
Keyed Side-Channel Based Hashing for IP
Protection using Wavelets

Timo Bartkewitz

Horst Görtz Institute for IT-Security,
Ruhr-University Bochum,

Universitätsstraße 150, 44801 Bochum, Germany
timo.bartkewitz@rub.de

Abstract. The protection of intelligent property (IP) is a challenging
task, especially in secured embedded systems where program code that
is supposed to be a plagiarism cannot be simply read-out for further
inspection. This is even more aggravated if the original source code was
modified to prevent comparisons of any kind. For instance, watermarks
that are actually hidden in the code are at risk to be rendered useless
if the attacker has full access to the original code and some knowledge
about the watermark. The unlicensed use of patented algorithms is a
further problem that belongs to IP plagiarism as well. A Recent work
presented a framework based on perceptual hashing to detect intelligent
property in hardware and software designs. In this work we consequently
extend this framework to detect IP plagiarism in embedded systems that
can reliably match contents even in the presence of attacks. Therefore,
we propose an adapted signal feature extraction method, the wavelet
transform, to form a keyed side-channel hash function.

Keywords: Side-Channel, IP Protection, Embedded Systems, Percep-
tual Hashing, Software Plagiarism

1 Introduction

The plagiarism of intelligent property is without doubt a serious threat to the
software industry. In 2011 almost 42% of the worldwide distributed software was
pirated incorporating a financial damage of over 63 billion US dollars [6]. Al-
though these numbers mainly concern general purpose computer software they
are likely to be a good indicator for embedded software as well. The embedded
software industry, however, has virtually no opportunity to confirm a suspected
plagiarism. Products on the market are equipped with memory read-out protec-
tions, and thus a legitimated IP holder can only evaluate suspicious embedded
software on the basis of its functionality but providing no indications.

However, side-channels can assist plagiarism detection in embedded systems.
Side-channels arise from the fact that electronic devices emit physically observ-
able quantities, for instance the power consumption, electromagnetic emanation,
or timings. These quantities possess information about internal states of the de-
vice which are actually exploited to extract a secret information, e.g. a crypto-
graphic key. The authors in [3] applied the idea of the correlation power analysis

2 T. Bartkewitz

attack [5] to embed a watermark in assembler source code of the Keeloq algo-
rithm. In [4] the power consumption of a microcontroller is used to determine
the Hamming weight in each cycle that corresponds to a prefetch of a certain
instruction. Thus, the resulting map of Hamming weights can be matched with
a second map to expose the similarity of two program codes. Obviously, these
approaches rely on the assumption that the watermark code will not be removed,
especially since it is non-functional code, and the program source code is subject
to minor changes only.

In [7] the authors use a relaxed formalism for security features of physical
functions defined in [2]. In [7] however, it is centered around the physical rep-
resentation of the intelligent property, e.g. the power consumption or intrinsic
hardware properties like physically unclonable functions (PUFs), for later iden-
tification. The information derived from the physical properties are then applied
to a perceptual hash function to extract a discriminative IP content sensitive
output value. In a first experimental case study several public implementations
of different block ciphers, where each of which represent an IP, are involved to
evaluate the performance. The power consumption of the device running the
block cipher implementations was measured and compressed with fast Fourier
transformation (FFT) to cancel out high frequency noise. To compare these
compressed power consumption vectors the Pearson correlation coefficient was
applied to decide whether IPs are similar or not. It has been shown that the im-
plementations can be efficiently distinguished even with respect to minor code
transformations.

Our contribution: Extending this formalism, we propose a perceptual hashing
method that is parametrized by a key to counteract various code transformation
attacks. Usually, an attacker would try to eliminate the similarities between the
original IP and the illegitimate plagiarism of it he intends to use. For instance,
such a plagiarism can easily be achieved by gradually transforming, respectively
modifying, the IPs original code and generating the hash value until the simi-
larity can no longer be proven. Using a keyed hashing method the attacker may
still be able to perform attacks but without knowing the correct key he cannot
guess the particular influence on the content sensitive hash value, and thus the
attacker is not able to examine the hash value after each modification. In this
work we utilize and adapt the wavelet transform in order to obtain signal fea-
tures dependent on a key. For comparison reasons the signal features are first
quantized and then assessed with the help of the bit error rate.

Organization of the paper: Section 2 introduces the concept of perceptual
hashing. Section 3 provides an overview of the wavelet transform. In Section 4 we
describe our hashing approach assuming meaningful attacks. Finally, Section 5
reports our experimental results before we conclude in Section 6.

2 Perceptual Hashing

Complying with the definitions in [7] a perceptual hash function is a probabilistic
procedure H : (IP, content) → h that outputs a hash value given a physically

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 3

observed quantity of a device, referred to as the content, while it runs the IPs
code. The main step of the hash value generation is the feature extraction that
filters significant samples which are either invariant for similar contents or dis-
tinct for different contents. Given two hash values a similarity detection function
D : (h, h∗)→ [0, 1] then makes a decision about the grade of similarity.

A perceptual hash function is probabilistic since it deals with physically
measured information that is inherently subjected to measurement noise which
means that two measurements of the same IP yield similar hash values but not
identical ones. Therefore, the authors assess the detection performance by two
properties, the threshold-bounded perceptual robustness and content sensitivity.
The perceptual robustness states the probability that two IPs which are actually
similar reach a similarity score larger than a predefined threshold τ ∈ [0, 1]. Con-
sequentially, the content sensitivity states the probability that two IPs which are
actually different have a similarity score smaller than τ (cf. [7], 4.2).

Nevertheless, in this work we slightly redefine the properties while assum-
ing a Gaussian distributed binary classifying system with the similarity score
distribution N sim(τPeRo, σ

2
PeRo) when the IPs are similar and the distribution

Ndif (τCoSe, σ
2
CoSe) when the IPs are different. The perceptual robustness can be

interpreted as the ability to perceive similarities (complement of false rejection),
while the IPs code is subjected to a set of transformation functions Fpre that
preserve the content. Here, it is expressed by threshold τPeRo ∈ [0, 1] which is
the expected similarity score value for similar IPs. The content sensitivity can
be interpreted as the ability to perceive differences (complement of false accep-
tance), while the IPs code is subjected to a complementary set of transformation
functions Fpre that significantly change the content. It is expressed by threshold
τCoSe ∈ [0, 1] which is the expected similarity score value for different IPs.

Hence, a theoretically optimal similarity detection function has a perceptual
robustness threshold τPeRo of exactly one (the probability that similar IPs are
detected as similar is one) and content sensitivity threshold τCoSe of exactly zero
(the probability that different IPs are detected as similar is zero). In practice
however, we obtain variances larger than zero (at least due to measurement
noise), and thus we require the difference of the threshold values τPeRo and
τCoSe to be large to reduce the probability of misclassification errors.

Remark 1. A perceptual hash function, particularly its similarity detection func-
tion, needs to maximize the threshold difference τd = τPeRo − τCoSe satisfying
0 ≤ τCoSe < τPeRo ≤ 1 in order to provide a meaningful decision.

With this definition of perceptual hashing, attacks are straightforward since
the attacker (who will be called the plagiarist in the remainder) is able to gener-
ate the hash value after each code transformation to examine its impact on the
similarity detection. Given an original IP, an attack is successful if

• the original IP is transformed with a function f ∈ Fpre, s.t. it is detected as
different: D[H(IP, content),H(f(IP, content))] ≤ τCoSe, or

• a replicated IP is transformed with a function f ∈ Fpre, s.t. it is detected
as similar: D[H(IP, content),H(f(IPrep, contentrep))] ≥ τPeRo.

4 T. Bartkewitz

Therefore, the hash value can be generated using a secret key so that the pla-
giarist cannot predict the hash value. The key-dependence can be used in dif-
ferent components of the hashing scheme (Fig. 1). The content can be ran-

feature

extraction

post-

processing

randomization

content

key

hash value
pre-

processing

Fig. 1. The perceptual hashing scheme basically consists of three mentionable steps
where each of which can be used with a key-dependent randomization. Generated hash
values are then provided to a similarity detection function.

domized before feature extraction which is a kind of content scrambling. Fur-
ther, the key can influence the feature extraction, e.g. randomizing parameters,
and eventually, the hash value can be randomized, e.g. a key addition. How-
ever, in this work we concentrate on a key-dependent feature extraction. An
improved perceptual robustness is a consequent inherent property of a key-
dependent perceptual hash function since intentionally malicious code trans-
formations should be suppressed in the hash value if the correct secret key is
unknown. This raises another property, namely that the same content using
two distinct secret keys should lead to a significantly different hash value, thus
D[Hk1

(IP, content),Hk2
(IP, content)] ≤ τCoSe for k1 6= k2.

3 The Wavelet Transform

The wavelet transform applies a sliding window in form of a modulated win-
dow function that contains the frequency information. This function is called a
wavelet denoted with Ψ(t). Generally speaking, it is a damped oscillation that
has compact support. The support, denoted with p, is half the time-width where
the amplitude is non-negligible distinct from zero, and thus 2 · p is the mean-
ingful time-width of a wavelet. Various wavelets have been presented including
Haar, Gauss, Morlet, Mexican Hat, and so forth (cf. Fig. 2). Each has its own
base frequency f0 and support p. In order to make wavelets capable to handle
signals that have a time-width greater than 2 ·p and frequencies distinct from f0,
wavelets are accordingly scaled and shifted, such that Ψa,b(t) = 1/

√
a · Ψ(t−b

a)
with a ∈ R+ and b ∈ R. The support is then given by a · p, the wavelet is shifted
by b along the time axis, and the frequency changes to fa = f0/a. This leads to
the continuous wavelet transform

W (x, a, b) =

∫ ∞
−∞

x(t)Ψa,b(t)dt = 〈x, Ψa,b〉 , (1)

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Ψ(t) = ei2πt · e−t
2

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Ψ(t) = 2√
3π0.25 (1 − t2) · e−

t2

2

Fig. 2. (a) shows the Morlet wavelet with support p = 4 and (b) the Mexican Hat
wavelet with support p = 5.

given a signal x(t), where W (x, a, b) is the wavelet coefficient of x that states
how well the wavelet fits the overlapping fraction of x(t) with 0 ≤ W (x, a, b) ≤
max(|x|2 , |Ψa,b|2). Numerous pairs (a, b) ensure that x(t) is appropriately covered
(Fig. 3), so that x(t) can be represented by the wavelets. However, in practice it

x(
t)

Ψ
a 1,b

1(t
)

Ψ
a 2,b

2(t
)

...

...

Fig. 3. The wavelet transform is carried out with different scaled versions of a wavelet
(Morlet) which are successively shifted from left to right along signal x to produce the
coefficients W (x, a, b), and hence capture the entire information within x. Exemplarily,
the wavelet in the middle has a small a and covers high frequencies of signal x, whereas
the lower wavelet has a larger a to cover low frequencies of x.

is only possible to chose a and b from a finite set provided that the reconstruction
of x(t) is possible. For instance, the discrete dyadic wavelet transform can afford
this by using a = 2m and b = n · 2m for m,n ∈ Z. For further details we refer to
[1].

4 Keyed Side-Channel based Hashing

It is assumed that the power consumption of utilized devices is substantially
related to the instruction codes, meaning that locally different instructions lead

6 T. Bartkewitz

to a locally different power consumption. But this is certainly true for devices
based on CMOS technology, like microcontrollers and FPGAs since the power
consumption can be modeled as the sum of an instruction-dependent and data-
dependent, as well as a constant and a noise component [9], thus

Ptotal = Pinstruction + Pdata + Pconstant + Pnoise. (2)

In this work we focus on microcontrollers. In the remainder we will call the
physically observed content, i.e. the measured power consumption traces, the
power consumption shape or short shape to emphasize that we are interested in
the progression of the amplitude, formed by the instructions while processing
data, and not in data-dependent differences.

4.1 Our Attacker Model

In our approach we assume three adversarial plagiarists.

• Adv. plagiarist 1 possesses the ready-to-upload system code file due to theft.

• Adv. plagiarist 2 possesses the program source code due to theft or reverse-
engineering.

• Adv. plagiarist 3 possesses the algorithm and intends unlicensed use.

Obviously, by possessing the system code file only (adv. plagiarist 1), it is very
challenging to obtain a different power consumption shape by editing the file
without risking errors in the program code. Whereas possessing the program code
(adv. plagiarist 2) raises a few more possible attacks which are i. recompilation
with different parameters, ii. inserting dummy instructions or random delays,
and iii. permuting instructions. Further, those are also the possible attacks if
the plagiarist intends unlicensed use (adv. plagiarist 3) but here she already
considers them during the programming phase.

Code recompilation might be a pure trial-and-error process since the plagia-
rist can merely guess the influence on the power consumption instead of targeting
accurate changes. Nevertheless, the attack is sufficient as long as the shape will
change.

The static insertion of additional instructions or delays have an inherent effect
on the power consumption but, concurrently, negatively affect the efficiency of
the program code. The same applies to randomly inserted delays but further ag-
gravated by the problem of finding a good source of randomness. In side-channel
attacks one may also be confronted with random delays which can be efficiently
bypassed by alignment methods [16, 13]. For side-channel hashing, several power
consumption traces can be aligned with each other before generating the hash
value.

Permuting instructions is only possible where the semantical functionality
remains inviolated. Moreover, permuting recurring code segments that only differ
in the processed data will not change the power consumption significantly since
variations induced by the data slightly affect the amplitude. Although this is
crucial for side-channel attacks, it is negligible for side-channel hashing due to
the similar shape of the power consumption.

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 7

4.2 Our Proposal using the Wavelet Transform

The scheme relies on the short oscillation of the wavelets such that each sample
of a power consumption shape is either damped or amplified depending on a key.
Thus, a plagiarist does not know where changes in the shape S will significantly
influence the hash value. We suggest the following procedure in order to generate
a side-channel hash value Hk(IP, S) : Rn → {0, 1}l·r where l is the amount of
hash coefficients used and r the quantization resolution.

Generation of Side-channel Hash Values The wavelet transform (Eq. 1)
is applied to build a key-dependent feature extraction as the randomly chosen
scaling parameter a and shift parameter b function as the key whereas the output
consists of l hash coefficients ci:

1. Choose a wavelet function Ψa,b(t) with support p

2. Generate key k ← {(ai, bi)}l where ai ∈R [amin, amax]
and bi ∈R {0, 1, . . . , 2 · aip− 1}

3. Compute hash coeff. ci =
∑

m·aip−bi<nW (S, ai,m·aip−bi), m ∈ {1, 3, 5, . . .}
in accordance with Figure 3.

Subsequently, the hash coefficients are quantized to form the final side-channel
hash value Hk(IP, S) = {Q(ci)}l where Q is the quantizer. Two types of quan-
tizers are imaginable. A uniform quantizer generates bins so that all coefficients
are distributed among equidistant quantization steps. Contrarily, a non-uniform
quantizer generates bins so that the bins are equiprobable distributed over all
coefficients where the quantization point is the mean of the coefficients within a
bin. If the number of bins is 2r the final hash value contains l · r bits.

The scaling values ai are bounded to reduce inherent negative effects on the
performance (cf. [8]). Wavelets containing either too high frequencies (small a)
or too low frequencies (large a) are not perceptual and give poor performance
due to the dominating randomization on one side and severe information loss on
the other. That means the perceptual robustness decreases with smaller scaling
values but larger values decreases the content sensitivity otherwise. Obviously,
the interval should be large in order to provide a sufficient number of distinct
scaled wavelets. Therefore, finding a proper scaling interval is a trade-off prob-
lem and will be addressed in Section 5. To include all samples of S in each hash
coefficient, multiple wavelet coefficients are added up with periodically consec-
utive wavelets. Hence, the wavelets can be shifted effectively by the bi in the
above given range.

Similarity Detection of Side-channel Hash Values To compare two binary
hash values the complementary bit error rate, as suggested by other works [8,
10, 14], can serve as the similarity score which is simply

CBER(Hk(IP, S),Hk(IP ∗, S∗)) = 1− HD(Q(ci), Q(c∗i))

l · r
(3)

8 T. Bartkewitz

with HD being the Hamming distance that counts the number of positions at
which the bits are different. It is expected that two similar hash values reach a
CBER close to 1 and two distinct hash values a CBER close to 0.5.

4.3 Practical Limitations using Wavelets

As already pointed out, we make the following important assumption that is
basically considered when we demonstrate the performance of our approach in
the next section.

Assumption 1 The plagiarist is able to change parts of the shape according to
the considered attacks, but not manages to change the entire shape significantly
while preserving the full efficiency of the code at the same time.

We recall that the similarity between program codes can never be proven if the
shape has changed substantially. This is an inherent property of the perceptual
hashing since otherwise arbitrary independent codes would appear similar when
they are definitely not. Consequently, a plagiarist who mounts a ”large impact”
attack with no regards to the code efficiency will always be successful in the
sense of making two similar program codes independent.

5 Experimental Results

Before we assess the practical performance of our approach in the presence of
attacks, we need to figure out the appropriate scaling interval [amin, amax] for
the wavelet feature extraction (cf. Sec. 4.2) and the influence of the number of
hash coefficients, respectively the number of quantizing bins.

Optimization of the Wavelet Parameters For this purpose, we initially
simulated three shapes with 5000 samples each represented by an 8-bit value.
The first is randomly generated, the second is a modified copy of it to obtain
two similar shapes affected by considerable measurement noise. In particular,
Gaussian noise with a standard deviation of σsim1

= 1 is added to each sample
and to 20 consecutive samples out of 100 samples with σsim2

= 5. A third shape
is again a modified copy of the first but with a Gaussian noise of σdif = 15 added
to each sample. Hence, the third shape is different from the first two shapes but
not entirely independent of them. This might seem somewhat arbitrary at first
sight, but it is appropriate since measured power consumption shapes of two
different IPs share a common constant power consumption component and vary
only due to an instruction-dependent component, respectively data-dependent
component, while executed on the same device (cf. Eq. 2). We further used the
Gauss0 wavelet (p = 5) with 200 coefficients and 28 quantizing bins; values
that turned out to be optimal as shown below. Figure 4 shows the performance
of our approach along decreasing scaling intervals where the maximum scaling
value is initially set to amax = n/(2p) = 5000/(2 · 5) for which the wavelet is
as long as the shape. We randomly generated ten thousand (10k) different keys

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 9

from each scaling interval and computed the mean and the standard deviation of
the complementary bit error rate involving the two similar shapes one and two,
respectively the two different shapes one and three. As can be seen the corre-
sponding mean values τPeRo and τCoSe remain nearly constant while decreasing
the scaling interval length. In order to indicate false acceptance (FA) and false

[1,500] [5,450] [10,400] [15,350] [20,300] [25,250] [30,200] [35,150] [40,100] [45,50]

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaling interval [a
min

,a
max

]

C
B

E
R

+4 ⋅ σ
PeRo

τ
PeRo

−4 ⋅ σ
PeRo

+4 ⋅ σ
CoSe

τ
CoSe

−4 ⋅ σ
CoSe

Fig. 4. The performance with simulated power consumption shapes for several scaling
intervals whereas each interval was evaluated with 10 k randomly chosen keys. Further,
we used the Gauss0 wavelet (p = 5) and a hash value that consists of l = 200 coefficients
quantized with r = 8.

rejection (FR) errors, respectively, we need to investigate the impact of deviat-
ing CBER values. As we assume the CBER values to be Gaussian distributed
(cf. Sec. 2), we apply a property of the Gaussian distribution that states that
99.99% of all possible values are within eight standard deviations around the
mean. It is observable in Figure 4 that intervals larger than [30, 200] (to the
left) contain a higher chance of FA and FR errors since the borders given by the
added standard deviation for different shapes (+4 · σCoSe) and the subtracted
standard deviation for similar shapes (−4·σPeRo) overlap. To include a clearance
we suggest using the scaling interval [40, 100] for which FA and FR errors are
negligible. Moreover, this interval is sufficiently large to provide an appropriate
key space. We recall that a plagiarist would need to modify the code considering
each possible key, so this key space is not to be confused with key spaces from
crypto systems.

Next, we investigate the influence of different numbers of quantizing bins
and hash coefficients, respectively. As Figure 5 depicts, while processing similar
shapes and different shapes the respective mean values decrease with increasing
bins until convergence. This is because the hash coefficients are generally close
to each other, and hence an appropriate number of bins is necessary to obtain
meaningful results. With approximately 210 bins the mean values converge but
with 28 bins the performance is sufficient already. The results are equal for both

10 T. Bartkewitz

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

quantizing bins [log
2
]

C
B

E
R

200 coefficients
150 coefficients
100 coefficients
50 coefficients
30 coefficients
20 coefficients
10 coefficients
5 coefficients

1 2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

quantizing bins [log
2
]

C
B

E
R

200 coefficients
150 coefficients
100 coefficients
50 coefficients
30 coefficients
20 coefficients
10 coefficients
5 coefficients

Fig. 5. Evolution of the mean values τPeRo (left) and τCoSe (right) using different
numbers of quantizing bins and hash coefficients within the scaling interval [40, 100].

the uniform and the non-uniform quantizer. The amount of coefficients has a less
dominant effect. Actually, the performance is only poor when using less than 50
coefficients since convergence is not reached (Fig. 5). Nevertheless, at least 100
coefficients should be used for optimal performance.

Finally, we tested the Mexican hat wavelet which gives slightly less per-
formance and the Morlet as well as the Haar wavelet which both give poor
performance.

Practical Evaluation For our practical experiments we used a Microchip
PIC18F2520 microcontroller [12] running at 3.68 MHz together with the Mi-
crochip MPLAB C Compiler for PIC18 of version 3.42 which also includes the
Microchip MPASM assembler. The power traces were acquired with a PicoScope
5203 and a sampling rate at 125 MS/s. The measurements were done with a
1 Ω-resistor in the ground line. Further, we chose the AES to be the reference
algorithm, existing in a slightly optimized assembler and a straight C implemen-
tation. Further, we choose the DES to be a true negative reference.

We measured the first round of both AES implementations with each mea-
surement containing 1000 power traces using uniformly distributed inputs. Af-
terwards, the traces are compressed with peak extraction [9] and averaged to
form the power consumption shapes to be evaluated. The side-channel hash val-
ues are generated using the Gauss0 wavelet, the scaling interval [40, 100], 200
coefficients, and 28 uniform quantizing bins. Again, we computed the mean and
standard deviation of the complementary bit error rate to state the performance
involving 10k different keys.

In the easiest attack scenario the plagiarist employs the same code without
modifications. This corresponds to the adversarial plagiarist 1 in our model (cf.
Sec. 4.1). The results indicate (Tab. 1) that the measurement noise is negligible
and therefore, the perceptual robustness is close to one. Contrarily, the similarity
scores involving different implementations point out a good content sensitivity
as well.

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 11

Table 1. Wavelet based hashing performance with unmodified and unoptimized code.
The DES implementation was adapted such that a single round almost requires the
same number of cycles as a single AES round. Exceeding cycles were cut off.

Implementation CBER mean CBER std. dev. #samples

AES / AES Assembler 0.9646 0.0097 1235
AES / AES C 0.9857 0.0082 3503
DES / DES Assembler 0.9716 0.0086 1235
DES / DES C 0.9901 0.0077 3503
AES / DES Assembler 0.5765 0.0316 1235
AES / DES C 0.5826 0.0299 3503

Next, we consider a recompilation of the AES C implementation with dif-
ferent compiler parameters. The Microchip C compiler offers numerous opti-
mization parameters from which we select all those which verifiably affect the
implementation, particularly the power consumption. The selected parameters
are branch optimization (BRA-OPT), banking optimization (BAN-OPT), code
straightening (CS), and tail merging (TM). We refer to [11] for details. We ob-
served that the parameters primarily lead to shortened shapes due to speed
optimizations. But we also reproducibly noticed that recurring parts are more
uniform which is likely caused by loop unrolling. Table 2 summarizes our results
concerning recompilation.

Table 2. Wavelet based hashing performance with recompiled code. The fully opti-
mized AES C code is compared to AES C code optimized with a single parameter or
the fully unoptimized AES C code (UNOPT), respectively.

Implementation CBER mean CBER std. dev. #samples

AES C BRA-OPT 0.7917 0.0113 3503
AES C BAN-OPT 0.9804 0.0083 3503
AES C CS 0.7952 0.0123 3503
AES C TM 0.7894 0.0125 3503
AES C UNOPT 0.7704 0.0134 3503

Insertion attacks aim at perturbing the alignment of the power consumption
shapes with delays and additional instructions. In the pre-processing step align-
ment methods [16, 13] can therefore be used or methods to detect and remove
dynamic insertions [15]. Thus, we concentrate on statically inserted instructions
that cannot be detected with such methods in our scenario. This is because we
do not know for sure whether these instructions were introduced by an attack
or they are actually a part of a different unique code. For the experiments we
target the Sbox-layer of our AES implementations which are both realized as a
table look-up with implicit row shifting. After always two table look-ups we in-
creasingly inserted further non-functional table look-ups (#TL). We repeat this
using the no-operation instruction instead (#NOP). The performance results
are given in Table 3 for the AES C implementation. The results of the assembler

12 T. Bartkewitz

implementation show no difference. It can be seen that a plagiarist has to add

Table 3. Wavelet based hashing performance with stat. inserted instructions (AES).

Implementation CBER mean CBER std. dev. #samples

C 1TL 0.7901 0.0113 3503
C 2TL 0.7632 0.0141 3503
C 4TL 0.7414 0.0159 3503
C 1NOP 0.7943 0.0125 3503
C 2NOP 0.7740 0.0134 3503
C 4NOP 0.7419 0.0143 3503

at least the same amount of non-functional instructions to the Sbox-layer as it
contains functional instructions to significantly lower the perceptual robustness.

The last experiment is concerned with the permutation of instructions. We
again target the Sbox-layer and arbitrarily reorder the bytes to be processed
(REORD) on the one hand and separate the row shifting from table look-up
(SEP) on the other. See Table 4 for the results. Clearly, reordering has no

Table 4. Wavelet based hashing performance with permuted instructions (AES).

Implementation CBER mean CBER std. dev. #samples

C REORD 0.9732 0.0092 3503
C SEP 0.8031 0.0104 3503
Assembler REORD 0.9597 0.0098 1235
Assembler SEP 0.7731 0.0145 1235

effect since the instructions are equal. The second attack lead to slightly different
results considering the implementation. The reason might be the C compiler that
still rearranges the instructions, although such optimizations were disabled.

6 Conclusion

In this work we proposed wavelet based side-channel hashing which facilitates
keyed perceptual hashing to detect intelligent property in embedded systems, es-
pecially considering plagiarism that is aggravated by source code modifications
attacks. Our scheme fits the IP detection framework recently introduced by a
previous work, but however applies a different similarity detection tool which is
why the similarity score values of both approaches are not directly comparable.
We tested several reasonable malicious code transformations that could be per-
formed by an attacker without knowing the secret key. Hence, the influence of
the code transformations cannot be predicted and experimental results indicate
a good discriminative performance with respect to the perceptual robustness
and content sensitivity of our approach in this case.

Keyed Side-Channel Based Hashing for IP Protection using Wavelets 13

References

1. Addison, P.: The Illustrated Wavelet Transform Handbook. Taylor & Francis
(2002)

2. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.-X., Wachsmann, C.: A
Formalization of the Security Features of Physical Functions. In: Proceedings of
the 2011 IEEE Symposium on Security and Privacy. pp. 397–412. IEEE Computer
Society, Washington, DC (2011)

3. Becker, G., Burleson, W., Paar, C.: Side-Channel Watermarks for Embedded Soft-
ware. In: IEEE NEWCAS 2011, pp. 478–481 (2011)

4. Becker, G., Strobel, D., Paar, C., Burleson, W.: Detecting Software Theft in Em-
bedded Systems: A Side-Channel Approach. In: IEEE Transactions on Information
Forensics and Security, vol. 7, pp. 1144–1154 (2012)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.J. (eds.) CHES 2004, LNCS, vol. 3156, pp.
16–29. Springer, Heidelberg (2004)

6. Business Software Alliance: Shadow Market. 2011 BSA Global Software Piracy
Study. Business Software Alliance, Washingtion, D.C. (2012)

7. Durvaux, F., Gerard, B., Kerckhof, S., Koeune, F., Standaert, F.-X.: Intellectual
Property Protection for Integrated Systems Using Soft Physical Hash Functions.
In: Lee, D., Yung, M. (eds.) Information Security Applications, LNCS, vol. 7690,
pp. 208–225. Springer, Heidelberg (2012)

8. Malkin, M., Venkatesan, R.: The Randlet Transform. Applications to Universal
Perceptual Hashing and Image Identification. In: Allerton Conference on Commu-
nication, Control, and Computing 2004. Curran Associates, Inc. (2006)

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

10. Meixner, A., Uhl, A.: Robustness and Security of a Wavelet-Based CBIR Hashing
Algorithm. In: MM&Sec 2006, pp. 140–145. ACM, New York (2006)

11. Microchip Technology Inc.: MPLAB C18 C Compiler User’s Guide (2005)
12. Microchip Technology Inc.: PIC18F2420/2520/4420/4520 Data Sheet (2008)
13. Muijrers, R.A., Woudenberg, J.G., Batina, L.: RAM: Rapid Alignment Method. In:

Prouff, E. (ed.) CARDIS 2011, LNCS, vol. 7079, pp. 266–282. Springer, Heidelberg
(2011)

14. Nguyen, D.Q., Weng, L., Preneel, B.: Radon Transform-based Secure Image Hash-
ing. In: De Decker, B., Lapon, J., Vincent, N., Uhl, A. (eds.) CMS 2011, LNCS,
vol. 7025, pp. 186–193. Springer, Heidelberg (2011)

15. Strobel, D., Paar, C.: An Efficient Method for Eliminating Random Delays in
Power Traces of Embedded Software. In: Kim, H. (ed.) ICISC 2011, LNCS, vol.
7259, pp. 48–60. Springer, Heidelberg (2011)

16. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential
Power Analysis by Elastic Alignment. In: Kiayias, A. (ed.) CT-RSA 2011, LNCS,
vol. 6558, pp. 104–119. Springer, Heidelberg (2011)

