
Universally Composable Symbolic Analysis

for Two-Party Protocols based on Homomorphic Encryption

Morten Dahl Ivan Damg̊ard

Aarhus University∗

Abstract

We consider a class of two-party function evaluation protocols in which the parties are allowed to
use ideal functionalities as well as a set of powerful primitives, namely commitments, homomorphic
encryption, and certain zero-knowledge proofs. We illustrate that with these it is possible to capture
protocols for oblivious transfer, coin-flipping, and generation of multiplication-triple.

We show how any protocol in our class can be compiled to a symbolic representation expressed
as a process in an abstract process calculus, and prove a general computational soundness theorem
implying that if the protocol realises a given ideal functionality in the symbolic setting, then the
original version also realises the ideal functionality in the standard computational UC setting. In
other words, the theorem allows us to transfer a proof in the abstract symbolic setting to a proof in
the standard UC model.

Finally, we show that the symbolic interpretation is simple enough in a number of cases for the
symbolic proof to be partly automated using ProVerif.

1 Introduction

Giving security proof for cryptographic protocols is often a complicated and error-prone task. There is a
large body of research aimed at doing something about this problem using methods from formal analysis
[AR02, BPW03, CH06, CC08, CKW11]. This is interesting because the approach could potentially lead
to automated or at least computer-aided (formal) proofs of security.

It is well known that the main difficulty with formal analysis is that it is only feasible when enough
details about the cryptographic primitives have been abstracted away, while on the other hand this
abstraction may make us “forget” about issues that make an attack possible. One solution to this
problem is to show once and for all that a given abstraction is computational sound, which loosely
speaking means that for any protocol, if we know there are no attacks on its abstract symbolic version
then this (and some appropriate complexity assumption) implies there are no attacks on the original
computational version. Or, in other words, that intuitively the symbolic adversary is as powerful as the
computational adversary in the sense that his ability to distinguish in the real-world model is not greater
than his ability to distinguish in the symbolic model. Such soundness theorems are known in some cases
(see related work), in particular for primitives such as public-key encryption, symmetric encryption,
digital signatures, and hash functions.

Another issue with formal analysis is how security properties should be specified. Traditionally this
has been done either through trace properties or “strong secrecy” where two instances of the protocol
running on different values are compared to each other1. This approach has carried on to work on
computational soundness where results are known for security properties such as authenticity and key
secrecy. On the other hand, the cryptographic community has long recognised the usefulness of the
simulation-based approach, not least when analysing protocols where the players take inputs from the
environment.

∗The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation
of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, and also
from the CFEM research centre (supported by the Danish Strategic Research Council) within which part of this work was
performed.

1For strong secrecy one runs the same protocol on two fixed but different inputs (or with one instance patched to give
an independent output) and then ask if it is possible to tell the difference between the two executions. This can for instance
be used to argue that a key-exchange protocol is independent of the exchanged key given only the transmitted messages.

1

Finally, making protocol (and in particular system) analysis feasible in general requires some way of
breaking the task into smaller components which may be analysed independently. While also this has
been standard in the cryptographic community for a while, in the form of eg. the UC framework [Can01,
Can05], it has not yet received much attention in the symbolic community (but see [CH06] for an
exception).

1.1 Our Results

In this chapter we make progress on expanding the class of protocols for which a formal analysis can
be used to show security in the computational setting. We are particularly interested in two-party
function evaluation protocols and the primitives used by many of these, namely homomorphic public-key
encryption, commitments, and certain zero-knowledge proofs. We aim for proofs of UC security against
an active adversary and where one of the parties may be (statically) corrupted.

Protocol model. We make some assumptions on the form of protocols. Besides the above primitives
protocols are also allowed to use ideal functionalities and communicate over authenticated channels. We
put some restrictions on how the primitives may be used. First, whenever a player sends a ciphertext
it must be accompanied by a zero-knowledge proof that the sender knows how the ciphertext was con-
structed: if the ciphertext was made from scratch then he knows the plaintext and randomness used,
and if he constructed it from other ciphertexts using the homomorphic property then he knows random-
ness that “explains” the ciphertext as a function of that randomness and ciphertexts that were already
known. We make a similar assumption on commitments and allow also zero-knowledge proofs that com-
mitted values relate to encrypted values in a given way. Second, we assume that honest players use the
primitives in a black-box fashion, ie. an honest player can run the protocol using a (private) “crypto
module” that holds all his keys and handles encryption, decryption, commitment etc. This means that
all actions taken by an honest player in the protocol may depend on plaintext sent or received but not,
for instance, on the binary representation of ciphertexts. We emphasise that we make no such restriction
on the adversary.

We believe that the assumptions we make are quite natural: it is well known that if a player provides
input to a protocol by committing to it or sending an encryption then we cannot prove UC security of
the protocol unless the player proves that he knows the input he provides. Furthermore, active security
usually requires that players communication over authenticated channels and prove that the messages
they send are well-formed. We stress, however, that our assumptions do not imply that an adversary must
be semi-honest; for instance, our model does not make any assumptions on what type and relationship
checks the protocol must perform, nor on the randomness distributions used by a corrupted player.

Security properties. As in the simulation-based paradigm we use ideal functionalities and simulators
to specify and prove security properties. More concretely, we can express all three entities in our model
and say that a protocol φ is secure (with respect to the ideal functionality F) if no adversary can tell
the difference between interacting with φ and interacting with F and simulator Sim2, later written
φ ∼ F � Sim for concrete notions of indistinguishability. When this equivalence is satisfied we also say
that the protocol (UC) realises (or implements) the ideal functionality.

We require that ideal functionalities only operate on plain values and do not use cryptography, and
as with protocols we assume that simulators only use the primitives and their trapdoors through a
crypto-module.

Proof technique. Our main result is quite simple to state on a high level: given a protocol φ, ideal
functionality F , and simulator Sim, we show how these may be compiled to symbolic versions such
that if we are given a proof in the symbolic world that φ realises F then it follows that φ realises F
in the usual computational world as well (assuming the crypto-system, commitment scheme, and zero-
knowledge proofs used are secure). As usual for UC security, we need to make a set-up assumption
which in our case amounts to assuming a functionality that initially produces reference strings for the
zero-knowledge proofs and keys for the crypto-system.

We arrive at our result as follows: we first define a simple programming language for specifying
protocols on a rather high and abstract level. The class of protocols we consider is then defined as

2Intuitively, the simulator is used to capture the “unimportant” differences between the two settings (e.g. that cryp-
tography is used in the former but not the latter) and to interpret the actions of the adversary relative to the ideal
functionality.

2

whatever can be described in this language. More formally the language can talk about a set of entities
that interact and we use the name system as a generic term for such a set of entities. In particular, we
can talk about a system triple

(
SysHreal

)
H for H ∈ {AB ,A,B} modelling the behaviour and components

of a protocol φ, but also a triple
(
SysHideal

)
H that models F running together with a simulator. We

denote the former a real protocol and the latter an ideal protocol.
We then define three different ways of interpreting such systems:

• Real-world interpretation RW(Sys): Assuming concrete instantiations of the cryptographic prim-
itives this interpretation produces from system Sys a set of interactive Turing machines that fits
in the usual UC model. For instance, RW(SysAB

real) contains two ITMs MA,MB executing the
player programmes of φ, while RW(SysAB

ideal) contains MF ,MSim respectively executing the ideal
functionality and the simulator.

• Intermediate interpretation I(Sys): This interpretation also produces a set of ITMs fitting into
the UC model, but does not use concrete cryptographic primitives. Instead we postulate an ideal
functionality that receives all calls to cryptographic functions and returns handles to objects such as
encrypted plaintexts while storing these plaintexts in a restricted global memory. Players then send
such handles instead of actual ciphertexts and commitments. A new component of this interpretation
is that the adversary is now also given an operation module through which he is forced to launch
his attack.

• Symbolic interpretation S(Sys): This interpretation closely mirrors the intermediate interpretation
but instead produces a set of processes described in a well-known process calculus. This forms our
symbolic model.

Having defined these interpretations we define notions of equivalence of systems in each representation:
RW(Sys1)

c∼ RW(Sys2) means that no polynomial time environment can distinguish the two cases given
only the public and corrupted keys, and may for instance be used to capture that a protocol UC-securely
realises F in the standard sense; for the intermediate world I(Sys1)

c∼ I(Sys2) means the same but now in

the global memory hybrid model; finally, S(Sys1)
s∼ S(Sys2) means the two processes are observationally

equivalent in the standard symbolic sense.
We prove two soundness theorems stating first, that I(Sys1)

c∼ I(Sys2) implies RW(Sys1)
c∼

RW(Sys2) and second, that S(Sys1)
s∼ S(Sys2) implies I(Sys1)

c∼ I(Sys2), so that in order to prove
UC security of a protocol3 in our class it is now sufficient to show equivalence in the symbolic model and
this is the part we can partly automate4 using the ProVerif tool [BAF05].

Finally, we note that in some cases (in particular when both players are honest) it is possible to
use a standard simulator construction and instead check a different symbolic criteria along the lines of
previous work [CH06]. This removes the manual effort required in constructing simulators.

Analysis approach. Given the above, a protocol φ in our class may hence be analysed in our frame-
work as follows:

1. formulate φ and its ideal functionalities F1, . . . ,Fn in our model and language

2. likewise formulate the target ideal functionality G and simulator Sim

3. let
(
SysAB

real ,SysAreal ,SysBreal
)

and
(
SysAB

ideal ,SysAideal ,SysBideal
)

be respectively the real protocol com-
posed of φ and F1, . . . ,Fn and the ideal protocol composed of G and Sim; then show in the symbolic
model, eg. using ProVerif, that S(SysHreal)

s∼ S(SysHideal) holds in all three cases

4. use the soundness theorem to conclude that RW(SysHreal)
c∼ RW(SysHideal), and in turn that φ realise

G using simulator Sim

Note that as usually in the UC framework we only need to consider one session of the protocol
since the compositional theorem guarantees that it remains secure even when composed with itself a
polynomial number of times. Note also that we may apply our result to a broader class of protocols

3Note that we actually prove a slightly stronger result than what is needed to show UC security: it would have been
enough to show that if a real protocol realises an ideal functionality in the intermediate model then it also does so in the
real-world model. Concretely, we could have avoided defining a real-world interpretation of an ideal protocol. As an added
bonus, this slightly stronger result means that the soundness theorem could also be used to give computational assurance
to analyses where two instances of the real protocol (eg. running on different fixed inputs) are compared.

4Obviously, the symbolic equivalence could also be proved by hand or using some other tool. We have chosen ProVerif
here for its resolving power and wide-spread acceptance in the symbolic community. Furthermore, if better tool support
arises for a different symbolic model then the first part of our soundness result could of course be re-used.

3

through a hybrid-symbolic approach where the protocol in question is broken down into several sub-
protocols and ideal functionalities analysed independently either within our framework or outside in an
ad-hoc setting (possibly using other primitives) as outlined in Section 8.1.

We have tried to make the models suitable for automated analysis using current tools such as ProVerif,
and although our approach requires manual construction of a simulator for the symbolic version of the
protocol, this is usually a very simple task. As a case study we in Section 7 carry out an analysis of the
oblivious transfer protocol from [DNO08].

1.2 Related Work

The main area of related work is computational soundness which we go into detail with below, focusing
in particular on three lines of closely related work. We refer to [CKW11] for an in-depth survey of this
area.

We also mention the area of symbolic modelling of security properties using the simulation-based
paradigm. To the best of our knowledge this paradigm has only received little attention in the symbolic
community, yet seems natural when analysing function evaluation protocols such as oblivious transfer.
In particular, most symbolic models do either not follow this paradigm or do not give the simulator
special powers (such as trapdoors).

Finally, there is also a large body of work on the direct approach where the symbolic model is
altogether avoided but instead used as inspiration for creating a computational model easier to analyse.
This line of work includes [Bla08, MRST06, DDMR07] and while it is more expressive than the symbolic
approach we have taken here, our focus has been on abstracting and automating as much as possible.

Computational soundness. The line of work started by Backes et al. [BPW03] and known as “the
BPW approach” gives an ideal cryptographic library based on the ideas behind abstract Dolev-Yao
models. The library is responsible for all operations that players and the adversary want to perform
(such as encryption, decryption, and message sending) with every message being kept in a database by
the library and accessed only through handles. Using the framework for reactive simulatability [PW01]
(similar to the UC framework) the ideal library is realised using cryptographic primitives. This means
that a protocol may be analysed relative to the ideal library yet exhibit the same properties when using
the realisation instead. The original model supporting nested nonce generation, public-key encryption,
and MACs was later been extended to support symmetric encryption [BP04] and a simple form of
homomorphic threshold-encryption [LN08] allowing a single homomorphic evaluation. The approach has
also been used to analyse protocols for trace-based security properties such as authentication and key
secrecy [BP03, BP06].

Comparing our work to the BPW approach we see that the operation modules and global memory
functionality of our intermediate model correspond to the ideal cryptographic library, and the real-world
operation modules to the realisation. In this light Lemma 5.4 and 5.5 form our realisation result5. The
difference lies in the supported operations: namely our more powerful homomorphic encryption and
simulation operations – the former allows us to implement several two-party functionalities while the
latter allows us to express simulators for ideal functionalities within the model. This not only allows
us to capture a different class of security properties6 (such as the standard assumptions on oblivious
transfer with static corruption) but also to do modular and hybrid-symbolic analysis. The importance
of this was elaborated on in [Can08].

The next line of work closely related is that started by Canetti et al. in [CH06] and building on
[MW04, BPW03] but adding support for modular analysis. They first formulate a programming lan-
guage for protocols using public-key encryption and give both a computational and symbolic interpre-
tation. They then give a mapping lemma showing that the traces of the two interpretation coincide, ie.
the computational adversary can do nothing that the symbolic adversary cannot also do (except with
negligible probability). While this only shows soundness of trace properties they are then able to lift
this to indistinguishability properties for two special cases and give symbolic criteria for realising au-
thentication and key-exchange functionalities. Moreover, they use ProVerif to automate the analysis of
the original Needham-Schroeder-Lowe protocol (relative to authenticity) and two of its variants (relative

5Note that we put some requirements on the use of our “library” by demanding that protocols are well-formed; the
BPW library works for an environment by instead putting these requirements in the code of the library.

6In principle the BPW model could be used as a stepping-stone to analyse cases where the simulator may simply run
the protocol on constants. However, the simulator is sometimes required to use trapdoors in order to extract information
needed to simulate an ideal functionality in the simulation-based paradigm. These cases cannot be analysed with the
operations of the BPW model.

4

to key-exchange). Later work [CG10] again targets key-exchange protocols but adds support for digital
signatures, Diffie-Hellman key-exchanges, and forward security under adaptive corruption.

Most important, our approach has been that of not fixing the target ideal functionalities but instead
letting it be expressible in the model (along with the realising protocol and simulator). Hence it is
relatively straight-forward to analyse protocols realising other functionalities than what we have done
here, whereas adapting [CH06] to other classes of protocols requires manually finding and showing
soundness of a symbolic criteria. It is furthermore not clear which functionalities may be captured by
symbolic criteria expressed as trace properties and strong secrecy. In particular, the target functionalities
of [CH06] and [CG10] do not take any input from the players nor provide any security guarantees when
a player is corrupt, and hence the criteria do not need to account for these case. Again we also show
soundness for a different set of primitives.

The final line of related work is showing soundness of indistinguishability-based (instead of trace-
based properties). This was started by Comon-Lundh et al. in [CC08] and, unlike the two lines of work
mention above, aims at showing that if the symbolic adversary cannot distinguish between two systems in
the symbolic interpretation then the computational adversary cannot do so either for the computational
interpretation. [CC08] showed this for symmetric encryption and was continued in [CHKS12] for public-
key encryption and hash functions.

Our work obviously relates in that we are also concerned about soundness of indistinguishability.
Again the biggest difference is the choice of primitives, but also that our framework seems more suitable
for expressing ideal functionalities and simulators: although mentioned as an application, their model do
not appear to be easily adapted to capturing the typical structure of a composable analysis framework
such as the UC framework (private channels are not allowed for instance, see also [Unr11]). And while
their result may be used as a stepping stone they do not provide the essential simulator operations. To
this end the result is closer to what might be achieved through the BPW approach. Note that the work
in [CHKS12] does not require computable parsing (as we do through the NIZK proofs). However, for
secure function evaluation in the simulation-based paradigm some form of computational extraction is
typically required in general.

The work in [BMM10] is also somewhat related in that they also aim at analysing secure function
evaluation, namely secure multi-party computations (MPC). However, they instead analyse protocols
using MPC as a primitive whereas we are interested in analysing the (lower-level) protocols realising
MPC. Moreover, they are again limited to trace properties.

Symbolic modelling of security properties. Most related work in the huge area of symbolic mod-
elling of security properties (without computational soundness) is mainly focused on either trace-based
properties or notions related to strong secrecy ; so far the simulated-based paradigm has not gained much
popularity. Delaune et al. [DKP09] show that the paradigm may be expressed in the applied-pi calculus
and compare different instantiations including the UC framework7. From this perspective our model
of the UC framework is simple and does not aim to capture as many aspects. On the other hand we
give a computational interpretation and soundness result. More generally, to the best of our knowledge
this is also the first work capturing secure functionalities such as oblivious transfer under corruption
in a symbolic setting; expressing the security requirements for this is natural in the simulation-based
paradigm but it is much less clear how this can be captured using trace-based properties or even strong
secrecy8.

Note that (randomised) oblivious transfer was expressed and analysed symbolically in the probabilistic
applied-pi calculus in [GPT07] but not using the simulated-based paradigm and hence only for the case
where both players are honest.

7The computationally equivalent comparison was done in [DKMR05] from which we also took some inspiration when
formulating our model.

8For oblivious transfer protocols we typically require two properties regarding the secrecy of the involved inputs: (i)
even a corrupt sender does not learn the receiver’s choice bit b; and (ii) even a corrupt receiver only learns the message
xb that he is asking for and nothing about x1−b. While it might be possible to capture these using strong secrecy for the
cases where both players or only the receiver is honest, it is less clear how to do this when only the sender is honest; we
cannot for instance use S(x0, x1) ∼ S(0, x1) to capture that x0 should be kept secret because this puts an assumption on
the behaviour or the corrupted player (that he will ask for x1) and would not hold in the valid case where he asks for x0.
From the simulation-based point of view, what is missing is a simulator and ideal functionality that during the protocol
execution can decide which xb he is asking for and then release no other information.

5

1.3 Organisation

The rest of the chapter is organised as shown next. As a reading hint, Section 2 should be read before later
sections. Readers coming from the cryptographic community may then continue to read the chapter in
the given order, following a “top-down” approach of progressively removing cryptography and bitstrings,
and ending up with an highly idealised model. On the other hand, readers coming from the symbolic
community may instead choose a “bottom-up” approach starting with the symbolic or intermediate
interpretation and then replace the ideal cryptography with concrete schemes afterwards.

Section 2 specifies our protocol class including the interface of the crypto black-boxes, dubbed op-
eration modules. It then introduces a simple programming language and illustrates how an oblivious
transfer, a commitment, a coin-flipping, and a triple-generation protocol may be expressed, as well as
their ideal functionalities and suitable simulators.

Section 3 gives the preliminaries for the real-world interpretation, ie. it introduces our computational
setting in the form of the UC framework, and defines the assumptions we make on the cryptographic
primitives.

Section 4 gives the real-world interpretation of a system in terms of the UC framework and the
primitives. This amounts to specifying how protocols are executed and implementing the operation
modules.

Section 5 gives the intermediate interpretation of a system still in terms of the UC framework but
this time using an ideal global memory instead of the primitives. The soundness theorem is then shown
by introducing the concept of a translator that maps messages between the two interpretations; the
translator is in fact just a standard UC simulator but we want to avoid overloading this name.

Section 6 gives the symbolic interpretation as an abstraction of the intermediate model using a dialect
of the applied-pi calculus. Soundness of symbolic indistinguishability is a simple result given the abstract
nature of the intermediate model.

Section 7 shows how the oblivious transfer protocol we use as a running example may be analysed
using ProVerif. Although this is not fully automated due to the nature of the tool, we instead give a
systematic approach for massaging the processes of the symbolic interpretation to fit the tool.

Finally, in Section 8 we give a few remarks on possible extensions and future work.

1.4 Acknowledgements

We would like to thank Ran Canetti for valuable discussion and insights, and for hosting Morten at
BU in the beginning of this work. We would also like to thank Hubert Comon-Lundh for discussion
and clarification of his work in [CC08]. Finally, we are thankful for the valuable feedback provided by
anonymous reviewers, including mentioning of several places that needed clarification.

6

2 Protocol Model

This section introduces the class of protocols in consideration and for which the soundness result holds.
We use the oblivious transfer (OT) protocol from [DNO08] as a motivating example of the general
structure and the available primitives, and define two kinds of systems of programmes, namely real
protocols and ideal protocols, respectively describing the actual protocol and its abstract behaviour.

Ending the section we give several examples of what is captured by our protocol class: besides the OT
protocol, we also give a coin-flip (CF) protocol with a commitment sub-protocol, and a multiplication
triple generation protocol used in secure multi-party computation. We give the corresponding ideal
functionalities for all four protocols as well as suitable simulators.

2.1 Motivating Example

We introduce our protocol class by way of an running example. Consider the OT protocol from [DNO08]
shown in Figure 1 with the sender programme on the left and the receiver programme on the right. Note
that both agents know encryption key ekR, the receiver knows the corresponding decryption key dkR,
and both agents know commitment key ckS . Also, the sender expects values x0, x1 and the receiver bit
b from the environment. Only the receiver sends back an output to the environment, namely xb.

Sender: x0, x1 Receiver: b
ckS , crsS , ekR, crsR ckS , crsS , ekR, crsR, dkR

rb ∈R {0, 1}κ
Cb ← EncekR(b, rb)
πb ← Provebit,crsR(Cb, ekR, b, rb)

Cb, πb←−−−−−−−−−−−−−−−
assert Verbit,crsR(Cb, ekR, πb)
rx, r0, r1 ∈R {0, 1}κ
Cx ← Evalsel,ekR(Cb, x0, x1, rx)
D0 ← ComckS (x0, r0)
D1 ← ComckS (x1, r1)
πx ← Provesel,crsS (Cx, . . .)

Cx, D0, D1, πx−−−−−−−−−−−−−−−→
Versel,crsS (Cx, ekR, ckS , πx, . . .)
xb ← DecdkR(Cx)

Figure 1: The OT protocol of [DNO08] in the original notation

In the first step of the protocol the receiver encrypts his bit b under his encryption key. When the
sender next uses Cb to form an encyption Cx of either x0 or x1 it is critical for the security of the protocol
that she ensures that the plaintext of Cb is really a bit: if the receiver sends an encryption of e.g. 2 then
he would learn both x0 and x1 in the case where these are bits. The proof πb ensures that Cb is really
an encryption of a bit.

In the second step the sender uses the homomorphic properties of the encryption scheme to form Cx
from Cb, x0, and x1. The expression she is evaluating is

sel(α;β0, β1)
.
= α · β0 + α · β1

where α
.
= 1 − α denotes negation if α is a bit9. On the receiver side a proof is needed to ensure

correctness of the protocol in the sense that the sender combined the ciphertexts as she was supposed
to. As pointed out in [DNO08] it is also needed to obtain composable security guarantees. Hence, the
sender also commits to inputs x0 and x1 and forms a proof πx that Cx was obtained by expression sel
using Cb and the values in D0 and D1 as inputs.

Finally, in step three the receiver verifies the proof and decrypts Cx to obtain xb; this is given as the
output of the protocol to the environment.

9Note that sel may be written as β0 + α · (−1) · β0 + α · β1 and requiring only a somewhat-homomorphic encryption
scheme.

7

The above OT protocol serves as a motivator for our choice of protocol class. The supported cryptog-
raphy is commitments and homomorphic encryption with a fixed set of keys, and all common reference
strings, public encryption keys, and commitment keys are honestly generated and known to everyone.
We furthermore assume that commitments and encryptions are annotated with the public components
needed to check their associated proofs, in particular the encryption and commitment keys10. In sum-
mary, we assume that commitments and encryptions always are of the following “package” forms:

commitment package: [comPack : D, ck, πU , crs]

encryption package: [encPack : C, ek, πT , crs]

evaluation package: [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]

and otherwise treated as garbage, resulting in abortion. We shall through out the chapter use D to range
over commitment packages and C to range over both encryption and evaluation packages. This leads to
a protocol class parameterised by a finite domain of values, two finite sets of types {Ti}i, {Uj}j , and two
finite sets of arithmetical expressions {ek}k ⊆ {f`}`. Here, as in the rest of the chapter we shall often
assume that the expressions are over four variables (mathcing the values in C1, C2, D1, and D2 in the
evaluation package above) to simplify the presentation.

To fit into our protocol class and analysis framework we hence need to formulate the example OT
protocol as shown in Figure 2 using operations encrypt, verEncPack etc. introduced below. The supported
types are T = bit and U = dom, where bit = {0, 1} and dom is some plaintext space. The supported
expression is e = f = sel as defined above. We see that the biggest change is the use of packages
instead of simple commitment, encryptions, and NIZK proofs. Note that the two commitments are now
implicitly created through the evale instruction; we also allow the explicit creation of type annotated
commitments but did not need this here.

Sender: x0, x1 Receiver: b
ckS , crsS , ekR, crsR ckS , crsS , ekR, crsR, dkR

Cb ← encryptbit,ekR,crsR(b, r)

Cb = [encPack : Cb, ekR, πbit , crsR]
←−−−−−−−−−−−−−−−

verEncPackbit,ekR,crsR(Cb)
Cx ← evalsel,...(Cb, x0, r0, x1, r1)

Cx = [evalPack : Cx, Cb, ekR, D0, D1, ckS , πx, crsS]
−−−−−−−−−−−−−−−→

verEvalPacksel,ekR,ckS ,crsS (Cx, Cb)
xb ← decryptdkR(Cx)

Figure 2: The OT protocol of [DNO08] in our annotated notation

A given protocol is analysed relative to a specification in the form of an ideal functionality. Since
we concentrate on two-party protocols against active adversary with static corruption capabilities we
basically have (up to) three scenarios to consider: when both player A and player B are honest, when
only player A is honest, and when only player B is honest. For each of these scenarios we may ask if
the adversary is able to tell if it is interacting with the honest players or with the ideal functionality
combined with a simulator. For instance, to analyse the OT protocol with players S and R we ask if
the adversary can tell the difference between interacting with S and R, or with the ideal functionality
FOT that is simply given the inputs (x0, x1 and b) and returns the correct output (x0 if b = 0 and x1
otherwise) to the receiver.

10These annotations are without loss of generality but means that we can talk about well-formed messages independent
of the protocol.

8

2.2 Systems

We use system as a generics term for grouping a set of programmes P1, . . . , Pn intended to be executed
concurrently. We shall use � as in

Sys
.
= P1 � · · · � Pn

to denote the composition of such programmes into a system Sys connected through a set of directional
plain and crypto ports. We shall also use � to combine systems.

We put a few requirements on a system for it to be well-formed. Firstly, we require that every port
is used as an input port by at most one programme, and likewise as an output port by at most one
programme (by a later restriction no programme can use a port both for input and output). Ports not
used in both directions are dubbed open and accessible to the environment. Secondly, in our systems at
most two programmes are labelled as being cryptographic, intuitively the programme representing player
A and B (or their simulators).

2.3 Programmes

A programme P is structured as a constant number of input-process-output cycles and is specified over
a fixed set of value symbols V, a fixed set of constant symbols C, a set of randomness symbols RP , a
set of variables XP , a set of allowed operations OP to be specified below, and a set of input and output
ports respectively PinP and PoutP . Every processing of an input is done by a combination of operations
from OP , through references that are substituted into the variables11.

To describe programmes we may introduce a simple programming language. Consider for instance the
OT sender and receiver from above; in our simple language they may be expressed as in Figure 3 with
the sender on the left and the receiver on the right. We see that the receiver first listens on port inR

OT .
When an input arrives on this port it names it b, checks that it is a bit using inTypebit(b)

12, encrypts
it using encryptbit,R,R(b, r)13, and sends the encryption on port sendSR; it then starts to listen on port
receiveSR. Figure 4 shows the flow of the entire protocol.

Note that the sender programme PS
OT is expressed in what may be considered an atypical manner

where it first receives an encryption cb from the receiver and then asks the environment for its input by
sending a getInput constant on the open port outSOT to the environment. Upon receiving its input x01
it only then replies with cx to the receiver. Expressing the sender this way the system is “non-losing”
despite using only “simple” programmes as discussed next; if desired the sender may easily be patched
to fit with the more typical notation.

Another thing to note about the language is that the input command inputP [p : x] is specified with
a set of ports P. The informal semantics is that the programme is also listening on all ports in this set;
however, an input on these will result in the programme aborting. The motivation for having these is
that the soundness result in Section 6.5 requires that systems are non-losing, in the sense that whenever a
programme sends a message on a closed port p the receiving programme must also be listening on p. This
property is easily satisfied by having every programme listen to all of its input ports at every programme
point. However, doing this may also complicate analysing the protocol unnecessarily, especially when it
comes to automating this task. By having the set P we allow some flexibility in finding a description
suitable for automated analysis (the example in Section 2.8 illustrates this practice). When every input
command in a programme P is specified with P = ∅ we say that P is simple. Finally, each input
command also performs an implicit verification of packages as detailed later; this ensures for instance
that a player will only accept packages that were properly created by the other player.

We shall consider four kinds of programmes: channel, plain, player, and simulator. The difference
between them lies in which kinds of ports they may have and what operations they may use. Figure 5 lists
all the operations we consider and the following subsections show how these operations are distributed
in the systems under consideration. Note here that the available operations implicit limit how they may
use the cryptographic material offered to them14. Note also that the evale method (unlike commitU

11We shall not dwell too much over the difference between variables and references here but return to it briefly when
giving the computational semantics later. Note however, that the use of references allows us to give a precise specification
of the operations a programme may perform, which is central to the later soundness results.

12We shall in general omit the “else” part of if-then-else statements if this is just abortion.
13Throughout we write operations in this shortened notation, ie. encryptbit,R,R instead of encryptbit,ekR,crsR .
14Although there is no explicit opening or decommitment operation allowing players to open a commitment in the typical

way (by e.g. revealing both plaintext value and randomness used), this may not be a serious limitation: commitments
can be opened by revealing the plaintext value and giving a NIZK proof that the value is correct, or an ideal commitment
functionality that allows for opening can be used instead (and realised outside the framework). See Section 2.7.

9

P S
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

let cx ← evalsel,R,S,S(cx, x0, r0, x1, r1);

output[sendSR : cx];

stop

PR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

let cb ← encryptbit,R,R(b, r);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

let xb ← decryptR(cx);

output[outROT : xb];

stop

Figure 3: Player programme PS
OT for sender (left) and PR

OT for receiver (right)

AuthRS

PR
OTPS

OT

AuthSR

1 : b

1 : cb

1 : cb2 : deliver

2 : cb

2 : getInput

3 : x01

3 : cx
3 : cx 4 : deliver

4 : cx

4 : xb

Figure 4: Linkes and message flow in the real OT protocol when both players are honest

10

isValue(x)→ b indicates whether x points to a value

eqValue(v, w)→ b indicates whether v and w point to equal values

inTypeU (v)→ b indicates whether v points to a value in type U

inTypeT (v)→ b indicates whether v points to a value in type T

pevalf (v1, v2, w1, w2)→ v evaluates expression e on the values pointed to

isPair(x)→ b indicates whether x points to a pair

pair(x, y)→ z creates a pairing of x and y

first(z)→ x gives a pointer to the first projection of pairing z

second(z)→ y gives a pointer to the second projection of pairing z

isConst(x)→ b indicates whether x points to a constant

eqConstc(v)→ b indicates whether v points to constant c

isComPack(x)→ b indicates whether x points to a commitment package

commitU,ck,crs(v, r)→ d new commitment package for value pointed to by v

verComPackU,ck,crs(d)→ b indicates whether d is a correct commitment package

isEncPack(x)→ b indicates whether x points to an encryption package

encryptT,ek,crs(v, r)→ c new encryption package for value pointed to by c

verEncPackT,ek,crs(c)→ b indicates whether c is a correct encryption package

isEvalPack(x)→ b indicates whether x points to an evaluation package

evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c creates evaluation package

verEvalPacke,ek,ck,crs(c, c1, c2)→ b indicates whether x is a correct evaluation package

verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ b indicates whether x is a correct evaluation package

decryptdk(c)→ v decrypts encryption pointed to by c

simcommitU,ck,simtd(v, r)→ d as commitU,ck,crs(v, r) but ignoring type check

simencryptT,ek,simtd(v, r)→ c as encryptT,ek,crs(v, r) but ignoring type check

simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c as evale,ek,ck,crs(c1, c2, v1, r1, v2, r2) but simulated proof

simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c creates fake evaluation package with encryption of v

extractComextd(d)→ v extracts value from commitment in com. package

extractEncextd(c)→ v extracts value from encryption in encryption package

extractEval1,extd(c)→ v extracts value from first commitment in eval. package

extractEval2,extd(c)→ v extracts value from second commitment in eval. package

Figure 5: Union of all operations available to the programmes in our protocol class

11

∅
input [inR

OT : b] ◦ check inTypebit(b) ◦ compute σ1 ◦ output [sendSR: cb]−−→ {b, cb}

∅
input [inR

OT : b] ◦ check ¬inTypebit(b) ◦ compute ∅
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {b, abort}

{b, cb}
input [receiveSR: cx] ◦ check verEvalPack...(cx,cb) ◦ compute σ2 ◦ output [outROT : xb]−−→ {b, cb, cx, xb}

{b, cb}
input [receiveSR: cx] ◦ check ¬verEvalPack...(cx,cb) ◦ compute ∅−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {b, cb, abort}

where σ1 =

{
encryptbit,R,R(b, r)

cb

}
and σ2 =

{
decryptR(cx)

xb

}

Figure 6: Formal player programme PR
OT for OT receiver

and encryptT) does not take a randomness symbol r as input; we will later come back to this artefact
originating from wanting a symbolic model that is easier to analysis with available tools.

The soundness result holds for a larger class of programmes than what can be captured by the simple
programming language so to include these we formally define programmes by finite height execution
trees. As an example, the OT receiver from above may for instance be expressed as in Figure 6.

The nodes Σ are the programme points while the edges specify the actions available at each programme
point. These actions come in two flavours, namely input-output edges

Σ
input [pin: xin] ◦ check ψ ◦ compute σ ◦ output [pout: xout]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Σ′

and input-only edges

Σ
input [pin: xin] ◦ check ψ ◦ compute σ−−−−−−−−−−−−−−−−−−−−−−−−→ Σ′

where pin, pout are ports, xin, xout are variables, ψ is a predicate formula over the available testing
operations, and σ = {µ1

x1
, . . . , µn

xn
} is a set of operations µi to be executed along with the variables xi

into which the reference to the result is to be stored.
Informally, the execution of an input-output edge happens when there is an accepting input xin on

port pin satisfying ψ (whether or not the input is accepting is detailed later). Then the commands in
σ are executed as described below and the object pointed to by xout is sent on port pout. Executing
an input-only edge is the same except no output is sent. We let Σ be a set containing the references
available (defined) at the programme point and constants used to flag specific states.

For a well-formed programme we require: (i) that it is deterministic, ie. for any node all the ψi on
outgoing edges are mutually exclusive per input port yet also together form a tautology; (ii) that it never
rebinds a variable; (iii) that it never sends messages directly to itself15, ie. PinP ∩ PoutP = ∅; (iv) that it
never uses a randomness symbol in connection with more than either a commitment or an encryption, ie.
that the mapping υP from its randomness symbols RP to value and kind, υP : RP → V×{enc, com}, is a
function; and finally, (v) that it only creates each commitment and encryption package once (it may send
it several times), ie. it only invokes commitU,ck,crs, simcommitU,ck,crs, encryptT,ek,crs, or simencryptT,ek,crs
once per (v, r) pair.

Note that condition (v) is only needed to obtain a simplified symbolic model and our models and
results may easily be adapted to avoid this condition16. Note also that condition (iv) and (v) could be
enforced by the operation modules, but to keep these simple we instead add the conditions here.

2.4 Real Protocols

The first class of systems in consideration is real protocols. The central components of real protocols are
given by two player programmes, PA and PB . These may have both plain and crypto ports, and may
perform cryptographic operations. They may also use authenticated channels as a resource; these are

15This is because of our encoding in the symbolic model where programmes will not be able to perform a handshake
with themself.

16The relevant implication of the condition is that no randomness (or counter) component is needed in the intermediate
and symbolic representation of proofs. Our results carry over both if this randomness component is chosen by the adversary
or honestly by his operation module (since programmes cannot depend on anything about proofs except their correctness,
in particular not their identity).

12

AuthAB
.
= input∅[sendAB : x]; output[leakAB : x]; input∅[inflAB : y]; output[receiveAB : x]; stop

Figure 7: Programme for an authenticated channel AuthAB

pevale(v1, v2, w1, w2)→ v

isValue(x)→ b

eqValue(v, w)→ b

inTypeU (v)→ b

inTypeT (v)→ b

isPair(x)→ b

pair(x, y)→ z

first(z)→ x

second(z)→ y

isConst(x)→ b

eqConstc(v)→ b

Figure 8: Operations available to plain programmes

simple predefined channel programmes given in Figure 7 that accept a single input from one player and
delivers it to the another, allowing the adversary to see the transmitted message as well as to choose
when it is delivered (but not to change it). The players may also use ideal functionalities as a resource;
these are triples of plain programmes that may only have plain ports and operate only on values and
constants. The programmes have no cryptographic material and may only use the operations in Figure 8.

Programme PA for player A is furthermore given the public key of both parties (ekA and ekB), the
commitment key of both parties (ckA and ckB), the CRS of both parties (crsA and crsB), and its own
decryption key (dkA), but it may only use these in accordance with Figure 9. The keys and operations
given to programme PB for player B follows symmetrically.

Denote by AuthAB and AuthBA the parallel composition of two sets of authenticated channels from
A to B and B to A, respectively (ie. AuthAB

.
= AuthAB,1 � · · · �AuthAB,n). Denote by

FAB .
= FAB

1 � · · · � FAB
` FA .

= FA
1 � · · · � FA

` FB .
= FB

1 � · · · � FB
`

the parallel composition of a set of ` functionalities. A real protocol is then defined as follows:

Definition 2.1 (Real protocol). Let the following components be given:

• two player programmes PA and PB describing the supposed behaviour of A and B

• a system AuthAB of authenticated channels from A to B

• a system AuthBA of authenticated channels from B to A

• a system triple of plain programmes (FAB ,FA,FB) with the same number in each

such that the three systems

SysAB
real

.
= PA �AuthAB �AuthBA � FAB � PB

SysAreal
.
= PA � FA SysBreal

.
= PB � FB

forms a real protocol through triple (SysAB
real ,SysAreal ,SysBreal) with the player programmes PA and PB as

the cryptographic programmes.

Note that the players are not parameterised by the corruption scenario; the same programmes are
used in all three cases (but only present if honest). On the other hand, functionalities are allowed to be
aware about the corruption scenario.

(as the operations for plain programmes in Figure 8...)

decryptdkA(x)→ v

isEncPack(x)→ b

encryptT,ek,crsA(v, r)→ c

verEncPackT,ek,crsB (c)→ b

isComPack(x)→ b

commitU,ckA,crsA(v, r)→ d

verComPackU,ckB ,crsB (d)→ b

isEvalPack(x)→ b

evale,ek,ckA,crsA(c1, c2, v1, r1, v2, r2)→ c

verEvalPacke,ek,ckB ,crsB (c, c1, c2)→ b

verEvalPacke,ek,ckB ,crsB (c, c1, c2, d1, d2)→ b

Figure 9: Operations available to player programme PA – with ek ∈ {ekA, ekB}

13

(as the operations for plain programmes in Figure 8...)

isComPack(x)→ b

simcommitU,ckA,simtdA(v, r)→ d

verComPackU,ckB ,crsB (d)→ b

isEncPack(x)→ b

simencryptT,ek,simtdA(v, r)→ c

verEncPackT,ek,crsB (c)→ b

isEvalPack(x)→ b

simevale,ek,ckA,simtdA(c1, c2, v1, r1, v2, r2)→ c

simevale,ek,ckA,simtdA(v, c1, c2, d1, d2)→ c

verEvalPacke,ek,ckB ,crsB (x, x1, x2, y1, y2)→ b

Figure 10: Operations available to simulator SimAB,A when both honest – ek ∈ {ekA, ekB}

2.5 Ideal Protocols

The other class of systems that we shall consider is ideal protocols. The main component of these is a
target ideal functionality F again given by a triple of plain programmes. They also contain simulator
programmes that may behave differently depending on the corrupt scenario: in case both players are
honest, the simulator programme SimAB,A for player A may use the operations in Figure 10, and
symmetrically for the simulator for player B; in case only player A is honest the simulator SimA may
use the operations in Figure 11, and again symmetrically for when only B is honest. Intuitively, the
simulators are always offered the public components (ekA, ekB , ckA, ckB , crsA and crsB) and additionally
the simulation trapdoor for honest players and the extraction trapdoors for corrupt players. Note that
a player programme may be turned into a simulator programme since the latter may use its extraction
operations in place of decryption.

Finally, the simulators also have access to the same resources, authenticated channels and function-
alities, as a real protocol. However, we here denote the latter as simulated functionalities Sk that are
still just triples of plain programmes17.

(as the operations for simulator programmes in Figure 10...)

extractEncextdB (c)→ v

extractComextdB (d)→ v

extractEval1,extdB (c)→ v

extractEval2,extdB (c)→ v

Figure 11: Operations available to simulator programme SimA when only A is honest

Definition 2.2 (Ideal protocol). Let the following components be given:

• a target functionality F =
(
FAB ,FA,FB

)
• two simulator programmes SimAB,A and SimAB,B for when both players are honest

• one simulator programme SimA for when only A is honest

• one simulator programme SimB for when only B is honest

• two systems of authenticated channels AuthAB and AuthBA

• a system triple of plain programmes (SAB ,SA,SB) with the same number in each

such that the three systems

SysAB
ideal

.
= FAB � SimAB,A �AuthAB �AuthBA � SAB � SimAB,B

SysAideal
.
= FA � SimA � SA SysBideal

.
= FB � SimB � SB

forms an ideal protocol Sys ideal through triple (SysAB
ideal ,SysAideal ,SysBideal) and with the simulators as the

cryptographic programmes.

17We use a different name here since the resource functionalities in an ideal protocol need not be related to those found
in the real protocol to which the ideal protocol is being compared.

14

2.6 Oblivious Transfer Functionality

As a showcase we here give the complete description of the OT protocol from earlier sections. The
real protocol contains the two players programmes PR

OT and PS
OT given in Figure 3. Formally the real

protocol becomes (
PS
OT �AuthRS �AuthSR � PR

OT , PS
OT , PR

OT

)
with one authenticated channel in each direction and no functionalities.

For the ideal protocol we first consider the ideal OT functionality and simulators when both players
are honest; these are given in Figure 12 and we see that the simulators simply run the original protocol
on constants. The flow of the protocol for this case is shown in Figure 13. For the case where only S
is honest we have the ideal functionality and simulator in Figure 14 where the simulator extracts the
challenge bit b from the encryption sent by the corrupted receiver. For the final case where only R
is honest we have the ideal functionality and simulator in Figure 15 where the simulator first sends a
constant challenge bit zero but then opens the commitments from the corrupt sender to learn both his
inputs. The ideal protocol becomes(

FSR
OT � SimSR,R

OT �AuthRS �AuthSR � SimSR,S
OT , FS

OT � SimS
OT , FR

OT � SimR
OT

)
when combined with the authenticated channels.

In Section 7 we use ProVerif to conclude that the systems of these two triples are indistinguishable.

FSR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

output[leakROT : breceived];

input∅[inflSOT : getInput];

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

output[leakSOT : xsreceived];

input∅[inflROT : finish];

if eqValue(b, 0) then

output[outROT : x0];

stop

else

output[outROT : x1];

stop

SimSR,S
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

output[inflSOT : getInput];

input∅[leakSOT : xsreceived];

let cx ← simevalsel,R,S,S(cb, 0, r0, 0, r1);

output[sendSR : cx];

stop

SimSR,R
OT

.
= input∅[leakROT : breceived];

let cb ← simencryptbit,R,R(0, rb);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

output[inflROT : finish];

stop

Figure 12: Ideal OT functionality and simulators for when both players are honest

15

AuthRS

SimSR,R
OTSimSR,S

OT

AuthSR

FSR
OT

1 : b

1 : breceived

1 : cb

1 : cb2 : deliver

2 : cb

2 : getInput

2 : getInput

3 : x01

3 : xsreceived

3 : cx
3 : cx 4 : deliver

4 : cx

4 : finish

4 : xb

Figure 13: Links and message flow of ideal OT protocol when both players are honest

FS
OT

.
= input∅[inflOT : b];

if inTypebit(b) then

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

if eqValue(b, 0) then

output[leakOT : x0];

stop

else

output[leakOT : x1];

stop

SimS
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

let b← extractEncR(cb);

output[inflOT : b];

input∅[leakOT : xb];

let cx ← simevalsel,R,S,S(xb, cb, 0, r0, 0, r1);

output[sendSR : cx];

stop

Figure 14: Ideal OT functionality and simulator for when only S is honest

16

FR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

output[leakOT : breceived];

input∅[inflOT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

if eqValue(b, 0) then

output[outROT : x0];

stop

else

output[outROT : x1];

stop

SimR
OT

.
= input∅[leakOT : breceived];

let cb ← simencryptbit,R,R(0, rb);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

let x0 ← extractEval1,R(cx);

let x1 ← extractEval2,R(cx);

let x01 ← pair(x0, x1);

output[inflOT : x01];

stop

Figure 15: Ideal OT functionality and simulator for when only R is honest

17

2.7 Commitment Functionality

As a stepping stone towards presenting the coin-flip (CF) functionality below, we here give a generic
commitment functionality parameterised by a type dom for the committed value. Note that in the
CF functionality below we only use the ideal commitment functionality Fcom presented here and hence
together these examples also illustrates compositional analysis of protocols.

The commitment functionality intuitively allows a committer C to convince opener O that he has
committed himself to a value v, without revealing v to O. At a later point C may choose to open the
commitment and reveal the value to O, at the same time convincing him that the value he learns is really
the value v committed to earlier.

Figure 16 shows player programme PC for committer C and PO for opener O. The expression is
given by minus

.
= α− β and is used to check that the value in commitment d send by C in the first step

is also the value in encryption c send in the final step when opening with (c, c0); the check performed
by O verifies that c0 decrypts to 0. Note that the ack step is included so that we may again only use
simple programmes18. The real protocol becomes(

PC
com �AuthCO,1 �AuthOC �AuthCO,2 � PO

com , PC
com , PO

com

)
with three authenticated channels and no resource functionalities.

The ideal commitment functionality Fcom and simulators for the three corruption scenarios are given
in Figure 17, 18, and Figure 19. The ideal protocol becomes(

FCO
com � SimCO,C

com �AuthCO,1 �AuthOC �AuthCO,2 � SimCO,O
com ,

FC
com � SimS

com , FO
com � SimR

com

)
again with three authenticated channels and no resource functionalities.

PC
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

let d← commitdom,C,C(x, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[outCcom : ack];

input∅[in
C
com : open];

let c← encryptdom,O,C(x, rc);

let c0 ← evalminus,O,C,C(c, x, rd);

output[sendCO,2 : (c, c0)];

stop

PO
com

.
= input∅[receiveCO,1 : d];

if verComPackdom,C,C(d) then

output[outOcom : committed];

input∅[in
O
com : ack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

if verEncPackdom,O,C(c) then

if verEvalPackminus,O,C,C(c0, c, d) then

let x0 ← decryptO(c0);

if eqValue(x0, 0) then

let x← decryptO(c);

output[outOcom : x];

stop

Figure 16: Player programme PC
com for committer (left) and PO

com for opener (right)

18Without the ack message the adversary may force the opener to receive the opening (c, c0) before the commitment d;
to ensure that no message is lost we could then no longer describe the opener by a simple programme.

18

FCO
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

output[leakCcom : delayedcommitted];

input∅[inflOcom : continue];

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakOcom : delayedack];

input∅[inflCcom : continue];

output[outCcom : ack]

input∅[in
C
com : open];

output[leakCcom : delayedopen];

input∅[inflOcom : continue];

output[outOcom : x];

stop

SimCO,C
com

.
= input∅[leakCcom : delayedcommitted];

let d← simcommitdom,C,C(0, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[inflCcom : continue];

input∅[leakCcom : delayedopen];

let c← simencryptdom,O,C(0, rc);

let c0 ← simevalminus,O,C,C(c, 0, rd);

output[sendCO,2 : (c, c0)];

stop

SimCO,C
com

.
= input∅[receiveCO,1 : d];

output[inflOcom : continue];

input∅[leakOcom : delayedack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

output[inflOcom : continue];

stop

Figure 17: Ideal commitment functionality and simulators for when both players are honest

FC
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

output[leakcom : committed];

input∅[inflcom : ack];

output[outCcom : ack]

input∅[in
C
com : open];

output[leakcom : x];

stop

SimC
com

.
= input∅[leakcom : committed];

let d← simcommitdom,C,C(0, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[inflcom : ack];

input∅[leakcom : x];

let c← simencryptdom,O,C(x, rc);

let c0 ← simevalminus,O,C,C(0, c, d);

output[sendCO,2 : (c, c0)];

stop

Figure 18: Ideal commitment functionality and simulator for when only committer is honest

19

FO
com

.
= input∅[inflcom : x];

if inTypedom(x) then

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakcom : ack];

input∅[inflcom : open];

output[outOcom : x];

stop

SimO
com

.
= input∅[receiveCO,1 : d];

if verComPackdom,C,C(d) then

let x← extractComC(d);

output[inflcom : x];

input∅[leakcom : ack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

if verEncPackdom,O,C(c) then

if verEvalPackminus,O,C,C(c0, c, d) then

let x0 ← extractEncC(c0);

if eqValue(x0, 0) then

output[inflcom : open];

stop

Figure 19: Ideal commitment functionality and simulator for when only opener is honest

20

2.8 Coin-flip Functionality

Our coin-flip functionality takes bit a from A and bit b from B as input, and returns c = a ⊕ b to
both of them19. The security guarantee is that both coins are chosen independently. This is ensured by
first letting A commit to a using commitment functionality Fcom from above. Then B sends b to A in
cleartext, and she computes c. Finally, A opens her commitment to B who may now also compute c.

Let Fcom be the commitment functionality from above instantiated with dom = bit , and define
expression xor(α1, α2)

.
= α1 + α2 − 2 · α1 · α2. The programme PA

CF for player A is then given in
Figure 20 together with programme PB

CF for player B. Note that since the protocol uses the commitment
functionality, PB

CF must use input{outOcom}[· : ·] twice to ensure that no message is lost in the scenario where
A is corrupt and the adversary instructs the commitment functionality to open before it is supposed to.
When both players are honest they may be removed to yield a simple programme. The real protocol
becomes (

PA
CF �AuthAB �AuthBA � FCO

com � PB
CF , PA

CF � FC
com , PB

CF � FO
com

)
with two authenticated channels and the commitment functionality.

The ideal coin-flip functionality FCF , its simulators, and simulated commitment functionality Scom
are given in Figure 21, 22, and 23 for the three corruption scenarios. The simulated commitment
functionality differs from Fcom in that the committer specifies the “committed” value when opening.
The ideal protocol becomes(

FAB
CF � SimAB,A

CF �AuthAB �AuthBA � SCO
com � SimAB,B

CF ,

FA
CF � SimA

CF � SCcom , FB
CF � SimB

CF � SOcom
)

with two authenticated channels and the simulated commitment functionality.

PA
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[inCcom : d];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

if inTypebit(b) then

let c← pevalxor (a, b);

output[outAcf : c];

input∅[in
A
cf : outputToB];

output[inCcom : open];

stop

PB
CF

.
= input∅[outOcom : committed];

output[inOcom : ack];

input{outOcom}[receiveAB : proceed];

output[outBcf : getInput];

input{outOcom}[in
B
cf : b];

if inTypebit(b) then

output[sendBA : b];

input∅[outOcom : a];

let c← pevalxor (a, b);

output[outBcf : c];

stop

Figure 20: Player programme PA
CF for A (left) and PB

CF for B (right)

19Note that our protocol model does not allow programmes (and hence players) to pick a random value; in the case of
coin-flipping this means that the coins must come from the environment. However, if a protocol realises a functionality for
inputs chosen by the environment, then it also does so when the inputs are instead drawn randomly from a distribution.
Further discussion is given in Section 8.

21

SimAB,A
CF

.
= input∅[leakAcf : receivedInputFromA];

output[inCcom : fakeCommit];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

output[inflAcf : outputToA];

input∅[leakAcf : a];

output[inCcom : a];

stop

SimAB,B
CF

.
= input∅[outOcom : committed];

output[inOcom : ack];

input∅[receiveAB : proceed];

output[inflBcf : getInputFromB];

input∅[leakBcf : b];

output[sendBA : b];

input∅[outOcom : a];

output[inflBcf : continue];

stop

FAB
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[leakAcf : receivedInputFromA];

input∅[inflBcf : getInputFromB];

output[outBcf : getInput];

input∅[in
B
cf : b];

if inTypebit(b) then

output[leakBcf : b];

input∅[inflAcf : outputToA];

let c← pevalxor (a, b);

output[outAcf : c]

input∅[in
A
cf : outputToB];

output[leakAcf : a];

input∅[inflBcf : continue];

output[outBcf : c];

stop

SCO
com

.
= input∅[in

C
com : fakeCommit];

output[leakCcom : delayedcommitted];

input∅[inflOcom : continue];

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakOcom : delayedack];

input∅[inflCcom : continue];

output[outCcom : ack]

input∅[in
C
com : x];

output[leakCcom : delayedopen];

input∅[inflOcom : continue];

output[outOcom : x];

stop

Figure 21: Ideal CF functionality, simulators, and simulated functionality when both are honest

22

SimA
CF

.
= input∅[leakcf : receivedInputFromA];

output[inCcom : fakeCommit];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

if inTypebit(b) then

output[inflcf : b];

input∅[leakcf : a];

output[inCcom : a];

stop

FA
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[leakcf : receivedInputFromA];

input∅[inflcf : b];

if inTypebit(b) then

let c← pevalxor (a, b);

output[outAcf : c]

input∅[in
A
cf : outputToB];

output[leakAcf : a];

stop

SC
com

.
= input∅[in

C
com : fakeCommit];

output[leakcom : committed];

input∅[inflcom : ack];

output[outCcom : ack]

input∅[in
C
com : x];

output[leakcom : x];

stop

Figure 22: Ideal CF functionality, simulator, and simulated functionality for only A honest

SimB
CF

.
= input∅[outOcom : (committed, a)];

output[inOcom : ack];

input{outOcom}[receiveAB : proceed];

output[inflcf : a];

input{outOcom}[leakcf : b];

output[sendBA : b];

input∅[outOcom : open];

output[inflcf : outputToB];

stop

FB
CF

.
= input∅[inflcf : a];

if inTypebit(a) then

output[outBcf : getInput];

input∅[in
B
cf : b];

if inTypebit(b) then

output[leakcf : b];

input∅[inflcf : outputToB];

let c← pevalxor (a, b);

output[outBcf : c];

stop

SO
com

.
= input∅[inflcom : x];

if inTypebit(x) then

output[outOcom : (committed, x)];

input∅[in
O
com : ack];

output[leakcom : ack]

input∅[inflcom : open];

output[outOcom : open];

stop

Figure 23: Ideal CF functionality, simulator, and simulated functionality when only B honest

23

2.9 Multiplication Triple Functionality

As an exercise in expressibility20 we next consider the Πtrip protocol given by Bendlin et al. in [BDOZ11],
and used in the offline phase of their MPC protocol to securely generate random shares of multiplication
triples between a set of players. We instantiate the protocol for the generation of a single triple between
two players, denoted 1 and 2, under static corruption. In other words, the two players respectively
generate shares (a1, b1, c1) and (a2, b2, c2) with information theoretic MACs. Moreover, since we cannot
model the probabilistic choice21 in the final check of Πtrip we consider a variant where this check is pushed
to the online phase (much like in [DPSZ12]) and allowing an error: define a = a1 + a2, b = b1 + b2, and
c = c1 + c2; when both players are honest our variation makes no difference and we require that a · b = c
as in the original protocol; however, when one player is corrupt we now require that a · b = c+ e for some
error e known by the adversary.

The two player programmes P 1
trip and P 2

trip are given in Figure 24 and 25 respectively; since the
protocol is already complex enough, we here present it slightly informally for readability, yet expressing
all programmes in our formal language is straight-forward. The first thing to notice it that the two
players receive all their random choices from the environment. This is again because we cannot model
probabilistic choice, yet if this formulation is secure then clearly the formulation where the randomness
is instead drawn honestly from a distribution is also secure. One consequence of this is that the same
exact values must now be computed by the protocol and the ideal functionality, and hence the latter is
now slightly less abstract than what we might prefer as we shall see. The second thing to notice is that
the players are now sending an encryption of 0 together with the initial commitment to their α. This is
because we cannot directly give a proof that a ciphertext under encryption ek was constructed using the
plaintext value of another ciphertext under a different encryption key. Concretely, we for instance have
that when player 1 commits to a1 by sending ciphertext22 Ca1 he must do so under his own encryption
key ek1 to keep it secret; however he must also prove that he used the same plaintext when he later
constructs Cx2

under ek2.
The ideal functionality F12

trip for when both players are honest are given in Figure 26. The only thing
to notice here is that c1 is now computed to match the exact value returned by player 1. However, in the
formulation where z1 is honestly drawn from a distribution instead of being provided by the environment
c1 is effectively drawn as in the original ideal functionality. Simulators for when both players are honest
is given in Figure 27 and 28; they simply execute the protocol using constants.

Figure 29 gives the ideal functionality F1
trip when only player 1 is honest. Unlike F12

trip it now expects
the adversary to provide an error value e such that c = c1 + c2 = e; the simulator in Figure 30 computes
this value by extracting values from the corrupted player 2.

Finally, the ideal functionality F1
trip for the symmetric case where only player 2 is honest is given in

Figure 31 and its simulator in Figure 32. Here the error value e is extracted from player 1 instead.

20Our attempts at verifying the equivalences using ProVerif were not conclusive as the tool never terminated. A significant
factor here seemed to be the many input parameters needed to model the probabilistic choices.

21While we may analyse some probabilistic choices, the kind used here falls into another category which it is unclear how
to capture; see Section 8 for more discussion.

22Note that he cannot commit to a1 using only a commitment since player 2 later needs Ca1 to form Cm(a1).

24

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

(a) check that all values are in the domain

(b) let Dα2 ← commitdom,ck1,crs1(α2, rα2)

(c) let C02 ← encryptdom,ek2,crs1(0, r02)

(d) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

(a) check verComPackdom,ck2,crs2(Dα1) and verEncPackdom,ek1,crs2(C01)

(b) check decryptdk1(C01) = 0

(c) let Da1 ← commitdom,ck1,crs1(a1, ra1) and Ca1 ← evalplus,ek1,ck1,crs1(C01 , a1, ra1)

(d) let Db1 ← commitdom,ck1,crs1(b1, rb1) and Cb1 ← evalplus,ek1,ck1,crs1(C01 , b1, rb1)

(e) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

(a) check verComPackdom,ck2,crs2(Da2) and verEvalPackplus,ek2,ck2,crs2(Ca2 , C02 ,Da2)

(b) check verComPackdom,ck2,crs2(Db2) and verEvalPackplus,ek2,ck2,crs2(Cb2 , C02 ,Db2)

(c) let Cx2 ← evalmultplus,ek2,ck1,crs1(Cb2 , a1, ra1 , z1, rz1)

(d) send Cx2 to player 2

4. On receiving Cx1 from player 2

(a) check verEvalPackmultplus,ek1,ck2,crs2(Cx1 , Cb1 ,Da2)

(b) let x1 ← decryptdk1(Cx1)

(c) let c1 = a1 · b1 + x1 − z1
(d) let Cc1 ← encryptdom,ek1,crs1(c1, rc1)

(e) send Cc1 to player 2

5. On receiving Cc2 from player 2

(a) check verEncPackdom,ek2,crs2(Cc2)

(b) let Cm(a2) ← evalmultplus,ek2,ck1,crs1(Ca2 , α2, rα2 , βa2 , rβa2
)

(c) let Cm(b2) ← evalmultplus,ek2,ck1,crs1(Cb2 , α2, rα2 , βb2 , rβb2)

(d) let Cm(c2) ← evalmultplus,ek2,ck1,crs1(Cc2 , α2, rα2 , βc2 , rβc2)

(e) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

6. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

(a) check verEvalPackmultplus,ek1,ck2,crs2(Cm(a1), Ca1 ,Dα1)

(b) check verEvalPackmultplus,ek1,ck2,crs2(Cm(b1), Cb1 ,Dα1)

(c) check verEvalPackmultplus,ek1,ck2,crs2(Cm(c1), Cc1 ,Dα1)

(d) let m(a1)← decryptdk1(Cm(a1))

(e) let m(b1)← decryptdk1(Cm(b1))

(f) let m(c1)← decryptdk1(Cm(c1))

(g) output
(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 24: Player P 1
trip for multiplication triple generation

25

1. On receiving (Dα2 , C02) from player 1

(a) check verComPackdom,ck1,crs1(Dα2) and verEncPackdom,ek2,crs1(C02)

(b) check decryptdk2(C02) = 0

(c) output getInput on port out2trip

2. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

(a) check that all values are in the domain

(b) let Dα1 ← commitdom,ck2,crs2(α1, rα1)

(c) let C01 ← encryptdom,ek1,crs2(0, r01)

(d) send (Dα1 , C01) to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

(a) check verComPackdom,ck1,crs1(Da1) and verEvalPackplus,ek1,ck1,crs1(Ca1 , C01 ,Da1)

(b) check verComPackdom,ck1,crs1(Db1) and verEvalPackplus,ek1,ck1,crs1(Cb1 , C01 ,Db1)

(c) let Da2 ← commitdom,ck2,crs2(a2, ra2) and Ca2 ← evalplus,ek2,ck2,crs2(C02 , a2, ra2)

(d) let Db2 ← commitdom,ck2,crs2(b2, rb2) and Cb2 ← evalplus,ek2,ck2,crs2(C02 , b2, rb2)

(e) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

(a) check verEvalPackmultplus,ek2,ck1,crs1(Cx2 , Cb2 ,Da1)

(b) let x2 ← decryptdk2(Cx2)

(c) let Cx1 ← evalmultplus,ek1,ck2,crs2(Cb1 , a2, ra2 , z2, rz2)

(d) send Cx1 to player 1

5. On receiving Cc1 from player 1

(a) check verEncPackdom,ek1,crs1(Cc1)

(b) let c2 = a2 · b2 + x2 − z2
(c) let Cc2 ← encryptdom,ek2,crs2(c2, rc2)

(d) send Cc2 to player 1

6. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

(a) check verEvalPackmultplus,ek2,ck1,crs1(Cm(a2), Ca2 ,Dα2)

(b) check verEvalPackmultplus,ek2,ck1,crs1(Cm(b2), Cb2 ,Dα2)

(c) check verEvalPackmultplus,ek2,ck1,crs1(Cm(c2), Cc2 ,Dα2)

(d) let m(a2)← decryptdk2(Cm(a2))

(e) let m(b2)← decryptdk2(Cm(b2))

(f) let m(c2)← decryptdk2(Cm(c2))

(g) output
(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

7. On input outputTo1 on port in2
trip

(a) let Cm(a1) ← evalmultplus,ek1,ck2,crs2(Ca1 , α1, rα1 , βa1 , rβa1
)

(b) let Cm(b1) ← evalmultplus,ek1,ck2,crs2(Cb1 , α1, rα1 , βb1 , rβb1)

(c) let Cm(c1) ← evalmultplus,ek1,ck2,crs2(Cc1 , α1, rα1 , βc1 , rβc1)

(d) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 25: Player P 2
trip for multiplication triple generation

26

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

(a) check that all values are in the domain

(b) leak input1Received on port leak1
trip

2. On influence getInput on port infl2
trip

(a) output getInput on port out2trip

3. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

(a) check that all values are in the domain

(b) leak input2Received on port leak2
trip

4. On influence outputTo2 on port infl2
trip

(a) let a = a1 + a2, b = b1 + b2, and c = a · b
(b) let c1 = a1 · b1 + a2 · b1 + z2 − z1 and c2 = c− c1
(c) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
(d) output

(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

5. On input outputTo1 on port in2
trip

(a) leak outputTo1 on port leak2
trip

6. On influence outputTo1 on port infl1
trip

(a) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
(b) output

(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 26: Triple generation functionality F12
trip when both players are honest

1. On leakge input1Received on port leak1
trip

(a) let Dα2 ← simcommitdom,ck1,simtd1(0, rα2)

(b) let C02 ← simencryptdom,ek2,simtd1
(0, r02)

(c) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

(a) let Da1 ← simcommitdom,ck1,simtd1(0, ra1) and Ca1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, ra1)

(b) let Db1 ← simcommitdom,ck1,simtd1(0, rb1) and Cb1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, rb1)

(c) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

(a) let Cx2 ← simevalmultplus,ek2,ck1,simtd1(Cb2 , 0, ra1 , 0, rz1)

(b) send Cx2 to player 2

4. On receiving Cx1 from player 2

(a) let Cc1 ← simencryptdom,ek1,simtd1
(0, rc1)

(b) send Cc1 to player 2

5. On receiving Cc2 from player 2

(a) let Cm(a2) ← simevalmultplus,ek2,ck1,simtd1(Ca2 , 0, rα2 , 0, rβa2
)

(b) let Cm(b2) ← simevalmultplus,ek2,ck1,simtd1(Cb2 , 0, rα2 , 0, rβb2)

(c) let Cm(c2) ← simevalmultplus,ek2,ck1,simtd1(Cc2 , 0, rα2 , 0, rβc2)

(d) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

6. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

(a) influence outputTo1 on port infl1
trip

Figure 27: Simulator Sim12,1
trip when both players are honest

27

1. On receiving (Dα2 , C02) from player 1

(a) influence getInput on port infl2
trip

2. On leakage input2Received on port leak2
trip

(a) let Dα1 ← simcommitdom,ck2,simtd2(0, rα1)

(b) let C01 ← simencryptdom,ek1,simtd2
(0, r01)

(c) send Dα1 , C01 to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

(a) let Da2 ← simcommitdom,ck2,simtd2(0, ra2) and Ca2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, ra2)

(b) let Db2 ← simcommitdom,ck2,simtd2(0, rb2) and Cb2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, rb2)

(c) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

(a) let Cx1 ← simevalmultplus,ek1,ck2,simtd2(Cb1 , 0, ra2 , 0, rz2)

(b) send Cx1 to player 1

5. On receiving Cc1 from player 1

(a) let Cc2 ← simencryptdom,ek2,simtd2
(0)

(b) send Cc2 to player 1

6. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

(a) influence outputTo2 on port infl2
trip

7. On leakage outputTo1 on port leak2
trip

(a) let Cm(a1) ← simevalmultplus,ek1,ck2,simtd2(Ca1 , 0, rα1 , 0, rβa1
)

(b) let Cm(b1) ← simevalmultplus,ek1,ck2,simtd2(Cb1 , 0, rα1 , 0, rβb1)

(c) let Cm(c1) ← simevalmultplus,ek1,ck2,simtd2(Cc1 , 0, rα1 , 0, rβc1)

(d) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 28: Simulator Sim12,2
trip when both honest players are honest

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

(a) check that all values are in the domain

(b) leak input1Received on port leak trip

2. On influence (α1, a2, b2) on port infl trip

(a) check that all values are in the domain

(b) leak x2 = b2 · a1 + z1 on port leak trip

3. On influence (c2, e) on port infl trip

(a) check that both values are in the domain

(b) let a = a1 + a2, b = b1 + b2, and c = a · b
(c) let c1 = c− c2 − e
(d) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
(e) leak

(
m(a2),m(b2),m(c2)

)
on port leak trip

4. On influence (βa1 , βb1 , βc1) on port infl trip

(a) check that all values are in the domain

(b) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
(c) output

(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 29: Triple generation functionality F1
trip when only player 1 is honest

28

1. On leakage input1Received on port leak trip

(a) let Dα2 ← simcommitdom,ck1,simtd1(0, rα2)

(b) check C02 ← simencryptdom,ek2,simtd1
(0, r02)

(c) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

(a) check verComPackdom,ck2,crs2(Dα1) and verEncPackdom,ek1,crs2(C01)

(b) check extractEncextd2(C01) = 0

(c) let α1 ← extractComextd2(Dα1)

(d) let Da1 ← simcommitdom,ck1,simtd1(0, ra1) and Ca1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, ra1)

(e) let Db1 ← simcommitdom,ck1,simtd1(0, rb1) and Cb1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, rb1)

(f) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

(a) check verComPackdom,ck2,crs2(Da2) and verEvalPackplus,ek2,ck2,crs2(Ca2 , C02 ,Da2)

(b) check verComPackdom,ck2,crs2(Db2) and verEvalPackplus,ek2,ck2,crs2(Cb2 , C02 ,Db2)

(c) let a2 ← extractComextd2(Da2) and b2 ← extractComextd2(Db2)

(d) influence (α2, a2, b2) on port infl trip

4. On leakage x2 on port leak trip

(a) let Dz1 ← simcommitdom,ck1,simtd1(0, rz1)

(b) let Cx2 ← simevalmultplus,ek2,ck1,simtd1(x2, Cb2 ,Da1 ,Dz1)

(c) send Cx2 to player 2

5. On receiving Cx1 from player 2

(a) check verEvalPackmultplus,ek1,ck2,crs2(Cx1 , Cb1 ,Da2 ,Dz2)

(b) let z2 ← extractEval2,extd2(Cx1)

(c) let Cc1 ← simencryptdom,ek1,simtd1
(0, rc1)

(d) send Cc1 to player 2

6. On receiving Cc2 from player 2

(a) check verEncPackdom,ek2,crs2(Cc2)

(b) let c2 ← extractEncextd2(Cc2)

(c) let e = a2 · b2 + x2 − z2 − c2
(d) influence (c2, e) on port infl trip

7. On leakage
(
m(a2),m(b2),m(c2)

)
on port leak trip

(a) let Dβa2
← simcommitdom,ck1,simtd1(0, rβa2

)

(b) let Dβb2 ← simcommitdom,ck1,simtd1(0, rβb2)

(c) let Dβc2 ← simcommitdom,ck1,simtd1(0, rβc2)

(d) let Cm(a2) ← simevalmultplus,ek2,ck1,simtd1(m(a2), Ca2 ,Dα2 ,Dβa2
)

(e) let Cm(b2) ← simevalmultplus,ek2,ck1,simtd1(m(b2), Cb2 ,Dα2 ,Dβb2)

(f) let Cm(c2) ← simevalmultplus,ek2,ck1,simtd1(m(c2), Cc2 ,Dα2 ,Dβc2)

(g) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

8. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

(a) check verEvalPackmultplus,ek1,ck2,crs2(Cm(a1), Ca1 ,Dα1)

(b) check verEvalPackmultplus,ek1,ck2,crs2(Cm(b1), Cb1 ,Dα1)

(c) check verEvalPackmultplus,ek1,ck2,crs2(Cm(c1), Cc1 ,Dα1)

(d) let βa1 ← extractEval2,extd2(Cm(a1))

(e) let βb1 ← extractEval2,extd2(Cm(b1))

(f) let βc1 ← extractEval2,extd2(Cm(c1))

(g) influence (βa1 , βb1 , βc1) on port infl trip

Figure 30: Simulator Sim1
trip when only player 1 is honest

29

1. On influence α2 on port infl trip

(a) check that it is in the domain

(b) output getInput on port out2trip

2. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

(a) check that all values are in the domain

(b) leak input2Received on port leak trip

3. On influence (a1, b1) on port infl trip

(a) check that all values are in the domain

(b) leak x1 = b1 · a2 + z2 on port leak trip

4. On influence (c1, e, βa2 , βb2 , βc2) on port infl trip

(a) check that all values are in the domain

(b) let a = a1 + a2, b = b1 + b2, and c = a · b
(c) let c2 = c− c1 − e
(d) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
(e) output

(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

5. On input outputTo1 on port in2
trip

(a) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
(b) leak

(
m(a1),m(b1),m(c1)

)
on port leak trip

Figure 31: Triple generation functionality F2
trip when only player 2 is honest

30

1. On receiving (Dα2 , C02) from player 1

(a) check verComPackdom,ck1,crs1(Dα2) and verEncPackdom,ek2,crs1(C02)

(b) check extractEncextd1(C02) = 0

(c) let α2 ← extractComextd1(Dα2)

(d) influence α2 on port infl trip

2. On input input2Received on port leak trip

(a) let Dα1 ← simcommitdom,ck2,simtd2(0, rα1)

(b) let C01 ← simencryptdom,ek1,simtd2
(0, r01)

(c) send (Dα1 , C01) to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

(a) check verComPackdom,ck1,crs1(Da1) and verEvalPackplus,ek1,ck1,crs1(Ca1 , C01 ,Da1)

(b) check verComPackdom,ck1,crs1(Db1) and verEvalPackplus,ek1,ck1,crs1(Cb1 , C01 ,Db1)

(c) let a1 ← extractComextd1(Da1)

(d) let b1 ← extractComextd1(Db1)

(e) let Da2 ← simcommitdom,ck2,simtd2(0, ra2) and Ca2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, ra2)

(f) let Db2 ← simcommitdom,ck2,simtd2(0, rb2) and Cb2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, rb2)

(g) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

(a) check verEvalPackmultplus,ek2,ck1,crs1(Cx2 , Cb2 ,Da1)

(b) let z1 ← extractEval2,extd1(Cx2)

(c) influence (a1, b1) on port infl trip

5. On leakage x1 on port leak trip

(a) let Dz2 ← simcommitdom,ck2,simtd2(0, rz2)

(b) let Cx1 ← simevalmultplus,ek1,ck2,simtd2(x1, Cb1 ,Da2 ,Dz2)

(c) send Cx1 to player 1

6. On receiving Cc1 from player 1

(a) check verEncPackdom,ek1,crs1(Cc1)

(b) let c1 ← extractEncextd1(Cc1)

(c) let Cc2 ← simencryptdom,ek2,simtd2
(0, rc2)

(d) send Cc2 to player 1

7. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

(a) check verEvalPackmultplus,ek2,ck1,crs1(Cm(a2), Ca2 ,Dα2)

(b) check verEvalPackmultplus,ek2,ck1,crs1(Cm(b2), Cb2 ,Dα2)

(c) check verEvalPackmultplus,ek2,ck1,crs1(Cm(c2), Cc2 ,Dα2)

(d) let βa2 ← extractEval2,extd1(Cm(a1))

(e) let βb2 ← extractEval2,extd1(Cm(b1))

(f) let βc2 ← extractEval2,extd1(Cm(c1))

(g) let e = a1 · b1 + x1 − z1 − c1
(h) influence (c1, e, βa2 , βb2 , βc2) on port infl trip

8. On leakage
(
m(a1),m(b1),m(c1)

)
on port leak trip

(a) let Dβa1
← simcommitdom,ck1,simtd1(0, rβa1

)

(b) let Dβb1 ← simcommitdom,ck1,simtd1(0, rβb1)

(c) let Dβc1 ← simcommitdom,ck1,simtd1(0, rβc1)

(d) let Cm(a1) ← simevalmultplus,ek1,ck2,simtd2(m(a1), Ca1 ,Dα1 ,Dβa1
)

(e) let Cm(b1) ← simevalmultplus,ek1,ck2,simtd2(m(b1), Cb1 ,Dα1 ,Dβb1)

(f) let Cm(c1) ← simevalmultplus,ek1,ck2,simtd2(m(c1), Cc1 ,Dα1 ,Dβc1)

(g) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 32: Simulator Sim2
trip when only player 2 is honest

31

3 Preliminaries

Our computational model is that of the UC framework as described in [Can01]. In this model ITMs in a
network communicate by writing to each others tapes, thereby passing on the right to execute. In other
words, the scheduling is token-based so that any ITM may only execute when it is holding the token.
Initially the special environment ITM Z holds the token. When it writes on a tape of an ITM M in the
network it passes on the token and M is now allowed to execute. If the token ever gets stuck it goes
back to the environment.

We say that two binary distribution ensembles X,Y are indistinguishable if for any c, d ∈ N there
exists κ0 ∈ N such that for all κ ≥ κ0 and all z ∈ ∪k≤κd{0, 1}k we have

∣∣Pr[X(κ, z) = 1]− Pr[Y (κ, z) =

1]
∣∣ < κ−c. We write this as X ≈ Y . Next, for environment Z, adversary A, and network N of ITMs,

we write ExecZ,A,N (κ, z) for the random variable denoting the output bit (guess) of Z after interacting
with A and N , and denote ensemble {ExecZ,A,N (κ, z)}κ∈N,z∈{0,1}? by ExecZ,A,N . We may then compare
networks as follows:

Definition 3.1 (Computational Indistinguishability). Two networks of ITMs N1 and N2 are com-
putational indistinguishability when no probabilistic polynomial time (PPT) adversary A may allow a
PPT environment Z to distinguish between them with more than negligible probability, ie. we have
ExecZ,A,N1

≈ ExecZ,A,N2
. We write this as N1

c∼ N2.

By allowing different adversaries in the two networks we also obtain a notion of one network imple-
menting another, namely network N1 realises network N2 when, for any PPT A, there exists a PPT
simulator Sim such that for all PPT Z we have N1

c∼ N2.
Note that the class of environments is restricted to ensure that every execution runs in polynomial

time, i.e. may be simulated by a single polynomial time ITM given the security parameter κ and initial
input z.

3.1 Commitment Scheme

A commitment scheme is given by PPT algorithms ComKeyGen(1κ)→ ck and Comck(V,R)→ D for
key-generation and commitment, respectively. We require that the scheme is well-spread, computationally
binding and computationally hiding :

• well-spread: if no PPT adversary A may win the game in Fig. 33 with more than negligible
probability (in the security parameter)

• computationally binding: if no PPT adversary A may win the game in Figure 34 with more
than negligible probability

• computationally hiding: if for all PPT adversaries A the combination of A and game Gcom,hi0 is

indistinguishable from A and game Gcom,hi1 , as given in Figure 35

where, well-spread intuitively means that it is hard to predict the outcome of honestly generating a
commitment.

Note that here and below we require security for the entire domain of values so that the concrete
length of a plaintext need not be leaked (a suitable length may be derived from the publicly known
domain); this is justified by the fact that we consider homomorphic encryption where it seems natural
that the cryptographic operations cannot be applied to pairs etc. but only to values.

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V,D) from the adversary and check that V is a value in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute D′ ← Comck(V,R)

4. Adversary wins if D = D′

Figure 33: Security game Gcom,ws for a well-spread commitment scheme

3.2 Homomorphic Encryption Scheme

An encryption scheme is given by three PPT algorithms EncKeyGen(1κ) → (ek, dk), Encek(V,R) →
C, and Decdk(C) → V . An homomorphic encryption scheme furthermore contains a PPT algorithm

32

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V,R) and (V ′, R′) from the adversary and check that V and V ′ are values in the domain

3. Adversary wins if Comck(V,R) = Comck(V ′, R′) when V 6= V ′

Figure 34: Security game Gcom,bin for a computationally binding commitment scheme

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V0, V1) from the adversary and check that they are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute D ← Comck(Vb, R) for choice b

4. Send D to the adversary

Figure 35: Security game Gcom,hib for a computationally hiding commitment scheme

Evale,ek(C1, C2, V1, V2, R) → C for arithmetic expression e(x1, x2, y1, y2) and randomness R for re-
randomisation23. We require that the scheme is well-spread, correct, history hiding (or formula private),
and IND-CPA secure for the entire domain:

• well-spread: if no PPT adversary A may win neither the game in Figure 36 nor the game in
Figure 37 with more than negligible probability

• correct: if no PPT adversary A may win neither the game in Figure 38 nor the game in Figure 39
with more than negligible probability

• history hiding: if for all PPT adversaries A the combination of A and game Genc,his0 is indistin-

guishable from A and game Genc,his1 , as given in Figure 40

• IND-CPA: if for all PPT adversaries A the combination of A and game Genc,cpa0 is indistinguishable
from A and game Genc,cpa1 , as given in Figure 41

where correct intuitively means that decryption almost always success for well-formed ciphertexts, and
history hiding that a ciphertext produced using Evale,ek is distributed as Encek on the same inputs.

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send both to adversary

2. Receive (V,C) from the adversary and check that V is a value in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C′ ← Encek(V,R)

4. Adversary wins if C = C′

Figure 36: Security game Genc,encws for a well-spread encryption scheme

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send both to adversary

2. Receive (C1, C2,W1,W2, C) from the adversary and check that W1 and W2 are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C′ ← Evale,ek(C1, C2,W1,W2, R)

4. Adversary wins if C = C′ when Decdk(C1) 6= ⊥ and Decdk(C2) 6= ⊥

Figure 37: Security game Genc,evalws for a well-spread encryption scheme

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send both to adversary

2. Receive (V,R) from the adversary and check that V is a value in the domain

3. Adversary wins if Decdk(Encek(V,R)) 6= V

Figure 38: Security game Genc,enccor for a correct encryption scheme

23Note that the scheme needs only support the operations used by a particular protocol, ie. it is for instance not in all
cases required to be fully homomorphic.

33

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send both to adversary

2. Receive (C1, C2,W1,W2, R) from the adversary and check that W1 and W2 are values in the domain

3. Compute V1 ← Decdk(C1) and V2 ← Decdk(C2) and check that V1 6= ⊥ and V2 6= ⊥

4. Adversary wins if Decdk(Evale,ek(C1, C2,W1,W2, R)) 6= e(V1, V2,W1,W2)

Figure 39: Security game Genc,evalcor for a correct encryption scheme

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send both to adversary

2. Receive (C1, C2,W1,W2) from the adversary and check that they are values in the domain

3. Compute V1 ← Decdk(C1) and V2 ← Decdk(C2) and check that V1 6= ⊥ and V2 6= ⊥

4. Pick bitstring R uniformly at random from {0, 1}κ

5. Compute C ←

{
Evale,ek(C1, C2,W1,W2, R) if b = 0

Encek
(
e(V1, V2,W1,W2), R

)
if b = 1

and send it to the adversary

Figure 40: Security game Genc,hisb for a history hiding encryption scheme

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send ek to the adversary

2. Receive (V0, V1) from the adversary and check that they are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C ← Encek(Vb, R) for choice bit b

4. Send C to the adversary

Figure 41: Security game Genc,cpab for an IND-CPA secure encryption scheme

3.3 Non-Interactive Zero-Knowledge Proof-of-Knowledge Scheme

An NIZK-PoK scheme for binary relationR consists of PPT algorithms CrsGenR(1κ)→ crs, SimCrsGenR(1κ)→
(crs, simtd), ExCrsGenR(1κ)→ (crs, extd), ProveR,crs(x,w)→ π, SimProveR,simtd(x)→ π, VerR,crs(x, π)→
{0, 1}, and deterministic ExtractR,extd(x, π)→ w. We require that such schemes are complete, compu-
tational zero-knowledge, and extractable:

• complete: if no PPT adversary A may win the game in Figure 42 with more than negligible
probability

• computational zero-knowledge: if for all PPT adversaries A the combination of A and game
Gnizk ,zk0 is indistinguishable from A and game Gnizk ,zk1 , as given in Figure 43

• extractable: if no PPT adversary A may win neither the game in Figure 44 nor the game in
Figure 45 with more than negligible probability

and assume instantiations for:

• RU =
{

(x,w)
∣∣D = Comck(V,R) ∧ V ∈ U

}
where x = (D, ck) and w = (V,R)

• RT =
{

(x,w)
∣∣C = Encek(V,R) ∧ V ∈ T

}
where x = (C, ek) and w = (V,R)

• Re =
{

(x,w)
∣∣C = Evale,ek(C1, C2, V1, V2, R) ∧Di = Comck(Vi, Ri)

}
where

x = (C,C1, C2, ek,D1, D2, ck) and w = (V1, R1, V2, R2, R)

1. Generate common reference string crs← CrsGen(1κ) and send it to the adversary

2. Receive (x,w) from the adversary

3. Adversary wins if VerR,crs(x,ProveR,crs(x,w)) = 0 when (x,w) ∈ R

Figure 42: Security game Gnizk ,complete for a complete NIZK scheme

34

1. If b = 0 then generate crs← CrsGen(1κ); if b = 1 then generate (crs, simtd)← SimCrsGen(1κ); in both
cases send crs to the adversary

2. Repeat until adversary stops

(a) Receive (x,w) from the adversary and check that (x,w) ∈ R

(b) Compute π ←

{
ProveR,crs(x,w) if b = 0

SimProveR,simtd(x) if b = 1
and send it to the adversary

Figure 43: Security game Gnizk ,zkb for an computationally zero-knowledge NIZK scheme

1. If b = 0 then generate crs← CrsGen(1κ); if b = 1 then generate (crs, extd)← ExCrsGen(1κ)

2. Send crs to the adversary

Figure 44: Security game Gnizk ,exgenb for an extractable NIZK-PoK scheme

1. Generate CRS and extraction trapdoor (crs, extd)← ExCrsGen(1κ) and send crs to the adversary

2. Receive (x, π) from the adversary and compute w ← ExtractR,extd(x, π)

3. Adversary wins if w = ⊥ or (x,w) 6∈ R

Figure 45: Security game Gnizk ,extract for an extractable NIZK-PoK scheme

35

4 Real-world Interpretation

We here give a real-world computational interpretations of real and ideal protocols. First we outline the
general setup of the model, followed by the description of an ITM for executing a programme P given
access to an operation module implementing its available operations. Finally we give the real-world
implementation of the operation modules.

4.1 General Structure

In the interpretation RW(Sys) of a system Sys each programme P is executed by ITM MP with access
to its own operation module24 OP enforcing sanity checks on received messages and implementing the
operations available to P as described in Section 2. All messages send between these entities are annotated
bitstrings BS of the following kinds: 〈value : V 〉 and 〈const : Cn〉 for values and constants, 〈pair :
BS1, BS2〉 for pairings, [comPack : D, ck, πU , crs] for commitment packages, [encPack : C, ek, πT , crs] for
encryption packages, and [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs] for evaluation packages.

The real-world model also contains a setup functionality Fsetup connected to the operation modules
of the cryptographic programmes. It is set to support either a real or an ideal protocol, is assumed to
know the corruption scenario, and is responsible for generating and distributing the cryptographic keys
and trapdoors, including leaking the public and corrupted keys to the adversary.

As an example, let SysABreal be a system for some real protocol using one functionality and two au-
thenticated channels. The real-world interpretation of it, RW(SysAB

real), is then illustrated in Figure 46;
the lines show the directional links between closed ports, and the dots represent open ports; Figure 47
illustrates what it had looked like had it been an ideal protocol instead. Note that we in both cases have
inlined the operation modules for the plain programmes.

F real(AB)
setup

MFAB

MAuthAB

MAuthBA

MPA

Orw
A

MPB

Orw
B

Figure 46: Real-world interpretation of example real protocol when both players are honest

Using ITMs defined in the remaining part of this section we may formalise the general structure as
follows:

Definition 4.1 (Real-world Interpretation). The real-world interpretation RW(Sys) of a well-formed
system Sys with programmes P1, . . . , Pn contains the machines MPi

together with their operation modules
Oi. It also contains the setup functionality Fsetup hardwired to match whether Sys is a real or ideal
protocol.

Besides the connections dictated by Sys, every machine MPi is privately connected to Oi. Finally,
Fsetup is privately connected with the operation modules belonging to the (at most) two cryptographic
programmes.

24We may think of an operation module simply as a functionality connected only to the owning M machine and a
setup functionality. However, we use the “operation module” terminology since this makes sense in every interpretation.
Furthermore, from a practical point of view it might seem arbitrary to have a separate functionality for implementing the
operations as it might as well be inlined in the M machine.

36

F ideal(AB)
setup

MSAB

MAuthAB

MAuthBA

MSimAB,A

Orw
A

MSimAB,B

Orw
B

MGAB

Figure 47: Real-world interpretation of example ideal protocol when both players are honest

4.2 Programme Interpretation

We next describe the ITM MP used for executing a programme P . The machine has input and output
ports corresponding to the ports of P , and has access to OP provinding methods

storePlain(BS)→ x, storeCryptockB ,crsB (BS)→ x, retrieve(x)→ BS

as well as methods corresponding to the operations available to P as outlined in Section 2; for instance,
the methods offered to MPA

for player A include

commitckA,crsA(v, r)→ d, encryptekB ,crsA(v, r)→ c, decryptdkA(c)→ v

which all take references as input and return the same.
Informally, when a message is received by an MP it is immediately passed to OP (which, as we shall

see below, among other things checks that every cryptographic package in it comes with a correct proof
generated under the other player’s CRS). If the message was accepted by the operation module the
machine gets back a reference through which it may access the message in the future. It then executes
the operations as dictated by the programme and finally either halts or sends a message to another
machine.

More formally, MP keeps in memory a position pc into programme tree P together with a set of
references to randomness and messages. Initially pc points to the root of P and the set only contains
randomness references (named RP) and message references to all values (named V); during execution
references to received or computed messages are added and named according to the variables in the
programme25.

The execution of MP then happens in a loop. When a message BS is received on one of its input
ports pin it first checks if there is an outgoing edge with port pin at the node at position pc of P . If
this is not the case, the message is discarded and no state is updated. Otherwise MP asks its operation
module to store it by invoking storePlain(BS) or storeCryptock,crs(BS) depending on the port type.
It gets back a reference if the message was accepted and abort if not; in the latter case the machine
halts immediately.

It then names the reference xin and finds the edge where ψ is satisfied. It does so by interacting with
its operation module, possibly receiving temporary references in the process that are discarded when no
longer needed. For instance, an edge may have condition

ψ = verEvalPacksel,ekB ,ckA,crsA(c, c1, c2, d1, d2)

25One implementation of this would be for the machine to also keep a mapping between variables and references. We
abstract away this detail here and simply say that the variables are used to give local names to the references known by
the machine.

37

checking that an incoming evaluation package BS is the result of an homomorphic evaluation on en-
cryptions BS1, BS2 and values committed to by BS1, BS2 (the packages pointed to by the references
named c, c1, c2, d1 and d2 respectively). In processing this edge MP invokes method verEvalPack... of
its operation module OP . After finding the truth value of an edge condition, it tells OP to discard all
temporary references created (none in this example).

Having found the satisfied edge it continues to process the rest of the commands in the same bottom-
up manner as for conditions, again discarding all temporary references and keeping only x1, . . . , xn. For
instance, an edge may have command set {

decryptdkB (c)

xv

}
which intuitively stores the decrypted value under a reference named xv.

Finally, MP asks OP for the message associated with the output reference named xout and sends
it on the output port pout. The state of MP is updated with the position of the next node along the
executed edge.

4.3 Setup Functionality Fsetup

Before giving the implementation of the operation modules we describe the setup functionality that
provides them with cryptographic keys through special ports keysA and keysB .

The setup functionality is hardwired to operate in one of two modes, real or ideal, depending on
the protocol. In both modes it generates keys for the commitment and the encryption scheme using
ComKeyGen and EncKeyGen, and uses the corruption scenario to determine which decryption keys
should be leaked. In mode real it always generates common reference strings using CrsGen, while in
mode ideal it uses a mix of SimCrsGen and ExCrsGen as determined by the corruption scenario.
The behaviour of Fsetup is summarised in Figure 48.

In mode real on corruption scenario H ∈ {AB ,A,B} behave as follows:

• generate ckA and ckB using ComKeyGen(1κ)

• generate (ekA, dkA) and (ekB , dkB) using EncKeyGen(1κ)

• generate crsA and crsB using CrsGen(1κ)

• let PK = {ckA, ckB , ekA, ekB , crsA, crsB} be the public keys

• send PK ∪ {dkid | id ∈ {A,B} is corrupt} on port keysleak

• for honest id ∈ {A,B} send PK ∪ {dkid} on port keysid

In mode ideal on corruption scenario H ∈ {AB ,A,B} behave as follows:

• generate ckA and ckB using ComKeyGen(1κ)

• generate (ekA, dkA) and (ekB , dkB) using EncKeyGen(1κ)

• for honest id ∈ {A,B} generate (crsid, simtdid) using SimCrsGen(1κ)

• for corrupt id ∈ {A,B} generate (crsid, extdid) using ExCrsGen(1κ)

• let PK = {ckA, ckB , ekA, ekB , crsA, crsB} be the public keys

• send PK ∪ {dkid | id ∈ {A,B} is corrupt} on port keysleak

• for honest id ∈ {A,B} send PK ∪ {extdid′ | id′ is corrupt} ∪ {simtdid} on port keysid

Figure 48: Real-world setup functionality Fsetup

4.4 Real-world Implementation of Operation Module

The final piece is describing the real-world operation modules. Each module maintains a local mapping
µ between message references and bitstrings, and a local mapping ρ between randomness references and
bitstrings {0, 1}κ chosen uniformly at random when the module is first initialised.

It also maintains a list σ of encryptions received and generated by the player associating them with
their public key and their origin. This list serves the following purposes needed for the soundness result
in Section 5.4: (i) to ensure that all encryptions in evaluation packages have the same encryption key

38

• storePlain(BS)→ x:

1. if acceptPlain(BS) returns false then return abort

2. otherwise pick a fresh reference x; store µ(x) 7→ BS; and return x

• storeCryptock,crs(BS)→ x:

1. if acceptCryptock,crs(BS) returns false then return abort

2. otherwise pick a fresh reference x; store µ(x) 7→ BS; and return x

• acceptPlain(BS)→ {true, false}:

– BS match 〈value : V 〉: verify that V may be parsed as a value; return true

– BS match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– BS match 〈pair : BS1, BS2〉: verify acceptPlain(BS1) and acceptPlain(BS2); return true

– return false if none of the above apply or if any verification fails

• acceptCryptock,crs(BS)→ {true, false}:

– BS match 〈value : V 〉: verify that V may be parsed as a value; return true

– BS match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– BS match 〈pair : BS1, BS2〉: verify acceptCryptock,crs(BS1) and acceptCryptock,crs(BS2); return true

– BS match [comPack : D, ck, πU , crs]: verify that πU is a valid proof under crs of type U for D, ck by
running VerU,crs(D, ck, πU); return true

– BS match [encPack : C, ek, πT , crs] with ek ∈ {ekA, ekB}: verify that πT is a valid proof under crs of
type T for C, ek by running VerT,crs(C, ek, πT); check that σ(C, ek) ∈ {⊥, encother}; update σ(C, ek) 7→
encother; return true

– BS match [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs] with ek ∈ {ekA, ekB}: verify that πe is a valid
proof under crs of expression e for C1, . . . , ck by running Vere,crs(C,C1, C2, ek,D1, D2, ck, πe); verify that
C1 and C2 are already known by the programme and have the proper key by checking σ(C1, ek) 6= ⊥ and
σ(C2, ek) 6= ⊥; verify that C has not been defined before by checking σ(C, ek) 6= ⊥ =⇒ σ(C, ek) =
evalother(BS); update σ(C, ek) 7→ evalother(BS); return true

– return false if none of the above apply or if any verification fails

• retrieve(x)→ BS: return µ(x)

Figure 49: Real-world implementation of well-formed checks for programmes

ek since the πe proof does not guarantee this on its own26; (ii) to ensure that the C1, C2 encryptions of
evaluation packages are already known to the player27; and (iii) to reject certain packages that an honest
player would never have produced and which cannot occur in the intermediate interpretation28.

The methods for storing received messages are then implemented in Figure 49. Methods for plain
operations are implemented in Figure 50, and for commitments, encryptions and evaluations in Figure 51,
52 and 53. Finally, Figure 54 gives the implementations for decryption and extraction operations.

26We need this because the intermediate implementation of evale fails when different encryption keys are used. This may
not be the case for the Evale procedure though as C1 and C2 are just bitstrings.

27This is required in order for C1, C2 to already have a counterpart in the intermediate model as a intermediate repre-
sentation of them cannot be extracted from the evaluation package alone (unlike the D1, D2 commitments).

28One example is if it receives two evaluation packages with the same C but with, say, different D1; an honest player would
have re-randomised the result thereby with overwhelming probability not produce the same C twice. Another example is if
it receives an evaluation and encryption package with the same C; again this would only happen with negligible probability
if the player was honest by our well-spread assumption.

39

• isConst(x)→ B: if µ(x) matches with 〈const : . . . 〉 then return true else false

• eqConstCn(x)→ B: if µ(x) matches with 〈const : Cn〉 then return true else false

• isValue(v)→ B: if µ(v) matches with 〈value : . . . 〉 then return true else false

• eqValue(v1, v2)→ B: for i ∈ [2] match µ(vi) with 〈value : Vi〉; return true if V1 = V2 else false

• inTypeU (v)→ B: match µ(v) with 〈value : V 〉; return true if V is in type U else false

• inTypeT (v)→ B: match µ(v) with 〈value : V 〉; return true if V is in type T else false

• pevalf (v1, v2, w1, w2) → v: for i ∈ [2] match µ(vi) with 〈value : Vi〉 and µ(wi) with 〈value : Wi〉; evaluate
expression f on these values, ie. let V = f(V1, V2,W1,W2); pick fresh reference v, update µ(v) 7→ 〈value : V 〉,
and return v

• isPair(x)→ B: if µ(x) match with 〈pair : . . . 〉 then return true else false

• pair(x1, x2)→ x: pick fresh reference x, update µ(v) 7→ 〈pair : µ(x1), µ(x2)〉, and return x

• first(x) → x1: if µ(x) match with 〈pair : BS1, BS2〉 then pick fresh reference x1, update µ(x1) 7→ BS1,
and return x1; else return abort

• second(x) → x2: if µ(x) match with 〈pair : BS1, BS2〉 then pick fresh reference x2, update µ(x2) 7→ BS2,
and return x2; else return abort

Figure 50: Real-world implementation of plain operations for programmes

• isComPack(x)→ B: if µ(x) match with [comPack : . . .] then return true else false

• verComPackU,ck,crs(d)→ B: if µ(d) match with [comPack : −, ck, πU , crs] return true else false

• commitU,ck,crs(v, r)→ d:

1. match µ(v) with 〈value : V 〉 and check that V is in type U

2. let R = ρ(r) be the randomness associated with r

3. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

4. pick fresh reference d, update µ(d) 7→ [comPack : D, ck, πU , crs], and return d

• simcommitU,ck,simtd(v, r)→ d:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. compute D ← Comck(V,R) and πU ← SimProveU,simtd(D, ck)

5. pick fresh reference d, update µ(d) 7→ [comPack : D, ck, πU , crs], and return d

Figure 51: Real-world implementation of commitment operations for programmes

• isEncPack(x)→ B: if µ(x) match with [encPack : . . .] then return true else false

• verEncPackT,ek,crs(x)→ B: if µ(c) match with [encPack : −, ek, πT , crs] then return true else false

• encryptT,ek,crs(v, r)→ c:

1. match µ(v) with 〈value : V 〉 and check that V is in type T

2. let R = ρ(r) be the randomness associated with r

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R)

4. update σ(C, ek) 7→ encme

5. pick fresh reference c, update µ(c) 7→ [encPack : C, ek, πT , crs], and return c

• simencryptT,ek,simtd(v, r)→ c:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. compute C ← Encek(V,R) and πT ← SimProveT,simtd(C, ek)

5. update σ(C, ek) 7→ encme

6. pick fresh reference c, update µ(c) 7→ [encPack : C, ek, πT , crs], and return c

Figure 52: Real-world implementation of encryption operations for programmes

40

• isEvalPack(x)→ B: if µ(x) match with [evalPack : . . .] then return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2)→ B:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. match µ(c) with [evalPack : −, C1, C2, ek,−,−, ck, πe, crs]
3. return true if successful else false

• verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ B:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(di) with [comPack : Di, ck, . . .]

3. match µ(c) with [evalPack : −, C1, C2, ek,D1, D2, ck, πe, crs]

4. return true if successful else false

• evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(vi) with 〈value : Vi〉
3. for i ∈ [2] compute Di ← Comck(Vi, Ri)

4. pick fresh randomness R ∈ {0, 1}κ

5. compute C ← Evale,ek(C1, C2, V1, V2, R)

6. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck, V1, R1, V2, R2)

7. update σ(C, ek) 7→ evalme

8. pick fresh reference c, update µ(c) 7→ [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs], and return c

• simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c:

– (as evale,ek,ck,crs but using SimProvee,simtd instead of Provee,crs)

• simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(di) with [comPack : Di, ck, . . .]

3. match µ(v) with 〈value : V 〉
4. pick fresh randomness R ∈ {0, 1}κ

5. let crs be the CRS corresponding to simtd

6. compute C ← Encek(V,R)

7. compute πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

8. update σ(C, ek) 7→ evalme

9. pick fresh reference c, update µ(c) 7→ [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs], and return c

Figure 53: Real-world implementation of evaluation operations for programmes

41

• decryptdk(c)→ v:

1. match µ(c) with [encPack : C, ek, . . .] or [evalPack : C, ek, . . .]

2. check that dk is the decryption key for ek

3. compute V ← Decdk(C)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractComextd(d)→ v:

1. let crs be the CRS corresponding to extd

2. match µ(d) with [comPack : D, ck, πU , crs]

3. compute (V,R)← ExtrU,extd(D, ck, πU)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractEncextd(c)→ v:

1. let crs be the CRS corresponding to extd

2. match µ(c) with [encPack : C, ek, πT , crs]

3. compute (V,R) = ExtrT,extd(C, ek, πT)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractEval1,extd(c)→ v1:

1. let crs be the CRS corresponding to extd

2. match µ(c) with [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]

3. compute (V1, R1, V2, R2, R)← Extre,extd(C,C1, C1, ek,D1, D2, ck, πe)

4. pick fresh reference v1, update µ(v1) 7→ 〈value : V1〉, and return v1

• extractEval2,extd(c)→ v2:

– (as extractEval1,extd but returning V2 instead of V1)

Figure 54: Real-world implementation of decryption and extraction operations for programmes

42

5 Intermediate Interpretation

This section gives the computational interpretation used as an intermediate step in linking the real-world
interpretation with the symbolic interpretation given in Section 6. The main difference in this model is
that the cryptographic primitives are replaced with a global memory to which the adversary only has
restricted access in the form of a fixed set of methods.

5.1 General Structure

The intermediate interpretation has a number of similarities with the real-world interpretation: besides
having the same underlying computation model, the MP machines for executing programmes are also
identical. However, the operation modules OP are different and the setup functionality is replaced with
a global memory accessible only to the operation modules and Oadv offering access to the adversary
through a fixed set of methods29. If we put all the modules together with the global memory we may
think of them as simply a functionality Faux, meaning that protocols in the intermediate interpretation
are running in a Faux-hybrid model.

The basic principle is that all cryptographic messages passed around among the entities are bit-
strings drawn uniformly at random from {0, 1}κ, dubbed handles, and ranged over by H. They are
associated to data objects in the global memory that hold the plaintext values: commitment objects
take form (com : V,R, ck); encryption objects (enc : V,R, ek); proof objects30 (proofU : HD, ck, crs),
(proofT : HC , ek, crs), (proofe : HC , HC1

, HC2
, ek,HD1

, HD2
, ck, crs); and package objects (comPack :

HD, ck,Hπ, crs), (encPack : HC , ek,Hπ, crs), and (evalPack : HC , HC1
, HC2

, ek,HD1
, HD2

, ck,Hπ, crs).
The ck,ek,crs here are simply fixed constants used to indicate the creator and owner of the objects. Val-
ues, constants, and pairing are not stored in the global memory but instead encoded as in the real-world
interpretation, yet we shall also use H to range over these.

Definition 5.1 (Intermediate Interpretation). The intermediate interpretation I(Sys) of a well-formed
system Sys with programmes P1, . . . , Pn contains the machines MPi

together with their operation modules
Oi. It also contains the operation module Oadv given to the adversary and the global memory functionality
Fmem.

Besides the connections dictated by Sys, every machine MPi is privately connected to Oi, and every
Oi, including Oadv, is in turn privately connected to Fmem.

5.2 Intermediate Interpretation of Operation Modules

The operation modules follow their real-world counterpart somewhat straight-forwardly, yet operates on
the data object in the global memory instead of using the procedures of the primitives. They still keep a
local mapping ρ from randomness references r to random bitstrings R drawn uniformly at random from
{0, 1}κ at initialisation, and they still have a local memory µ between references and messages.

The various implementations are given in Figure 55, 56, 57, 58 and 59 where γ denotes the global
memory (recall that H is used to range over both random handles, and pairings of these with values
and constants). Note that some guarantees are now provided by the model itself as a consequence of the
adversary being limited in what he may do; for instance, it is not possible for the adversary to construct
packages with an invalid proof, and even adversarial evaluated ciphertexts are correctly re-randomised.
This justifies the fact that less conditions are enforced using the σ list, and that in this model it is only
needed to ensure that an evaluation package received by a player is rejected if its sub-encryptions C1, C2

have not already been received.

29An implication of this model is that every message is already somewhat well-formed in the sense that it is either garbage
or correctly generated through a method invocation.

30Note that proof objects do not have a randomness (or counter) component, meaning that there cannot be several
different proof objects for the same public parameters; intuitively it makes no difference as there is no operation for
programmes to check equality of proofs and packages, and since we do not allow programmes to send back received
packages. We have gone with this option to simplify the symbolic model but may easily remove it and obtain the same
results.

43

• storePlain(H)→ x:

1. if acceptPlain(H) returns false then return abort

2. otherwise pick a fresh reference x, store µ(x) 7→ H, and return x

• storeCryptock,crs(H)→ x:

1. if acceptCryptock,crs(H) returns false then return abort

2. otherwise pick a fresh reference x, store µ(x) 7→ H, and return x

• acceptPlain(H)→ B:

– H match 〈value : V 〉: verify that V may be parsed as a value; return true

– H match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– H match 〈pair : H1, H2〉: verify acceptPlain(H1) and acceptPlain(H2); return true

– return false if none of the above apply or if any verification fails

• acceptCryptock,crs(H)→ B:

– H match 〈value : V 〉: verify that V may be parsed as a value; return true

– H match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– H match 〈pair : H1, H2〉: verify acceptCryptock,crs(H1) and acceptCryptock,crs(H2); return true

– γ(H) match (comPack : HD, ck,Hπ, crs): verify that γ(Hπ) match (proofU : HD, ck, crs); return true

– γ(H) match (encPack : HC , ek,Hπ, crs) with ek ∈ {ekA, ekB}: verify that γ(Hπ) match (proofT :
HC , ek, crs); update σ(HC) 7→ ok; return true

– γ(H) match (evalPack : HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs) with ek ∈ {ekA, ekB}: verify that
γ(Hπ) match (proofe : HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs); verify that HC1 and HC2 are already known
by the party by checking σ(HC1) = ok and σ(HC2) = ok; update σ(HC) 7→ ok; return true

– return false if none of the above apply or if any verification fails

• retrieve(x)→ H: refresh all object handles in µ(x) and return the result

Figure 55: Intermediate implementation of storing etc. for programmes

• isConst(x)→ B: if µ(x) match with 〈const : . . . 〉 then return true else false

• eqConstCn(x)→ B: if µ(x) match with 〈const : Cn〉 return true else false

• isValue(v)→ B: if µ(v) match with 〈value : . . . 〉 return true else false

• eqValue(v1, v2)→ B: if µ(vi) match 〈value : Vi〉 for i ∈ [2], and V1 = V2, return true else false

• inTypeU (v)→ B: if µ(v) match with 〈value : V 〉, and V is in type U , return true else false

• inTypeT (v)→ B: if µ(v) match with 〈value : V 〉, and V is in type T , return true else false

• pevalf (v1, v2, w1, w2)→ v: match µ(vi) with 〈value : Vi〉 and µ(wi) with 〈value : Wi〉; evaluate f on these
values, ie. let V = f(V1, V2,W1,W2); pick a fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• isPair(x)→ B: if µ(x) match with 〈pair : . . . 〉 then return true else false

• pair(x1, x2)→ x: pick a fresh reference x, store µ(x) 7→ 〈pair : µ(x1), µ(x2)〉, and return x

• first(x)→ x1: match µ(x) with 〈pair : H1, H2〉; pick fresh reference x1, store µ(x1) 7→ H1, and return x1

• second(x)→ x2: match µ(x) with 〈pair : H1, H2〉; pick fresh reference x2, store µ(x2) 7→ H2, and return x2

Figure 56: Intermediate implementation of plain operations

44

• isComPack(x)→ B: if γ(µ(x)) match with (comPack : . . .) then return true else false

• verComPackU,ck,crs(d) → B: if γ(µ(d)) match with (comPack : −, ck,Hπ, crs) and γ(Hπ) match with
(proofU : . . .) then return true else false

• commitU,ck,crs(v, r)→ d:

1. match µ(v) with 〈value : V 〉 and check that V is in type U

2. let R = ρ(r) be the randomness associated with r

3. pick handle HD uniformly at random from {0, 1}κ and store γ(HD) 7→ (com : V,R, ck)

4. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofU : HD, ck, crs)

5. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (comPack : HD, ck,Hπ, crs)

6. pick fresh reference d, store µ(d) 7→ H, and return d

• simcommitU,ck,simtd(v, r)→ d:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. pick handle HD uniformly at random from {0, 1}κ and store γ(HD) 7→ (com : V,R, ck)

5. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofU : HD, ck, crs)

6. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (comPack : HD, ck,Hπ, crs)

7. pick fresh reference d, store µ(d) 7→ H, and return d

Figure 57: Intermediate implementation of commitment packages

• isEncPack(x)→ B: if γ(µ(x)) match with (encPack : . . .) return true else false

• verEncPackT,ek,crs(c)→ B: if γ(µ(c)) match with (encPack : −, ek,Hπ, crs) and γ(Hπ) with (proofT : . . .)
return true else false

• encryptT,ek,crs(v, r)→ c:

1. match µ(v) with 〈value : V 〉 and check that V is in type T

2. let R = ρ(r) be the randomness associated with r

3. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

4. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofT : HC , ek, crs)

5. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (encPack : HC , ek,Hπ, crs)

6. update σ(HC) 7→ ok

7. pick fresh reference c, store µ(c) 7→ H, and return c

• simencryptT,ek,simtd(v, r)→ c:

1. match µ(v) with 〈value : V 〉
2. let crs be the CRS corresponding to simtd

3. let R = ρ(r) be the randomness associated with r

4. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

5. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofT : HC , ek, crs)

6. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (encPack : HC , ek,Hπ, crs)

7. update σ(HC) 7→ ok

8. pick fresh reference c, store µ(c) 7→ H, and return c

Figure 58: Intermediate implementation of encryption packages

45

• isEvalPack(x)→ B: if γ(µ(x)) match with (evalPack : . . .) return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2)→ B:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi . . .) or (evalPack : HCi . . .)

2. match γ(µ(c)) with (evalPack : −, HC1 , HC2 , ek,−,−, ck,Hπ, crs) and γ(Hπ) with (proofe : . . .)

3. if all successful return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ B:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi . . .) or (evalPack : HCi . . .)

2. for i ∈ [2] match γ(µ(di)) with (comPack : HDi . . .)

3. match γ(µ(c)) with (evalPack : −, HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs) and γ(Hπ) with (proofe : . . .)

4. if all successful return true else false

• evale,ek,ck,simtd(c1, c2, w1, r1, w2, r2)→ c:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi , ek . . .) or (evalPack : HCi ,−, ek . . .)
2. for i ∈ [2] match γ(HCi) with (enc : Vi . . .) and µ(wi) with 〈value : Wi〉
3. for i ∈ [2] let Ri = ρ(ri) be the randomness associated with ri
4. for i ∈ [2] pick handle HDi uniformly at random from {0, 1}κ, store γ(HDi) 7→ (com : Wi, Ri, ck)

5. pick randomness R uniformly at random from {0, 1}κ

6. let V = e(V1, V2,W1,W2) be the evaluation of e

7. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

8. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofe :
HC , HC1 , HC2 , ek,HD1 , HD2 , ek, crs)

9. pick handles H uniformly at random from {0, 1}κ and store γ(H) 7→ (evalPack :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs)

10. update σ(HC) 7→ ok

11. pick fresh reference c, store µ(c) 7→ H, and return c

• simevale,ek,ck,simtd(c1, c2, w1, r1, w2, r2)→ c:

– (as evale,ek,ck,crs)

• simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi , ek . . .) or (evalPack : HCi ,−, ek . . .)
2. for i ∈ [2] match γ(µ(di)) with (comPack : HDi , ck . . .)

3. match µ(v) with 〈value : V 〉
4. let crs be the CRS corresponding to simtd

5. pick fresh randomness R uniformly at random from {0, 1}κ

6. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

7. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofe :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs)

8. pick handles H uniformly at random from {0, 1}κ and store γ(H) 7→ (evalPack :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs)

9. update σ(HC) 7→ ok

10. pick fresh reference c, store µ(c) 7→ H, and return c

Figure 59: Intermediate implementation of evaluation packages

46

• decryptdk(c)→ v:

1. let ek be the encryption key corresponding to dk

2. match γ(µ(c)) with (encPack : HC , ek, . . .) or (evalPack : HC , ek, . . .)

3. match HC with (enc : V, . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractComextd(d)→ v:

1. let crs be the CRS corresponding to extd

2. match γ(µ(d)) with (comPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofU : (com : V, . . .), . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractEncextd(c)→ v:

1. let crs be the CRS corresponding to extd

2. match γ(µ(c)) with (encPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofT : (enc : V, . . .), . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractEval1,extd(c)→ v1:

1. let crs be the CRS corresponding to extd

2. match γ(µ(c)) with (evalPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofe : . . . , (com : V1, . . .), (com : V2, . . .), . . .)

4. pick fresh reference v1, store µ(v1) 7→ 〈value : V1〉, and return v1

• extractEval2,extd(c)→ v2:

– (as extractEval1,extd but returning V2 instead of V1)

Figure 60: Intermediate implementation of decryption and extraction operations

47

isConst(H)→ B

isValue(H)→ B

isPair(H)→ B

isComPack(H)→ B

isEncPack(H)→ B

isEvalPack(H)→ B

pair(H1, H2)→ H

first(H)→ H1

second(H)→ H2

verComPackU (H)→ B

verEncPackT (H)→ B

verEvalPacke(H)→ B

commitU,ck,crs(V,R)→ H

encryptT,ek,crs(V,R)→ H

evale,ck,ek,crs(HC1 , HC2 , V1, R1, V2, R2)→ H

decryptdk(HC)→ V

comOf(H)→ HD gives handle to commitment object HD of commitment package H

encOf(H)→ HC gives handle to encryption object HC of enc. or eval. package H

encOfi(H)→ HCi gives handle to ith encryption object HCi of evaluation package H

comOfi(H)→ HDi gives handle to ith commitment object HDi of evaluation package H

isCkOfck(H)→ B indicates if ck is the commitment key used by package H

isEkOfek(H)→ B indicates if ek is the encryption key used by package H

isCrsOfcrs(H)→ B indicates if crs is the CRS used by package H

garbage(·)→ H returns a garbage object

eq(H,H ′)→ B indicates whether H and H ′ are handles for identical objects

Figure 61: Methods offered by the adversary’s operation functionality Oadv

5.3 The Adversary’s Operation Module

All methods shown in Figure 61 are offered to the adversary by his operation module31, except decryptdk
which is only offered in the corruption scenarios where the corresponding player is corrupt. Their
implementations follow straight-forwardly from the implementation of the players’ operation modules,
with the exception that they work directly on handles instead of indirectly through references.

31The operations given to the adversary are determined by the methods needed by the translator T ? in Section 5.4, ie.
the adversary need not be given more methods than what is needed by T ?, making its construction the crucial point at
which to determine the interface offered to the adversary.

48

• Handle H received on channel leakAB,i (ie. from honest A):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstring BS1 and BS2;
let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 63 with ck = ckA and crs = crsA to obtain
bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 64 with crs = crsA to obtain bitstring BS; send
BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 65 with ck = ckA and crs = crsA to obtain
bitstring BS; send it on the corresponding channel

• Handle H received on channel leakBA,j (ie. from honest B):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstring BS1 and BS2;
let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 63 with ck = ckB and crs = crsB to obtain
bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 64 with crs = crsB to obtain bitstring BS; send
BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 65 with ck = ckB and crs = crsB to obtain
bitstring BS; send it on the corresponding channel

• Bitstring BS received on channel inflAB,i or inflBA,j (ie. from the adversary):

– BS match 〈value : V 〉: send BS on the corresponding channel

– BS match 〈constant : Cn〉: send BS on the corresponding channel

– BS match 〈pair : BS1, BS2〉: recursively process BS1 and BS2 to obtain handles H1 and H2; let
H = pair(H1, H2) and send it on the corresponding channel

– otherwise use garbage(·) to create and send a garbage handle

Figure 62: Translator T AB
true,real

5.4 Soundness of the Intermediate Model

As part of the soundness theorem we first show that a real-world environment cannot distinguish be-
tween interacting with RW(Sys) or I(Sys) for our systems Sys in consideration. To this end we need
to introduce the concept of a translator T parameterised by the corruption scenario and making the two
interpretations appear similar32. Throughout this section we use T [I(Sys)] to denote hybrid interpre-
tations where all crypto channels to the environment are rewired to run through T , and plain channels
are left untouched (the bitstrings sent on them already use the same format in the two interpretations).
We stress that while the simulator in ideal protocols is per-protocol and must be constructed as part of
the analysis, the translator introduced here is per-framework and is constructed once and for all.33.

We first consider the case where (SysAB , SysA, SysB) is a well-formed real protocol, but only
focus on the first two cases as the third is symmetrical to the second. Our aim is to show that
RW(SysH)

c∼ T H?
[
I(SysH)

]
for the translator T? defined below, but as a first step we show that

these equivalences hold for the more powerful translator Ttrue,real. Through a series of translators we
then use the indistinguishability properties of the cryptographic primitives to show that T H?

[
I(SysH)

]
is indistinguishable from T Htrue,real

[
I(SysH)

]
, and the result follows.

Let T AB
true,real be the translator defined in Figure 62. This translator emulates a setup functionality

Fsetup running in ideal mode and therefore obtains the common reference strings crsA and crsB for
the two honest players; by computational zero-knowledge of the NIZK scheme the environment cannot

32In UC-terms the translator is simply a simulator for Faux used to show that the real-world interpretation is a realisation
of the intermediate interpretation. However, we use this wording to avoid too much overload.

33If we instead considered a framework with e.g. symmetric encryption then we would need a new translator. It might
be possible to compose several translators without having to redo all proofs, and thereby making it easier to extend the
primitives supported by symbolic analysis. In particular, if the protocol class does not allow mixing two sets of primitives
then it seems reasonable to assume that these translators would compose to a framework supporting the combined primitives
as long as they are used in a mutually exclusive fashion. We do not investigate this further but refer to [CW11] for results
in this direction.

49

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. look inside comOf(H) to obtain V and R

2. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 63: Translator T AB
true,real – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and look inside HC to obtain V and R

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R), and store ε(HC) 7→ C

4. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 64: Translator T AB
true,real – encryption package from honest player

distinguish by the fact that the translator is using this mode instead of mode real. The translator also
emulates the global memory functionality Fmem and may hence look inside its data objects beyond what
is allowed by Oadv .

Lemma 5.2. We have RW(SysAB)
c∼ T AB

true,real

[
I(SysAB)

]
.

Proof. We proceed by arguing that the two interpretations are indistinguishable at each activation by
the environment. Firstly, since the environment may in this corruption scenario only activate the honest
entities through plain channels it is immediately clear that the bitstrings sent by the environment may
easily be translated to a matching counterpart in the intermediate interpretation.

Secondly, to argue that the honest entities behave the same on each activation we use that the relevant
primitives are well-spread and hence the two interpretations with overwhelming probability agree on when
two commitments or encryptions are identical; this is needed for the storing and verification methods to
agree. By correctness of the encryption scheme it also follows that the two interpretations agree on the
plaintext values of encryptions.

Thirdly, by looking inside the global memory the translator may obtain both values and randomness
from the handles of the intermediate model that allows it to produce a leakage of commitments and
encryptions distributed as in RW(SysAB); to do this correctly for evaluation packages it needs to keep
the ε mapping of already processed encryptions. All proofs may be produced using Prove since the
cryptographic programmes in a real protocol can only produce proofs for true statements. However,
since no information is stored in the memory about the randomness to use when generating the proofs
we need the τ mapping to store already translated packages. Specifically, consider the case where
T AB
true,real must translate handle H presenting a commitment package (Figure 63). Assume first that
τ(H) = ⊥ meaning that this package has not been processed before. By looking inside the data object
associated with comOf(H) in the global memory it may obtain a value V and a randomness R, and hence
the commitment D generated using Com is distributed exactly as in RW(SysAB). As for the proof,
τ(H) = ⊥ implies that this is the first time πU will be send hence it will also be distributed exactly as
in RW(SysAB). For the case where τ(H) 6= ⊥ we need to argue that resending the same translation

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] look inside comOfi(H) to obtain Wi, Si and compute Di ← Comck(Wi, Si)

3. for i ∈ [2] let Ci = ε(encOfi(H)) and pick fresh randomness R ∈ {0, 1}κ

4. compute C ← Evale,ek(C1, C2,W1,W2, R) and store ε(encOf(H)) 7→ C

5. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck,W1, S1,W2, S2, R)

6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], store π(H) 7→ BS, and return BS

Figure 65: Translator T AB
true,real – evaluation package from honest player

50

• Handle H received on channel leakAB,i (ie. from honest A):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstrings BS1 and BS2;
let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 67 with ck = ckA and crs = crsA to obtain
bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 68 with crs = crsA to obtain bitstring BS; send
BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 69 with ck = ckA and crs = crsA to obtain
bitstring BS; send it on the corresponding channel

• Bitstring BS received on crypto channel inflBA,j (ie. from corrupt B):

– match BS with 〈value : V 〉: send BS on the corresponding channel

– match BS with 〈constant : Cn〉: send BS on the corresponding channel

– match BS with 〈pair : BS1, BS2〉: recursively process BS1 and BS2 to obtain H1 and H2; let H =
pair(H1, H2) and send it on the corresponding channel

– match BS with [comPack : . . .]: use the procedure in Figure 70 with ck = ckB , crs = crsB , and extd =
extdB to obtain handle H; send it on the corresponding channel

– match BS with [encPack : . . .]: use the procedure in Figure 71 with crs = crsB and extd = extdB to
obtain handle H; send it on the corresponding channel

– match BS with [evalPack : . . .]: use the procedure in Figure 72 with ck = ckB , crs = crsB , and
extd = extdB to obtain handle H; send it on the corresponding channel

– otherwise use garbage(·) to create and send a garbage handle

Figure 66: Translator T A
true,real

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. look inside comOf(H) to obtain V and R

2. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 67: Translator T A
true,real – commitment package from honest player

is ok. If we had ignored τ and instead processed the package again, looking in the global memory we
would have ended up with the same commitment D, so the only thing that could potentially be different
in RW(SysAB) is the proof. However, since the protocol is well-formed we have that commitU,ck,crs has
been invoked at most once for V,R by the sending programme and hence the package sent inRW(SysAB)
also contains the same proof. The cases where H is an encryption package (Figure 64) or an evaluation
package (Figure 65) are similar.

Next, let T A
true,real be the translator defined in Figure 66. This translator also emulates the global

memory functionality and the setup functionality Fsetup running in ideal mode but obtains a simulation
trapdoor simtdA for player A and an extraction trapdoor extdB for player B; again by the NIZK scheme
being computational zero-knowledge and extractable the environment cannot tell that difference from
the setup alone.

Lemma 5.3. We have RW(SysA)
c∼ T A

true,real

[
I(SysA)

]
.

Proof. The argument goes in much the same way as for when both players are honest, relying on the logic
of storeCrypto in the honest player’s operation module to not only ensure that extraction is possible,
but also to reject encryption and evaluation packages that would break identity or which cannot be
translated for more subtle reasons.

One thing to note is that when translating commitment packages from the corrupt player we use
the commitment D as the randomness component in the translated data object. This is to ensure that
the identity of commitments is preserved: we cannot use the extractable R since the binding property
of the scheme does not rule out the possibility that the adversary can come up with R 6= R′ such
that Comck(V,R) = Comck(V,R′). Using D as the randomness component guarantees that identity

51

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and look inside HC to obtain V and R

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R)

4. store ε(HC) 7→ C and σ(C, ek) 7→ encme(HC)

5. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 68: Translator T A
true,real – encryption package from honest player

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. for i ∈ [2] look inside comOfi(H) to obtain Wi, Si and compute Di ← Comck(Wi, Si)

4. pick fresh randomness R ∈ {0, 1}κ and compute C ← Evale,ek(C1, C2,W1,W2, R)

5. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck,W1, S1,W2, S2, R)

6. let HC = encOf(H), and store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

7. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ek, πe, crs], store τ(H) 7→ BS, and return BS

Figure 69: Translator T A
true,real – evaluation package from honest player

Processing of bitstring BS = [comPack : D, ck, πU , crs]:

• if VerU,crs(D, ck, πU) succeeds then:

1. compute (V, ·)← ExtractU,extd(D, ck, πU), let H = commitU,ck,crs
(
V,D

)
, and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 70: Translator T A
true,real – commitment package from corrupt player

Processing of bitstring BS = [encPack : C, ek, πT , crs]:

• if ek ∈ {ekA, ekB}, VerT,crs(C, ek, πT) succeeds, and σ(C, ek) ∈ {⊥, encother(·)} then:

1. compute (V, ·)← ExtractT,extd(C, ek, πT), and let H = encryptT,ek,crs
(
V,C

)
2. let HC = encOf(H), store ε(HC) 7→ C and σ(C, ek) 7→ encother(HC), and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 71: Translator T A
true,real – encryption package from corrupt player

Processing of bitstring BS = [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]:

• if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succ., and σ(C, ek) = evalother(BS,H, ·) then return H

• else if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succeeds, σ(C, ek) = ⊥, and σ(Ci, ek) ∈
{encother(HCi), evalother(·, ·, HCi), encme(HCi), evalme(HCi)} for both i ∈ [2] then:

1. compute (W1, ·,W2, ·, ·)← Extracte,extd(C,C1, C2, ek,D1, D2, ck, πe) for D1 and D2

2. let H = evale,ek,ck,crs
(
HC1 , HC2 ,W1, D1,W2, D2

)
and HC = encOf(H)

3. store σ(C, ek) 7→ evalother(BS,H,HC) and ε(HC) 7→ C, and return H

• otherwise use garbage(·) to create and return a new garbage handle

Figure 72: Translator T A
true,real – evaluation package from corrupt player

52

• Handle H received on crypto channel leakAB,i (ie. from honest A):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS = [pair :
BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 74 with ck = ckA, crs = crsA, and simtd = simtdA to obtain
BS; send it on the corresponding channel

– isEncPack(H): use the procedure in Figure 75 with crs = crsA and simtd = simtdA to obtain BS; send
it on the corresponding channel

– isEvalPack(H): use the procedure in Figure 76 with ck = ckA, crs = crsA, and simtd = simtdA to
obtain BS; send it on the corresponding channel

• Handle H received on crypto channel leakBA,j (ie. from honest B):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS = [pair :
BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 74 with ck = ckB , crs = crsB , and simtd = simtdB to obtain
BS; send it on the corresponding channel

– isEncPack(H): use the procedure in Figure 75 with crs = crsB and simtd = simtdB to obtain BS; send
it on the corresponding channel

– isEvalPack(H): use the procedure in Figure 76 with ck = ckB , crs = crsB , and simtd = simtdB to
obtain BS; send it on the corresponding channel

• Bitstring BS received on channel inflAB,i or inflBA,j (ie. from the adversary):

– BS = [value : V]: send BS on the corresponding channel

– BS = [constant : Cn]: send BS on the corresponding channel

– BS = [pair : BS1, BS2]: recursively process BS1 and BS2 to obtain H1 and H2; let H = [pair : H1, H2]
and send it on the corresponding channel

– otherwise use garbage(·) to create and return a garbage handle

Figure 73: Translator T AB
?

is preserved amoung all commitments created by the corrupt player, which is enough since the honest
player will never compare one of them to a commitment that he himself created (the commitment keys
are different).

Likewise, we also use C as the randomness component when translating encryption packages. However
this time we cannot rely on the encryption key to separate the encryptions and must instead keep the σ
mapping which tags each encryption with type and creator, and ensures that identity just needs to be
preserved within each separation34: an encryption package is rejected (Figure 71) unless its encryption
C has never been seen before (case σ(C, ek) = ⊥) in which case identity is trivially preserved, or it has
only been seen as part of encryption packages that also came from the corrupt player (case σ(C, ek) =
encother(·)), in which case identity is preserved since C is again used as the randomness component
and the encryption scheme is correct so that the extracted value V is the same; likewise, an evaluation
package is rejected (Figure 72) unless its encryption C has never been seen before (case σ(C, ek) = ⊥),
or it has only been seen as part of the exact same evaluation package (case σ(C, ek) = evalother(·))
in which case identity is preserved since the same handle H is used. Note that σ also ensures that an
evaluation package from the corrupt player can actually be translated by rejecting evaluations for which
we do not already have a translation of the sub-encryptions.

Let translator T AB
? be given by Figure 73 and translator T A

? by Figure 77. They are very similar to
their Ttrue,real counterpart but have introduced mapping δ for storing already processed commitments
from honest players, and have extended the use of mapping ε to also contain already processed encryptions
from honest players. Intuitively this is possible since all proofs are simulated, and means that the

34Our assumptions on the encryption scheme do not rule out the possibility that the environment can extract both V,R
from an honestly generated encryption C if he for instance knows the decryption key. He may then form a valid encryption
package with C′ and send it back to the honest player. In this case C′ = C, yet the translator will yield a data object HC′

where HC 6= HC′ as the former has R as randomness and the latter C.

53

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. let D = δ(comOf(H)); if D = ⊥ then

(a) pick randomness R ∈ {0, 1}κ, compute D ← Comck(0, R), and store δ(comOf(H)) 7→ D

2. compute πU ← SimProveU,simtd(D, ck)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) = BS, and return BS

Figure 74: Translator T AB
? – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

(a) pick randomness R ∈ {0, 1}κ, compute C ← Encek(0, R), and store ε(HC) 7→ C

3. compute πT ← SimProveT,simtd(C, ek)

4. let BS = [encPackage : C, ek, πT , crs], store τ(H) = BS, and return BS

Figure 75: Translator T AB
? – encryption package from honest player to honest player

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

(a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

3. for i ∈ [2] let Ci = ε(encOfi(H)) and pick fresh randomness R ∈ {0, 1}κ

4. compute C ← Encek(0, R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ek, crs)

5. let HC = encOf(H), and store ε(HC) 7→ C and σ(C, ek) 7→ HC
6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], update τ(H) 7→ BS, and return BS

Figure 76: Translator T AB
? – evaluation package from honest player to honest player

54

• Handle H received on crypto channel leakAB,i (ie. from honest A):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS = [pair :
BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 78 with ck = ckA, crs = crsA, and simtd = simtdA to obtain
BS; send it on the corresponding channel

– isEncPack(H) and isEkOfekA(H): use the procedure in Figure 79 with ek = ekA, crs = crsA, and
simtd = simtdA to obtain BS; send it on the corresponding channel

– isEncPack(H) and isEkOfekB (H); use the procedure in Figure 80 with ek = ekB , crs = crsA, and
simtd = simtdA to obtain BS; send it on the corresponding channel

– isEvalPack(h) and isEkOfekA(H): use the procedure in Figure 81 with ek = ekA, ck = ckA, crs = crsA,
and simtd = simtdA to obtain BS; send it on the corresponding channel

– isEvalPack(h) and isEkOfekB (H): use the procedure in Figure 82 with ek = ekB , ck = ckA, crs = crsA,
and simtd = simtdA to obtain BS; send it on the corresponding channel

• Bitstring BS received on crypto channel inflBA,j (ie. from corrupt B):

– BS = [value : V]: send BS on the corresponding channel

– BS = [constant : Cn]: send BS on the corresponding channel

– BS = [pair : BS1, BS2]: recursively process BS1 and BS2 to obtain H1 and H2; let H = [pair : H1, H2]
and send it on the corresponding channel

– BS = [comPack : . . .]: use the procedure in Figure 83 with ck = ckB , crs = crsB , and extd = extdB to
obtain H; send it on the corresponding channel

– BS = [encPack : . . .]: use the procedure in Figure 84 with crs = crsB and extd = extdB to obtain H;
send it on the corresponding channel

– BS = [evalPack : . . .]: use the procedure in Figure 85 with ck = ckB , crs = crsB , and extd = extdB to
obtain H; send it on the corresponding channel

– otherwise use garbage(·) to create and return a garbage handle

Figure 77: Translator T A
?

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise;

1. let HD = comOf(H) and D = δ(HD); if D = ⊥ then

(a) pick randomness R ∈ {0, 1}κ; compute D ← Comck(0, R), and update δ(HD) 7→ D

2. compute πU ← SimU,simtd(D, ck)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 78: Translator T A
? – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

(a) pick R ∈ {0, 1}κ, comp. C ← Encek(0, R), and store ε(HC) 7→ C and σ(C, ek) 7→ encme(HC)

2. compute πT ← SimProveT,simtd(C, ek)

3. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 79: Translator T A
? – encryption package from honest player under honest key

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

(a) let V = decryptdk(HC) and pick fresh randomness R ∈ {0, 1}κ

(b) compute C ← Encek(V,R), and store ε(HC) 7→ C and σ(C, ek) 7→ encme(HC)

2. compute πT ← SimProveT,simtd(C, ek)

3. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 80: Translator T A
? – encryption package from honest player under corrupt key

55

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

(a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. pick fresh randomness R ∈ {0, 1}κ and let HC = encOf(H)

4. compute C ← Encek(0, R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

5. store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], store τ(H) = BS, and return BS

Figure 81: Translator T A
? – evaluation package from honest player under honest key

Processing of handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

(a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. pick fresh randomness R ∈ {0, 1}κ, and let HC = encOf(H) and V = decryptdk(HC)

4. compute C ← Encek(V,R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

5. store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

6. let BS = [evalPackage : C,C1, ek,D1, D2, ck, πe, crs], store τ(H) 7→ BS, return BS

Figure 82: Translator T A
? – evaluation package from honest player under corrupt key

Processing of bitstring BS = [comPack : D, ck, πU , crs]:

• if VerU (D, ck, πU , crs) succeeds then:

1. compute (V, ·)← ExtractU,extd(D, ck, πU), let H = commitU,ck,crs
(
V,D

)
, and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 83: Translator T A
? – commitment package from corrupt player

Processing of bitstring BS = [encPack : C, ek, πT , crs]:

• if ek ∈ {ekA, ekB}, VerT,crs(C, ek, πT) succeeds, and σ(C, ek) ∈ {⊥, encother(·)} then:

1. compute (V, ·)← ExtractT,extd(C, ek, πT), and let H = encryptT,ek,crs
(
V,C

)
2. let HC = encOf(H), store ε(HC) 7→ C and σ(C, ek) 7→ encother(HC), and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 84: Translator T A
? – encryption package from corrupt player

Processing of bitstring BS = [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]:

• if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succ., and σ(C, ek) = evalother(BS,H, ·) then return H

• else if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succeeds, σ(C, ek) = ⊥, and σ(Ci, ek) ∈
{encother(HCi), evalother(·, ·, HCi), encme(HCi), evalme(HCi)} for both i ∈ [2] then:

1. compute (W1, ·,W2, ·, ·)← Extracte,extd(C,C1, C2, ek,D1, D2, ck, πe) for D1 and D2

2. let H = evale,ek,ck,crs
(
HC1 , HC2 ,W1, D1,W2, D2

)
and HC = encOf(H)

3. store σ(C, ek) 7→ evalother(BS,H,HC) and ε(HC) 7→ C, and return H

• otherwise use garbage(·) to create and return a new garbage handle

Figure 85: Translator T A
? – evaluation package from corrupt player

56

translators no longer needs to look into the data objects in the global memory to obtain the randomness
components R. In fact they only use the methods offered by Oadv to the adversary35.

Lemma 5.4. For any well-formed real protocol (SysH)H we have RW(SysH)
c∼ T H?

[
I(SysH)

]
.

Proof. Using the above results we proceed to show the result by a series of hybrid interpretations progres-
sively changing T Htrue,real into T H? . Indistinguishability of the hybrids follows from the indistinguishability
properties of the underlying cryptographic primitives. Note that through-out we use that well-formedness
ensures that the same randomness is never used twice; this is important for indistinguishability of the
primitives.

• Let n be the number of proofs sent by honest players in the execution. In interpretation T Hsim,i[I(SysH)]
for 0 ≤ i ≤ n we use the simulation trapdoors to create the first i proofs from honest players using
SimProve instead of Prove. Indistinguishability between T Hsim,i[I(SysH)] and T Hsim,i+1[I(SysH)]
follows by the NIZK scheme being computational zero-knowledge on true statements. Since n is
polynomial in κ we get indistinguishability through-out the entire series.

• In interpretation T Hrand[I(SysH)] we ignore the randomness symbols supplied by the honest players
and let the translator chose fresh randomness on its own instead. This is possible because the
protocol is well-formed and all proofs are simulated, yet it requires us to maintain the mapping δ
for commitments and ε for encryptions.

• Let n be the number of commitments sent by honest players in the execution. In interpretations
T Hcom,i[I(SysH)] for 0 ≤ i ≤ n we replace the values in the first i commitments from honest play-

ers with constants instead of the actual values. Indistinguishability between T Hcom,i[I(SysH)] and

T Hcom,i+1[I(SysH)] follows by the commitment scheme being computationally hiding. Since n is
polynomial in κ we then get indistinguishability through-out the entire series.

• Let n be the number of evaluation packages sent by honest players in the execution. In interpretations
T Heval,i[I(SysH)] for 0 ≤ i ≤ n we produce the ciphertext C in the first i evaluation packages from

honest players using Enc instead of using Eval. Indistinguishability between T Heval,i[I(SysH)] and

T Heval,i+1[I(SysH)] follows by the encryption scheme being history hiding. Since n is polynomial in
κ we then get indistinguishability through-out the entire series.

• Let n be the number of encryptions sent by honest players to honest players in the execution. In
interpretations T Henc,i[I(SysH)] for 0 ≤ i ≤ n we replace the values in the first i of these encryptions
with constants instead of the actual values; for encryptions for corrupt player we keep the actual
values. Indistinguishability between T Henc,i[I(SysH)] and T Henc,i+1[I(SysH)] follows by IND-CPA of
the encryption scheme. Since n is polynomial in κ we then get indistinguishability through-out the
entire series.

• Finally, in interpretation T Hdec[I(SysH)] the global memory functionality Fmem is moved outside
so that the translator now only has access to it through Oadv. However, at this point the only
situations where T Hdec needs to look inside the memory is to obtain the correct value for encryptions
sent to a corrupt player, and this can be done using the decrypt method instead.

In summary we get that RW(SysH)
c∼ T Hdec[I(SysH)], and the result follows since T Hdec = T H? .

To get a similar result for an ideal protocol we start with a hybrid interpretation T Htrue,ideal similar to

T Htrue,real but parameterised by the programmes in the system; this is needed for the translator to know
which simevale operation was used to create each evaluation package (and in turn whether Eval or Enc
was used) as it cannot decide this from the received handles and interacting with Oadv alone. Since all
proofs are already simulated we skip the first step of going from T Htrue,real to T H? but otherwise apply
the remaining sequence of hybrids as in Lemma 5.4.

Lemma 5.5. For any well-formed ideal protocol (SysH)H we have RW(SysH)
c∼ T H?

[
I(SysH)

]
.

We can then state the soundness result.

Theorem 5.6 (Soundness of Intermediate Interpretation). Let SysH1 and SysH2 be two well-formed

systems. If I(SysH1)
c∼ I(SysH2) then RW(SysH1)

c∼ RW(SysH2).

35Equality of objects, eq, is needed when the translator looks in its mappings ε, δ, and σ: it would not be enough for it
to simply compare handles as the global memory allows the same object to be created under different handles.

57

Proof. By assumption no polynomially bounded ITM Z ′ can tell the difference between I(SysH1) and
I(SysH2) while having access only to Oadv, in particular no Z ′ = Z � T H? for a polynomially bounded
ITM Z. The result then follows by Lemma 5.4 and 5.5.

Corollary 5.7. Let (SysHreal)H be a real protocol φ and let (SysHideal)H be an ideal protocol with target

functionality F . If I(SysHreal)
c∼ I(SysHideal) for all three H ∈ {AB ,A,B} then φ realises MF (with

inlined operation module) under static corruption.

Proof. We first note that by combining from the setup functionality with the MP machines for simu-
lator(s), authenticated channels, and simulated functionalities, we obtain an syntactically correct UC-
simulator CombSim for MF . We then use the assumption and Theorem 5.6.

58

6 Symbolic Model and Interpretation

We now give a symbolic model and interpretation tailored to be a conservative approximation of the
intermediate model. We use the dialect in [BAF05] of the applied-pi calculus [AF01] as the underlying
framework since this provides us with an unified way of expressing honest entities, the powers of the
adversary36, and indistinguishability. Moreover, we will later use that automated verification tools exist
for this calculus in the form of ProVerif [Bla04, BAF05].

6.1 Symbolic Model

For the symbolic model we assume a modelling Vals of the values in the domain, i.e. for each integer
in the domain in consideration there is a unique abstract term37 ranged over by v. Likewise we also
assume a modelling of all constants in Consts ∪ {true, false,garbage}. Let N (also called names) be
a countable set of atomic symbols used to model randomness r, secret key material dk, extd, and ports
p. A term t is then build from names n in N , a countable set of variables x, y, z, . . . , and the constructor
symbols in Figure 86. The proof (·) constructors are unavailable to the adversary.

pair for pairings

ek, crs for keys

com, enc for commitments and encryptions

proofU , comPack for commitment packages

proofT , encPack for encryption packages

proofe, evalPack for evaluation packages

Figure 86: Term constructor symbols

The destructor symbols are given in Figure 87, and we also use t to range over terms with destructors.
Only the evale destructor is unavailable to the adversary. The reason for this is that in order to keep the
symbolic model suitable for automated analysis, we do not wish to symbolically model the composition
of randomness from encryptions when performing homomorphic evaluations. On the other hand, the
evaluated encryption cannot use randomness supplied by the adversary nor the randomness of only one
of the input encryptions, as both cases would allow the adversary to easily guess the plaintext. Our
solution is then to use fresh unknown randomness. However, we cannot express this directly in the
equational theories suitable for ProVerif38; instead the private evale destructor takes a randomness r as
input and we give the adversary access to it only through an oracle process (more below).

Processes Q are built from the grammar described in Figure 88, where t is a term, u is a name or
port, p is a port, and x is a variable. The nil process does nothing and represents a halted state. The
new u;Q process is used for name and port restriction. Intuitively, the let x = t in Q else Q′ process
tries to evaluate t to t′ by reducing it using the equational theory and the rewrite rules (over which the
calculus is parameterised); if it is successful it binds it to x in Q and proceeds as this process; if it fails
(because there is no matching rewrite rule for a destructor) then it proceeds as Q′ instead. When Q′

is clear from the context we shall also write let x = t; Q. The if t = t′ then Q else Q′ process is just
syntactic sugar39 but intuitively proceeds as Q if t and t′ can be rewritten to terms equivalent according
to the equtional theory, and as Q′ if not. Again we will at times omit the “else Q′” part when Q′ is clear
from the context. Finally, Q || Q′ denotes parallel composition, and !Q unbounded replication.

Let an evaluation context E be a process with a hole, built from [], E || Q, Q || E and new n; E .
We obtain E [Q] as the result of filling the hole in E with Q. We say that a process Q is closed if all
its variables are bound through an input or a let construction. We may now capture the operational
semantics of processes by two relations, namely structural equivalence and reduction. Structural equiv-
alence, denoted by ≡, is the smallest equivalence relation on processes that is closed under application

36As usual, these are given by his deductive powers (ie. his ability to form new messages from old ones) and his testing
powers (ie. his ability to distinguish messages). The private function symbols allowed by this dialect of the calculus allows
us to better express the adversary’s exact powers.

37One may for instance obtain such a model by having an atomic term for each value. Alternatively one could have
constructors used to represent numbers in unary or binary.

38And if we could, we couldn’t reveal it to the adversary either, as this would allow him to deduce too much, in turn
making it difficult for him to prove that he correctly formed an evaluation package.

39Namely, if t = t′ then Q else Q′ is defined as usual as let x = equals(t, t′) in Q else Q′ for x free in Q.

59

isComPack,verComPackU for commitments

isEncPack,verEncPackT for encryptions

evale, isEvalPack,verEvalPacke for evaluations

dec, extractCom, extractEnc for decryption

extractEval1, extractEval2 and extraction

ckOf , ekOf , crsOf ,

comOf , comOf1, comOf2, for packages

encOf , encOf1, encOf2

isValue, eqValue, inTypeU , inTypeT for values

isConst, eqConstc for constants

isPair,first, second for pairings

equals for identity checking

Figure 87: Term destructor symbols

nil

new u; Q

in[p, x]; Q

out[p, t]; Q

let x = t in Q else Q′

if t = t′ then Q else Q′
Q || Q′

!Q

Figure 88: Process syntax

of evaluation contexts and standard rules such as associativity and commutativity of the parallel oper-
ator (see [AF01, BAF05] for details). Reduction, denoted by −→, is the smallest relation closed under
structural equivalence, application of evaluation contexts, and rules:

!Q −→ Q || !Q
out[p, t];Q1 || in[p, x];Q2 −→ Q1 || Q2{t/x}

let x = t in Q else Q′ −→

{
Q{t′/x} when t ⇓ t′ for some t′

Q′ otherwise

where t ⇓ t′ indicates that t may be rewritten to t′ containing no destructors using the rewrite rules and
the equational theory. Our rewrite rules are given in Figure 89 and we only need a trivial equational
theory40. We write −→∗ for the reflexive and transitive closure of reduction.

Our equivalence notion for formalising symbolic indistinguishability is observational equivalence as
defined in [AF01]. Here we write Q↓p when Q can send an observable message on port p; that is, when
Q −→∗ E [out[p, t];Q′] for some term t, some process Q′, and some evaluation context E that does not
bind p.

Definition 6.1 (Symbolic indistinguishability). Symbolic indistinguishability, denoted
s∼, is the largest

symmetric relation R on closed processes Q1 and Q2 such that Q1 R Q2 implies:

1. if Q1↓p then Q2↓p
2. if Q1 → Q′1 then there exists Q′2 such that Q2 →∗ Q′2 and Q′1 R Q′2

3. E [Q1] R E [Q2] for all evaluation contexts E

Intuitively, a context may represent an attacker, and two processes are symbolic indistinguishable if
they cannot be distinguished by any attacker at any step: every output step in an execution of process
Q1 must have an indistinguishable equivalent output step in the execution of process Q2, and vice versa;
if not then there exists a context that “breaks” the equivalence.

Note however that the definition uses an existential quantification: if Q1
s∼ Q2 then we only know

that a reduction of Q1 can be matched by some reduction by Q2. Since we allow private connections in
our protocols this has implication for the soundness result in Section 6.5 as symbolic indistinguishability

40The ProVerif manual [Bla11] advocates the use of rewrite rules over equations for efficiency reasons.

60

isValue(v) true for all v ∈ Dom

eqValue(v, v) true for all v ∈ Dom

inTypeU (v) true for all v ∈ U
inTypeT (v) true for all v ∈ T

isPair(pair(x1, x2)) true

first(pair(x1, x2)) x1

second(pair(x1, x2)) x2

eqConstc(c) true for all c ∈ Const

isConst(c) true for all c ∈ Const

pevalf (v1, v2, v3, v4) v for all vi ∈ Dom and v = f(v1, v2, v3, v4)

isComPack(comPack(xd, xck, xπ, xcrs)) true

verComPackU (comPack(xd, xck,proofU (xd, xck, xcrs), xcrs)) true

isEncPack(encPack(xc, xek, xπ, xcrs)) true

verEncPackT (encPack(xc, xek,proofT (xc, xek, xcrs), xcrs)) true

isEvalPack(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) true

verEvalPacke(evalPack(xc, xc1 , . . . , xck,proofe(xc, xc1 , . . . , xcrs), xcrs)) true

evale(enc(v1, xr1 , ek(xdk)), enc(v2, xr2 , ek(xdk)), v3, v4, xr) enc(v, xr, ek(dk))

for all vi ∈ Dom and v = pevale(v1, v2, v3, v4)

dec(enc(v, xr, ek(xdk)), xdk) v

extractCom(proofU (com(v, xr, xck), xck, crs(xextd)), xextd) v

extractEnc(proofT (enc(v, xr, xek), xek, crs(xextd)), xextd) v

extractEvali(proofe(. . . , com(v1, xr1 , xck), com(v2, xr2 , xck), . . . , crs(xextd)), xextd) vi for i ∈ {1, 2}

comOf(comPack(xd, xck, xπ, xcrs)) xd

ckOf(comPack(xd, xck, xπ, xcrs)) xck

proofOf(comPack(xd, xck, xπ, xcrs)) xπ

crsOf(comPack(xd, xck, xπ, xcrs)) xcrs

encOf(encPack(xc, xek, xπ, xcrs)) xc

ekOf(encPack(xc, xek, xπ, xcrs)) xek

proofOf(encPack(xc, xek, xπ, xcrs)) xπ

crsOf(encPack(xc, xek, xπ, xcrs)) xcrs

encOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xc

encOf i(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xci for i ∈ {1, 2}
ekOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xek

comOf i(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xdi for i ∈ {1, 2}
ckOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xck

proofOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xπ

crsOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) xcrs

equals(x, x) true

Figure 89: Term rewrite rules

61

only guarantees that some scheduling of two systems make them indistinguishable; for soundness we
need that this holds for the (token-based) scheduling used in the computational model.

6.2 Programme Interpretation

Using the model from above we may now give a symbolic interpretation of a programme P in the form of
a process QP with private access to an implementation of the operations available to it41. Invocation of
one of these operations is done by sending a message on a dedicated port, say pcallcommit, and receiving the
result back on a corresponding pretcommit. Boolean operations such as isEncPack always return either true
or false, and non-boolean operations return a term unless they abort (say, a check fails) in which case no
message is sent back causing QP to block. Abusing the notation slightly we shall often write invocations
inlined, ie. let y = encryptT,ek,crs(v, r);Q instead of out[pcallencrypt...,pair(v, r)]; in[pretencrypt..., y];Q.

Unlike the other models, the symbolic implementation of the operation modules does not include
storing methods. Since the checks performed by these are still required by soundness, we assume that the
programme itself contains enough instructions such that whenever a message is received, the programmes
rejects it if the intermediate interpretation would have done so, as determined by methods acceptPlain
and acceptCrypto. This is easily satisfied for protocols where all messages have a predefined structure,
and we have chosen so for simplicity, in particular to avoid encoding the recursive checking of pairings
and the σ list of previously received encryptions; avoiding these encodings is desirable from an automated
verification point of view.

We introduce a bit of syntactic sugar before giving the interpretation. Let Qp1 , . . . , Qpn be processes.
We then use the standard trick of writing

in[p1, x1];Qp1 + in[p2, x2];Qp2 + · · ·+ in[pn, xn];Qpn

instead of

new p;


out[p, token]; nil

|| in[p, x]; in[p1, x1];Qp1

|| in[p, x]; in[p2, x2];Qp2

|| . . .
|| in[p, x]; in[pn, xn];Qpn


for a process

∑
i in[pi, xi];Qpi listening on several ports at once but prevented from responding to more

than one of them (p and x are free in all Qpi). Informally, only one of the processes may receive token
and hence continue.

To give an interpretation of a programme we start by interpreting the leaves as nil processes. We then
iteratively work our way backwards through the edges: consider a programme point Σ with n outgoing
edges pointing to Σ1, . . . ,Σn that have already been interpreted as processes Q1, . . . , Qn. We now
partition these edges by the port they are listening on. For each partition pi we may then interpret (sub-
)programme Ppi from Σ by an input statement followed by an series of if-then-else processes encoding
the conditions, a series of let processes encoding the commands sequence, and ending in an optional
output statement. This gives processes in[pi, xi];Qpi that may then finally be combined to obtain Q =∑
i in[pi, xi];Qpi
As an example consider a node Σ with two input-output edges (to Σ1 and Σ2) and one input-only

edge (to Σ3) that all listen on the same port pin, and with respective conditions

ψ1 = isEncPack(xin) ∧ verEncPackT,ek,crs(xin)

ψ2 = isEvalPack(xin) ∧ verEvalPacke,ek,ck,crs(xin)

ψ3 = ¬ψ1 ∨ ¬ψ2

and respective command sequences{
decryptdk(xin)

y

} {
decryptdk(xin)

y

}
∅

which is well-formed since isEncPack(x) implies ¬isEvalPack(x), and vice versa. For the symbolical
interpretation we obtain the sequential process Q in Figure 90.

41As for the computational models this strong separation between the programme and its module is artificial, and in
practise the module is simply inlined in the process.

62

Q
.
= in[pin, xin];

if isEncPack(xin) = true then

if verEncPackT,ek,crs(xin) = true then

let y = decryptdk(xin);

out[p1, x1];Q1

else Q3

else if isEvalPack(xin) = true then

if verEvalPacke,ek,ck,crs(xin) = true then

let y = decryptdk(xin);

out[p2, x2];Q2

else Q3

else Q3

Figure 90: Example symbolic interpretation of programme point Σ

6.3 Symbolic Implementation of Operation Modules

To form a symbolic operation module for an honest entity we first give a process Qop for each available
operation op. We have omitted the simpler operations and only give these processes for commitment,
encryption, and evaluation operations in Figure 91, 92, and 93 respectively, where we have also omitted
some “else” branches. Note that they follow the intermediate implementation in Section 5.2 closely. For
a process QP for programme P with access to operations op1, . . . , opn we may then form its operation
process QboxP

as
QboxP

.
= !Qop1 || · · · || !Qopn

which we note may be parameterised by keys if P is cryptographic. Since this process is private to QP
we will have to link them through a series of port restrictions along the lines of

new pcallop1 ; new pretop1 ; . . . ; new pcallopn ; new pretopn ;
(
QP || QboxP

)
such that only QP may interact with QboxP

.
As for the operations offered to the adversary (see Section 5.3) we first note that his operations may

all be modelled as above. However, it is also sound to give the symbolic adversary more powers than the
intermediate adversary, yet it may simplify the analysis. He may use any constructor and destructor as
he pleases, except for evale, proveU , proveT and provee which we have to grant him explicit access
to. To do this we give him access to process Qadvbox defined as follows42

Qadvbox
.
= !QadvcommitU || !Q

adv
encryptT

|| !Qadvevale

using the processes in Figure 95.

6.4 Symbolic Interpretation

Given a system Sys in corruption scenario H we may use the encoding of programmes from above to
form a composed process QHhonest of all programmes in Sys along with their operation modules. By
combining this with a process QHadv containing Qadvbox as well as a process leaking the public and corrupted
decryption keys, we obtain our symbolic interpretation:

Definition 6.2 (Symbolic Interpretation). The symbolic interpretation S(Sys) of a well-formed system
Sys is given by process EHsetup

[
QHhonest || QHadv

]
where the setup contexts EHsetup are given in Figure 96.

42Note that there is no need to give different boxes in the different corruption scenarios.

63

QverComPackU,ck,crs

.
= in[pcallverComPackU,ck,crs

, xd];

if verComPackU (xd) = true then

if ckOf(xd) = ck then

if crsOf(xd) = crs then

out[pretverComPackU,ck,crs
, true]

QcommitU,ck,crs

.
= in[pcallcommitU,ck,crs

, (xv, xr)];

if inTypeU (xv) = true then

let xd = com(xv, xr, ck);

let xπ = proofU (xd, ck, crs);

out[pretcommitU,ck,crs
, comPack(xd, ck, xπ, crs)]

QsimcommitU,ck,simtd

.
= in[pcallsimcommitU,ck,simtd

, (xv, xr)];

if isValue(xv) = true then

let xd = com(xv, xr, ck);

let xπ = proofU (xd, ck, crs);

out[pretsimcommitU,ck,crs
, comPack(xd, ck, xπ, crs)]

Figure 91: Symbolic implementation of operations for commitment packages

QverEncPackT,ek,crs

.
= in[pcallverEncPackT,ek,crs

, xc];

if verEncPackT (xc) = true then

if ekOf(xc) = ek then

if crsOf(xc) = crs then

out[pretverEncPackT,ek,crs
, true]

QencryptT,ek,crs

.
= in[pcallencryptT,ek,crs

, (xv, xr)];

if inTypeT (xv) = true then

let xc = enc(xv, xr, ek);

let xπ = proofT (xc, ek, crs);

out[pretencryptT,ek,crs
, encPack(xc, ek, xπ, crs)]

QsimencryptT,ek,simtd

.
= in[pcallsimencryptT,ek,crs

, (xv, xr)];

if isValue(xv) = true then

let xc = enc(xv, xr, ek);

let xπ = proofT (xc, ek, crs);

out[pretsimencryptT,ek,crs
, encPack(xc, ek, xπ, crs)]

Figure 92: Symbolic implementation of operations for encryption packages

64

QverEvalPacke,ek,ck,crs

.
= in[pcallverEvalPacke,ek,ck,crs

, (xc, xc1 , xc2 , xd1 , xd2)];

if verEvalPacke(xc) = true then

if encOf i(xc) = encOf(ci) then

if comOf i(xc) = comOf(di) then

if ekOf(xc) = ek then

if ckOf(xc) = ck then

if crsOf(xc) = crs then

out[pretverEvalPacke,ek,ck,crs
, true]

Qevale,ek,ck,crs

.
= in[pcallevale,ek,ck,crs

, (xc1 , xc2 , xv1 , xr1 , xv2 , xr2)];

if ekOf(xci) = ek then

if isValue(xvi) = true then

let xc′i = encOf(xci);

let xd′i = com(xvi , xri , ck);

new r;

let xc′ = evale(xc′1 , xc′2 , xv1 , xv2 , r);

let xπ = proofe(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, crs);

let xc = evalPack(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, xπ, crs);

out[pretevale,ek,ck,crs
, xc]

Qsimevale,ek,ck,simtd

.
= in[pcallevale,ek,ck,crs

, (xv, xc1 , xc2 , xd1 , xd2)];

if ekOf(xci) = ek then

if ckOf(xdi) = ck then

let xc′i = encOf(xci);

let xd′i = comOf(xdi);

new r;

let xc′ = enc(xv, r, ek);

let xπ = proofe(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, crs);

let xc = evalPack(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, xπ, crs);

out[pretevale,ek,ck,crs
, xc]

Figure 93: Symbolic implementation of operations for evaluation packages

65

Qdecryptdk

.
= in[pcalldecryptdk

, xc];

if ekOf(xc) = ek then

let xc′ = encOf(xc);

let xv = dec(xc′ , dk);

out[pretdecryptdk
, xv]

QextractComextd

.
= in[pcallextractComcrs

, xd];

if isComPack(xd) = true then

if crsOf(xd) = crs then

let xπ = proofOf(xd);

let xv = extractCom(xπ, extd);

out[pretextractComcrs
, xv]

QextractEncextd

.
= in[pcallextractEnccrs , xc];

if isEncPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEnc(xπ, extd);

out[pretextractEnccrs , xv]

QextractEval1,extd

.
= in[pcallextractEval1,crs , xc];

if isEvalPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEval1(xπ, extd);

out[pretextractEval1,crs , xv]

QextractEval2,extd

.
= in[pcallextractEval2,crs , xc];

if isEvalPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEval2(xπ, extd);

out[pretextractEval2,crs , xv]

Figure 94: Symbolic implementation of operations for decryption and extraction

66

QadvcommitU

.
= in[padvcallcommitU , (xv, xr, xck, xcrs)];

if inTypeU (xv) = true then

let xd = com(xv, xr, xck);

let xπ = proofU (xd, xck, xcrs);

out[padvretcommitU , comPack(xd, xck, xπ, xcrs)]

QadvencryptT

.
= in[padvcallencryptT

, (xv, xr, xek, xcrs)];

if inTypeT (xv) = true then

let xc = encrypt(xv, xr, xek);

let xπ = proofT (xc, xek, xcrs);

out[padvretencryptT
, encPack(xc, xek, xπ, xcrs)]

Qadvevale

.
= in[padvcallevale , (xc1 , xc2 , xv1 , xr1 , xv2 , xr2 , xek, xck, xcrs)];

new r;

let xc = evale(xc1 , xc2 , xv1 , xv2 , r);

let xd1 = com(xv1 , xr1 , xck);

let xd2 = com(xv2 , xr2 , xck);

let xπ = proofe(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xcrs);

out[padvretevale , evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)]

Figure 95: Symbolic implementation of operations for adversary’s operations

EABsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new crsA, crsB ;

[]

EAsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new crsA, extdB ;

let crsB = crs(extdB);

[]

EBsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new extdA, crsB ;

let crsA = crs(extdA);

[]

Figure 96: Setup evaluation contexts

67

6.5 Soundness of Symbolic Interpretation

Since the symbolic model already matches the intermediate model quite closely, the main issue for the
soundness theorem is to ensure that the two notions of equivalence coincide. This in turn essentially boils
down to ensuring that the scheduling that leads to symbolic equivalence coincides with the scheduling
policy used in the computational interpretations43.

Our solution is to restrict systems such that they allow only one choice of symbolic scheduling, namely
that of the computational model. In particular, we have as an invariant that if a system is activated
with an input then there is only one execution path to either an output or a deadlock state44. Initially
this invariant holds because of the protocol model. To ensure that it is preserved during execution it is
enough to require that no message is lost, ie. for any strategy of the adversary, if a programme sends a
message on a port then the receiving programme is at a programme point where it is listening on that
port. The motivation behind this choice is that the two models disagree on what happens when the
receiver is not ready: in the computational model the message is lost (read but ignored by the receiver)
while in the symbolic model the message hangs around (possibly blocking) until the receiver is ready;
this may then lead to non-determinism and several scheduling choices.

Theorem 6.3. Let Sys1 and Sys2 be two well-formed systems that do not allow messages to be lost. If
S(Sys1)

s∼ S(Sys2) then I(Sys1)
c∼ I(Sys2).

Proof. Let Qi = S(Sysi) and let Z be any polynomial time environment45 interacting with either
N1 = I(Sys1) or N2 = I(Sys2). If we can show that for all fixed choices of random tape for Z there is
only a negligible probability (over the random tapes of the honest machines) of distinguishing N1 from
N2 then this implies that they are also indistinguishable when the random tape of Z is drawn from a
distribution instead.

Now assume that the random tape of Z has been fixed so its first activation becomes deterministic.
If its action is an output guess g ∈ {0, 1} then we are done since it would clearly do the same in both
cases. Else, if it is an activation of an honest machine in Ni (ie. an invocation of its operation module
or sending a message to a programme machine) then we need to argue that when Z is re-activated it
only has negligible probability of distinguishing. To do this we first show that there exists an evaluation
context E0 that when applied to Qi with overwhelming probability will match the reaction of Ni. Since
Q1

s∼ Q2 implies E0[Q1]
s∼ E0[Q2] this will then allow us to make conclusions about the reaction of N1

and N2.
More concretely, by inspecting the bitstring sent by Z we may use the mappings on values and

constants to show the existence of an evaluation context E0 that extensionally behaves the same: name
restriction is used for the randomness sent to its operation module, garbage for the handles (since this
is the first activation and hence nothing has been received from the honest machines yet, any handle
from the adversary must be a guess that we assume is going to fail), and pair for constructing pairings.
For each randomness sent we also record its associated name by ρ(R) 7→ r. Below we then show that
with overwhelming probability the activation of a machine in Ni ends with a message M0

i being sent
back to Z if and only if E0[Qi] evaluates to an output of term t0i on an open port; moreover, M0

i and

t0i have the same structure. Then, since E0[Q1]
s∼ E0[Q2] as mentioned above we must have that t01 is

output if and only if t02 is, and by the operations available to the symbolic adversary they must also have
the same structure (otherwise the operations could be used to distinguish the two terms). But this in
turn means that with overwhelming probability the only difference between M0

1 and M0
2 is their random

bitstrings; and since the operation modules always refresh these during retrieve, the two have the same
distribution from the point of view of Z. But this means that with overwhelming probability, when Z is
re-activated it is done so by a message that is distributed the same in the two cases and hence it cannot
distinguish.

To continue the argument for the second activation we use the same approach as before, and show
that for all choices of random bitstrings in the message it may only distinguish with negligible proba-
bility. Concretely, let M0 be any message from the distribution of M0

1 and M0
2 , and consider the (now

43This issue arises as a combined consequence of the existential quantification in observation equivalence and the use of
private ports. Concretely, we may construct two systems which are indistinguishable in the symbolic mode but trivially
distinguishable in the computational model because of the different scheduling policy.

44Note that the symbolic adversary may choose to activate a system with more than one input at a time because of the
inherited concurrency of the symbolic model. This is not a problem since we only want to show soundness in one direction.

45The UC framework gives a precisely notion of polynomial time (in the security parameter κ) for ITMs. What we
require here is that the messages send by the environment contain at most polynomially many random bitstrings, and
that it only invokes its operation module and the honest programme machines a polynomial number of times; we put no
restrictions on the amount of computation that goes into producing the messages.

68

deterministic) activation of Z on this message. Again, if its action is an output guess then we are done.
Otherwise, if it is an activation of an honest machine then we show by construction there exists an evalu-
ation context that extensionally behaves the same. Unlike what we did before we first need to decompose
M0 in order to correctly interpret the action: having chosen a fresh variable name x0, we then store in η
each handle encountered in M0 together with a term of first and second describing its path relative to
x0, ie. if M0 = 〈pair : H1, H2〉 then η(H1) 7→ first(x0) and η(H2) 7→ second(x0) afterwards. Similar
to before, we may then construct context E1 that first behaves as E0, next inputs for x0, then use name
restriction for new randomness, and finally build its output in accordance with the bitstring sent by Z
and the recordings in ρ and η. Again we apply that with overwhelming probability the first activation of
Ni by Z will be matched by E1[Qi], and the same argument can now be applied to show that the second

activation will also be matched with overwhelming probability. Furthermore, E1[Q1]
s∼ E1[Q2].

We may continue this approach for the entire execution and by our assumption that there are at
most polynomially many activations we obtain the desired result.

Finally, we need to argue that there is only a negligible probability of a mismatch between Ni and
Qi for each activation. Since we have assumed that no message is lost we know that a priori the two
interpretations agree on the sequence of programmes activated as no non-determinism arises46 in the
symbolic execution. This means that the only point where the sequences may diverge is if a clash
between the randomly chosen bitstrings of length κ occurs, either because an honest machine chose
the same by coincidence or because the environment managed to “guess” one47. However, since each
activation of Ni compares and generates at most polynomially many of these, the probability that a clash
occurs is negligible; note that here we need that the bitstrings sent by Z may only contain polynomially
many random bitstrings.

46We of course also use the conditions are mutually exclusive and that each port only has one receiver. This means that
the only point where non-determinism may occur is if an activation allowed a “stuck” output process to finally react with
an input process in the symbolic interpretation; but by the assumption that the systems do not allow messages to be lost
no output process can get stuck in the first place.

47A clash cannot happen in the symbolic model, not least because the adversary is incapable of such guessing. Concretely,
there does not exist an evaluation context matching a successful guess (an unsuccessful guess is interpreted as either a fresh
name or garbage depending on type).

69

7 Analysis of OT Protocol in ProVerif

In this section we illustrate how the ProVerif tool may be used in proving the OT protocol of [DNO08]
secure. After fixing the domain we massage the processes from the symbolic interpretation to fit with
ProVerif; to keep with the idea of automated analysis this step is done in a somewhat systematic way,
although no algorithm is given. We then successfully verify the protocol with ProVerif, and as a sanity
check show that the tool correctly discovers expected attacks on intentionally flawed versions of the
protocol.

7.1 Instantiating The Model

We fix the domain to {0, 1, 2} and use atomic symbols zero, one, and two to encode these values;
this allows us to hardcode the arithmetic of pevalf and in turn also evale. The types are dom =
{zero,one, two} and bit = {zero,one}, and by inspecting the protocol we see that we need constants
{getInput,bReceived,xsReceived,finish,deliver} besides the default {true, false,garbage}.

From the symbolic interpretation we obtain (inlined) processes for each of the programmes in the two
protocols. As an example the processes QS , QR for the two players programmes are shown in Figure 97,
and the processes for the ideal functionality and simulators when both players honest are shown in
Figure 98. The process for an authenticated channel is simply

QAuthAB

.
= in[sendAB , x]; out[leakAB , x]; in[inflAB ,deliver]; out[receiveAB , x]; nil

taking a single input, leaking it, and delivering it when told to by the environment.

QS
.
= new r, r0, r1;

in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inS
OT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, c
′
b, ekR, d0, d1, ckS , crsS);

let cx = evalPack(c′x, c
′
b, . . . , ckS , px, crsS);

out[sendSR, cx]

QR
.
= new rb;

in[inR
OT , b];

if inTypebit(b) = true then

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = cb then

if ekOf(cx) = ekR then

if crsOf(cb) = crsR then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

Figure 97: Process QS for sender (left) and process QR for receiver (right)

70

QFSR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

out[leakROT ,bReceived];

in[inflSOT ,getInput];

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

out[leakSOT ,xsReceived];

in[inflROT ,finish];

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Q
Sim

SR,S
OT

.
= new r, r0, r1;

in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[inflSOT ,getInput];

in[leakSOT ,xsReceived];

let c′b = encOf(cb);

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, c
′
b, . . . , crsS);

let c′x = evalPacksel(c
′
x, c
′
b, . . . , px, crsS);

out[sendSR, c
′
x]

Q
Sim

SR,R
OT

.
= new rb;

in[leakROT ,bReceived];

let c′b = enc(zero, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

out[inflROT ,finish]

Figure 98: Process for ideal functionality FSR
OT (left) and simulators SimSR,S

OT (right, top) and SimSR,R
OT

(right, bottom) for when both players are honest

71

7.2 Massaging Processes for ProVerif

Recall that we want to check the following three equivalences:

ESR
[
QS || QAuthSR || QAuthRS || QR

] s∼ ESR
[
QFSR || QSimSR,S || QAuthSR

|| QAuthRS
|| QSimSR,R

]
ES
[
QS
] s∼ ES

[
QFS || QSimS

]
ER
[
QR
] s∼ ER

[
QFR || QSimR

]
where the evaluation contexts ESR, ES , and ER take care of setting up keys, restricting ports, and giving
leakage and Qabox to the adversary. However, we need to massage the processes before feeding them
to ProVerif. More precisely, the tool does not check symbolic equivalence directly but instead checks
a strictly stronger diff equivalence that requires the two processes Q1, Q2 in question to be given by
a single biprocess B that may be projected to give respectively Q1 = left(B) and Q2 = right(B). To
specify a biprocess we add a term construction

choice[tleft · tright]

that intuitively collapses to tleft in left(B), and tright in right(B). Note that this implies that processes
Q1, Q2 must have the same structure and only differ on terms. ProVerif will then check if these two are
diff equivalent (see [BAF05] for details).

Consider first the case where both players are honest. The following procedure48 first gets rid of
the obvious structural differences by merging the processes on each side of the equation into as few new
processes as possible. In the case of the OT protocol it turns out that a single process is enough on both
sides since both protocols are “sequential” in the sense that whenever the protocol expects an input from
the environment there is only one open input port as explained next. In the case of the real protocol the
processes are initially

in[receiveRS , cb];Q0

∣∣∣∣ in[sendSR, x];Q1

∣∣∣∣ in[sendRS , x];Q2

∣∣∣∣ in[inROT , b];Q3

for some processes Qi and where the only open input port is inROT . An input on inROT will then result in
an output on open port leakRS and the processes

in[receiveRS , cb];Q0

∣∣∣∣ in[sendSB , x];Q1

∣∣∣∣ in[inflRS , x];Q′2
∣∣∣∣ in[receiveSR, b];Q

′
3

representing the next state of protocol. This in turn leads to

in[inSOT , x01];Q′0
∣∣∣∣ in[sendSB , x];Q1

∣∣∣∣ nil
∣∣∣∣ in[receiveSR, b];Q

′
3

followed by
nil

∣∣∣∣ in[inflSB , x];Q′1
∣∣∣∣ nil

∣∣∣∣ in[receiveSR, b];Q
′
3

and finally
nil || nil || nil || nil

where still only one input port is open each time. At each of these protocol points we may represent
the further behaviour of the protocol by a single process for each of the open input port49; this process
just performs the concatenated checks and method invocations of all processes activated until there is
an output on an open port. Doing so for the real protocol we obtain the single process in the left part
of Figure 99. For the ideal protocol we obtain the process in the left part of Figure 100.

Although it would now be possible to attempt a merger between the two processes to form a biprocess,
this may be made easier by first removing trivial operations.

Consider again the process for the real protocol in the left part of Figure 99. By the definition
of cb we see that the three checks if verEncPackbit(cb) = true then, if ekOf(cb) = ekR then, and
if crsOf(cb) = crsR then will always be satisfied, and it is hence sound to remove them50. This leaves
an input on open port inflRS followed immediately by an output on open port outSOT ; removing this
is also sound. Continuing with these transformations we obtain the process QSR

left in the right part of

48For readability we here present the procedure as working on processes instead of on programmes. An implementation
could work on the programme trees instead.

49Note that if there are more than one open input port at a protocol point then we need more than one process to
represent the further behaviour in the general case. However, in the special case where there are several open input ports
yet all but one of them immediately leads to a deadlock we may still use just one process (in fact, one simple programme).

50Algorithmically the let definition of a variable could be unrolled and the reduction rules be used to simply the conditions
until they are trivial.

72

in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inflRS ,deliver];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cb) = crsS then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

QSR
left

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

let xb = dec(c′x, dkR);

out[outROT , xb]

Figure 99: The merged processes from the real protocol, with the naive concatenation on the left and
the simplified QSR

left on the right

73

in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(cb, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inflRS ,deliver]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

QSR
right

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(cb, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Figure 100: The merged processes from the ideal protocol, with the naive concatenation on the left
and the simplified QSR

right on the right

74

BSR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(choice[b · zero], rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evalsel(c
′
b, choice[x0 · zero], choice[x1 · zero], r);

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

let xb = choice[dec(c′x, dkR) · zero];

if eqValue(b, zero) = true then

out
[
outROT , choice[xb · x0]

]
else

out
[
outROT , choice[xb · x0]

]
Figure 101: Biprocess BSR

OT for when both are honest

Figure 99, and a similar reasoning allows us to soundly simplify the ideal protocol to process QSR
right in

the right part of Figure 100. To finally form the biprocess BSR
right for when both players are honest we

notice that the only place where QSR
left and QSR

right differ by more than terms are at the final step: the real
protocol performs a decryption of cb while the ideal protocol tests the value of b. Adding a definition
of xb in QSR

right is sound, and so is matching out[outROT , xb] against both branches of the test in QSR
right .

Doing this we obtain the biprocess shown in Figure 101.
When only S is honest we may likewise concatenate and simplify the relevant processes to obtain

the two new processes QSleft and QSright given in Figure 102 that may be merged to form biprocess BS

in Figure 103. The same holds for when only R is honest; in this case QRleft and QRright from Figure 104

yields biprocess BR shown in Figure 105.
Note that the procedure has preserved equivalence between the two processes in the sense that if the

resulting two processes are equivalent then so are the initial two. An important point here is that since
destructors may fail when reduced, the defining let statement for a term t with destructors cannot be
moved around arbitrarily: we must first ensure that there are enough checks so that t cannot fail, or
ensure that t is evaluated in exactly the same activations as it was originally. Similarly, when copying
a let statement for a term t from one process to another as part of forming the biprocesses, we must
ensure that if t is not copied into a choice construct then no destructors in t can fail; this is for instance
the case when forming BS

OT since the let statement for b is copied to the left part but must be outside
a choice construct due to the nature of the diff equivalence (ProVerif will yield a false negative in this
case).

75

QS
left

.
= in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

QS
right

.
= in[receiveRS , cb]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

let b = extractEnc(proofOf(cb), extdR);

if inTypebit(b) = true then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

if eqValue(b, zero) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = enc(x0, r, ekR);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

else

new r, r0, r1;

let c′b = encOf(cb);

let c′x = enc(x1, r, ekR);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

Figure 102: The merged and simplified processes from the real (left) and ideal (right) protocol when
only S is honest

76

BS
OT

.
= in[receiveRS , cb]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

let b = extractEnc(proofOf(cb), extdR);

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

if eqValue(b, zero) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = choice
[
evalsel(c

′
b, x0, x1, r) · enc(x0, r, ekR)

]
;

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

else

new r, r0, r1;

let c′b = encOf(cb);

let c′x = choice
[
evalsel(c

′
b, x0, x1, r) · enc(x1, r, ekR)

]
;

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

Figure 103: Biprocess BS
OT for when only S is honest

77

QR
left

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cb) = crsS then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

QR
right

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

let x0 = extractEval1(proofOf(cx), extdS);

let x1 = extractEval2(proofOf(cx), extdS);

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Figure 104: The merged and simplified processes from the real (left) and ideal (right) protocol when
only R is honest

BR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(choice[b · zero], rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb]

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

let xb = choice
[
dec(encOf(cx), dkR) · zero

]
;

let x0 = choice
[
zero · extractEval1(proofOf(cx), extdS)

]
;

let x1 = choice
[
zero · extractEval2(proofOf(cx), extdS)

]
;

if eqValue(b, zero) = true then

out
[
outROT , choice[xb · x0]

]
else

out
[
outROT , choice[xb · x1]

]
Figure 105: Biprocess BR

OT when only R is honest

78

7.3 Automating The Analysis Using ProVerif

Although we may feed the three biprocesses from above to ProVerif, it turns out that another simplifica-
tion is required before the tool terminates: we need to add a tag to encryptions, preventing an encryption
to be used as input to evaluation more than once. More specifically, if an encryption is created using
encryptT,ek,crs then it contains a countone tag; and when an encryption goes through evale the tag must
be countone and is changed to countzero. This restriction is sound for this particular protocol and
enough for ProVerif to terminate.

Under this simplified model we have successfully analysed the protocol and found that in all three
cases the equivalences are satisfied, and hence the protocol realises the OT functionality.

As sanity checks we also tried variations of the protocols to see if ProVerif would find the expected
flaws that would then arise. If two also becomes a member of type T = bit then ProVerif finds an
attack in all three corruption scenarios. If the private decryption key dkR is leaked then ProVerif finds
an attack when both players are honest or when only R is honest. If the check that encOf1(cx) = c′b in
the receiver is omitted then ProVerif finds an attack when only R is honest.

79

8 Remarks

We end with a few straight-forward extensions together with suggestions for future work addressing some
of the shortcomings of this chapter.

8.1 Extentions

For presetational purposes we have left out the following easy extensions in the previous sections.

Hybrid analysis approach. As mentioned in the introduction it is also possible to use our result to
analyse a broader class of protocols using a hybrid-symbolic approach. Here we are given a protocol Π
on no particular form and may now analyse it in our framework as follows:

1. decompose it into a protocol π on the support form (ie. using only the supported primitives in the
allowed ways) and a set of subprotocols Π1, . . . ,Πn (on no particular form) that share no crypto
with π nor with each other51

2. formulate ideal functionalities F1, . . . ,Fn on the supported form and show that the subprotocols
Π1, . . . ,Πn realise them

3. formulate target ideal functionality G and simulator Sim on the supported form

4. let Sysreal be the real protocol composed of π and F1, . . . ,Fn, and let Sys ideal be the ideal protocol

composed of G and Sim; show in the symbolic model (possibly using ProVerif) that S(Sysreal)
s∼

S(Sys ideal) holds

5. use the soundness theorem to conclude that RW(Sysreal)
c∼ RW(Sys ideal), and in turn through

composition, that Π realise G using the combined simulators

Note that in step 2. there are no requirements on whether or not Πi can be shown to realise Fi in
our framework: as long as Fi can be expressed in our model as an ideal functionality then this step may
be done recursively through our framework, but it may also be done manually and using cryptographic
primitives beyond those we support. Supporting ideal functionalities enables this kind of hybrid analysis.

As before we also still only need to consider one session of the protocol since the compositional
theorem guarantees that it remains secure even when composed with itself a polynomial number of
times.

Symbolic criteria. While the approach advocated in this work requires the manual construction of a
simulator, our soundness results may also be used for the symbolic criteria approach where it is once and
for all shown (possibly outside the framework) that if a protocol π satisfied a given symbolic condition
then there exists a simulator the ensures indistinguishability relative to a fixed ideal functionality. This
is for instance the approach taken in [CH06] where a symbolic criteria for a key agreement functionality
is given and proved sound.

8.2 Future Work

The following suggestions would also be interesting to consider.

Probabilistic programmes. We have only considered deterministic programmes (in that the proba-
bilistic choices are limited to the randomness used as input to the cryptographic primitives) yet many
protocols, including protocols for multiparty computation and zero-knowledge proofs, make fundamental
use of probability as part of their security guarantees. By extending the protocol model to allow for
programmes making probabilistic choices we may capture such protocols52.

We have circumvented this problem in a few instances by allowing the random choices to be made
by the environment: if a protocol is secure when all the random choices are done by the adversary then
clearly it is also secure when these are instead drawn from a distribution. However this is a strictly
stronger condition for some protocols, and the extra choices for the environment may slow down the
automatic analysis significantly.

51Note that this is not a limitation of our framework as it also applies to eg. the UC framework where only information
theoretical (and not computational) cryptography may be shared across ideal functionalities.

52At a technical level, one approach would be to allow programmes with several edges having the same ψ condition but
annotated with a probability.

80

Moreover, it also means that we cannot use simpler expressions to describe the output values of ideal
functionalities compared to the outputs of real protocols; in particular, the exact same output must be
computed in both cases as everything is deterministic. Without this limitation we could for instance more
clearly capture the essence of a multiplication protocol for additive shares by idealising (abstracting) the
distributions from which the shares are drawn. We furthermore cannot let an ideal functionality dictate
that a value chosen by a realising protocol must be chosen at random.

To capture probabilistic programmes in a symbolic model we would need a probabilistic calculus
and a probabilistic formulation of observational equivalence. It seems that the work of Goubault et
al. [GPT07] might be a suitable choice allowing the soundness to carry over easily. One downside is that
no automated tool exist for this calculus.

Note that another issue rises if the probabilisic choices are furthermore allowed to depend on the
security parameter κ as it is not clear how to capture this in the symbolic model (currently κ does not
exist in this model at all). Having this option would allow us to capture the full triple-generation protocol
of [BDOZ11] where e is drawn from {0, 1}κ.

Variable-length programmes. Supporting programmes beyond the constant-length programmes
used here would allow more protocols, including those for multi-party computations, to be analysed.
One possible problem here is to ensure soundness of the symbolic interpretation, in particular in terms
of polynomial running time as pointed out in [Unr11].

From two-party to multi-party. Although multi-party protocols may sometimes be naturally ex-
pressed as compositions of two-party protocols, it would still be interesting to add support for an arbri-
trary but fixed set of players (allowing a dynamic set of players seems likely to introduce even more
problems).

If players are allowed to forward packages from other players then we must be careful that the
translator can always extract. More specifically, we must for instance prevent that a corrupt player
forms a package using the CRS of an honest player and sends this to another honest player; in this case
the translator cannot extract as the CRS was generated for simulation, yet it is not clear how to reject
such packages in a way that is also natural in the real-world interpretation of a real procotol.

Automatic process merging. In Section 7 we tried to be somewhat systematic in massaging the
processes from the symbolic interpretation into biprocesses suitable for the ProVerif tool. A static analysis
may be developed to properly automate this task of soundly simplifying and merging the processes from
the symbolic interpretation into suitable biprocesses.

81

References

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’01, pages 104–115, New York, NY, USA, 2001. ACM.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). Journal of Cryptology, 15:103–127, 2002.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Verification of Selected
Equivalences for Security Protocols. In 20th IEEE Symposium on Logic in Computer Science
(LICS 2005), pages 331–340, Chicago, IL, June 2005. IEEE Computer Society.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 169–188. Springer, 2011.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Proceedings of
IEEE Symposium on Security and Privacy, pages 86–100, May 2004.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

[Bla11] Bruno Blanchet. Cryptographic Protocol Verifier (ProVerif) User Manual, version 1.85,
2011. http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[BMM10] Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally sound abstrac-
tion and verification of secure multi-party computations. In FSTTCS, volume 8 of LIPIcs,
pages 352–363. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of the
needham-schroeder-lowe public-key protocol. In FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science, volume 2914 of Lecture Notes in Computer
Science, pages 1–12. Springer Berlin Heidelberg, 2003.

[BP04] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable dolev-yao
style cryptographic library. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop, pages 204 – 218, june 2004.

[BP06] Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of the strengthened
yahalom protocol. In Security and Privacy in Dynamic Environments, volume 201 of IFIP
International Federation for Information Processing, pages 233–245. Springer US, 2006.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic li-
brary with nested operations. In Proceedings of the 10th ACM conference on Computer and
communications security, CCS ’03, pages 220–230, New York, NY, USA, 2003. ACM.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145. IEEE Computer Society, 2001.

[Can05] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols, 2005. http://eprint.iacr.org/2000/067.

[Can08] Ran Canetti. Composable formal security analysis: Juggling soundness, simplicity and effi-
ciency. In ICALP, volume 5126 of Lecture Notes in Computer Science, pages 1–13. Springer,
2008.

[CC08] Hubert Lundh Comon and Véronique Cortier. Computational soundness of observational
equivalence. In ACM Conference on Computer and Communications Security, pages 109–
118. ACM, 2008.

[CG10] Ran Canetti and Sebastian Gajek. Universally composable symbolic analysis of diffie-hellman
based key exchange. IACR Cryptology ePrint Archive, 2010:303, 2010.

82

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://eprint.iacr.org/2000/067

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In Theory of Cryptography, volume 3876 of
Lecture Notes in Computer Science, pages 380–403. Springer Berlin Heidelberg, 2006.

[CHKS12] Hubert Lundh Comon, Masami Hagiya, Yusuke Kawamoto, and Hideki Sakurada. Computa-
tional soundness of indistinguishability properties without computable parsing. In Informa-
tion Security Practice and Experience, volume 7232 of Lecture Notes in Computer Science,
pages 63–79. Springer Berlin Heidelberg, 2012.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic methods in
computational analysis of cryptographic systems. Journal of Automated Reasoning, 46:225–
259, 2011.

[CW11] Veronique Cortier and Bogdan Warinschi. A composable computational soundness notion.
In Proceedings of the 18th ACM conference on Computer and communications security, CCS
’11, pages 63–74, New York, NY, USA, 2011. ACM.

[DDMR07] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition logic
(PCL). Electronic Notes in Theoretical Computer Science, 172(0):311–358, 2007.

[DKMR05] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan. On the relationships
between notions of simulation-based security. In Theory of Cryptography, volume 3378 of
Lecture Notes in Computer Science, pages 476–494. Springer Berlin Heidelberg, 2005.

[DKP09] Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based security in the
applied pi calculus. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2009), volume 4 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 169–180, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[DNO08] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally
composable oblivious transfer. In ICISC, volume 5461 of Lecture Notes in Computer Science,
pages 318–335. Springer, 2008.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology – CRYPTO 2012, vol-
ume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer Berlin Heidelberg,
2012.

[GPT07] Jean Larrecq Goubault, Catuscia Palamidessi, and Angelo Troina. A probabilistic applied pi-
calculus. In Programming Languages and Systems, volume 4807 of Lecture Notes in Computer
Science, pages 175–190. Springer Berlin Heidelberg, 2007.

[LN08] Peeter Laud and Long Ngo. Threshold homomorphic encryption in the universally compos-
able cryptographic library. In Provable Security, volume 5324 of Lecture Notes in Computer
Science, pages 298–312. Springer Berlin / Heidelberg, 2008.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. Theoretical
Computer Science, 353(1-3):118–164, 2006.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography, volume 2951 of Lecture Notes in Computer
Science, pages 133–151. Springer Berlin Heidelberg, 2004.

[PW01] Birgit. Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Proceedings of IEEE Symposium on Security
and Privacy, pages 184 –200, 2001.

[Unr11] Dominique Unruh. Termination-insensitive computational indistinguishability (and applica-
tions to computational soundness). In CSF, pages 251–265. IEEE Computer Society, 2011.

83

	Introduction
	Our Results
	Related Work
	Organisation
	Acknowledgements

	Protocol Model
	Motivating Example
	Systems
	Programmes
	Real Protocols
	Ideal Protocols
	Oblivious Transfer Functionality
	Commitment Functionality
	Coin-flip Functionality
	Multiplication Triple Functionality

	Preliminaries
	Commitment Scheme
	Homomorphic Encryption Scheme
	Non-Interactive Zero-Knowledge Proof-of-Knowledge Scheme

	Real-world Interpretation
	General Structure
	Programme Interpretation
	Setup Functionality Fsetup
	Real-world Implementation of Operation Module

	Intermediate Interpretation
	General Structure
	Intermediate Interpretation of Operation Modules
	The Adversary's Operation Module
	Soundness of the Intermediate Model

	Symbolic Model and Interpretation
	Symbolic Model
	Programme Interpretation
	Symbolic Implementation of Operation Modules
	Symbolic Interpretation
	Soundness of Symbolic Interpretation

	Analysis of OT Protocol in ProVerif
	Instantiating The Model
	Massaging Processes for ProVerif
	Automating The Analysis Using ProVerif

	Remarks
	Extentions
	Future Work

