = i+ 1, . . . , n, k = 2, . . . , o. (17)

Therefore we get

(z1, . . . , zi) ·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (z1, . . . , zi) ·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v

j = i+ 1, . . . , n,
k = 2, . . . , o.

(18)

The boxes in Figure 3 illustrate this equation. The black boxes show the vector
(MP

(k−1)
1,j−1 , . . . ,MP

(k−1)
i,j−1)T on the right hand side of the equation, whereas the

blue boxes represent the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j)T on the left hand side. As

one can see, the blue boxes in the matrix MP (k) are exactly the same as the
black boxes in the matrix MP (k−1) (k = 2, . . . , o). We can use this fact to speed

Hybrid Approach for Fast Verification 9

MP (1) =



s1 s2 s3 . . . sv−1 sv sv+1 . . . sn−1 sn

0 sn+1 sn+2 . . . sn+v−2 sn+v−1 sn+v . . . s2n−2 s2n−1

0 0 s2n . . . s2n+v−4 s2n+v−3 s2n+v−2 . . . s3n−4 s3n−3

...
. . .

...
...

...
...

...
0 . . . 0 sD−2o−1 sD−2o sD−2o+1 . . . sD−o−2 sD−o−1

0 . . . 0 sD−o sD−o+1 . . . sD−1 sD



...

MP (2) =



sD s1 s2 . . . sv−2 sv−1 sv . . . sn−2 sn−1

0 sn sn+1 . . . sn+v−3 sn+v−2 sn+v−1 . . . s2n−3 s2n−2

0 0 s2n−1 . . . s2n+v−5 s2n+v−4 s2n+v−3 . . . s3n−5 s3n−4

...
. . .

...
...

...
...

...
0 . . . 0 sD−2o−2 sD−2o−1 sD−2o . . . sD−o−3 sD−o−2

0 . . . 0 sD−o−1 sD−o . . . sD−2 sD−1


...

MP (o−1) =



sD−o+3 sD−o+4 sD−o+5 . . . so+1 so+2 so+3 . . . sv+1 sv+2

0 sv+3 sv+4 . . . sn+o sn+o+1 sn+o+2 . . . sn+v sn+v+1

0 0 sn+v+2 . . . s2n+o−2 s2n+o−1 s2n+o . . . s2n+v−2 s2n+v−1

...
. . .

...
...

...
...

...
0 . . . 0 sD−3o+1 sD−3o+2 sD−3o+3 . . . sD−2o sD−2o+1

0 . . . 0 sD−2o+2 sD−2o+3 . . . sD−o+1 sD−o+2



MP (o) =



sD−o+2 sD−o+3 sD−o+4 . . . so so+1 so+2 . . . sv sv+1

0 sv+2 sv+3 . . . sn+o−1 sn+o sn+o+1 . . . sn+v−1 sn+v

0 0 sn+v+1 . . . s2n+o−3 s2n+o−2 s2n+o−1 . . . s2n+v−3 s2n+v−2

...
. . .

...
...

...
...

...
0 . . . 0 sD−3o sD−3o+1 sD−3o+2 . . . sD−2o−1 sD−2o

0 . . . 0 sD−2o+1 sD−2o+2 . . . sD−o sD−o+1



Fig. 3: Matrices MP (k) for cyclicUOV

10 Albrecht Petzoldt

Algorithm 1 Verification process for cyclicUOV
Input: public system of cyclicUOV, signature z = (z1, . . . , zn), hash value h ∈ Fm

Output: Boolean value TRUE or FALSE
1: mon← (z2

v+1, zv+1zv+2, zv+1zv+3, . . . , zv+1zn, z
2
v+2, . . . , z

2
n, z1, . . . , zn, 1)

2: for i = 1 to n do . first polynomial
3: tempi ←

∑min(i,v)
j=1 MP

(1)
ji · zj

4: end for
5: h′1 ←

∑n
j=1 tempj · zj

6: h′1 ← h′1 +
∑N−D

i=1 C1,i ·moni

7: for k = 2 to o do . polynomials 2, . . . , o
8: for i = n to v + 1 by −1 do
9: tempi ← tempi−1

10: end for
11: for i = v to 2 by −1 do
12: tempi ← tempi−1 +MP

(k)
ii · zi

13: end for
14: temp1 ←MP

(k)
11 · z1

15: h′k ←
∑n

j=1 tempj · zj

16: h′k ← h′k +
∑N−D

i=1 Ck,i ·moni

17: end for
18: if hl = h′l ∀l ∈ {1, . . . , o} then return TRUE . TEST
19: else return FALSE
20: end if

up the evaluation of the structured part of the cyclicUOV public key by a large
factor.
The whole verification process of cyclicUOV is shown by Algorithm 1.

Algorithm 1 works as follows. In line 1 the algorithm computes the vector mon
of equation (15). From line 2 to 6 we evaluate the first polynomial. From line 2
to 5 we hereby deal with the structured part of the polynomial, which is eval-
uated by the alternative approach. Finally, line 6 of the algorithm deals with
the random looking part of the first polynomial, which is evaluated using the
standard approach.
In the loop (line 7 to 17) the remaining polynomials are evaluated. From line
8 to 15 we hereby deal with the structured part of the polynomials. By using
the value of the vector temp computed in the previous iteration of the loop, we
can evaluate the structured part of each polynomial p(i) (i = 2, . . . , o) by using
only n+ v field multiplications. Finally, in line 16 of the algorithm, we deal with
the random looking part of the polynomials, which is evaluated by the standard
approach.

Hybrid Approach for Fast Verification 11

Computational effort To evaluate the system P, Algorithm 1 needs

– o·(o+1)
2 field multiplications to compute the vector mon (line 1).

To evaluate the first polynomial, the algorithm needs

– in step 3 v·(v+1)
2 + o · v field multiplications,

– in step 5 n field multiplications,
– and in step 6 o·(o+1)

2 + n field multiplications.

Therefore, to compute the value of h′1, the algorithm needs n
2 · (n + 5) field

multiplications.
In the loop (line 7 to 17) the algorithm needs

– v field multiplications to compute the vector temp (line 12 and 14),
– in line 15 n field multiplications,
– and in line 16 o·(o+1)

2 + n field multiplications.

So, for every iteration of the loop the algorithm needs 2 · n + v + o·(o+1)
2 field

multiplications.
Altogether, we need therefore

o · o · (o+ 1)
2

+
n

2
· (n+ 5) + (o− 1) · (2 · n+ v) (19)

field multiplications to evaluate equation (16).

For F =GF(256), (o, v) = (28, 56) this means a reduction of the number of
field multiplications needed during the verification process by 80 % or a factor of
5.0 (compared to the evaluation of P using the standard approach; see equation
(8)). For a UOV scheme over GF(31), (o, v) = (33, 66), we get a reduction factor
of 5.4.

UOVLRS2 In the case of UOVLRS2, the matrices MP (k) are of the form
shown in Figure 4.

We have

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀i ∈ {1, . . . , v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}. (20)

Therefore we get

(z1, . . . , zi) ·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = γk · (z1, . . . , zi) ·


MP

(k)
1,j−1

MP
(k)
2,j−1
...

MP
(k)
i,j−1

 (21)

∀i ∈ {1, . . . v}, j ∈ {i+ 1, . . . , n}, k ∈ {1, . . . , o}.

12 Albrecht Petzoldt

MP (k) =



1 γk γ2
k . . . γv−2

k γv−1
k γv

k . . . γn−2
k γn−1

k

0 γn
k γn+1

k . . . γn+v−3
k γn+v−2

k γn+v−1
k . . . γ2n−3

k · γ2n−2
k

0 0 γ2n−1
k . . . γ2n+v−5

k γ2n+v−4
k γ2n+v−3

k . . . γ3n−5
k γ3n−4

k

...
. . .

...
...

...
...

...

0 . . . 0 γD−2o−2
k γD−2o−1

k γD−2o
k . . . γD−o−4

k γD−o−3
k

0 . . . 0 γD−o−1
k γD−o

k . . . γD−2
k γD−1

k



Fig. 4: Matrices MP (k) for UOVLRS2

The boxes in Figure 4 illustrate this equation: The black boxes show the vector
(MP

(k)
1,j−1, . . . ,MP

(k)
i,j−1)T on the right hand side of equation (21), while the blue

boxes represent the vector (MP
(k)
1,j , . . . ,MP

(k)
i,j)T on the left hand side. Any blue

box can be computed by multiplying the corresponding black box by γk.

We can use this fact to speed up the verification process of UOVLRS2 by a
large factor (see Algorithm 2).

Algorithm 2 Verification process for UOVLRS2
Input: public key of UOVLRS2, signature z = (z1, . . . , zn) ∈ Fn, hash value h ∈ Fm

Output: Boolean value TRUE or FALSE
1: mon← (z2

v+1, zv+1zv+2, zv+1zv+3, . . . , zv+1zn, z
2
v+2, . . . , z

2
n, z1, . . . , zn, 1)

2: for k = 1 to o do
3: temp1 ← z1
4: for j = 2 to v do
5: tempj ← γk · tempj−1 +MP

(k)
jj · zj

6: end for
7: for j = v + 1 to n do
8: tempj ← γk · tempi−1

9: end for
10: h′k ←

∑n
i=1 tempi · zi

11: h′k ← h′k +
∑N−D

i=1 Ck,i ·moni

12: end for
13: if hk = h′k ∀k ∈ {1, . . . , o} then return TRUE
14: else return FALSE
15: end if

Hybrid Approach for Fast Verification 13

Algorithm 2 works as follows:
In line 1 the vector mon of equation (15) is computed. From line 2 to 12 the
polynomials are evaluated. Each polynomial is evaluated individually. From line
3 to 10 we deal with the structured part of the polynomials. Due to the special
design of our polynomials we can perform this step by using only 2 · n + v − 2
field multiplications. In line 11 we finally evaluate the random looking part of
the polynomials.

Computational effort Algorithm 2 needs

– o·(o+1)
2 field multiplications to compute the vector mon (line 1) and, in every

iteration of the main loop (line 2 to 12)
– n+ v − 2 field multiplications to compute the vector temp (line 5 and 8)
– and 2 · n + o·(o+1)

2 field multiplications to compute the hash value h′k (line
10 and 11).

Therefore, to evaluate equation (12) (o iterations of the main loop), Algorithm
2 needs

(o+ 1) · o · (o+ 1)
2

+ o · (3 · n+ v − 2) field multiplications. (22)

For F = GF (256), (o, v) = (28, 56) this means a reduction of the number of
field multiplications needed during the verification process by a factor of 5.2
(compared to evaluating the system P using the standard approach; see equation
(8)). For UOV schemes over GF(31), (o, v) = (33, 66), the reduction factor is 5.5.

4.2 Rainbow

The verification process of the improved versions of Rainbow is mainly done as
for the improved versions of UOV. However we have to consider the different
structure of the polynomials.
For Rainbow, the matrices MP (k) are defined as follows. For the public polyno-
mials of the first Rainbow layer MP (k) is a v1 × v2 matrix of the form

MP (k) =


p
(k)
11 p

(k)
12 . . . p

(k)
1,v1

p1,v1+1 . . . p
(k)
1,v2−1 p

(k)
1,v2

0 p
(k)
22 . . . p

(k)
2,v1

p
(k)
2,v1+1 . . . p

(k)
2,v2−1 p

(k)
2,v2

0 0
. . .

...
0 0 0 p

(k)
v1,v1 p

(k)
v1,v1+1 . . . p

(k)
v1,v2−1 p

(k)
v1,v2

 (v1 + 1 ≤ k ≤ v2),

(23)
for the public polynomials of the second layer we get

MP (k) =


p
(k)
11 p

(k)
12 . . . p

(k)
1,v2

p1,v2+1 . . . p
(k)
1,n−1 p

(k)
1,n

0 p
(k)
22 . . . p

(k)
2,v2

p
(k)
2,v2

. . . p
(k)
2,n−1 p

(k)
2,n

0 0
. . .

...
0 0 0 p

(k)
v2,v2 p

(k)
v2,v2+1 . . . p

(k)
v2,n−1 p

(k)
v2,n

 ∈ Fv2×n (v2+1 ≤ k ≤ n).

(24)

14 Albrecht Petzoldt

For each layer ` ∈ {1, 2} we define a vector mon(`) containing the monomials
of the non structured part of the public key (with respect to the graded lexico-
graphic order of monomials), i.e.

mon(1) = (z1zv2+1, z1zv2+2, . . . , z1zn, z2zv2+1, . . . zv1zn,

z2
v1+1, zv1+1zv1+2, . . . , zv1+1zn, z

2
v1+2, . . . , z

2
n, z1, . . . , zn, 1) (25)

and

mon(2) = (z2
v2+1, zv2+1zv2+2, . . . , zv2+1zn, z

2
v2+2, . . . , z

2
n, z1, . . . , zn, 1). (26)

Such we get

p(k)(x1, . . . , xn) = (x1, . . . , xv1) ·MP (k) · (x1, . . . , xv2)T︸ ︷︷ ︸
structured part

+C1[k − v1] · (mon(1))T︸ ︷︷ ︸
random part

(k = v1+1, . . . , v2),

(27)
and

p(k)(x1, . . . , xn) = (x1, . . . , xv2) ·MP (k) · (x1, . . . , xn)T︸ ︷︷ ︸
structured part

+C2[k − v2] · (mon(2))T︸ ︷︷ ︸
random part

(k = v2+1, . . . , n)

(28)
where the matrices C1 and C2 are defined as shown in Figure 2.

cyclicRainbow For the polynomials p(v1+2), . . . , p(v2+1) we get

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v1, j = i+ 1, . . . , v2, k = v1 + 2, . . . , v2 + 1 (29)

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v1,
j = i+ 1, . . . , v2,

k = v1 + 2, . . . , v2 + 1.

(30)
For the polynomials p(v2+2), . . . , p(n) we get

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v2, j = i+ 1, . . . , n, k = v2 + 2, . . . , n (31)

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v2,
j = i+ 1, . . . , n,
k = v2 + 2, . . . , n.

(32)

Hybrid Approach for Fast Verification 15

Algorithm 3 Verification process for cyclicRainbow
Input: public system of cyclicRainbow, signature z = (z1, . . . , zn),

hash value h ∈ Fm

Output: Boolean value TRUE or FALSE
1: mon(1) = (z1zv2+1, z1zv2+2, . . . z1zn, z2zv2+1, . . . , zv1zn,

z2
v1+1, zv1+1zv1+2, . . . , z

2
n, z1, . . . , zn, 1)

2: for i = 1 to v2 do . First polynomial (p(v1+1))

3: tempi ←
∑min(i,v1)

j=1 MP
(v1+1)
ji · zj

4: end for
5: h′1 ←

∑v2
j=1 tempj · zj

6: h′1 ← h′1 +
∑N−D1

j=1 C
(1)
1,j ·mon

(1)
j

7: for k = v1 + 2 to v2 do . Polynomials p(v1+2) to p(v2)

8: for i = v2 to v1 + 1 by −1 do
9: tempi ← tempi−1

10: end for
11: for i = v1 to 2 by −1 do
12: tempi ← tempi−1 +MP

(k)
ii · zi

13: end for
14: temp1 ←MP

(k)
11 · z1

15: h′k ←
∑v2

j=1 tempj · zj

16: h′k ← h′k +
∑N−D1

j=1 C
(1)
k−v1,j ·mon

(1)
j

17: end for
18: mon(2) ← (z2

v2+1, zv2+1zv1+2, . . . , zv2+1zn, z
2
v2+2, . . . z

2
n, z1, . . . , zn, 1)

19: for i = n to v2 + 1 by −1 do . polynomial p(v2+1)

20: tempi ←
∑v2

j=1MP
(v2+1)
ji · zj

21: end for
22: for i = v2 to v1 + 1 by −1 do
23: tempi ← temp +

∑i
j=v1+1MP

(v2+1)
ji · zj

24: end for
25: for i = v1 to 2 by −1 do
26: tempi ← tempi−1 +MP

(v2+1)
ii · zi

27: end for
28: temp1 ←MP

(v2+1)
11 · z1

29: h′v2+1 ←
∑n

j=1 tempj · zj

30: h′v2+1 ← h′v2+1 +
∑N−D2

j=1 C
(2)
1,j ·mon

(2)
j

31: for k = v2 + 2 to n do . Polynomials p(v2+2) to p(n)

32: for i = n to v2 + 1 by −1 do
33: tempi ← tempi−1

34: end for
35: for i = v2 to 2 by −1 do
36: tempi ← tempi−1 +MP

(k)
ii · zi

37: end for
38: temp1 ←MP

(k)
11 · z1

39: h′k ←
∑n

j=1 tempj · signj

40: h′k ←
∑N−D2

j=1 C
(2)
k−v2,j ·mon

(2)
j

41: end for
42: if hk = h′k ∀k ∈ {v1 + 1, . . . , n} then return TRUE . TEST
43: else return FALSE
44: end if

16 Albrecht Petzoldt

We can use this fact to speed up the verification process of cyclicRainbow by a
large factor (see Algorithm 3).

Algorithm 3 works as follows. In line 1 the algorithm computes the vector mon(1)

of equation (25). From line 2 to 6 the first polynomial is evaluated. From line 2
to 5 we hereby deal with the structured part of the polynomial, whereas line 6
evaluates the random looking part of the polynomial. In the loop (line 7 to 17)
we then deal with the remaining polynomials of the first layer. From line 8 to 15
we evaluate the structured part. Due to the cyclic structure of the polynomials
we can compute each vector temp using only v1 field multiplications. Finally,
line 16 handles the random looking part of the polynomials.
In line 18 of the algorithm the vector mon(2) of equation (26) is computed. From
line 19 to 30 the algorithm evaluates the first polynomial of the second Rainbow
layer. From line 19 to 29 we deal with the structured part of the polynomials.
Due to the rich structure of the partially circulant polynomials the vector temp
can be computed by using only o2 · v2 + o1·(o1+1)

2 + v1 field multiplications. Fi-
nally, in line 30, we evaluate the random looking part of the polynomial. In the
loop (line 31 to 41) we finally deal with the remaining polynomials of the sec-
ond Rainbow layer. From line 32 to 39 the structured part of the polynomials is
evaluated. Note that, to perform this part, the algorithm needs only v2 +n field
multiplications. Finally, in line 40 of the algorithm, we deal with the random
looking part of the polynomials is evaluated.

Computational cost To evaluate the first polynomial, Algorithm 3 needs

– v1 · o2 + m·(m+1)
2 field multiplications to compute the vector mon(1) (line 1),

– v1·(v1+1)
2 + v1 · o1 field multiplications to compute the vector temp (line 3)

and
– v2 + v1 · o2 + m·(m+1)

2 + n field multiplications to compute the value h′v1+1.

During the evaluation of each of the remaining polynomials of the first layer, the
algorithm needs

– v1 field multiplications to compute the vector temp and
– v2 +v1 ·o2 + m·(m+1)

2 +n field multiplications to compute the vector h′k (k =
v1 + 2, . . . , v2).

To evaluate the polynomial p(v2+1), the algorithm needs

– o2 · v2 + o1·(o1+1)
2 + v1 field multiplications to compute the vector temp (line

20, 23, 26 and 28) and
– n+ o2·(o2+1)

2 + n field multiplications to compute the value h′v2+1.

The vector mon(2) is a subvector of the vector mon(1) and has not to be computed
again.

Hybrid Approach for Fast Verification 17

During the evaluation of each of the remaining polynomials of the second Rain-
bow layer, the algorithm needs

– v2 field multiplications to compute the vector temp and
– n + o2·(o2+1)

2 + n field multiplications to compute the value h′k (k ∈ {v2 +
2, . . . , n})

For the parameters (q, v1, o1, o2) = (256, 17, 13, 13), this means a reduction of the
number of field multiplications needed during the verification process by 56 % or
a factor of 2.3 (with respect to the evaluation with the standard approach, see
(8)). For a Rainbow scheme over GF(31), (v1, o1, o1) = (14, 19, 14) the reduction
factor is 2.2.

RainbowLRS2 For the polynomials p(v1+1), . . . , p(v2) of the RainbowLRS2
public key we get

MP
(k)
ij = γk ·MP

(k)
i,j−1 ∀i = 1, . . . , v1, j = i+ 1, . . . , v2, k = 2, . . . , o1 + 1 (33)

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = γk·(sign1, . . . , signi)·


MP

(k)
1,j−1

MP
(k)
i,j−1
...

MP
(k)
i,j−1


∀i = 1, . . . , v1,
j = i+ 1, . . . , v2,
k = 2, . . . , o1 + 1.

(34)
For the polynomials p(v2+1), . . . , p(n) we get

MP
(k)
ij = MP

(k−1)
i,j−1 ∀i = 1, . . . , v2, j = i+1, . . . , n, k = o1 +2, . . . , o1 +o2 (35)

or

(sign1, . . . , signi)·


MP

(k)
1,j

MP
(k)
2,j

...
MP

(k)
i,j

 = (sign1, . . . , signi)·


MP

(k−1)
1,j−1

MP
(k−1)
2,j−1
...

MP
(k−1)
i,j−1


∀i = 1, . . . , v2,
j = i+ 1, . . . , n,

k = o1 + 2, . . . , o1 + o2.

(36)
We can use this fact to speed up the the verification process of RainbowLRS2
by a significant factor (see Algorithm 4).

Algorithm 4 works as follows. From line 1 to 12 we evaluate the polynomials
of the first Rainbow layer. In line 1 we define the vector mon(1) containing the
values of the monomials of the random looking part of the polynomials. From
line 3 to 9 we compute the matrix vector product (z1, . . . , zv1) ·MP (k). Due to
the special structure of our polynomials we achieve this by doing only v2 +v1−2
field multiplications. In line 10 and 11 we finally compute the value h′k = p(k)(z).

18 Albrecht Petzoldt

Algorithm 4 Verification process for RainbowLRS2
Input: public key of RainbowLRS2, signature z = (z1, . . . , zn) ∈ Fn

hash value h ∈ Fm

Output: Boolean value TRUE or FALSE
1: mon(1) ← (z1zv2+1, z1zv2+2, . . . , z1zn, z2zv2+1, . . . , zv1zn,

z2
v1+1, zv1+1zv1+2, . . . , zv1+1zn, z

2
v1+2, . . . z

2
n, z1 . . . , zn, 1)

2: for k = v1 + 1 to v2 do
3: temp1 ← z1
4: for j = 2 to v1 do
5: tempj ← γk · tempj−1 +MP

(k)
jj · zj

6: end for
7: for j = v1 + 1 to v2 do
8: tempj ← γk · tempj−1

9: end for
10: h′k ←

∑v2
i=1 tempi · zi

11: h′k ← h′k +
∑N−D1

i=1 C
(1)
k−v1,i ·mon(1)

12: end for
13: mon(2) ← (z2

v2+1, zv2+1zv2+2, . . . , zv2+1zn, z
2
v2+2, . . . z

2
n, z1 . . . , zn, 1)

14: for k = v2 + 1 to n do
15: temp1 ← z1
16: for j = 2 to v2 do
17: tempj ← γk · tempj−1 +MP

(k)
jj · zj

18: end for
19: for j = v2 + 1 to n do
20: tempj ← γk · tempj−1

21: end for
22: h′k ←

∑n
i=1 tempi · zi

23: h′k ← h′k +
∑N−D2

i=1 C
(2)
k−v2,i ·mon(2)

24: end for
25: if hk = h′k ∀k ∈ {v1 + 1, . . . , n} then return TRUE
26: else return FALSE
27: end if

Hybrid Approach for Fast Verification 19

From line 13 to 24 we evaluate the public polynomials of the second layer.
Again, we first compute the vector mon(2) (line 13). The matrix vector product
(z1, . . . , z2) ·MP (k) (line 15 to 21) can be computed by using only n+v2−2 field
multiplications. In line 22 and 23 we finally compute the value h′k = p(k)(z) (k =
v2 + 1, . . . , n).

Computational effort To evaluate a single polynomial of the first layer, Al-
gorithm 4 needs

– v2 +v1−2 field multiplications to compute the product (z1, . . . , zv1) ·MP (k)

and
– v2 + v1 · o2 + m·(m+1)

2 + n+ 1 field multiplications to compute the value h′k.

Additionally we need v1 ·o2+ m·(m+1)
2 field multiplications to compute the vector

mon(1). To evaluate a polynomial of the second layer, the algorithm needs

– n+ v2− 2 field multiplications to compute the product (z1, . . . , zv1) ·MP (k)

and
– n+ o2·(o2+1)

2 + n field multiplications to compute the value h′k.

Since the vector mon(2) is a subvector of mon(1), it has not to be computed
again. Therefore, to evaluate the whole system P, Algorithm 4 needs

v1·o2+
m · (m+ 1)

2
+o1·v1·o2+

2∑
`=1

o`·
(

(n− v`) · (n− v` + 1)
2

+ 2 · v`+1 + n+ v` − 2
)

(37)
field multiplications.
For the parameters (q, v1, o1, o2) = (256, 17, 13, 13), this means a reduction by
55 % or a factor of 2.2 (with respect to the evaluation with the standard ap-
proach, see (8)). For a Rainbow scheme over GF(31), (v1, o1, o1) = (14, 19, 14)
the reduction factor is 2.2.

5 Experiments

We checked our theoretical results on a straightforward C implementation of our
schemes. Table 1 shows the results. The parameters in this table are chosen for
80 bit security.

The differences between the results of our theoretical analysis (see Section 4)
and the actual runtime of the verification process is mainly caused by the heavy
use of control structures in our algorithms.

As the table shows, the running time of the verification process can be sped
up by 10 to 20 % by using the hybrid approach for the evaluation of the public
systems (compared to the results of [17] and [18]). However, the additional speed
up varies drastically for the different schemes.

20 Albrecht Petzoldt

Scheme public key verification
size (kB) red. factor #multiplications time (ms) speed up factor

UOV(31, 33, 66) 108.5 - 171,567 1.75 -

cyclicUOV(31, 33, 66) 17.1 6.3
[18] 31,614 0.34 5.2

this paper 32,010 0.32 5.5

UOVLRS2(31, 33, 66) 17.1 6.3
[17] 30,492 0.30 5.8

this paper 30,987 0.31 5.7

UOV(256, 28, 56) 99.9 - 105,882 0.98 -

cyclicUOV(256, 28, 56) 16.5 6.1
[18] 20,804 0.20 4.9

this paper 21,070 0.19 5.4

UOVLRS2(256, 28, 56) 16.5 6.1
[17] 19,992 0.18 5.4

this paper 20,342 0.17 5.8

Rainbow(31, 14, 19, 14) 25.3 - 48,568 0.44 -

cyclicRainbow(31, 14, 19, 14) 9.5 2.6
[18] 22,064 0.13 2.0

this paper 21,718 0.12 2.1

RainbowLRS2(31, 14, 19, 14 9.5 2.6
[17] 22,293 0.13 2.0

this paper 22,064 0.12 2.3

Rainbow(256, 17, 13, 13) 25.1 - 26,660 0.26 -

cyclicRainbow(256, 17, 13, 13) 9.5 2.6
[18] 12,343 0.12 2.1

this paper 12,178 0.12 2.1

RainbowLRS2(256, 17, 13, 13) 9.5 2.6
[17] 12,415 0.13 2.0

this paper 12,792 0.11 2.2

Table 1: Improved versions of UOV and Rainbow

Hybrid Approach for Fast Verification 21

6 Conclusion

In this paper we presented improved algorithms for the verification process of
structured versions of the UOV and Rainbow signature schemes. The key idea
of these algorithms is to evaluate the structured and the random looking part
of the public system separately. By doing so we achieve a speed up of 10 to 20
% compared to the algorithms presented in [17] and [18].

Acknowledgements

We thank the anonymous referees of PQCrypto 2013 who suggested the im-
provements shown in this paper. We furthermore want to thank the Horst Görtz
Foundation for financial support.

References

[1] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptog-
raphy. Springer, Heidelberg (2009)

[2] A. Bogdanov, T. Eisenbarth, A. Rupp, and C. Wolf. Time-area optimized
public-key engines: -cryptosystems as replacement for elliptic curves? CHES
2008, LNCS vol. 5154, pp. 45-61. Springer, 2008.

[3] A.I.T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo,
F. Y.-S. Lee, and B.-Y. Yang. SSE implementation of multivariate pkcs on
modern x86 cpus. CHES 2009, LNCS vol. 5747, pp. 33–48. Springer, 2009.

[4] Ding J., Schmidt D.: Rainbow, a new multivariate polynomial signature
scheme. In Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS
vol. 3531, pp. 164–175 Springer, Heidelberg (2005)

[5] Ding, J., Yang, B.-Y., Chen, C.-H. O., Chen, M.-S., and Cheng, C.M.: New
Differential-Algebraic Attacks and Reparametrization of Rainbow. In: LNCS
5037, pp.242–257, Springer, Heidelberg (2005)

[6] Ding, J., Wolf, C., Yang, B.-Y.: `-invertible Cycles for Multivariate Quadratic
Public Key Cryptography. In: Okamoto, T., Wang, X., (eds.): PKC 2007,
LNCS, vol. 4450, pp. 266–281, Springer, Heidelberg (2007)

[7] Faugère, J.C.: A new efficient algorithm for computing Groebner bases (F4).
Journal of Pure and Applied Algebra, 139:61–88 (1999)

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979

[9] Kipnis, A., Patarin, L., Goubin, L.: Unbalanced Oil and Vinegar Schemes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS vol. 1592, pp. 206–222 Springer,
Heidelberg (1999)

[10] Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature scheme.
In: Krawzyck, H. (ed.) CRYPTO 1998, LNCS vol. 1462, pp. 257–266 Springer,
Heidelberg (1998)

[11] Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for efficient
Signature-Verification and Message-Encryption. Advances in Cryptology - EU-
ROCRYPT 1988, LNCS vol. 330, pp. 419–453, Springer, Heidelberg (1988)

22 Albrecht Petzoldt

[12] Patarin, J.: Hidden Field equations (HFE) and Isomorphisms of Polynomi-
als (IP). In: Proceedings of EUROCRYPT’96, LNCS vol. 1070, pp. 38–48,
Springer, Heidelberg (1996)

[13] Patarin, J,: The oil and vinegar signature scheme, presented at the Dagstuhl
Workshop on Cryptography (September 97)

[14] Petzoldt, A. Bulygin, S., Buchmann, J.: A Multivariate Signature Scheme with
a partially cyclic public key. In Proceedings of SCC 2010, pp. 229 - 235

[15] Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting Parameters for the Rainbow
Signature Scheme. In: Proceedings of PQCrypto’10, LNCS vol. 6061, pp. 218
-240, Springer, Heidelberg (2010)

[16] Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow - A Multivariate Sig-
nature Scheme with a Partially Cyclic Public Key. In: Proceedings of IN-
DOCRYPT’10, LNCS vol. 6498, pp. 33-48, Springer, Heidelberg (2010)

[17] Petzoldt, A., Bulygin, S.: Linear Recurring Sequences for the UOV Key Gen-
eration Revisited. In: Proceedings of ISISC 2012, LNCS vol. 7839, pp. 441-455,
Springer, Heidelberg (2012)

[18] Petzoldt, A., Bulygin S., Buchmann, J.: Fast Verification for Improved Ver-
sions of the UOV and Rainbow Signature Schemes. PQCrypto 2013, to appear.

[19] Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM J. Comput. 26 (5): pp. 1484–1509.

[20] E. Thomae, C. Wolf: Solving underdetermined Systems of Multivariate
Quadratic Equations Revisited. PKC 2012, LNCS vol. 7293, pp. 156 - 171.
Springer 2012.

