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Abstract. In this paper we show how some recent ideas regarding the
discrete logarithm problem (DLP) in finite fields of small characteristic
may be applied to compute logarithms in some very large fields extremely
efficiently. By combining the polynomial time relation generation from
the authors’ CRYPTO 2013 paper, an improved degree two elimination
technique, and an analogue of Joux’s recent small-degree elimination
method, we solved a DLP in the record-sized finite field of 26120 elements,
using just a single core-month. Relative to the previous record set by
Joux in the field of 24080 elements, this represents a 50% increase in the
bitlength, using just 5% of the core-hours. We also show that for the
fields considered, the parameters for Joux’s LQ(1/4 + o(1)) algorithm
may be optimised to produce an LQ(1/4) algorithm.
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1 Introduction

The understanding of the hardness of the DLP in the multiplicative group of
finite extension fields could be said to be undergoing a mini-revolution. It began
with Joux’s 2012 paper in which he introduced a method of relation generation
dubbed ‘pinpointing’, which reduces the time required to obtain the logarithms of
the elements of the factor base [11]. For medium-sized base fields, this technique
has heuristic complexity as low as LQ(1/3, 2/32/3) ≈ LQ(1/3, 0.961)1, where

LQ(a, c) = exp
(
(c+ o(1)) (logQ)a(log logQ)1−a

)
,

and Q is the cardinality of the finite field. This improves upon the previous
best by Joux and Lercier [17] LQ(1/3, 31/3) ≈ LQ(1/3, 1.442). To demonstrate
the practicality of this approach, Joux solved two example DLPs in fields of
bitlength 1175 and 1425 respectively, both with prime base fields.

? Research supported by the Claude Shannon Institute, Science Foundation Ireland
Grant 06/MI/006. The fourth author was in addition supported by SFI Grant
08/IN.1/I1950.

1 On foot of recent communications [13], the complexity may in fact be LQ(1/3, 21/3).



Soon afterwards the present authors showed that in the context of binary
fields (and more generally small characteristic fields), finding relations for the
factor base can be polynomial time in the size of the field [6]. By extending
the basic idea to eliminate degree two elements during the descent phase, for
medium-sized base fields an heuristic complexity as low as LQ(1/3, (4/9)1/3) ≈
LQ(1/3, 0.763) was achieved; this approach was demonstrated via the solution
of a DLP in the field F21971 [7], and in the field F23164 .

After the initial publication of [6], Joux released a preprint [12] detailing an
algorithm for solving the discrete logarithm problem for fields of the form Fq2n ,
with q = p` and n ≈ q, which was used in the solving of a DLP in F21778 [14],
and later in F24080 [15]. This algorithm has heuristic complexity LQ(1/4 + o(1)),
and also has an heuristic polynomial time relation generation method, similar in
principle to that in [6]. While the degree two element elimination in [6] is arguably
superior, for other small degrees, Joux’s elimination method is faster, resulting
in the stated complexity. Joux’s discrete logarithm computation in F24080 [15]
required about 14,100 core-hours: 9,300 core-hours for the computation of the
logarithms of all degree one and two elements; and 4,800 core-hours for the
descent step, i.e., for computing the logarithm of an arbitrary element. For this
computation, the field F24080 was represented as a degree 255 Kummer extension
of F216 , i.e., F(q2)q−1 with q = 28, as per [12]. The use of Kummer extensions
(with extension degree either q − 1 or q + 1) gives a reduction in the size of the
degree one and two factor base [17, 11, 12]; they are therefore preferable when it
comes to setting record DLP computations.

The relation generation method in [6, §3.3] applies to larger base fields of the
form Fqk with k ≥ 3 (rather than k = 2) and extension degrees up to n ≈ qδ1
with δ1 ≥ 1 a small integer. Hence the methods in this paper naturally apply to
any extension degree. Note that this representation offers greater flexibility than
Joux’s (which can represent extension degrees up to q + δ′1) for essentially the
same algorithmic cost, and may therefore provide a more practical DLP break
when small base fields need to be embedded into larger ones in order to apply
the attacks. However, here we choose to focus on Kummer extensions of degree
q ± 1, as these optimise the relation generation efficiency [6, §3.4], and linear
algebra step. While the two DLP breaks in the fields F21971 and F23164 contained
therein did not fully exploit the above ‘extreme’ fields in which the extension
degree is polynomially related to the size of the base field, thanks to Joux’s fast
small-degree elimination method, one can now do this more efficiently. Hence,
with a view to solving the DLP in larger fields than before and in as short a
time as possible, in this work we identify a family of fields for which the DLP is
very easily solved, relative to other fields of a similar size. While this does not
mean other fields of a similar size are infeasible to break, it requires more time in
practice to find the logarithms of the factor base elements, with the complexities
remaining the same.

One benefit of using base fields with k ≥ 3 is that there is an efficient prob-
abilistic elimination technique for degree two elements [6, §4.1]. For any fixed
k ≥ 4 the elimination probability very quickly tends to 1 for increasing q. In this
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paper we present an improved technique which allows one to find the logarithm
of degree two elements extremely fast, once the logarithms of all degree one ele-
ments are known. However, for k = 3 the elimination probability is 1/(2(δ1−1)!),
or exactly 1/2 for F26120 = F(q3)q−1 with q = 28. Therefore the natural next choice
is to set k = 4 and solve a DLP in F28160 = F(q4)q−1 . This would require solving
a sparse linear system in ≈ 4.2 · 106 variables, and a slightly more costly descent
step. Instead of carrying out this computation, we devised a technique for the
6120 bit case for which the elimination of each degree two element took only
0.03 seconds, and which required solving a much smaller linear system in 21,932
variables. This culminated in the resolution of a DLP in F26120 in under 750
core-hours [8], which represents a 50% increase in bitlength over the previous
record, whilst requiring just 5% of the computation time.

We note that the solving of DLPs in F26120 = F224·255 renders insecure all
pairing-based protocols based on supersingular curves of genus one and two over
F2255 , since the correponding embedding degrees are 4 and 12 (in the best cases),
respectively [1]. However, since 255 is not prime, such curves would not be rec-
ommended due to possible Weil descent attacks [5]. In any case, the Jacobians
of the curves do not have prime or nearly prime order and so are not crypto-
graphically interesting. As stated above, we could just as easily have solved the
corresponding DLP with extension degree q+1 rather than q−1, i.e., with exten-
sion degree 257 rather than 255. However, since the full factorisation of 26120−1
is known, we were able to use a proven generator and so for completeness we
chose to solve this case.2

Since our break of the DLP in F26120 may be considered as a proof-of-concept
implementation for our approach, at the time we were not overly concerned with
the issue of complexity. Indeed, as the elimination times are reasonable and as
just noted, comparable to Joux’s elimination timings, further experimentation is
needed to ascertain if the performance is comparable for larger systems. However,
one basic difference between the two approaches is that the quadratic systems
which arise when using our analogue of Joux’s small-degree elimination method
are not bilinear, and hence are not guaranteed to enjoy the same resolution
complexity, as given in Spaenlehauer’s thesis [25, Cor. 6.30]. Therefore, we can
not currently argue that the heuristic complexity is the same. Nevertheless, we
show that with a better choice of parameter and a tighter analysis, the final
part of the descent in Joux’s LQ(1/4 + o(1)) algorithm may be improved to an
LQ(1/4) algorithm, for the fields we consider, i.e., those for which the extension
degree is polynomially related to the size of the basefield. Since the other phases

2 Forty days after the announcement of our full DLP break in F26120 = F224·255 [8] – and
after the submission of this paper – Joux announced a break of the DLP in a 1843-
bit subgroup of F×

26168
= F×

224·257 , using a nearly identical degree two elimination
technique and the same descent parameters, in under 550 core-hours [16]. Noting
that the logarithms were not computed in the full multiplicative group and that this
computation was performed on faster processors, it is clear that the number of our
core-hours and Joux’s are comparable. In this case too the corresponding Jacobians
do not have prime or nearly prime order.
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of the algorithm have complexity LQ(1/4), or lower, the overall complexity for
solving the DLP is LQ(1/4) as well.

The remainder of the paper is organised as follows. §2 explains our field setup
and algorithm in detail. §3 covers the other essential algorithms and issues re-
garding the computation. §4 gives the details of a discrete logarithm computation
in F26120 , while finally in §5 we briefly address the issue of complexity.

2 The Algorithm

The following describes the field setup and index calculus method that we use
for our discrete logarithm computation.

2.1 Setup

We consider here Kummer extensions, which are our focus for efficiency reasons;
the general case can be found in [6, §3.3] and is recalled in §5.

Let `, k be positive integers, q := 2`, and n := q − 1. We construct the finite
field F(qk)n of bit length `kn = `k(q− 1) in which we solve the DLP, as follows3.
As stated in the introduction, the case n := q + 1 follows mutatis mutandis.

We express our base field Fqk as a degree k extension of Fq. Then we choose
γ ∈ Fqk such that the polynomial Xn + γ is irreducible in Fqk [X] and define
F(qk)n as the Kummer extension

Fqk(x) ∼= Fqk [X]/
(
(Xn + γ)Fqk [X]

)
,

where x is a root of the polynomial Xn + γ in F(qk)n . Note that a Kummer

extension of degree n over Fqk exists if and only if n | qk − 1. Throughout
the paper, the upper case letters X,W, . . . are used for indeterminates and the
lower case letters x,w, . . . are reserved for finite fields elements that are roots of
polynomials.

The following table displays the bit length `kn of the finite field F(qk)n for
various choices of the numbers ` and k.

k \ ` 6 7 8 9
3 1134 2667 6120 13797
4 1512 3556 8160 18396
5 1890 4445 10200 22995
6 2268 5334 12240 27594

In §4, we will give the details of the discrete logarithm computation when
`kn = 6120. The algorithm we explain in this section may be successfully applied
to any of the above parameters with k ≥ 4, whereas for k = 3 one would normally
be required to precompute the logarithms of all degree two elements using a
method analogous to Joux’s [12]. However, for k = 3 and ` = 8, precomputation
can be avoided entirely; see §4.4.

3 Our choice of representation of the finite field F(qk)n will be advantageous for our
method to solve the DLP. Note that it is a computationally easy problem to switch
between two different representations of a finite field [22].
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2.2 Factor Base and Automorphisms

The factor base we use consists of the elements in F(qk)n which have degree one
in the polynomial representation over Fqk , i.e., we consider the set {x+ a | a ∈
Fqk}. As noted in [17, 11, 6], factor base preserving automorphisms of F(qk)n ,
which are provided by Kummer extensions, can be used to significantly reduce
the number of variables involved in the linear algebra step. Indeed, the map
σ := Frob` : α → αq satisfies σ(x) = γx with γ ∈ Fqk , and thus preserves the

factor base. Furthermore, for ϕ := σk = Frob`k : α → αq
k

we have ϕ(x) = µx
with µ ∈ Fq a primitive n-th root of unity, and thus we find

(x+ a)q
kj+i

= σkj+i(x+ a) = σi(ϕj(x+ a)) = σi(µjx+ a) = µjγeix+ aq
i

,

where e0 = 0 and ei = qei−1 + 1 for 1 ≤ i < k; thus it follows that

log
(
x+

aq
i

µjγei

)
= qkj+i log(x+ a)

for all 0 ≤ j < n and 0 ≤ i < k.
The automorphism σ generates a group of order kn, which acts on the set

of qk factor base elements, thus dividing the factor base into about N orbits,

where N ≈ qk

kn ≈
1
k q
k−1 is the number of variables to consider.

2.3 Relation Generation

In order to generate relations between the factor base elements we use the method
from [6, §3.1-4]. We exploit properties of polynomials of the form

FB(X) := Xq+1 +BX +B ,

which have been studied by Bluher [2] and Helleseth/Kholosha [10]. We recall
in particular the following result of Bluher [2] (see also [10, 6]):

Theorem 1. The number of elements B ∈ F×
qk

such that the polynomial FB(X)
splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k odd ,

qk−1 − q
q2 − 1

if k even .

Let B ∈ F×
qk

be an element such that FB(X) splits and denote its roots by

µi, for i = 1, . . . , q + 1. For arbitrary a, b ∈ Fqk (with aq 6= b) there exists c ∈ Fqk
with (aq + b)

q+1
= B (ab+ c)

q
and we then find that

f(X) := FB

( ab+ c

aq + b
X + a

)
= Xq+1 + aXq + bX + c

and that f(X) also splits over Fqk , with roots νi := ab+c
aq+b µi + a.
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Now by the definition of F(qk)n we have xn = γ and thus xq = γx, with
γ ∈ Fqk . Hence in F(qk)n we have

f(x) = γx2 + aγx+ bx+ c = γ(x2 + (a+ b
γ )x+ c

γ ) = γg(x) ,

where g(X) := X2 + (a+ b
γ )X + c

γ . Hence, if the polynomial g(X) splits, i.e., if

g(X) = (X + ξ1)(X + ξ2), which heuristically occurs with probability 1/2, then
we find a relation of factor base elements, namely

q+1∏
i=1

(x+ νi) = γ(x+ ξ1)(x+ ξ2) .

Such a relation corresponds to a linear relation between the logarithms of the
factor base elements. Once we have found more than N relations we can solve
the discrete logarithms of the factor base elements by means of linear algebra;
see §3.3.

2.4 Individual Logarithms

After the logarithms of the factor base elements have been found, a general
individual discrete logarithm can be computed, as is common, by a descent
strategy. The basic idea of this method is trying to write an element, given by its
polynomial representation over Fqk , as a product in F(qk)n of factors represented
by lower degree polynomials. By applying this principle recursively a descent
tree is constructed, and one can eventually express a given target element by a
product of factor base elements, thus solving the DLP.

While for large degree polynomials it is relatively easy to find an expression
involving lower degree polynomials by a standard approach, this method becomes
increasingly less efficient as the degree becomes smaller. In addition, the number
of small degree polynomials in the descent tree grows significantly with lower
degree. We therefore propose new methods for degree 2 elimination and small
degree descent, which are inspired by the recent works [6] and [12] respectively.

Degree 2 Elimination Given a polynomial Q(X) := X2 + q1X + q0 ∈ Fqk [X]
we aim at expressing the corresponding finite field element Q(x) ∈ F(qk)n as a
product of factor base elements. In essence, what we do is just the reverse of the
degree one relation generation, with the polynomial g(X) set to be Q(X).

In particular, we compute – when possible – a, b, c ∈ Fqk such that, up to a
multiplicative constant in F×

qk
, Q(x) = x2 + q1x+ q0 equals xq+1 + axq + bx+ c

where the polynomial Xq+1+aXq+bX+c splits into linear factors (cf. [6, §4.1]).
As xn = γ holds, we have xq+1 + axq + bx + c = γ(x2 + (a + b

γ )x + c
γ ) and

comparing coefficients we find γq0 = c and γq1 = γa + b. Now letting B ∈ F×
qk

be an element satisfying the splitting property of Theorem 1 and combining the
previous equations with (aq + b)

q+1
= B (ab+ c)

q
we arrive at the condition

(aq + γa+ γq1)q+1 +B(γa2 + γq1a+ γq0)q = 0 .

6



Considering Fqk as a degree k extension over Fq this equation gives a quadratic
system in the k Fq-components of a, which can be solved very fast by a Gröbner
basis method.

Heuristically, for each of the above B’s the probability of success of this
method, i.e., when an a ∈ Fqk as above exists, is 1/2. Note that if k = 3 there
is just one single B in the context of Theorem 1, and so this direct method fails
in half of the cases. However, as noted earlier, this issue can be resolved under
certain circumstances, e.g., for ` = 8; see §4.4.

Small Degree Descent The following describes the Gröbner basis descent of
Joux [12] applied in the context of the polynomials FB(X) = Xq+1 + BX + B
of Theorem 1. Let f(X) and g(X) be polynomials over Fqk of degree δf and δg

respectively. We substitute X by the rational function f(X)
g(X) and thus find that

the polynomial

P (X) := f(X)q+1 +Bf(X) g(X)q +Bg(X)q+1

factors into polynomials of degree at most δ = max{δf , δg}. Since xq = γx holds
in F(qk)n the element P (x) can also be represented by a polynomial of degree 2δ.

Now given a monic polynomial Q(X) ∈ Fqk [X] of degree 2δ (resp. 2δ− 1) to
be eliminated we consider the equation P (x) = Q(x) (resp. P (x) = (x+ a)Q(x)
with some random fixed a ∈ Fqk). It results as above in a quadratic system
of Fq-variables representing the coefficients of f(X) and g(X) in Fqk , and can
be solved by a Gröbner basis algorithm. In order to minimise the number of
variables involved we set f(X) to be monic of degree δf = δ and g(X) of degree
δg = δ − 1, resulting in kδ + kδ = 2kδ variables in Fq. Since the number of
equations to be satisfied equals 2kδ as well, we find a solution of this system
with good probability.

Large Degree Descent This part of the descent is somewhat classical (see [17]
for example), but includes the degree balancing technique described in [6, §4],
which makes the descent far more rapid when the base field Fqk is a degree k
extension of a non-prime field. In the finite field F(qk)n we let y := xq and

x̄ := x2
`−a

for some suitably chosen integer 1 < a < k. Then y = x̄2
a

and

x̄ = ( yγ )2
`−a

holds. Now for given Q(X) ∈ Fqk [X] of degree d representing Q(y)
we consider the lattice

L :=
{

(w0, w1) : Q(X) | (Xγ )2
`−a

w0(X) + w1(X)
}
⊆ Fqk [X]2 .

By Gaussian lattice reduction we find a basis (u0, u1), (v0, v1) of L of degree
≈ d/2 and can thus generate lattice elements (w0, w1) = r(u0, u1) + s(v0, v1) of
low degree. In F(qk)n we then consider the equation

x̄w0(x̄2
a

) + w1(x̄2
a

) = x̄w0(y) + w1(y) = ( yγ )2
`−a

w0(y) + w1(y) ,
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where the right-hand side is divisible by Q(y) by construction, and a is chosen so
as to make the degrees of both sides as close as possible. The descent is successful
whenever a lattice element (w0, w1) is found such that the involved polynomials

Xw0(X2a) +w1(X2a) and 1
Q(x) (X

2`−a

w0(X) +γ2
`−a

w1(X)) are (d−1)-smooth,

i.e., have only factors of degree less than d.

3 Other Essentials

In this section we give an explicit account of further basics required for a discrete
logarithm computation.

3.1 Factorisation of the Group Order

The factorisation of the group order |F×
(qk)n
| = 2`kn − 1 is of interest for several

reasons. Firstly it indicates the difficulty of solving the associated DLP using the
Pohlig-Hellman algorithm. Secondly it enables one to provably find a generator.
Finally, it determines the small factors for which we apply Pollard’s rho method,
and the large factors for the linear algebra computation. Since the complexity
of the Special Number Field Sieve [20] is much higher than the present DLP
algorithms, it is unlikely that one can completely factorise 2`kn − 1 in cases of
interest in a reasonable time. In these cases it is vital to at least know all the
small prime factors of the group order, which can be accomplished using the
Elliptic Curve Method [21] and the identity

2`kn − 1 =
∏
d|`kn

Φd(2) ,

where Φd ∈ Z[x] denotes the d-th cyclotomic polynomial.

3.2 Pohlig-Hellman and Pollard’s Rho Method

In order to compute a discrete logarithm in a group G of order m we can use any
factorisation of m = m1 · . . . ·mr into pairwise coprime factors mi and compute
the discrete log modulo each factor. Indeed, if we are to compute z = logα β
it suffices to compute logαci β

ci with ci = m/mi, which determines z mod mi.
With the information of z mod mi for all i one easily determines z (mod m) by
the Chinese Remainder Theorem.

For the small prime (power) factors of m we use Pollard’s rho method to
compute the discrete logarithm modulo each factor. Regarding the large factors
of m we find it most efficient to combine them into a single product m∗, so that
in the linear algebra step of the index calculus method we work over the ring
Zm∗ . Note that each iteration of the Lanczos method that we use for the linear
algebra problem requires the inversion of a random element in Zm∗ ; this is the
reason why we separate the small factors of the group order from the large ones.
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3.3 Linear Algebra

The relation generation phase of the index calculus method produces linear rela-
tions among the logarithms of the factor base elements. As the factor base logs
are also related by the automorphism group as explained in §2.2 the number N
of variables is reduced and the linear relations will have coefficients being pow-
ers of 2. Once M > N relations have been generated we have to find a nonzero
solution vector for the linear system. To ensure that the matrix is of maximal
rank N − 1 we generate M ≈ N + 100 relations. As noted earlier the number of

variables N is expected to be about qk

kn ≈
1
k q
k−1.

We let B be the M×N matrix of the relations’ coefficients, which is a matrix
of constant row-weight q + 3. We have to find a nonzero vector v of length N
such that Bv = 0 modulo m∗, the product of the large prime factors of the
group order m. A common approach in index calculus algorithms is to reduce
the matrix size at this stage by using a structured Gaussian elimination (SGE)
method. In our case, however, the matrix is not extremely sparse while its size
is quite moderate, hence the expected benefit from SGE would be minimal and
we refrained from this step.

We use the iterative Lanczos method [19, 18] to solve the linear algebra prob-
lem, which we briefly describe here. Let A = BtB, which is a symmetric N ×N
matrix. We let v ∈ ZNm∗ be random, w = Av, and find a vector x ∈ ZNm∗ such
that Ax = w holds (since A(x − v) = 0 we have thus found a kernel element).
We compute the following iteration

w0 = w , v0 = Aw0 , w1 = v0 −
(v0, v0)

(v0, w0)
w0

vi = Awi , wi+1 = vi −
(vi, vi)

(vi, wi)
wi −

(vi, vi−1)

(vi−1, wi−1)
wi−1

and stop once (vj , wj) = 0; if wj 6= 0 the algorithm fails, otherwise we find the
solution vector

x =

j−1∑
i=0

(w,wi)

(vi, wi)
wi .

Performing the above iteration consists essentially of several matrix-vector
products, scalar-vector multiplications, and vector-vector inner products. As the
matrix is sparse and consists of entries being powers of 2 the matrix-vector
products can be carried out quite efficiently. Therefore, the scalar multiplications
and inner products consume a significant part of the computation time. We have
used a way to reduce the number of inner products per iteration, as was suggested
recently [23].

Indeed, using the A-orthogonality (vi, wj) = wtiAwj = 0 for i 6= j we find
that

(vi, vi−1) = (vi, wi) and (w,wi+1) = − (vi, vi)

(vi, wi)
(w,wi)−

(vi, vi−1)

(vi−1, wi−1)
(w,wi−1).
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Now at each iteration, given wi we compute the matrix-vector product Bwi
and the inner product ai := (vi, wi) = (Bwi, Bwi), as well as vi = Awi =
Bt(Bwi) and bi := (vi, vi) = (Awi, Awi). We then have the simplified iteration

w0 = w , w1 = v0 −
b0
a0
w0 , wi+1 = vi −

bi
ai
wi −

ai
ai−1

wi−1

and the solution vector x =
∑j−1
i=0

ci
ai
wi, where ci := (w,wi) can be computed

by the iteration

c0 = (w,w) , c1 = a0 −
b0
a0
c0 , ci+1 = − bi

ai
ci −

ai
ai−1

ci−1 .

We see that each iteration requires merely two matrix-vector products, three
scalar multiplications, and two inner products.

3.4 Target Element

In order to set ourselves a DLP challenge we construct the ‘random’ target
element β ∈ F(qk)n using the binary digits expansion of the mathematical con-

stant π. More precisely, considering the qk-ary expansion

π = 3 +

∞∑
i=1

ci q
−ki with ci ∈ Sqk := {0, 1, . . . , qk − 1}

we use a bijection between the sets Sqk and Fqk , which is defined by the map-

pings ϕq : Fq → {0, . . . , q − 1}:
∑`−1
i=0 ait

i 7→
∑`−1
i=0 ai2

i and ϕ : Fqk → Sqk :∑k−1
j=0 bjw

j 7→
∑k−1
j=0 ϕq(bj)q

j , and construct in this way the target element

βπ :=

n−1∑
i=0

ϕ−1(ci+1)xi ∈ F(qk)n .

4 Discrete Logarithms in F26120

In this section we document the breaking of DLP in the case ` = 8 and k = 3,
i.e., in F26120 . The salient features of the computation are:

– The relation generation for degree one elements took 15 seconds4.
– The corresponding linear algebra took 60.5 core-hours.
– In contrast to [15, 12], we computed the logarithm of degree 2 irreducibles

on the fly; each took on average 0.03 seconds.
– The descent was designed so as to significantly reduce the number of bot-

tleneck (degree 6) eliminations. As a result, the individual logarithm phase
took just under 689 core-hours.

4 In our inital announcement [8] we stated a running time of 60 seconds for the relation
generation. The reason for this higher running time was an unnecessary step of
ordering the matrix entries, which we have discounted here.
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4.1 Setup

We first defined F28 using the irreducible polynomial T 8 + T 4 + T 3 + T + 1.
Letting t be a root of this polynomial, we defined F224/F28 using the irreducible
polynomial W 3 + t. Letting w be a root of this polynomial, we finally defined
F26120/F224 using the irreducible polynomial X255 + w + 1, where we denote a
root of this polynomial by x.

We chose as a generator g = x+w, which has order 26120−1; this was proven
via the prime factorisation of 26120 − 1, which is provided in [8]. As usual, the
target element was set to be βπ as explained in §3.4.

4.2 Relation Generation

Our factor base is simply the set of degree one elements of F26120/F224 . As detailed
in §2.2, quotienting out by the action of the 8-th power of Frobenius produces
21,932 distinct orbits. To obtain relations, as explained in §2.3, we make essential
use of the single polynomial X257 +X + 1, which splits completely over F224 . In
particular, letting y := x256 so that x = y

w+1 , the F26120 element xy+ay+ bx+ c

corresponds to X257+aX256+bX+c on the one hand, and X2

w+1 +aX+ bX
w+1 +c on

the other. The first of these transforms toX257+X+1 if and only if (a256+b)257 =
(ab+ c)256. So for randomly chosen (a, b) we compute c and check whether the
corresponding quadratic splits. If it does – which occurs with probability 1/2
– we obtain a relation. Thanks to the simplicity of this approach, we collected
22,932 relations and wrote these to a matrix in 15 seconds using C++/NTL [24].

4.3 Linear Algebra

We took as our modulus the product of the largest 35 factors of 26120 − 1 listed
in [8], which has bitlength 5121. We ran a parallelised C/GMP [9] implementa-
tion of Lanczos’ algorithm on four of the Intel (Westmere) Xeon E5650 hex-core
processors of ICHEC’s SGI Altix ICE 8200EX Stokes cluster. This took 60.5
core-hours (just over 2.5 hours wall time).

4.4 Individual Logarithm

Degree 2 Elimination For computing the discrete logarithm of a degree two
element Q(x) = x2 + q1x+ q0 we try to equate Q(x) with x257 + ax256 + bx+ c,
where (a256 + b)257 = (ab + c)256. If this fails we apply the following strategy,
making use of the fact that F224 can also be viewed as a field extension of F26 .
We consider y = x256 and x̄ = x4, so that y = x̄64 and x̄ = ( yγ )4 holds, and apply

the large degree descent method to Q̄(X) := Q(Xγ ) (note that Q̄(y) = Q(x)).

Considering the lattice L (see §2.4) we construct a basis of the form (X+u0, u1),
(v0, X+v1), where u0, u1, v0, v1 ∈ F224 . Then for s ∈ F224 we have lattice elements
(X+u0+sv0, sX+u1+sv1) ∈ L. Now for each B ∈ F224 such that X65+BX+B
splits, we solve for s ∈ F224 satisfying

(v0s
2 + (u0 + v1)s+ u1)64 = B (s64 + v0s+ u0)65 ,
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which can be expressed as a quadratic system in the F26 -components of s, and
thus solved by a Gröbner basis computation over F26 . We then have an equation

x̄65 + ax̄64 + bx̄+ c = 1
γ4 (y5 + by4 + aγ4y + cγ4)

with a = s, b = γs+ q1, and c = q0
γ , where the left-hand side polynomial splits,

while the right-hand side polynomial contains Q̄(X).

The polynomial X5 + bX4 + aγ4X + cγ4 = Q̄(X)R(X) has the property
that R(X) always factors into a linear and an irreducible quadratic polynomial
over Fqk . Indeed, by a result of Bluher [2, Thm. 4.3], for any B ∈ F224 and any
d ≥ 1, the number of roots in F224d of the polynomial FB(X) = X5 + BX + B
equals either 0, 1, 2, or 5. Since X5 + bX4 + aγ4X + cγ4 can be rewritten as
X5+BX+B via a linear transformation (except when aγ4 = b4), the same holds
also regarding the F224d -roots of this polynomial. Now applying Bluher’s result
for d = 1 we see that R(X) can not split into linear factors, and by Bluher’s
result for d = 3 we conclude that R(X) can not be irreducible. Hence, R(X) is
the product of linear and a quadratic polynomial, which we call Q′(X).

Now if Q′(X) is resolvable by the direct method, we have successfully elimi-
nated the original polynomial Q(X). The number of B such that X65 +BX+B
splits over Fq equals 64, according to Theorem 1, and by experiment, for each
one the success probability to find a resolvable polynomial Q′(X) is about 0.4.

Performing the Descent Using C++/NTL we first used continued fractions
to express the target element βπ as a ratio of two 27-smooth polynomials, which
took 10 core-hours, and then we applied the three different descent strategies as
explained in §2.4.

We used the large degree descent strategy to express all of the featured
polynomials using polynomials of degree 6 or less. This took a further 495 core-
hours. While we could have performed this part of the descent more efficiently,
as noted above we opted to find expressions which resulted in a relatively small
number of degree 6 polynomials – which are the bottleneck eliminations for the
subsequent descent – namely 326.

For degrees 6 down to 3 we used the analogue of Joux’s small degree elimina-
tion method, based on the same polynomial that we used for relation generation,
i.e., X257 +X + 1, rather than the polynomial X256 +X that was used in [15],
since the resulting performance was slightly better. Finally, we performed the
degree 2 elimination as outlined above.

For convenience we coded the eliminations of polynomials of degrees 6 down
to 2 in Magma [3] V2.16-12, using Faugere’s F4 algorithm [4]. The total time for
this part was just over 183.5 core-hours on a 2 GHz AMD Opteron computer.

For the logarithm modulo the cofactor of our modulus we used either linear
search or Pollard’s rho method, which took 20 minutes in total in C++/NTL.
Thus the total time for the descent was just under 689 hours.
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Finally, we found5 that βπ = glog, with log =

13858759836397869262547571128312317100923636150389699236649593170451770028

01271780222348940986175813601314418350742563637306244268142932334742725215

98166126957928116825443110965404253837938808595404111035238027107772178822

93928187340345199973181514007348176651371535844927931455679735244624686031

79467501244756894744062749423560359365016740509334489092010298345222267322

47771897083223217282051573645013603613042367782716361877817938374393824313

01907362478638761841403754168112028404465938319290743685252639208772430477

54516312718252509681114514005027334043817696752552891273466393500982215708

44400380788516332496583882522436381918008200167032186350245107751346979596

31469615366671616895148194809106006673018476675813777394430387542983086720

54639181442568439117307472651461541934380416278336617397750571612363460962

36566875251277843062329973044475486561062204356908568471471279383781038538

81888446379698990607607984324812725202083970588643607121365057518670745694

85840723789169429253691408684171964795734810327114810217291628659735881740

96389913305607677858033996361734905537150362024720515772660781208855505434

33105576657001421187560294063357576385045750307908707437658530447052041132

02462922553757114575735552860602366993170394544793267182811289614232751427

87569425690532833283344049635521302596000897192512036695298807294032964530

95969137708720454634896013276009554410598019825524549320241283159389198478

81524179576919398171123661820636875299153651503611802144512343876568832561

49355994405051149585969163075307026647956035683671589546448539955132726112

03493865596129185620342224768038702907847352095116033447252547507168067262

36615872927203296061825120443121943571561392013409520378729752432544760815

54937002122953415949407262137232099852298394838422907643191397673290238344

1830460409758599159285365304456971453176680449737096483324156185041 .

4.5 Total Running Time

The total running time is 689 + 60.5 = 749.5 core-hours. Note that most of the
computation (all except the linear algebra part) was performed on a personal
computer. On a modern quad-core PC, the total running time would be around
a week.

5 Complexity Considerations

In this section we prove a tighter complexity result than that given in [12] for
the new small-degree stage of the descent. As stated in §1, the systems arising

5 Magma verification code for this solution is available from [8].
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from the small-degree elimination in §2.4 are quadratic, but not bilinear. As
such, they do not necessarily enjoy the same resolution complexity as bilinear
quadratic systems, as given by a theorem due to Spaenlehauer [25, Cor. 6.30].
However, if one instead reverts to using the polynomial Xq −X, then one can
argue as follows.

Let the fields under consideration be F(qk)n , with k ≥ 3 fixed, n ≈ qδ1 and
δ1 ≥ 1 a small integer, as per the field representation described in [6, §3.3],
and q →∞. This is achieved by finding a polynomial p1 of degree δ1 such that
p1(Xq) − X ≡ 0 (mod I(X)), with I(X) irreducible of degree n. By letting
x ∈ F(qk)n be a root of I(X) and y := xq, one also has x = p1(y), and therefore
two related representations of F(qk)n .

For simplicity we assume δ1 = 1; the case δ1 > 1 can be treated similarly.
The cardinality of F(qk)n is ≈ qkq and we have

Lqkq (1/4, c) = exp
(
(c+ o(1))(kq log q)1/4(log(kq log q))3/4

)
= exp

(
(ck1/4 + o(1)) q1/4 log q

)
. (1)

We now recall Joux’s elimination method. The final part of the descent starts
with an element Q(x) of degree D ≈ α1q

1/2 which is to be eliminated; here, α1 is
a constant that depends on the efficiency of the classical large-degree descent. For
a parameter 1 < d < D/2 yet to be optimised, we substitute X = f(X)/g(X)
into Xq−X with deg(f) = d and deg(g) = D−d, both with yet-to-be determined
Fqk coefficients. In this case one has the F(qk)n -relation

f(x)qg(x)− f(x)g(x)q =
(
f(x)qg(x)− f(x)g(x)q

)
mod I(x). (2)

By the factorisation of Xq − X over Fq, the LHS of Eq. (2) has irreducible
factors of degree at most D− d. On the RHS one stipulates that it be zero mod
Q(x). This condition can be expressed as a bilinear quadratic system in the dk
Fq-components of the coefficients of f and the (D − d)k Fq-components of the
coefficients of g. Since Q(x) has D coefficients in Fqk one expects there to be
O(1) solutions to this system when both f and g are monic. Hence by varying
the leading coefficient of one of them, one expects many solutions.

The degree of the RHS of Eq. (2) depends on the representation of the field
F(qk)n . Recall that in Joux’s field representation, one has h0(X), h1(X) of very
low degree δh0

, δh1
such that h1(X)Xq − h0(X) ≡ 0 (mod I(X)), with I(X)

irreducible of degree n and n ≈ q. Now on the RHS of Eq. (2) one replaces each
occurrence of xq by h0(x)/h1(x), and thus the cofactor of Q(x) on the RHS has
degree (D − d)(max{δh0 , δh1} − 1). For each solution to the bilinear quadratic
system, it is tested for (D− d)-smoothness, and when it is, one has successfully
represented Q(x) as a product of at most q field elements of degree at most D−d
(ignoring the negligible number of factors from the cofactor).

Using our field representation, recall that y = xq and hence

f(x)q =

d∑
i=0

fqi y
i and g(x)q =

D−d∑
j=0

gqjy
j .
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Then also using x = p1(y), the RHS of Eq. (2) becomes:( d∑
i=0

fqi y
i

)(D−d∑
j=0

gjp1(y)j
)
−
( d∑
i=0

fip1(y)i
)(D−d∑

j=0

gqjy
j

)
,

so that the cofactor of Q(y) has degree (D − d)(δ1 − 1) in y.
By repeating the above elimination technique recursively for each element

occurring in the product until only degree one or degree two elements remain,
the logarithm of Q(x) is computed. So what is the optimal d? Joux’s analysis [12]
indicates that d = O(q1/4(log q)1/2) should be used, giving an overall complexity
of exp

(
(c′ + o(1)) q1/4(log q)3/2

)
for some c′, which is Lqkq (1/4 + o(1), c′), due

to the presence of the extra (log q)1/2 factor, relative to Eq. (1).
However, one can instead set d ≈ α2q

1/4, as we now show (the constant
α2 is to be optimised later). Let C(D, d) be the cost of expressing a degree D
element as a product of elements of degree at most d, when the numerator f
has degree d at each step. If C0(D, d) is the cost of resolving the corresponding
bilinear quadratic system, we have

C(D, d) = C0(D, d) + q C(D − d, d)

= C0(D, d) + q
(
C0(D − d, d) + q C(D − 2d, d)

)
= · · · =

bD/dc−1∑
i=0

qiC0(D − id, d) .

Since C0(D − id, d) ≤ C0(D, d) for all i and since
∑bD/dc−1

i=0 qi ≤ qD/d we get
the upper bound

C(D, d) ≤ qD/dC0(D, d) .

As in [12], we need the following essential lemma.

Lemma 1 ([25, Cor. 6.30]). The arithmetic complexity (measured in Fq-
operations) of computing a Gröbner basis of a generic bilinear system
f1, . . . , fnx+ny ∈ Fq[x0, . . . , xnx−1, y0, . . . , yny−1] with Faugere’s F4 algorithm [4]
is bounded by

O
(

min(nx, ny) (nx + ny)

(
nx + ny + min(nx, ny) + 2

min(nx, ny) + 2

)ω )
,

where ω is the exponent of matrix multiplication.

Hence, using the estimate
(
a+2
b+2

)
≤ (ab )2

(
a
b

)
≤ (ab )2(e ab )b = eb(ab )b+2, we have

C0(D, d) = O
(
k2Dd

(
k(D + d) + 2

kd+ 2

)ω )
= O

(
k2Ddekωd

(
D + d

d

)kωd+2ω )
,

and, neglecting the lower order terms, we get

logC0(D, d) =
(
kωd log(D/d)

)
(1 + o(1)) .
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Therefore, we have

logC(D, d) =
(
(D/d) log q + kωd log(D/d)

)
(1 + o(1))

=
((α1

α2
+
kωα2

4

)
q1/4 log q

)
(1 + o(1)) ,

and in particular, for the optimal choice α2 = (4α1/kω)1/2, we get

logC(D, d) =
(
(kωα1)1/2q1/4 log q

)
(1 + o(1)) .

Thus, taking into account Eq. (1), we arrive at the complexity

C(D, d) = Lqkq (1/4 , k1/4(ωα1)1/2) . (3)

Observe that the number of degree d ≈ α2q
1/4 elements in such an expression

for the initial degree D ≈ α1q
1/2 element is O(q(α1/α2)q

1/4

). Note that this choice
of d represents the optimal balance between the number of nodes in the descent
tree at level d and the cost of resolving the bilinear systems.

Moreover, exactly the same argument shows that C(αjq
1/2j , αj+1q

1/2j+1

) =
Lqkq (1/2j+1), and so the cost of expressing each of the Lqkq (1/4) degree α2q

1/4

elements in terms of elements of degree α3q
1/8 is Lqkq (1/8), and therefore for

any j > 1 the total cost down to degree αjq
1/2j never exceeds Lqkq (1/4). After

j = dlog2 log2 qe of the above sequence of steps we have bq1/2jc = 1, and the
total cost is precisely that given in Eq. (3).

As the complexity of the initial splitting of a target element into a product of
elements of degree at most α0q

3/4 is Lqkq (1/4), as is the complexity of classical

descent from degree α0q
3/4 to degree α1q

1/2, the above tighter analysis demon-
strates that for the fields considered, Joux’s algorithm has complexity Lqkq (1/4)
as well, for both his and our field representations. We have omitted the determi-
nation of the optimal parameters α0 and α1, since this is beyond our focus on
proving that the full algorithm is L(1/4).
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1. Barreto, P.S.L.M., Galbraith, S.D., Ó’ hÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Des. Codes Cryptogr. 42(3), 239–
271 (2007)

2. Bluher, A.W.: On xq+1+ax+b. Finite Fields and Their Applications 10(3), 285–305
(2004)

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)
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