
Maliciously Circuit-Private FHE

Rafail Ostrovsky1, Anat Paskin-Cherniavsky2, and Beni Paskin-Cherniavsky3

1 Department of Computer Science and Mathematics, UCLA, rafail@cs.ucla.edu?
2 Department of Computer Science, UCLA, anpc@cs.ucla.edu??

3 cben@users.sf.net

Abstract. We present a framework for transforming FHE (fully homomorphic encryption) schemes
with no circuit privacy requirements into maliciously circuit-private FHE. That is, even if both mali-
ciously formed public key and ciphertext are used, encrypted outputs only reveal the evaluation of the
circuit on some well-formed input x∗. Previous literature on FHE only considered semi-honest circuit
privacy. Circuit-private FHE schemes have direct applications to computing on encrypted data. In that
setting, one party (a receiver) holding an input x wishes to learn the evaluation of a circuit C held by
another party (a sender). The goal is to make receiver’s work sublinear (and ideally independent) of |C|,
using a 2-message protocol. The transformation technique may be of independent interest, and have
various additional applications. The framework uses techniques akin to Gentry’s bootstrapping and
conditional disclosure of secrets (CDS [AIR01]) combining a non circuit private FHE scheme, with a
homomorphic encryption (HE) scheme for a smaller class of circuits which is maliciously circuit-private.
We devise the first known circuit private FHE, by instantiating our framework by various (standard)
FHE schemes from the literature.
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1 Introduction

In this paper, we devise a first fully homomorphic encryption scheme (FHE) [Gen09] that satisfies (a mean-
ingful form of) circuit privacy in the malicious setting—a setting where the public key and ciphertext input
to Eval are not guaranteed to be well-formed. We present a framework for transforming FHE schemes with
no circuit privacy requirements into maliciously circuit-private FHE. The transformation technique may be
of independent interest, and have various additional applications. The framework uses techniques akin to
Gentry’s bootstrapping and conditional disclosure of secrets (CDS [AIR01]) combining a non circuit private
FHE scheme, with a homomorphic encryption (HE) scheme for a smaller class of circuits which is maliciously
circuit-private. We then demonstrate an instantiation of this framework using schemes from the literature.

The notion of FHE does not require circuit privacy even in the semi-honest setting (but rather standard
IND-CPA security, the ability to evaluate arbitrary circuits on encrypted inputs and encrypted outputs being
“compact”). In [Gen09] and [vDGHV09, appendix C], the authors show how to make their FHE schemes
circuit-private in the semi-honest setting.

One natural application of (compact) FHE is the induced 2-message, 2-party protocol, where a receiver
holds an input x, and a sender holds a circuit C; the receiver learns C(x), while the sender learns nothing. In
the first round the receiver generates a public-key pk, encrypts x to obtain c, and sends (pk, c). The sender
evaluates C on (pk, c) using the schemes’ homomorphism, and sends back the result. An essential requirement
is that receiver’s work (and overall communication) is poly(k, n, o(|C|)), where k is a security parameter,
ideally independent of |C| altogether. This application of homomorphic encryption, termed computing on
encrypted data, was studied both in several works [IP07,BKOI07] predating Gentry’s first fully homomorphic
scheme, and mentioned in [Gen09].

The underlying scheme’s IND-CPA security translates into the standard simulation-based notion of pri-
vacy against a malicious sender in the stand-alone model4 (but not any form of correctness against a malicious
sender). The circuit privacy of the scheme translates into a privacy guarantee against a malicious receiver
(of the same “flavor”). While standard FHE (without extra requirements) does not imply any security guar-
antees against malicious receivers, the semi-honestly circuit-private schemes from (e.g.) [vDGHV09] imply
standard simulation-based security against semi-honest receivers. Thus, a maliciously circuit-private scheme
induces a protocol which is private against malicious corruptions in the stand-alone model.

Let us now define maliciously circuit-privacy of FHE more precisely. We say a scheme is circuit-private
if it satisfies the following privacy notion ala [IP07], stating that any (pk, c) pair induces some “effective”
encrypted input x∗:

Definition 1. (informal). We say a C-homomorphic5 encryption scheme (KeyGen,Enc,Eval,Dec) is (ma-
liciously) circuit-private if there exists an unbounded algorithm Sim, such that for all security parameters
k, and all pk∗, c∗ there exists x∗, such that for all circuits C ∈ C over |x∗| variables Sim(1k, C(x∗)) =s

Eval(1k, pk∗, C, c∗) (statistically indistinguishable). We say the scheme is semi-honestly circuit-private if the
above holds only for well-formed pk∗, c∗ pairs.

An FHE satisfying Definition 1 induces a protocol private against a malicious sender (by IND-CPA
security of the FHE), but private against unbounded malicious receivers with unbounded simulation.6

On one hand, this privacy notion is weaker compared to full security as the simulation is not efficient; on
the other hand, it is stronger in the sense that it holds against unbounded adversaries as well.

Due to impossibility results for general 2-round sender-receiver computation in the plain model (e.g. [BLV04]),
this notion has become standard in the (non-interactive, plain model) setting of computing on encrypted
data [NP01,AIR01,HK12,IP07] as a plausible relaxation.

It is important to note that we only consider the plain model. If preprocessing, such as CRS was allowed,
the malicious case could be easily reduced to the semi-honest case. That is, given CRS, Enc could have added

4 Privacy against a malicious sender comes “for free”, as the protocol is 2-round, and the client speaks first.
5 In particular, for fully homomorphic schemes, C is the class of all circuits.
6 Jumping ahead, settling for computational indistinguishability with unbounded simulation would allow for some-

what simplified constructions. However, we shoot for the best achievable privacy notion.
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a NIZK proving that the key is well-formed, and that the ciphertext is a valid ciphertext under that public
key. Then, Eval could explicitly check that the proof is valid, if not return ⊥, otherwise run Eval as for the
semi-honest setting (for that scheme). Some care needs to be taken even in this setting, so that the scheme
for the semi-honest setting used has somewhat enhanced privacy. More specifically, it needs to hold assuming
(pk, c) are in the support of valid pk and c ∈ Encpk(·) respectively, but not that the distribution of (pk, c)
is identical to the honestly generated one. Indeed, such a semi-honestly circuit-private scheme has been put
forward in [GHV10] (when applied to a perfectly correct FHE scheme). On the other hand, the semi-honestly
private scheme suggested in [vDGHV09] needs that pk has the proper distribution (KeyGen(1k)), rather than
just being in the support of that distribution.

To summarize, our main “take home” theorem is as follows.

Theorem 1. (informal) Assume an FHE scheme F with decryption circuits in NC1 exists. Assume further
there exists a maliciously circuit private HE B that supports bit OT exists. Then, there exists a maliciously
circuit private multi-hop FHE scheme.

There exist several instantiations of the theorem by ingredients from the literature. All known FHE
schemes from the literature, such as [Gen09,vDGHV09,BV11] have efficient decryption circuits as required
by the Theorem. Some candidates for B are [NP01,AIR01,HK12].

In terms of implications to MPC, our result can be interpreted as non-interactive 2PC protocols with
asymmetric inputs as follows.

Theorem 2. (informal) Assume the preconditions of Theorem 1 hold. Then, there exist 2-message client-
server MPC protocols where the client holds x, and the server holds n = 1|x| a circuit C with n inputs
(which may be much larger then x), and 1k a security parameter. The client learns C(x) (but nothing
else, not even |C|), and the server learns nothing about x (but |x|). The privacy guarantee for the client is
standard simulation-based computational privacy. The privacy guarantee for the server is based on unbounded
simulation (against possibly unbounded clients). The protocols’s communication is at most poly(n, k) (as the
client is efficient in its own input). 7

Multi-hop circuit-private FH. It is a desirable property of an FHE scheme that the outputs of Eval applied
to any given circuit C mapping {0, 1}n to {0, 1}m can be fed again into Eval running on a circuit taking
{0, 1}m as input, and so on - an unbounded number of times. In the terminology of [GHV10], this property
of a HE scheme is referred to as multi-hop. If only upto some i such iterations are supported, the scheme is
called i-hop. The standard definition of FHE, thus corresponds to 1-hop encryption. However, there exists
a simple transformation for any compact FHE into multi-hop. This is done by including an encryption of
the secret key in the public key, and homomorphically decrypting the encrypted outputs received using the
encrypted key bits (as in Gentry’s bootstrapping theorem [Gen09,GHV10]). The maliciously circuit-private
FHE resulting from our construction is also designed to be only 1-hop, but the standard transformation does
not make it multi-hop, as it does not preserve malicious circuit-privacy.

In Section 3.3, we define multi-hop maliciously circuit-private HE, and sketch a modification to our 1-
hop scheme, making it multi-hop. Our transformation starts with the above transformation, and adds some
validation of the added key bits.

1.1 Previous Work

Circuit private FHE implicit in work on MPC. As explained above, (compact) HE naturally gives rise to
non-interactive client-server protocols for computing on encrypted data (and the privacy level of the protocol

7 In fact, the above result can be interpreted as general ”size hiding” 2PC with asymmetric inputs. The case in
Theorem 2 is a special case with F (x, y) being the universal function of evaluating a circuit y on input x. In the
general case, F is some polynomial-time computable function. The client learns F (x, y) (but not even |y|), and the
server learns only |x|. This can be implemented by letting the server set C = Fy(x), and run the protocol from
Theorem with input C, |x| for the server and input x for the client.
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depends on the notion of circuit privacy of the FHE). An essential requirement is that client’s work in these
protocols is sub-linear in |C| (ideally independent of |C|).

In the other direction, standard two-message client-server protocols (inputs of similar length, only client
learns output), robust against malicious receivers, induce circuit-private (not necessarily compact) HE, when
applied with the universal function [CCKM00,GHV10]. Roughly the round-1 message of the client is viewed
as an encryption for his input, and the senders’ reply as Eval’s output. This is still not an encryption scheme,
as in the protocol, the client needs to ”remember” the randomness generating a round-1 message in order to
“decode” the reply. This is solved by setting KeyGen output a public-key, private-key pair of some public key
encryption scheme as (pk, sk) respectively. Enc is augmented concatenate an encryption cr of its randomness
under pk. Eval is augmented to pass cr as is. Intuitively, if the protocol was private against malicious clients,
then so is the encryption scheme (as the randomness was known to the client anyway).

One specific construction of HE from 2PC is by combining an information-theoretic version of Yao’s
garbled circuits with oblivious transfer (OT) secure against malicious receivers [NP01,AIR01,HK12,IP07].
As information-theoretic Yao is only efficient for NC1, the resulting HE scheme captures only functions in
NC1. Also, this generic construction, even in the semi-honest setting (for all known 2PC protocols from
then literature) has encrypted output size at least |C|, while the crux of HE is having compact encrypted
outputs—ideally poly(k), as modern FHE schemes achieve.

Another relevant work is a recent work on 2-message 2-party evaluation of a public function f(x, y), where
the work of the party holding y (wlog.) is poly(k, n, log |f |), where |f | is the size of f ’s circuit representa-
tion [DFH12]. Their protocol is maliciously UC-secure [Can01]. Instantiating f with the universal function
for evaluating circuits, results in HE with good compactness properties for circuits of certain size. However,
this protocol requires CRS, and thus does not translate into (circuit private) HE in the plain model.

Circuit privacy in HE literature. Without the circuit privacy requirement, FHE candidates have been pro-
posed in a line of work following the seminal work of Gentry [Gen09,vDGHV09,BV11], to mention a few.
However, these works typically do not have circuit privacy as a goal.

Circuit privacy in the semi-honest setting, for properly generated pk and c has been addressed in [Gen09,vDGHV09].
In both works, the solution method is akin to that used in additively homomorphic cryptosystems [GM84,DJ01].
The idea in the latter is to (homomorphically) add a fresh encryption of 0. In FHE, the situations is a bit
more complicated, as the output of Eval typically has a different domain than “fresh” encryptions, so adding
a 0 is not straightforward. However, a generalization of this technique often works (see e.g. [vDGHV09]).

Another approach suggested in [vDGHV09] for the semi-honest setting is replacing the encrypted output
c with a Yao garbled circuit for decryption (with sk, c as inputs), thereby transforming any scheme into a
semi-honestly circuit-private one.

The work of [GHV10] considers a generalization of circuit privacy of HE (referred there as function pri-
vacy) to a setting with multiple evaluators and single encryptor (and decryptor), where all but a single eval-
uator Ei can collude to learn extra information about Ei’s circuit. Among other contributions, in [GHV10],
the authors further abstract the Yao-based approach from [vDGHV09] as a combination of two HE scheme,
one compact but not private, the other (semi-honestly) private but not compact, so that the result is both
compact and (semi-honestly) private. We use this transformation as is as a first step in our transformation
(along with some additional ideas formulated in [GHV10]).

As mentioned above, the malicious setting (with compact encrypted outputs) has been addressed in the
context of Oblivious Transfer (OT) [NP01,AIR01,HK12] (these works can be viewed as HE for the limited
class of Oblivious Transfer functions). For broader classes of functions [IP07] devise maliciously circuit-private
HE for depth-bounded branching programs (with partial compactness).

All of the above schemes use the Conditional Disclosure of Secrets (CDS) methodology [GIKM98]. CDS is
a light-weight alternative to zero-knowledge proofs, that receives a secret string, an encryption c of some x in
an HE, and the corresponding pk. It discloses the secret iff. x satisfies a certain condition. CDS was originally
defined for well-formed pk, c, leading to semi-honestly circuit private HE constructions [AIR01]. The CDS
from [AIR01] works for additive HE with ciphertexts over groups of a prime order, and [Lip05] generalized
it to groups of sufficiently “rough” composite order. For specific groups, the technique of [Lip05] turned out
to generalize to situations where (pk, c) may not be well-formed. Roughly, the secret luckily remains hidden
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even if the CDS was obliviously performed on the (possibly malformed) encryptions and pk as if they were
proper. Such CDS was used in [HK12,IP07] to obtain maliciously circuit-private HE.

1.2 Our techniques

We devise a framework for transforming FHE schemes with no circuit privacy requirements into maliciously
circuit-private FHE. We use 2 ingredients which have implementations in the literature: powerful (evaluate
circuits) compact FHE without privacy F , and weak (evaluate formulas) non-compact maliciously circuit-
private HE P (by “compact” we refer to the strong requirement that encrypted outputs have size poly(k),
where k is the security parameter). Our construction proceeds in three steps:

Lemma 1 ([GHV10]). A compact FHE without privacy can be upgraded to (compact) semi-honestly circuit
private by decrypting its encrypted output under a (possibly non-compact) enhanced semi-honestly private
HE, capable of evaluating the decryption circuit. The resulting scheme has enhanced semi-honest circuit
privacy, assuming only that pk, c are in the support of honestly generated pairs, rather then being distributed
as honestly generated pairs.

Lemma 2 (this paper). An enhanced semi-honestly circuit-private FHE can be upgraded to maliciously
circuit-private by homomorphically validating its keys and inputs under a (possibly non-compact) maliciously
circuit-private FHE capable of evaluating a circuit validating that (pk, c) are well-formed (provided a suitable
witness as additional input).

The output resulting from composing these two steps is not compact—but fortunately:

Lemma 3 (this paper,same construction as [GHV10] for semi-honest setting). Any circuit-private
FHE can be upgraded to compact by homomorphically decrypting its output under a compact (F)HE (while
preserving circuit-privacy).

Let us now elaborate on each of the steps.

Step 1. The first step transforms a ”main” (compact) FHE scheme M1 into a semi-honestly circuit-private
scheme (M2). An output encrypted via EvalM1 may contain extra information about the structure of C
(though limited to poly(k) since M1 is compact). An easy way to strip all information beyond the value
of the function is to decrypt it already during Eval under an ”auxiliary” scheme A1 which is semi-honestly
circuit-private. To make sure the evaluator learns no secret information (skM1

, x), the decryption is done
”blindly”, using A1’s homomorphic properties. Details follow.

KeyGen generates a public key pk = (pkM1 , pkA1 , askM1
= EncA1(skM1)) and secret key skA1 . Enc simply

outputs cM1
= EncM1

(x). Now, Eval first computes outM1
= EvalM1

(C, cM1
), and outputs EvalA1

(DecM1
, (outM1

, askM1
)).8

Dec simply applies DecA1
to Eval’s output.

Enhanced semi-honest circuit privacy of the resulting scheme follows by (semi-honest) circuit privacy of
A1, and the correctness ofM1. For enhanced circuit privacy, we assume perfect correctness ofM1 rather then
allowing for negligible decryption error, as is common in the FHE literature. The reason is that otherwise,
the receiver could pick pairs (pk, c) for which the output of Eval is not C(x) with high over Eval’s randomness,
and potentially reveal a bit about the circuit not consistent with x.

Note that since M1 is compact |outA1
| = poly(k) even if A1 is not compact. M1,A1 can be instanti-

ated via almost any FHE from the literature, and (non-compact) semi-honestly circuit-private HE obtained
from non-interactive 2PC protocols, such as Yao-based protocols (see above). In particular, although most
FHE schemes from the literature have (negligible) decryption errors, they can be modified to have perfect
correctness, while maintaining security.9

8 The trick of ”re-encrypting” under A1 using A1’s own Eval procedure to perform the decryption is similar in
Gentry’s bootstrapping technique in [Gen09] for transforming a “somewhat homomorphic” scheme into (unleveled)
FHE. One difference is that here we can use two different schemes. Another difference is that for the purpose of
reducing noise via Gentry’s bootstrapping theorem, it is important to hardwire c as a string into the decryption
circuit, rather then supplying an encryption of it. In step 1, we can afford introducing c into Dec in either way.

9 Consider for example the [BV11] scheme can be modified to use Gaussian noise truncated to a value which still
does not incur decryption errors. It is easy to prove that the new scheme remains secure under the same (LWE)
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Step 2. The above approach generally fails in the malicious setting, even with stronger ingredients. Let A2 be
a maliciously circuit-private scheme, andM2 be the semi-honestly circuit-private FHE resulting from step 1.
An obvious attempt is using A2 instead of A1 in the first decryption; another is repeating the construction,
taking M2 and additionally decrypting its output under A2. Neither is enough.

On a high level, in a maliciously circuit-private A2, any pkA2
, askM ”induce” an encryption of some

sk∗M under A2, so, we may think of them as being well-formed. However, the following potential attack
exists. Assume even that pkM is well-formed, but cM is arbitrarily malformed. Thus outM is not guaranteed
to be a valid encryption of some x, and may instead carry some other arbitrary (upto poly(k)) bits of
information about C. In turn, DecM (cM , sk

∗
M ) may leak some of this information (even if sk∗M is the right

key corresponding to pkM ).
To fix the above potential attack (and other similar ones) and achieve malicious circuit privacy, we validate

(pk, c) of M2. (In particular, for M2 resulting from step 1, we need to also check that askM1
encrypts an

skM1 that corresponds to pkM1 as part of validating pkM2 is well-formed.) Such validation is generally hard,
so we augment KeyGenM2

and EncM2
to supply a helpful witness (encrypted under A2). For starters we want

the full randomness used by them. However known A2 instantiations with malicious circuit privacy against
unbounded adversaries, as we require can only evaluate functions in NC1 and KeyGenM2

,EncM2
need not be

in NC1. 10 But surely they are in P, and we can use the standard transform to validate polynomial work in
parallel we require the witness to also include values of all intermediate wires of KeyGenM2

,EncM2
, validate

all gates in parallel, and have a log-depth AND tree. A similar issue arises already in step 1, where A1 needs
to evaluate the decryption circuit of M1. The same trick can not by applied there, as the values to decrypt
are not known to the receiver. Thus we need to assume DecM1 is in NC1, which is fortunately satisfied by
all known schemes from the literature.

Somewhat more precisely, we transform M2 in the following non-blackbox way.

– Enc(x) outputs cM2
= EncM2

(r′, pkM2
, x) along with arM2

= EncA2
(r) - a witness that cM2

is a proper
encryption (derived from r′).

– Eval(C, cM2
) : Let V alidate(pkM2

, cM2
, out, rkM2

, rM2
) denote a circuit where rkM2

, rM2
are purported

witnesses for the well-formedness of pkM2
, cM2

respectively. It outputs out if rkM2
, rM2

certify well-
formedness of pkM2

, cM2
, and the all-zero vector otherwise.

• Compute outM2
= EvalM2

(pkM2
, C, cM2

).
• Output out = EvalA2(V alidatepkM2

,cM2
,outM2

(arkM2
, arM2

)) (that is, fixing the suitable variables in
V alidate to the values at the subscript).

– Dec outputs DecM2(skM2 ,DecA2,out(skA2)).

Note that pkM2 , cM2 , outM2 are hardwired into V alidate, rather then encrypted via A2 (in Eval). The
subtle reason for this, is that if pkM2

is malformed, “encrypting” values under it can yield effective encryptions
of different values, possibly making us perform the “wrong” validation.

In a nutshell, the construction works by enhanced semi-honest circuit privacy of M2 if (pkM2
, cM2

) is
well-formed, and the validation procedure takes care of the fact that it is indeed well-formed (otherwise, no
information whatsoever is revealed about C).

Merging steps 1 and 2 (Section 3.1). Steps 1+2 provide a clear blueprint for transforming a (compact) FHE
F into maliciously circuit-private FHE by combining it with a maliciously circuit-private HE P capable
of evaluating F ’s decryption and validation circuits. That is, the same maliciously circuit-private P may
instantiate both A1 and A2. M2 resulting from step 1 is fed into step 2. In section 3.1 we describe the
natural composition of the two steps in a single protocol, making a small shortcut that exploits the structure
of M2 output by step 1, and the fact that A1 = A2. Namely, we do not have to check the well-formedness
of askM2

as an encryption under A2.

assumption - essentailly because samples larger then some bound hae negligible probability of being sampled. A
similar trick can be applied to other LWE-based FHE schemes [BV11,Bra12,GSW13].

10 Settling for unbounded simulation against bounded distinguishers, would allow to evaluate arbitrary circuits under
the scheme without further complications, however, we are shooting for the strongest possible privacy guarantee.
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Step 3. Let us look more closely at the compactness of the scheme achieved from steps 1+2. The validate
circuit that needs to be evaluated has input of size m = poly(k, n) (and polynomial size |C|). Thus, if P is
not compact, the encrypted output size is some poly(|C| ,m, k) – also poly(k, n).

This is acceptable for our main application of computing on encrypted data, as receiver’s input is of
size n. However, it would be nice to meet the current standard for FHE where encrypted output size is
independent of n.

A more complicated setting is that of leveled FHE. In such schemes, KeyGen(1k, 1d) generates an addi-
tional key pkEval received by Eval (all the rest remains the same), which may grow with the bound d on depth
of circuits to be evaluated. In a nutshell, such schemes are often considered in the FHE literature in order to
make the underlying assumptions more plausible, avoiding so called (weak) circular security assumptions.

The encrypted output size is poly(k, n, d)—quite undesirable!
The idea is to combine the circuit-private (non-compact) HEM3 resulting from steps 1+2 with a compact

FHE A3 with no circuit privacy “in the opposite direction” from step 1. That is, use A3 to homomorphically
decrypt the output ofM3 to “compress” it. Intuitively, even though the FHE A3 used for decrypting is not
circuit-private, the resulting scheme is, because EvalA3 merely acts upon a string that we originally were
willing to output “in the plain”, so there is no need to protect it.

2 Preliminaries

Notation. We use −−−→arrow to denote vectors, though not always—we tend to use it to stress element-wise

handling, e.g. bit-by-bit encryptions. For a function f(a, b, c, . . .), we write
−→
f (−→a , b,−→c , . . .) as a shorthand for

element-wise application (f(a1, b, c1, . . .), f(a2, b, c2, . . .), . . .). When considering function vectors, all inputs
which are the same in all executions appear without an arrow (even if they are vectors by themselves).

For a pair of vectors u, v (u, v) denotes the vector resulting from concatenating u, v. For vectors u, v over
some U t, V t, (u; v) denotes ((u1, v1), . . . , (ut, vt)).

For a function f(a, b, c, . . .), we denote the set of functions fixing some of its parameters (here b, c) as
follows f |b,c (a, . . .). f |b=B,c=C denotes a function fixing the parameters to particular values B,C respectively.

For randomized algorithmsA(x, r), we sometimes write out ∈ A(x) as a shorthand for out ∈ support(A(x, r)).
By negl(k) we refer to a function that for all polynomials p(k), negl(k) < 1

p(k) for all k > K, where K is

a constant determined by p.
Usually an encryption of x under scheme Y will be named yx.

Definition 2 (Indistinguishability of distributions). Let {Xk(x)}k∈N,x∈{0,1}∗ , {Yk(x)}k∈N,x∈{0,1}∗ be
two distribution ensembles. We say that the ensembles are statistically indistinguishable, if for all circuit
families {Cn(x1, . . . , xn)}n x ∈ {0, 1}

n
, |Pr[Cn(Xk(x))] − Pr[Cn(Yk(x))]| = negl(k). We denote Xk =s Yk.

If the above holds for all circuit families of polynomially bounded size, we say Xk, Yk are computationally
indistinguishable, denoted by Xk =c Yk.

Representation Models When we say a HE scheme is C-homomorphic for a class of functions, we actually mean
functions having programs C from the set C of programs. By a program C, we mean a string representing
a function f : {0, 1}n → {0, 1}. The correspondence between programs C and the function it represents is
determined by an underlying representation model U . A representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
is an efficient algorithm taking an input (C, x), and returning f(x), where f is the function represented by
C. By |C| we simply refer to the length of the string C (as opposed to size(C), which is a related measure
depending on U , such as the number of gates in a boolean circuit). For completeness, for circuits and other
models we let U(C, x) = 0 whenever the input (C, x) is syntactically malformed.

As typical in the FHE literature, our default representation model is boolean circuits, unless stated
otherwise. We use circuits over some complete set of gates, such as {AND,XOR,NOT}. Another model
we will consider is boolean formulas, which are circuits with fanout 1. We assume the underlying DAGs of
circuits are connected. For formulas, we assume wlog. that depth(C) ≤ c log size(C) for a global constant c
(that is, that they are “balanced”). For a circuit C, size(C) denotes the number of wires in C’s underlying
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graph, and depth(C) the number of gates on the longest path between an input wire and the output wire of
the circuit. By NC1 we refer to the class of function (families) with uniform formulas of size poly(n).

2.1 Homomorphic encryption

Throughout the paper k denotes the security parameter taken by HE schemes. A (public-key) homomorphic
encryption scheme (HE) E = (KeyGenE ,EncE ,EvalE ,DecE) is a quadruple of PPT algorithms as follows.

KeyGen(1k): Outputs a public key, secret key pair (pk, sk).
Enc(pk, b): Takes a public key and a bit b to encrypt, and returns an encryption c of the bit under pk.
Eval(pk, C, c = (c1, . . . , cn)): Takes a public key pk, a bit-by-bit encryption c of a bit vector x ∈ {0, 1}n, a

function represented by a program C (encoded in a pre-fixed representation model U) and outputs an
encryption out of bit U(C, x). We assume wlog. that pk includes 1k (intuitively, this is intended to handle
maliciously generated public keys). We refer to outputs of Eval as “encrypted outputs”.

Dec(sk, out): Takes a secret key sk, and a purported output out of Eval, outputs a bit.

Throughout the paper, HE is semantically secure if (KeyGen,Enc,Dec) satisfies standard IND-CPA secu-
rity for public key encryption schemes as in [GM84]. An HE scheme is weakly circular-secure if even knowing
a bit-by-bit encryption of the schemes’ secret key sk, the adversary still has negligible advantage in the
IND-CPA experiment.In this paper, we consider a general notion of homomorphism, under various program
classes, rather then just circuits (to express weaker homomorphism properties then FHE).

Definition 3 ((U, C)-homomorphic encryption). Let C =
⋃
Ck. We say a scheme E is (U, C)-homomorphic

if for every k > 0 and every program C ∈ Ck on inputs x ∈ {0, 1}n, the experiment

(pk, sk)
$←− KeyGen(1k)

out
$←− Dec(sk,Eval(pk,C,

−−→
Enc(pk,−→x )))

outputs out = U(C, x) with probability 1 for all x ∈ {0, 1} and all random choices of the algorithms involved.
We say the scheme is k-independently homomorphic if Ck = C for all k.11

By default our schemes are k-independently homomorphic (in particular the Ck’s are not explicitly defined).
If a scheme satisfies that C equals the set of all circuits, and is k-independetly homomorphic, we refer to

it as “fully homomorphic” (FHE).

Definition 4. We say a (U, C)-homomorphic scheme E is compact if there exists an output bound B(k, n, |C|) =
poly(k) on the output of Eval on all 1k, n and C ∈ Ck on n bits.

Another standard variant of HE we consider is leveled HE. In this variant, KeyGen is modified to take
another parameter 1d. KeyGen outputs keys (pk, sk), where pk includes a fixed-size part pkEnc, which depends
only on k; likewise, sk depends only on k. Enc is modified to accept pkEnc as the public key, and only Eval
receives the entire public key pk. In particular, Enc is the same for all d. The notions of compact HE is as for
non-leveled schemes (B(k, n, |C|) = poly(k)).For compact schemes, the algorithm Dec is also independent of
d. We say such a leveled compact scheme is an FHE, if for all D, the (standard) HE ED induced by fixing
d = D when calling KeyGen(1d, ·) induces a k-independently C-homomorphic scheme ED, where C is the set
of all depth-D circuits. The encrypted outputs’ size is still poly(k) (for a global polynomial independent of
d).

Standard FHE schemes can be thought of as a special case of leveled FHE schemes where KeyGen simply
ignores d. Thus, all schemes Ed are the same (standard) FHE scheme. We refer to this special case as unleveled
FHE. A HE scheme is maliciously circuit private if every (pk, c) (even arbitrarily malformed) induce some
“effective” input x∗.

11 For instance, the notion of “somewhat homomorphic” schemes in the FHE literature corresponds to non k-
independent schemes, where Ck is a set of circuits with depth bounded by some function of k.

8



Definition 5. Let E = (KeyGen,Enc,Eval,Dec) denote a (U, C)-homomorphic scheme. We say E is (mali-
ciously) circuit private if there exist unbounded algorithms Sim(1k, pk∗, c∗, b), and deterministic Ext(1k, pk∗, e∗),
such that for all k, and all pk∗, c∗ = (c∗1, . . . , c

∗
n) and all programs C : {0, 1}n → {0, 1} ∈ (U, C) in Ck the

following holds:

–
−→
x∗ =

−→
Ext(1k, pk∗,

−→
c∗).

– Sim(1k, pk∗, c∗, U(C, x∗)) =s Eval(1k, pk∗, C, c∗).

In particular, for circuits C(x1, . . . , xn) ∈ Ck the output distribution of Eval (including length) depends only
on n, k. For leveled schemes, Sim and Ext also take a depth parameter 1d. We say a scheme is semi-honestly
circuit-private if the above holds, where pk∗, c∗ belong to the set of well-formed public-key, ciphertext pairs.

On leveled HE. As mentioned before, the reason this relaxation of compact FHE is considered, is that so far,
all (compact) FHE schemes were obtained using Gentry’s bootstrapping theorem, which assumes circular
security of an underlying bootstrappable HE scheme.

Definition 6 (Bootstrappable homomorphic encryption). For a C-homomorphic scheme E = (KeyGen,Enc,Eval,Dec),
let Dec⊕k (c1, c2, sk),Dec∧k (c1, c2, sk),Dec¬k (c, sk) denote the augmented decryption circuits of the scheme, tak-
ing two encrypted outputs out1, out2, decrypting them to obtain bits b1, b2 or b and returning b1 ⊕ b2 and
b1 ∧ b2 or ¬b respectively. We say the scheme is bootstrappable if for all k, Dec⊕k

∣∣
c1,c2

, Dec∧k
∣∣
c1,c2

, Dec¬k |c
are in Ck.

Theorem 3 ([Gen09]). Assume a bootstrappable, C-homomorphic HE scheme E = (KeyGenE ,EncE ,EvalE ,DecE)
exists. Then there exists a compact leveled FHE scheme BS with the following properties:

– KeyGenBS(1d, 1k) outputs (pkBS , sk`, for pkBS = (p1, . . . , p`, e1, . . . , e`), where the (pki, ski)’s are output
by KeyGenE(1k); for all i < ` ei ∈ Enc(pki+1, ski) where ` = O(d).

– Enc,Dec apply Enc,Dec to pk1 and sk` respectively.

If E is weakly circular secure, one can set pki = pk1 and ski = sk1, where (pk1, sk1) are sampled from
KeyGen(1k) (which results in a standard FHE scheme).

Constructions of bootstrappable HE schemes from (more) standard assumptions (rather than just assum-
ing circular security) are currently unknown.12 On a high level, bootstrapping-based leveled FHE schemes
allow to circumvent this difficulty by encrypting each circuit level under a different key, according to an
acyclic sequence of independently generated keys. The transformation involves homomorphic decryption
(and reincryption) of the encrypted outputs under the same scheme on each level (much as we do in step 3,
for instance). The goal of this operation is to reduce the noise level of the ciphertext (which is low for outputs
of Enc, and grows with homomorphic operations, especially multiplications), as decryption correctness is lost
when it becomes too high. Setting all keys to be the same results in a compact key – an unleveled scheme. On
the other hand, this involves encrypting sk under its corresponding pk, which requires the circular security
assumption) All these keys are published as pk.

We define leveled FHE as having Enc,Dec algorithms which are independent of d. The requirement of
Enc being independent of d is not always made in the literature on leveled FHE. Consider for instance
“second generation” constructions of leveled FHE that use modulus switching techniques to improve noise
growth [BV11,BGV12,Bra12]. In [BGV12], for instance, Enc depends on circuit depth as well. For our ap-
plication of computing on encrypted data, we want to minimize the dependence of receiver’s work on circuit
parameters, and thus prefer schemes where receiver’s work depends on circuit depth only in KeyGen.13

12 Furthermore, contrary to common belief, it was recently shown that IND-CPA security does not imply weak circular
security [Rot13].

13 If we additionally apply bootstrapping every d(k) levels, the resulting scheme becomes compact in the sense we
need. “Squashing” using sparse subset sum is not required for a proper setting of d(k).
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3 Framework

In this section we spell out the construction outlined in the introduction in more detail, but combining
steps 1 and 2 for simplification. We will need the representation model (USI , C) (from “split-input”) and the
weaker notion of “input-privacy” for P:

Programs in the model are represented by a pair (Cp, Cs), where Cp is a circuit on some m variables, and

Cs ∈ {0, 1}t for some t ≤ m. A program (Cp, Cs) is interpreted as a function f over n = m− |Cs| variables
via USI((Cp, Cs), x) = Cp(Cs, x). Typically, we will consider (USI , C)-homomorphic schemes where for each
(Cp, Cs), all (Cp, Z) for Z ∈ {0, 1}∗ of length t ≤ m are in C. In this case, we specify C as just a set of
circuits.

We say a (USI , C)-homomorphic scheme is input-private if it satisfies Definition 5, with the only modi-
fication that Sim receives Cp as an input. (This is exactly the guarantee from converting any 2PC protocol
where both parties have private input but the function is public to an HE.)

The purpose of introducing this seemingly unnatural representation model and relaxed circuit privacy
definition is to allow for simpler implementations of auxiliary HE schemes we use, and overall presentation
of our result. The implementation we use for P is based on Yao’s garbled circuits, which only protect the
inputs but leak quite a lot about the circuit. We could evaluate a universal circuit under Yao to get real
circuit privacy but it would be overkill—in Construction 7 we’ll want to evaluate under P functions that are
essentially public (Dec, V alidate). But we have private inputs from both the encryptor and the evaluator14

to be fed into the non-secret function—that’s why we complicate the representation model to have a secret
portion Cs.

3.1 From compact FHE to circuit-private (somewhat compact) FHE

In this section we spell out the combination of steps 1 and 2 as described in the introduction. The schemes
F ,P are a compact FHE, and maliciously circuit private HE respectively. Here P is for the split input model,
and is input-private rather then circuit-private. Although the construction would go through with standard
circuit privacy of P, this simplifies the presentation and instantiation of the framework.

Given a leveled FHE F we define a set of programs CF (to be interpreted via USI) as follows.

1. Let DecF,k(skF , outF ) denote the decryption circuit of F instantiated with security parameter k (recall
Dec,Enc are independent of d).

2. Let V alidatek,d,n(pkF , cF , sk
′
F , rFE , outF ) be the circuit computing

V alidatek,d,n(. . .) =



outF if (pkF , skF ) ∈ KeyGenF (1k, 1d), and

∀i (cF,i ∈ EncF (bi) for some bit bi ∈ {0, 1})
in both evaluations randomness and intermediate

values equal rFK ,
−→r FE respectively.

−→
0 otherwise.

where:
– (pkF , skF ) is a purported public-key private-key pair output by KeyGenF (1k, 1d). sk′F = (skF , rFK)

where rFK is the purported random string used in the generation of (pkF , skF ), along with all the
intermediate outputs of gates in the circuit for KeyGen on input rFK .15

14 This situation comes up many times in this paper. The formalism of circuit-private FHE only allows one party to
provide inputs but when composing it out of itself, we repeatedly needed extra private inputs from the evaluator.

Usually we handle this by hard-wiring the input into the circuit. (Creating a fresh encryption works similarly but
is less efficient and sometimes problematic because a malicious public key could produce malformed encryptions.)
But here the circuit is going to be public, so we must keep the private input separate.

15 As explained in the intro, the goal of the intermediate values is to put the validation in NC1, making it implementable
by known circuit-private P with the required notion of privacy.
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– cF = (cF,1, . . . , cF,n) is a purported encryption under pkF of the input bit vector and rFE is a
purported vector of randomness used when generating cF , along with intermediate values for the
circuit (where rFK,i corresponds to bit xi).

3. Let CF include all pairs of the forms C = (V alidatek,d,n(. . .), (pkF , cF , outF )) and (DecF,k(skF ), outF ).

Construction 7 Let F ,P be schemes as above. We construct the following scheme M3.

KeyGenM3
(1k): let (pkP , skP)

$←− KeyGenP(1k), (pkF , skF )
$←− KeyGenF (1k, 1d), and let sk′F = (skF , rKF ),

where rKF is induced by the randomness used by KeyGenF as specified in V alidate; −−→psk′F =
−−−→
EncP(pkP ,

−−→
sk′F ).

Return (pkM3 , skM3) = ((pkP , pkF ,
−−→psk′F ), (skP , skF )). Here pkM3,Enc = (pkP , pkF,Enc, pskF ).

EncM3
(pkM3

= (pkP , pkF,Enc, pskF ), b ∈ {0, 1}): Return (c,−−→prFE
) = (EncF (pkF , b),

−−−→
EncP(pkP ,

−−→rFE), where
rFE is derived from the randomness used by EncF as in V alidate.

EvalM3(1k, pkP = (pkP , pkF , psk′F ), C, c = (cF ; prFE
)):

1. If C is syntactically malformed, or |x| does not match the number of inputs to C, replace C with the
circuit returning x1 ∧ x1.

2. Set outF = EvalF (pkF , C, cF )), outP = EvalP(pkP , (DecF , outF ), pskF )
3. Let (Cp, Cs) = (V alidatek,d,n, (outP , pkF , cF ))
4. Compute and output out = EvalP(pkP , (Cp, Cs), psk′F , prFE

).

DecM3(skM3 , out): Output y = DecF (skF ,
−−−→
DecP(skP ,

−→
out)).

Theorem 4. Assume a compact leveled FHE scheme F = (KeyGenF ,EncF ,EvalF ,DecF ) and P a (USI , CF )-
homomorphic, input-private scheme, exist. Consider the resulting scheme M3 as specified in Construction 7
above when instantiating with F ,P. Then M3 is a circuit-private FHE. It is unleveled iff M3 is unleveled,
and is compact iff P is compact. If P is not compact, M3’s output complexity is poly(k, d, n) (poly(k, n) if
F is unleveled).

3.2 Compactization of circuit-private FHE

When instantiated by the best known constructions from the literature, Theorem 4 only yields poly(n, k), poly(n, d, k)
encrypted output complexity for unleveled and leveled F respectively. This is so, since all circuit-private CF -
homomorphic P for some FHE F we know of are not compact.

In this section, we devise a simple transformation (corresponding to Lemma 3 in the introduction) for
making a (leveled) scheme’s output compact (only poly(k)), while preserving circuit privacy. This will yield
leveled circuit-private FHE with optimal (poly(k)) compactness.

The idea is to use bootstrapping similar to that of step 1 but “in reverse” order. Namely, we take a main
schemeM3 which is circuit-private but not compact, and ”decrypt” it under a scheme A3 which is compact
but has no circuit privacy guarantees.

Theorem 5 (Compaction theorem). Assume a leveled C-homomorphic circuit-private scheme M3 and
a compact FHE scheme A3 exist.16 Then the scheme M4 in the following construction is a compact C-
homomorphic circuit-private scheme.

Construction 8 Let M3,A3 be HE schemes as in Theorem 5.

KeyGenM4
(1k, 1d): Sample (pkM3 , skM3)

$←− KeyGenM3
(1k, 1d); let sk′M3

= (skM3 , rk); (pkA3 , skA3)
$←−

KeyGenA3
(1k); Output (pk, sk) = ((pkM3 , pkA3 , askM3

), skA3). Here pkEnc = (pkM3,Enc, pkA3 , askM3
).

EncM4
(pk, b): Output EncM3

(pkM3,Enc, b).
17

16 In fact, A3 should only be compact and homomorphic for the circuit family it is used for. It does not need to be
an FHE.

17 Here and elsewhere, we do not distinguish between the parts of pk used in Eval and Enc, and refer to both as pk.
The distinction is implied by the context.
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EvalM4(1k, pk, C, c):

– outM3

$←− EvalM3
(1k, pkM3

, C, c).
– Let DecM3,k denote the decryption circuit of M3 with parameter k.

Then DecM3,k|out=outM3
(skM3) is a circuit for decrypting (hard-wired) outM3 under secret keys

generated by KeyGenM3
.

– Compute and output outA3
= EvalA3

(1k, pkA3
, DecM3,k, askM3

).

DecM4(sk = skA3 , out): Output DecA3(skA3 , out).

Combining Theorem 4 and Theorem 5, we get:

Theorem 6. Assume a compact unleveled FHE scheme F and a (USI , CF )-homomorphic maliciously input-
private scheme P exist. Then there exists a maliciously circuit-private compact unleveled scheme M4.

Getting rid of circular security Theorem 5 still leaves open the question of obtaining compact leveled circuit-
private FHE. We show that posing some mild additional efficiency requirements on M3,A3 in Theorem 5,
we are able to modify Construction 8 to allow for a leveled A3.

Theorem 7. Assume schemes F ,P as Theorem 6 exist. Additionally, assume DecP,k(out, sk) has depth
poly(depth(Cp), k), where out = EvalP(Cp, Cs) for some Cs.

18 Assume also that {DecF,k} induced by F is
in NC1. Then there exists a compact leveled circuit-private scheme M4.

3.3 Multi-hop circuit-private FHE

In this chapter, we focus on unleveled FHE schemes and show how to upgrade Theorem 6 to yield a multi-hop
M4 (under the same assumptions). A multi-hop scheme is an FHE scheme, where Eval is modified to support
(pk,C, c), where the ci’s are either outputs of Enc or of previous Evals. More formally, if ci is a purported
output of Enc we label it as a level-0 execution of Eval. We recursively define an execution of Eval to be of
level l, if the highest level input ci to it is of level l − 1. Syntactically, we modify Eval to take an encrypted
output c = (c1, . . . , cn), where each ci is a (purported) output of either Enc or Eval. Indeed, we may assume
wlog. that we need not include the level of ci, or even whether it is an output of Enc or of Eval, as it is
possible to construct FHE schemes where the supports of level-l executions of Eval come from the same finite
set for all l ≥ 0. We say that a level-0 ciphertext is well-formed under pk, encrypting b, if it is a valid output
of Encpk(b) under a well-formed key pk. Recursively, we say a level l > 0 ciphertext c′ is well-formed under
pk, if it is an output of Eval on a valid key pk, some circuit C, and all its input ci’s are well-formed level< l

ciphertexts under the same pk. If −→c encrypts
−→
b , we say that c′ encrypts C(b).

Perfectly correct multi-hop is a natural recursive extension of Definition 3. Namely, we require that if
a level-i (i > 1) ciphertext encrypts a bit b, then Dec(sk, c) outputs b with probability 1 over the random
choices of KeyGen (when outputting (pk, sk)), and of Dec. Similarly, a scheme is i-hop if it satisfies the above
correctness requirements only for level-j executions of Eval, where j ≤ i. Thus standard FHE corresponds to
1-hop. The definitions of IND-CPA security and compactness extend for multi-hop schemes in the natural
way. The definition of maliciously circuit-private multi-hop FHE is precisely Definition 5. The notion of
semi-honest encryption requires that pk is a valid public key, and all ci’s are well-formed ciphertexts under
pk of some level li ≥ 0 respectively. 19

The construction induced by Theorem 6 is 1-hop, but not multi-hop. There exists a straightforward
transformation from compact FHE schemes into multi-hop schemes (see discussion in Section 1), but it does
not necessarily preserve malicious circuit privacy. However, it can be modified to work here. We start from
the scheme M4 resulting from our construction, instantiated with an FHE F , and a maliciously circuit
private P, whereM1 = A3 = F , and A1 = A2 = P, reusing keys for the same scheme. Thus, both encrypted

18 The circuit for Dec can be efficiently computed from out.
19 Observe that even our semi-honest privacy requirement combined with perfect correctness implies that the levels

of the input encryptions involved are not revealed by the output of Eval.
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inputs and encrypted output ofM4 are encryptions under F and same key. We can thus include encryptions
of the bits of skF in pkMH . In subsequent executions of Eval using this one as input, one can first decrypt
the outi’s using these key bits, and plug the decrypted outi’s into the original schemeM4 as the ci’s input to
Eval. The main caveat is that in our construction the well-formedness of the ci’s fed to a subsequent instance
of Eval needs to be certified (under P) as part of the output of the previous Eval. The key observation is that
there is no need to certify the well-formedness of the outi’s, but rather only that of the secret key bits used
for decryption!20 Moreover, we only need to prove that skF constitute valid encryptions of some bits under
pkF specified in pkM4

(not even correspondence to the pkF published as part of pk!). This is ok because
skF is short and independent of the circuit being evaluated. As these are decrypted under the specified key
bits in subsequent Eval’s, the result would be an enryption of some value independent of the (subsequent)
C, which is what we need (as in M4, if validation fails, nothing is learned about C).

In the next section, we describe the multi-hop construction in full detail. For convenience, here we describe
a (variant of) the combination of all 3 steps in a single construction.

A formal construction The schemes F ,P are a compact FHE, and maliciously circuit private HE re-
spectively. Here P is for the split input model, and is input-private rather then circuit-private. Although
the construction would go through with standard circuit privacy of P, this simplifies the presentation and
instantiation of the framework.

Given a leveled FHE F we define a set of programs CF (to be interpreted via USI) as follows.

1. Let DecF,k(skF , outF ) denote the decryption circuit of F instantiated with security parameter k.
2. Let V alidatek(pkF , sk

′
F , fFK , rFKE , outF ) be the circuit computing

V alidatek(. . .) =


outF if (pkF , skF ) ∈ KeyGenF (1k), and

fFKE is an encryption of a string of bits (the length of secret keys of F)

with randomness and intermediate values −−→rFK ,−−−→rFKE respectively.
−→
0 otherwise.

where:
– (pkF , skF ) is a purported public-key private-key pair output by KeyGenF (1k). sk′F = (skF , rFK)

where rFK is the purported random string used in the generation of (pkF , skF ), along with all the
intermediate outputs of gates in the circuit for KeyGen on input rFK .

– fFK is a purported encryption of sk that corresponds to pk under pk. −−−→rFKE is the vector of random-
ness and intermediate values used by EncF .21

3. Let CF include all pairs of the forms C = (V alidatek(. . .), (pkF , fFK , outF )) and (DecF,k(skF ), outF ).

Theorem 8. Assume a compact unleveled FHE scheme F and a (USI , CF )-homomorphic maliciously input-
private scheme P exist (both 1-hop). Then the scheme M4 in Construction 9 a maliciously circuit-private
multi-hop compact (unleveled) scheme.

Construction 9 Let F ,P be (1-hop) schemes as in Theorem 8. Then, the following construction is a com-
pact, unleveled multi-hop FHE scheme.

KeyGenMH(1k) :

1. Let (pkP , skP)
$←− KeyGenP(1k).

2. (pkF , skF )
$←− KeyGenF (1k).

3. Let sk′F = (skF , rFK), where rKF is induced by the randomness used by KeyGenF in Item 2 as
specified in V alidate.

20 If we had to certify them, seemingly, we would need to give a proof on the validity of the execution of Eval,
referring to its inputs. It is not clear how to make it short and protect the privacy of that Eval’s circuit.

21 Note that we do not check that the encrypted values correspond to an sk that matches pk.
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4. psk′F
$←−
−−−→
EncP(pkP ,

−−→
sk′F ), fskF

$←−
−−−→
EncP(pkF ,

−−→
skF ).

5. prFKE

$←− Enc(pkP ,
−−−→rFKE), where rFKE is induced by the randomness of EncF generating fskF , as

specified in V alidate.

6. fskP
$←−
−−−→
EncP(pkF ,

−−→
skP)

7. Return (pkMH, skMH) = ((pkP , pkF , psk′F , fskF , pFKE), (skP , skF )).

EncMH(pkMH = (pkP , pkF , pskF ), b ∈ {0, 1}): Set c = EncF (pkF , b).
22 Let c′ = EvalF (pkF ,DecF )

EvalMH(1k, pkP = (pkP , pkF , psk′F , fskF , fskP , prFKE
), C, cF ):

1. If C is syntactically malformed, or |x| does not match the number of inputs to C, replace C with the
circuit returning x1 ∧ x1.

2. c′F = EvalF (pkF ,
−−−−−−→
DecF,k|−→cF , fskF ) 23

3. Set outF = EvalF (pkF , C, c
′
F )), outP = EvalP(pkP , (DecF,k, outF ), pskF )

4. Let (Cp, Cs) = (V alidatek, (outP , pkF , fskF ))
5. Let outP = EvalP(pkP , (Cp, Cs), psk′F , prFKE

)
6. Output out = EvalF (pkF ,DecP,k|out=outP , fskP )

DecMH(skMH, out): Output y = DecF,k(skF , out).

4 Instantiations of the framework

We devise instantiations of schemes F ,P as required in Theorem 7. As these requirements are strictly
stronger then the requirements in Theorem 6, they immediately yield an instantiation of Theorem 6 as well.
The component F has many instantiations from the literature.

For P we use the following instantiation, induced by the specific construction combining an information
theoretic variant of Yao’s garbled circuits [IK02] with maliciously circuit-private OT-homomorphic schemes.

Lemma 4. Assume the existence of circuit-private schemes which are homomorphic for (bit) OT. In par-
ticular, the DDH,QR,Paillier or the DCRA assumptions yield such OT schemes [AIR01,HK12]. Then there
exists a circuit-private (USI , C)-homomorphic scheme P where C consists of all (balanced) formulas. Fur-
thermore, P has decryption circuits DecP,k(sk, out) of depth depth(Cp)poly(k), where out = EvalP(Cp, Cs).

See Section B.2 for proof of the lemma.
The following corollary of Theorem 7 (6) and Lemma 4 is our working, ”take-home”, instantiation of the

framework.

Corollary 1. Assume a leveled FHE F with decryption circuits in NC1 exists. Assume further that there
exist (bit) OT-homomorphic circuit-private HE B. Then there exists a circuit-private compact FHEM4.M4

is unleveled if F is.

See section B for proof sketch (almost immediate).
As mentioned above, F has many “efficient enough” instantiations. Namely, almost all schemes from the

literature fit (after an augmentation to achieve perfect correctness, truncating the noise used in encryptions),
such as various recent LWE-based constructions [BV11,Bra12].

5 Future work

The “work horse” of our bootstrapping-based transformation 1 for transforming FHE into circuit-private is
a circuit-private bit-OT-homomorphic HE. The known constructions from the literature we are aware of can
not base circuit-private OT on some assumption the implies FHE (such as LWE, approximate GCD etc.).
We do not see good reasons, except for historical ones to why this is the case. Such a construction would
give an example of compact FHE which can be made circuit-private without additional assumptions.

22 The subsequent procedure is meant for making sure that valid level-0 encryptions have the same support as level-i
ciphertexts for other i ≥ 1.

23 “Sanitize” c. This is the key modification allowing for the multi-hop construction.
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A Details on framework

A.1 Proof of Theorem 4

Correctness. It is easy to see that the proposed scheme remains correct if all keys and ciphertexts are well-
formed. Namely, as all validations pass, outP encrypts outF (under P), which in turn encrypts C(x) (under
F), which is properly decrypted by perfect correctness of both P,F .

Efficiency. We run EvalP on some V alidatek,d,n on input (pk, sk′,−→cF ,−→rF , outF ). By definition of leveled
schemes, this input to V alidatek,d,n is of size m = poly(k, d, n). The dependence on d is only because |pk|
may depend on d in leveled schemes. Thus, if P is compact, the encrypted output size |outP | is poly(k) (a
compact scheme). Otherwise, if F is standard (not leveled), m = poly(k, n), thus encrypted output size is
also poly(k, n).

Semantic security. Follows by standard techniques. In particular, the analysis is similar to that of semantic
security of leveled FHE schemes [Gen09] (as we avoid “cycles” in the graph of encryptions under the various
keys).

Circuit privacy. We describe a pair of algorithms Extl,SimP , as required.

ExtM3
(1k, pk∗ = (pk∗P , pk

∗
F , p

∗
sk′F

), c∗ = (c∗F , p
∗
rFE

)):

1. Let SimP ,ExtP as guaranteed by Definition 5, and let
−→
x∗P = (r∗FE , sk

′∗
F ) =

−−→
ExtP(1k, pk∗P ,

−−−−−−→
p∗rF ,
−−→
p∗sk′F

).

2. If (pk∗F , sk
∗
F ) 6= (KeyGenF (1k, 1d, r∗k)) (r∗k is the randomness implied by r∗FK), return 0. Here, the

“secret” parts r∗FK , r
∗
FE , sk

∗
F are taken from ExtP ’s output, and the rest are taken from the input.

3. Otherwise, If c∗F = EncF (pk∗F , r
∗
FE , b) for some bit b, return b.

4. Otherwise, return 0.

SimM3
(1k, pk∗ = (pk∗P , pk

∗
F , p

∗
sk′F

),
−→
c∗ = ((c∗F,1, p

∗
rFE,1

), . . . , (c∗F,n, p
∗
rFE,n

)), b):

1. Let SimP ,ExtP as guaranteed by Definition 5, and let
−→
x∗P =

−−→
ExtP(1k, pk∗P ,

−−−−−−−→
(p∗rF ,

−−−→
p∗sk′F

))).

2. If the check in Ext(1k, pk∗, c∗i ) fails for (pk∗F , sk
′∗
F ) or for some i ∈ [n]:

Output SimP(1k, pk∗P , V alidatek,d,n,
−−−−−−−→
p∗sk′F

,
−−→
p∗rFE

,
−→
0 ).

3. Otherwise: Compute outP = SimP(DecF,k, pk
∗
P , p

∗
skF

, b),

output out = SimP(1k, pk∗P , V alidatek,d,n,
−−−−−−−→
p∗sk′F

,
−−→
p∗rFE

, outP).

We have specified ExtP of the proper form, so it remains to analyze SimP . Let x∗P = (sk′
∗
F , r
∗
FE) =

−−→
ExtP(1k, pk∗P ,DecF,k,

−−−−−−−→
(p∗sk′F

,
−−→
p∗rFE

))). There are several cases.

– Assume V alidatek,d,n|c=c∗F ,pk=pk∗F (sk′∗F , r
∗
FE) = 0. Then by definition

V alidatek,d,n|c∗F ,pk∗F ,outF (sk′∗F , r
∗
FE) =

−→
0 for all outP . By construction of SimM3

,ExtM3
, this condition

is always correctly detected (line 2 in SimM3
). By circuit privacy of P, and as the value passed to SimP is

V alidatek,d,n(Cs, sk
′∗
F , r

∗
F ) for Cs = (c∗F , pk

∗
F , outF ), which exactly equals V alidatek,d,n|c∗F ,pk∗F ,outF (sk′∗F , r

∗
F ) =

−→
0 (as computed in EvalM3). Thus, SimP (in line 2) statistically simulates EvalM3 ’s output in this case.

– Otherwise, (pk∗F , sk
∗
F ) = KeyGen(1k, 1d, r∗k), and

−→
c∗F =

−−−→
EncF (pk∗F ,

−→xF ,
−→
r∗F ) for some −→xF ∈ {0, 1}n. In

other words, pk∗F , c
∗
F are a valid public-key, encryption-vector pair. Thus the output of V alidatek,d,n

in EvalM3 is distributed as EvalF (pkF , C, xF ). Then by perfect correctness of F , this always decrypts
to C(xF ). Assume we show that −→xF is exactly the vector returned by ExtM3

. Then, when computing
outP by SimM3

, its distribution is as the EvalM3
, as b = C(xF ) is passed to SimP when extracting

outP . Consequently, the simulated out is also statistically indistinguishable from out in EvalM3
, again

by validity of SimP .
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It remains to prove −→xF above was indeed extract by ExtM3
. Let

−→
x∗F denote a vector as extracted in the

series of executions of ExtM3 on
−→
c∗ . This is so, since ExtM3 exits in line 3 on all c∗i , and it can not return

a different bit x∗i 6= xF,i, or we obtain two valid decryptions of some encryption c∗i , contradicting the
correctness F (Plug the identity function f(x1) = x1 into Definition 3). Thus, SimM3

receives b = C(xF )
as its last input.

A.2 More details on compaction (step 3)

Proof of Theorem 5 The main observation is that Eval computes the output of EvalP on the input pk∗,−→c ∗,
which reveals no “redundant” information, and perform some randomized computation on it (homomorphi-
cally decrypt via F), using randomness which is independent of outP . More precisely, we can define:

ExtM4(1k, 1d, pk∗, c∗): return x∗ = ExtM3(1k, pk∗, c∗).
SimM4(1k, 1d, pk∗ = (pk∗M3

, pk∗A3
, s∗skP ), c∗, b = C(ExtM3(1k, pk∗, c∗))):

– Let out′M3
= SimM3

(1k, pk∗, c∗, b).

– Output out′A3
= EvalA3

(1k, pk∗F , DecS,k|out=out′M3
,
−−−→
fskM3

)).

Let C ∈ C, and set some pk∗, c∗. Conditioned on out′M3
= outM3 , out′A3

is distributed exactly like outA3 ,
as both SimM4

and EvalM4
run the same process on the same input distribution. Now, out′M3

is statistically
close to outM3

by circuit-privacy of M3, so outA3
, out′A3

are also statistically close, and validity of SimM4

follows.

Proof of Theorem 7

High level intuition We follow a similar path of combining Theorem 4 with Theorem 5. Here we use the
structure ofM3 in Theorem 5, rather then just the existence ofM3. Naturally, we pick a leveled scheme F in
Theorem 4 (and a suitable non-compact P), resulting in a circuit-private schemeM3. To eliminate the need
of assuming circular security, we modify Theorem 5 to use a leveled compact F as well. The modification is
straightforward, by passing the right bound d′ on the (decryption) circuit depth to evaluate by C. However,
estimating d′ poses a technical problem. The encrypted output of P is of size m = poly(k, d, n), where d, n
is the bound on circuits C the scheme M3 is to evaluate, and n is the number of variables of the concrete
circuit to evaluate. The depth of the decryption circuit A3 needs to evaluate is then generally some poly(m)
as well.

However, n is only known upon Eval, while d′ should be estimated at KeyGen! The first observation is
that we can bound n ≤ 2d, as circuits are assumed to have connected underlying DAGs. Still, this leaves
us with circuits of size (and possibly depth) poly(m) = poly(k, 2d). Thus, KeyGenA3

may run in exponential
time in d, making KeyGenM3

inefficient as well. However, if DecP,k,d has efficient enough circuits, we could
hope to overcome this caveat, as we indeed manage to.

With a particular instantiation in mind, in Theorem 7, we impose some additional efficiency requirements
on both A3,M3, that allows the approach of combining Theorem 4 and Theorem 5 go through.

Filling in the details. We createM4 by using the outputM3 of Theorem 4 and F asM3,A3 in Theorem 5
respectively, when augmented to accept a (compact) leveled A3. As explained before, the main technical
difficulty arises in KeyGenM4

, when bounding d′ passed to KeyGenA3
by some poly(k, d). By construction, the

inputs to both DecF,k and V alidatek,d,n is of size m = poly(k, n, d) (for some global polynomial independent
of d). As V alidatek,d,n is in NC1, and DecF,k is assumed to be as well, the depth of each is bounded by c logm
for some (global) constant c. By construction, the decryption algorithm for P is the decryption algorithm
forM3 (recall that the circuit is computed based on out). By assumption onM3, the size of this (one such)
circuit is poly(d), for d′ = depth(V alidatek,d,n, DecF,k). Since they are both in NC1, d′ = poly(c logm, k),
where c is a constant known to KeyGenM4

(depending on the concreteM3,A3). This is in turn ≤ poly(d, k),
since n ≤ 2d.

Another minor issue to note is that the resulting scheme’s decryption algorithm is indeed independent of
d, since it applies DecF,k (on an output of EvalF ), where F is a compact leveled scheme.
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A.3 Proof of Theorem 8

Correctness. Given perfectly correct F ,P, perfect correctness of MH follows by simple induction. That is,

by construction an application of Evalpk on C and a well-formed ciphertext vector −→c encrypting
−→
b under

pk results in c′ that decrypts to C(b) with probability 1 (in particular, all validations pass).

Efficiency. The output of the scheme is an output on an EvalF , which is a compact scheme, thus it is of size
poly(k).

Semantic security. Follows by standard techniques from semantic security of F ,P. We also need to assume
weak circular security of F ,P, as we are reusing keys (unlike in our leveled constructions).

Circuit privacy. We describe a pair of algorithms ExtMH,SimMH, as required.

ExtMH(1k, pk∗ = (pk∗P , pk
∗
F , p

∗
sk′F

, f∗skF , f
∗
skP

), c∗ = c∗F ) :

1. Let SimP ,ExtP as guaranteed by Definition 5, and let
−→
x∗F = (r∗FKE , sk

′∗
F ) =

−−→
ExtP(1k, pk∗P ,

−−−−−−−−→
p∗rFKE

,
−−→
p∗sk′F

).

2. (a) If (pk∗F , sk
∗
F ) is not generated by (KeyGenF (1k)) with randomness and intermediate values as

specified by r∗sk′F
, return 0. Here and in the following the “secret” parts (r∗FKE , sk

′∗
F ) are taken

from ExtP ’s output, and the rest are taken from the input.

(b) Otherwise, If f∗skF is not generated by
−−−→
EncF (pk∗F ,

−→
b ) with randomness and intermediate values

as specified by r∗FKE , return 0.

3. Otherwise, return b = DecF,k(EvalF (pk∗F ,DecF,k|c=c∗F , f
∗
skF

), sk∗F ).

SimMH(1k, pk∗ = (pk∗P , pk
∗
F , p

∗
sk′F

, f∗skF , f
∗
skP

),
−→
c∗ = (c∗F,1, . . . , c

∗
F,n), b) :

1. Let SimP ,ExtP as guaranteed by Definition 5, and let x∗P =
−−→
ExtP(1k, pk∗P ,

−−−−−−−−→
p∗rFKE

, p∗sk′F
)).

2. If the check in ExtF (1k, pk∗, c∗i ), 2.a or 2.b fails for some i ∈ [n]:

(a) Let outP =
−−−→
SimP(1k, pk∗P , V alidatek,n, (p

∗
sk′F

, p∗rFKE
),
−→
0 ).

(b) Otherwise: let outP = SimP(DecF,k, pk
∗
P , p

∗
skF

, b)

then set out′P =
−−−→
SimP(1k, pk∗P , V alidatek,n, (p

∗
sk′F

, p∗rFKE
),
−−→
outP).

3. Output EvalF (pk∗F ,DecP,k|out=out′P , f
∗
skP

)

We have specified ExtMH of the proper form. It remains to analyze SimMH. Let x∗P = (sk′
∗
F , r

∗
FKE) =

−−→
ExtP(1k, pk∗P ,DecF,k,

−−−−−−−−→
(p∗sk′F

, p∗rFKE
))). There are several cases.

– Assume V alidatek,n|fskF=f∗skF
,pk=pk∗F

(sk′∗F , r
∗
FKE) = 0. Then by definition

V alidatek,n|f∗skF ,pk
∗
F ,outF

(sk′∗F , r
∗
FKE) =

−→
0 for all outF

By construction of SimMH,ExtMH, this condition is always correctly detected (Item 2.a in SimP).
By circuit privacy of P, and as the value passed to SimP is V alidatek,n(Cs, sk

′∗
F , r

∗
FKE) for Cs =

(f∗skF , pk
∗
F , outF ), which exactly equals V alidatek,n|f∗skF ,pk

∗
F ,outF

(sk′∗F , r
∗
FKE) =

−→
0 (as computed in

EvalMH). Finally, we apply exactly the same procedure EvalF (pk∗F ,DecP , . . .), with the same inputs
taken from pk∗MH. That is, we apply the same function to negligibly-far random variables outF (real
and simulated), so the distance remains negligible (can not grow). Thus, EvalF (in line 3) statistically
simulates EvalMH’s output in this case.
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– Otherwise, (pk∗F , sk
∗
F ) = KeyGen(1k; r∗FKE), and

−−→
f∗skF =

−−−→
EncF (pk∗F ,

−−→
skF ;

−−−→
r∗FKE) for some x∗F ∈ {0, 1}

h
,

for {0, 1}h being the domain of secret keys generated by KeyGenF,k.In other words, f∗skF is a well-formed
encryption vector under pk∗F (same for all coordinates (not necessarily a secret key corresponding to
pk∗F , and even if so, not necessarily the one encrypted in p∗rKE

).

Assume we show that
−→
b =

−−−−−−→
DecF,k|

−→
c∗

(x∗F ) is exactly the vector returned by ExtP . Then, when computing

out′F by SimP , its distribution is as the EvalMH, as y = C(x∗F ) is passed to SimMH as last input (bit),
and used in line 2.b. Consequently, out′F is also statistically indistinguishable from out in EvalMH, again
by validity of SimP . Finally, as the same transformation is applied to the output of V alidatek both in
EvalMH, and in the simulation, the validity of SimMH would follow.

It remains to prove that
−→
b =

−−−−−−→
DecF,k|

−→
c∗

(x∗F ) as above is indeed extracted by
−−→
ExtP . Let

−→
b∗F denote a vector

as extracted in the series of executions of ExtP on
−→
c∗ . This is so, since ExtMH exits in line 3 on all c∗i

(all checks pass). Recall that f∗skP is a well-formed encryption, under the well-formed key pk∗F (as follows
from passing both tests in 2). Thus, applying DecF,k in line 3 will result in the corresponding bi bit used
in EvalMH, by perfect correctness of F .

B Details on instantiations of the framework.

Our “take-home”, working version of our framework is given in Corollary 1. It can transform almost any FHE
from the literature into circuit-private FHE with only mild additional assumptions (namely, circuit-private
bit-OT-homomorphic HE). In fact, most instantiations of FHE nowadays have decryption circuits in NC1.
For instance, LWE-based constructions, such as [BV11] have decryption based on linear algebra over Zp for
large integers p, and verifying some c mod p (noise) is not too high. These operations are typically in NC1,
allowing various instantiations of F . FHE schemes from the ”first generation”, obtained by using Gentry’s
original blueprint, applying “squashing” and then bootstrapping to a somewhat homomorphic scheme, are
also good candidates for applying Theorem 1. In particular, squashing of somewhat homomorphic encryption
using the sparse subset sum assumption does not compromise efficiency of decryption. See the following
section for a detailed efficiency analysis of decryption of the (bootstrappable) DGHV scheme. In fact, we
show that the scheme has validation circuits in NC1 as well. Although not required for our construction, this
results in improved concrete efficiency, allowing to supply only the randomness of EncF as validity witness
in Construction 7. In the general case, if validation is carried by a circuit of size poly(k), then encryption
size blows up by an additive factor of poly(k). In fact, this optimization is in fact possible for instantiations
with all known FHE’s from the literature, which have validation circuits in NC1.

By Lemma 4, the existence of B implies the existence of F as required in Theorem ??. The lemma also
gives several possibly instantiations of B from the literature.

Proof Sketch of Corollary 1. The only non-trivial point that remains to observe here is thatM4 satisfies the
efficiency requirements of Theorem 4. F (as implied by the existence of B) is C-homomorphic for C consisting
of all (balanced) formulas. Since V alidatek,d,n, DecF,k ∈ NC1, both have formulas of size polynomial in their
input, and are balanced (c is as required by our representation of formulas). As the inputs to both are in
turn polynomial in EvalM4 ’s input (in fact, it depends on pk,−→c ), the corollary follows.

B.1 Setting F = DGHV in Corollary 1

Lemma 5. Consider the compact leveled FHE F obtained by applying the bootstrapping theorem 3 to [vDGHV09]’s
bootstrappable somewhat homomorphic scheme (the variant without privacy). It is semantically secure assum-
ing the approximate GCD and succinct subset sum assumptions hold. For this scheme, the function family
CF induced by F is in NC1.
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Proof. In the following bve denotes the closest integer to v, and a mod b denotes a − ba/beb (which falls
within (−b/2, b/2]).

For completeness, we present DGHV’s bootstrappable scheme (after squashing [vDGHV09, Section 6]).
For simplicity we describe the slightly simplified variant where p | v0 [vDGHV09, Section 3.3.2]; we could
have used the original scheme as well. (We do not use their re-randomized semi-honestly circuit-private
variant from [vDGHV09, Appendix C].)

Construction 10

KeyGenDGHV (1k):

1. Let p
$←− (2Z + 1) ∩ [2η−1, 2η); r0 = 0; (r1, . . . , rτ )

$←− Z ∩ [−2ρ, 2ρ]τ .

q0, . . . , qτ
$←− [0, 2γ)τ ; relabel so that q0 is the largest. Set vi = pbzi/pe+ 2ri.

Restart unless v0 is odd.

2. Pick a random vector −→s ∈ {0, 1}Θ of Hamming weight θ. For i ∈ [Θ] choose at random integers

ui ∈ Z ∩ [0, 2κ+1) subject to the condition that
∑θ
i=1 siui = b2κ/pe mod 2κ+1.

Let −→w = (u1/2
κ, . . . , uΘ/2

κ), where the wi’s are computed with precision κ bits.

3. Output (pk, sk) = ((−→v ,−→w ), (p,−→s )).

EncDGHV (pk, b): r
$←− Z ∩ (−2ρ

′
, 2ρ); s

$←− {0, 1}τ ; set c′ = (b+ 2r + 2
∑
i sivi) mod v0.

For i ∈ [Θ], set zi = (c′ · wi) mod 2, keeping only dlog θe + 3 bits of precision after the binary point.
Output c = (c′,−→z ).

EvalDGHV (pk, C, (c1, . . . , cn)): Proceed from the bottom up, labeling input wires by the corresponding ci’s;
output wires of XOR gates by (a + b) mod v0, of AND gates by (a ∧ b) mod v0, and of NOT gates by
(a+ 1) mod v0 where a, b are labels of the input wires to that gate.

Let out′, denote the label of the output wire. Compute a vector −→z from out′,−→w as in Enc, and output
out = (out′,−→z ).

DecDGHV (sk = (p,−→s ), out = (out′,−→z )): Output out′ − b
∑
i sizie mod 2.

The parameters are set as in [vDGHV09] (and for the same reasons) in the following way.

– ρ = ω(log k); ρ′ = ρ+ ω(log k).

– η ≥ ρ ·Θ(k log2 k).

– γ = ω(η2 log k).

– τ = γ + ω(k).

– κ = γη/ρ′, θ = k,Θ = ω(κ log k): squashing related parameters.

In [vDGHV09], the authors prove that the scheme is indeed bootstrappable. Let DGHVBS be a leveled
scheme obtained by applying the transformation in Theorem 3 to the above scheme. We prove that the
relevant {V alidatek,d,n(pkF ,

−→cF , sk′F ,
−→rF )}k,d,n, and {Deck(out, skF )}k function families are in NC1.

Construction validity proof.

– Let us first understand the complexity of relevant operations in DGHV (Construction 10). Given a
purported key pair (pk = (−→v ,−→w ), sk = (p, s)), it suffices to check:

• parity of p, v0.

• Check that p | v0, and that vi mod p is not too high for all i.

• Verify the ui’s against p.

To verify encryption of a bit (out,−→w ), given randomness −→w , r verifying out =
∑
i viwi + 2r+ b, and that

−→z = out′ · −→u with the right precision again involves only integer arithmetics, and is in NC1. Similarly,
decryption involves integer arithmetics in NC1.
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– By the bootstrapping construction, DGHVBS ’s public key has O(d) purported public-key private-key
pairs of DGHV to be verified. The private keys are ski’s corresponding to the pki’s are specified as
part of the randomness −→rk (except for sk`, which is included as the private key). One thing to check
is that the (pki, ski) pairs are valid DGHV keys. As noted before, there are O(log ·) formulas for this

task. Then we need to check that each ei is in
−−→
Enc(pki,

−−−→
ski−1). We accomplish this using the parpoted

randomness for each encryption (part of rk) to check validity of encryptions. Then we decrypt using
ski to obtain sk′i, and check that ski = sk′i. As noted above, each of these individual operations (key
validation, decryption and encryption validation for DGHV ) is in NC1. There are poly(k) · (d+ n) such
conditions to verify, that is, a conjunction of the conditions is to be computed. The input size to each
individual check is poly(lambda). Performing the conjunction using a tree of ∧’s, the depth of the formula
is O(k + log n+ log d) which is O(log ·) depth in its input size.

B.2 Proof of Lemma 4

Let OT = (KeyGenOT ,EncOT ,EvalOT ,DecOT ) denote a bit-OT homomorphic scheme. That is, “programs”
are bit pairs (s0, s1) and the input is always a single bit x1. OT ((s0, s1), b) = sb. Such schemes can be
instantiated using one of the following results [AIR01,HK12,IP07]. Fix such a scheme.

We define our scheme using an information theoretic version of Yao’s garbled circuits as in [IK02].

Theorem 9 (information theoretic Yao). Let C denote the set of formulas (recall that wlog. formulas
satisfy depth(C) ≤ D log(size(C)), for some global constant D). For each C(x1, . . . , xn) ∈ C, there exists a
randomized, efficiently computable, functionality pC(−→x ,−→r ) : {0, 1}n × {0, 1}m → {0, 1}t of the form pC =
(p1(x1, r), . . . , pn(xn, r), pn+1(r) = (mask, rest)), where each pi(·) outputs strings of length ti, and mask ∈
{0, 1}. It satisfies:

1. There exists a uniform efficient algorithm A, such that A(C) = pC . In particular, m, t ≤ q(size(C)) for
a global polynomial q.

2. Privacy: For a random r ∈ {0, 1}m, the distribution pC(x, r) depends only on C(x). More precisely, for
every C (of proper depth) there exists an (efficient) simulator SimC , such that for all −→x , SimC(C(x)) is
distributed identically to pC(x). Moreover, all but joint distribution of all but mask is independent of x.

3. Correctness: There exists a decoding circuit DecC of depth O(depth(C)) that for all x ∈ {0, 1}n , r ∈
{0, 1}m, outputs f(x) given pC(x, r).

(Such a functionality is referred in the literature as a “randomized encoding” of the function fC).

Proof sketch. The statement and proof of this theorem already appear (in a slightly different form) in [IK02].
The only aspect that is not explicitly mentioned is the decryption complexity of the randomized functionality
pC . Roughly, evaluating pC involves an evaluation of a garbled circuit for C gate-by gate, to compute a
relevant output key, as in “standard” computational Yao [Yao86]. More precisely, every input wire is assigned
a key-index pair (k, c) for every input value, where both are just portions of the randomness r. The perform
the evaluation, one learns the pair (k, c) corresponding to the value of xi for each input variable xi (one of
two options). Now, every gate g (g ∈ {⊕,∧}) has a table of four strings of the form (kc1,c2 , c), indexed by
bits (c1, c2). Entry (c1, c2) is encrypted via the keys from (ki, c1),(kj , c2) corresponding to its input wires i, j.
The encryption here is simply bitwise XOR with ki⊕ kj . To complete the decryption, the final gate includes
a value rg, so that c⊕ rg is the output.

Thus, having keys corresponding to the input wires, choosing and decrypting the right entry in a gate’s
table is a degree-3 vector of polynomials in the ci, cj , ki,c1 , kj,c2 and g’s plain (kg,·, ·) (decryption is done by
XORing once more). Overall, the resulting depth of the decryption circuit is O(depth(C)).

Thus, we suggest the following scheme for (USI , C) where C includes formulas of depth ≤ D log(size(C))
(D is a constant as in theorem 9).

Construction 11
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KeyGenP (1k): Let (pkOT , skOT )
$←− KeyGenOT (1k).

EncP (pk, b): output EncOT (pkOT , b).

EvalP (pk, (Cp(Cs, x),
−→
Cs),
−→c ): Denote ` = |Cs|+ |x|.

Let pCp
(x, r) = p1, . . . , p`+1 be as in Theorem 9.

– Let r
$←− {0, 1}m, (m is as in pCp

).
– For i ≤ |Cs|, set outi = pi(Cs,i, r).
– For |Cs|+ 1 ≤ i ≤ `:
• Let v0 = pi(0, r), v1 = pi(1, r), both of length ti.

• Set
−−→
outi =

−−−−→
EvalOT (pkOT , (

−−−→v0; v1), ci).
– Let vr = p`+1(r).

– Output (Cp,
−→
out, vr)).

DecP (skOT , (Cp,
−→
out, vr)): For i ≤ |Cs|, recover a key ki = outi; for |Cs| + 1 ≤ i ≤ `, recover a key

ki = DecOT (skOT , outi). Let DecCp,k(·) be a circuit that recovers the output bit from pCp(x, r). Output
DecCp,k(k1, k2, . . . , k`, vr).

Theorem 10. Assume Construction 11 is instantiated with a circuit-private bit OT-homomorphic scheme
OT . Then the scheme in Construction 11 is (USI , C)-homomorphic and input-private for C consisting of
formulas (of depth ≤ D log |C|) where D is the global constant in our definition of the formulas representation
model). The depth of its encrypted circuits is poly(k, log (size(C))).

As to decryption circuit complexity of the functions Dec is indeed bounded by poly(k, log size(C)), since
the circuit constructed runs the OT decryption circuit on the xi’s in parallel, and then runs Yao’s decryption
on vr and the resulting (ki, ci) pairs. This computation has logarithmic depth in |C|.24

Circuit privacy of Construction 11. The extractor ExtP (1k, pk∗,−→c ∗) outputs −→x =
−−−−→
ExtOT (1k,−→c ∗). A simu-

lator SimP (1k, Cp(z, x), pk∗,−→c , out = Cp(Cs, x
∗)), where x∗ is the output of Ext(1k, pk∗,

−→
c∗) proceeds by:

1. Let ` = |(z, x)|. Sample (p1, . . . , p`, prest) at random according to the partial distribution of pCp
with

mask omitted (recall this distribution is independent of x).
2. For i ≤ |z| let outi = pi.

3. For |z|+ 1 ≤ i ≤ `, let outi =
−−−−→
SimOT (1k,−→pi , c∗i)).

4. Setmask so that (p1, . . . , p`, (mask, prest) decrypts to out. Set p`+1 = (mask, prest). Output (out1, . . . , out`, p`+1).

We now show that the above simulation is a perfect one. First observe that the sampling in item 1 is a

perfect simulation since p
(−)
Cp

= (p1, . . . , p`, prest) is independent of Cp’s input. Also, the recovery of mask in

item 4 results in a perfect simulation of pCp
(out, r), as it is uniquely determined by p

(−)
Cp

by correctness of

pCp
, and the fact that p(−) is independent of x.
Now, consider the distribution of out in EvalP . By circuit-privacy of EOT , each OT call corresponding

to some xi determines a single query bit bi. Thus, sampling pCp
(Cs, x), where pi for i ≤ |z| corresponds to

input bit Cs,i, and to xi for |z|+ 1 ≤ i ≤ `, EvalP ’s output on pk∗, out∗ is statistically indistinguishable from
the following “hybrid” distribution (where OT replies are simulated using the bits queried for, but the bits
“not asked for” are not given to the simulator):

– Let x∗ =
−−−−→
ExtOT (pk∗OT ,

−→
c∗).

– Sample pCp(
−−−→
Cs, x, r) to obtain p1, . . . , p`, p`+1.

24 That is, the decryption algorithm computes the decryption circuit that extracts the encrypted output bit somewhat
indirectly. It does not plug Cp into a universal Yao decryption circuit, but rather preprocesses it to be “directly
embedded” into the circuit’s structure, using Cp included in the encrypted output. Although a universal Yao
decryptor of the proper complexity exists, this construction is more straightforward. The simplicity advantage is
obtained since the decryption circuit can be precomputed using the encrypted output in polynomial time, without
the extra efficiency requirements.
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– The output of Eval is statistically close to

(p1, . . . , p|z|,
−−−−→
SimOT (pk∗OT ,

−−−→p|z|+1, c
∗
|z|+1, . . . , p`+1(r)).

By the privacy property in Theorem 9, the simulation of pCp
(Cs, x) in SimP is perfect. Thus, the simulated

OT replies in SimP are statistically indistinguishable from the ones in the hybrid distribution, and the result
follows (through comparing the real and simulated distributions to the hybrid distribution).
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