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Abstract. The indifferentiability framework by Maurer, Renner and Holenstein (MRH; TCC
2004) formalizes a sufficient condition to safely replace a random oracle by a construction based
on a (hopefully) weaker assumption such as an ideal cipher. Indeed, many indifferentiable
hash functions have been constructed and could since be used in place of random oracles.
Unfortunately, Ristenpart, Shacham, and Shrimpton (RSS; Eurocrypt 2011) discovered that for
a large class of security notions, the MRH composition theorem actually does not apply. To
bridge the gap they suggested a stronger notion called reset indifferentiability and established a
generalized version of the MRH composition theorem. However, as recent works by Demay et
al. (Eurocrypt 2013) and Baecher et al. (Asiacrypt 2013) brought to light, reset indifferentiability
is not achievable thereby re-opening the quest for a notion that is sufficient for multi-stage
games and achievable at the same time.

We present a condition on multi-stage games that we call unsplittability. We show that if a game
is unsplittable for a hash construction then the MRH composition theorem can be salvaged.
Unsplittability captures a restricted yet broad class of games together with a set of practical
hash constructions including HMAC, NMAC and several Merkle-Damg̊ard variants. We show
unsplittability for the chosen distribution attack (CDA) game of Bellare et al. (Asiacrypt 2009),
a multi-stage game capturing the security of deterministic encryption schemes; for message-
locked encryption (Bellare et al.; Eurocrypt 2013) a related primitive that allows for secure
deduplication; for universal computational extractors (UCE) (Bellare et al., Crypto 2013), a
recently introduced standard model assumption to replace random oracles; as well as for the
proof-of-storage game given by Ristenpart et al. as a counterexample to the general applicability
of the indifferentiability framework.
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Figure 1: Security Games. From left to right: the chosen distribution attack (CDA) game [BBN+09] capturing
security in deterministic encryption schemes [BBO07], the proof-of-storage challenge-response game (CRP) due to
Ristenpart et al. [RSS11b] given as counter-example of the general applicability of the indifferentiability composition
theorem, message locked encryption (MLE) [BKR13], and universal computational extractors (UCE) [BHK13] a
standard model security assumption on hash-functions.

1 Introduction

The notion of indifferentiability, introduced by Maurer, Renner and Holenstein (MRH) [MRH04]
can be regarded as a generalization of indistinguishability tailored to situations where internal state
is publicly available. It has found wide applicability in the domain of iterative hash functions which
are usually built from a fixed-length compression function together with a scheme that describes
how arbitrarily long messages are to be processed [Mer89, Dam89, Riv92, Lis06, BDPA11a]. The
MRH composition theorem formalizes a sufficient condition under which such a construction can
safely instantiate a random oracle: namely indifferentiability of a random oracle. A different view
on this is that with indifferentiability one can transfer proofs of security from one idealized setting
into a different (and hopefully simpler) idealized setting. For example, proofs in the random oracle
model (ROM) [BR93] imply proofs in the ideal cipher model if a construction from an ideal cipher
that is indifferentiable from a random oracle exists.

Ristenpart, Shacham and Shrimpton (RSS) [RSS11b] gave the somewhat surprising result that
the MRH composition theorem only holds in single-stage settings and does not necessarily extend
to multi-stage settings where disjoint adversaries are split over several stages. As counterexample
they present a simple challenge-response game (CRP, depicted in Figure 1): a file server that is
given a file M can be engaged in a simple proof-of-storage protocol where it has to respond with a
hash value H(M‖C) for a random challenge C while only being able to store a short state st (with
|st| � |M |). The protocol can easily be proven secure in the ROM since, without access to file M ,
it is highly improbable for the server to correctly guess the hash value H(M ||C). The server can,
however, “cheat” if the random oracle is replaced by one of several indifferentiable constructions.
Here the server exploits the internal structure by computing an intermediate chaining value which
allows it to later compute extended hash values of the form Hh(M‖·). We refer to [RSS11b] for a
detailed discussion.

To circumvent the problem of composition in multi-stage settings, RSS propose a stronger form
of indifferentiability called reset indifferentiability [RSS11b], which intuitively states that simulators
must be stateless and pseudo-deterministic [BBM13]. While this notion allows composition in
any setting, no domain extender can fulfill this stronger form of indifferentiability [DGHM13,
LAMP12, BBM13]. Demay et al. [DGHM13] present a second variant of indifferentiability called
resource-restricted indifferentiability which models simulators with explicit memory restrictions and
which lies somewhere in between plain indifferentiability and reset indifferentiability. However, they
do not present any positive results such as constructions that achieve any form of resource-restricted
indifferentiability or security games for which a resource-restricted construction allows composition.

The only positive results, we are aware of, is the analysis of RSS of the non-adaptive chosen-
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Figure 2: Merkle-Damg̊ard Construction

distribution attack (CDA) game [BBN+09], depicted in Figure 1. CDA captures a security notion
for deterministic public-key encryption schemes [BBO07], where the randomness does not have
sufficient min-entropy. In the CDA game, the first-stage adversary A1 outputs two message vectors
m0 and m1 together with a randomness vector r which, together, must have sufficient min-entropy
independent of the hash functionality. According to a secret bit b one of the two message vectors is
encrypted and given, together with the public key, to the second-stage adversary A2. The adversary
wins if it correctly guesses b. For the non-adaptive CDA game, RSS give a direct security proof for
the subclass of indifferentiable hash functions of the NMAC-type [DRS09], i.e., hash functions of
the form Hh(M) := g(fh(M)) where function g is a fixed-length random oracle independent of fh

which is assumed to be preimage aware. Note, while this covers some hash functions of interest,
it does not, for example, cover chop-MD functions [CDMP05] (like SHA-2 for certain parameter
settings) or Keccak (aka. SHA-3).

In the lights of the negative results on stronger notions of indifferentiability, we aim at salvaging
the current notion; that is, we present tools and techniques to work with plain indifferentiability in
multi-stage settings. For this, let us have a closer look at what goes wrong when directly applying
the MRH composition theorem in a multi-stage setting.

Plain Indifferentiability in Multi-stage Settings. Consider the schematic of a Merkle-
Damg̊ard construction in Figure 2 (the final g-node is an efficient transformation such as the
projection to the first half of the state bits, as in chop-MD) and consider a two stage game with
adversaries A1 and A2. If adversary A1 makes an h-query y1 ← h(m1, IV) and passes on this value
to adversary A2, then A2 can compute arbitrary hash values of the form m1‖ . . . without having to
know m1. The trick in the MRH composition theorem is to exchange access to h with access to a
simulator S when placing the adversary in a setting where it plays against the game with random
oracle R. If we apply this trick to our two-stage game we need two independent instances of this
simulator, one for A1 and one for A2. Let’s call these S(1) and S(2). The problem is now, that
if A1 and A2 do not share sufficient state the same applies to the two simulator instances: they
share exactly the same state that is shared between the two adversaries. Thus, if adversary A2

makes the query (y,m2) simulator S(2) does not know that y corresponds to query (m1, IV) from
A1 and it will thus not be able to answer with a value y′ such that g(y′) = R(m1‖m2). This is,
however, expected by A2 and would be the case if A1 and A2 had had access to the deterministic
compression function h.

Contributions. Our first contribution (Section 3) is to develop a model of hash functions based
on directed, acyclic graphs that is rich enough to pinpoint and argue about such problematic
adversarial h-queries while at the same time allowing us to consider many different constructions
simultaneously. Given this framework we define a property on games and hash functions called
unsplittability (Definition 4.1). If a game is unsplittable for a hash construction, this basically
means that problematic queries as the one from the above example do not occur.

In Section 4 we then give a composition theorem for unsplittable games which intuitively
says that if a game is unsplittable for an indifferentiable hash construction, then security proofs
in the random oracle model carry over if the random oracle is implemented by that particular
hash function. Assuming unsplittability, the main technical difficulty in proving composition is
to properly derandomize the various simulator instances and make them (nearly) stateless. Note
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that simulators for indifferentiable hash constructions in the literature are mostly probabilistic
and highly stateful. In a multi-stage setting the various instances of the simulator must, however,
answer queries consistently, that is, in particular the same query by different adversaries must
always be answered with the same answer independent of the order of queries. For this, we build
on a derandomization technique developed by Bennet and Gill to show that the complexity classes
BPP and P are identical relative to a random oracle [BG81]. One interesting intermediary result
is that of a generic indifferentiability simulator that answers queries in a very restricted way.

In Section 5 we show how to prove unsplittability for all multi-stage security games depicted
in Figure 1. We show that the CDA game (both, the non-adaptive and adaptive) is unsplittable
for Merkle-Damg̊ard-like functions as well as for HMAC and NMAC (in the formulation of [BCK96])
thereby complementing the results by RSS. Let us note that, that our results on CDA require less
restrictions on the public-key encryption scheme (that is, the encryption scheme does not need to
be IND-SIM [RSS11b]). Similarly, we show unsplittability for message locked encryption (MLE),
a security definition for primitives that allow for secure deduplication [BKR13]. MLE is closely
related to CDA with the additional complication that the two adversaries here can communicate
“in the clear” via state value Z (see Figure 1). For the RSS proof-of-storage (CRP) game given
as counter-example for the general applicability of the MRH composition theorem, we show that
it is unsplittable for any so-called 2-round hash function. These are hash functions, such as
Liskov’s Zipper Hash [Lis06] that process the input message twice for computing the final hash
value. Finally, we resolve an open problem from [BHK13]. Bellare, Hoang and Keelveedhi (BHK)
introduce UCE a standard model assumption for hash constructions which is sufficient to replace a
random oracle in a large number of applications [BHK13]. At present the only instantiation of a
UCE-secure function is given in the random oracle model and BHK left as open problem whether
HMAC can be shown to meet UCE-security assuming an ideal compression function. We show that
this is not just the case for HMAC but also for many Merkle-Damg̊ard variants.

Finally, we want to note that we give the results for CDA, MLE and UCE via a meta-result that
considers security games for keyed hash functions where the hash function key is only revealed at
the very last stage. We show that all three security games can be subsumed under this class and we
show that games from this class are unsplittable for a large class of practical hash constructions
including HMAC and NMAC and several Merkle-Damg̊ard-like functions such as prefix-free or
chop-MD [CDMP05]. This is particularly interesting as CDA and MLE are per se not using keyed
hash functions, but can be reformulated in this setting and it seems that with keyed hash functions
it is simpler to work with indifferentiability in a multi-stage scenario.

2 Preliminaries

If n ∈ N is a natural number then by 1n we denote the unary representation and by 〈n〉` the binary
representation of n (using ` bits). By [n] we denote the set {1, 2, . . . , n}. By {0, 1}n we denote the
set of all bit strings of length n while {0, 1}∗ denotes the set of all finite bit strings. For bit strings
m,m′ ∈ {0, 1}∗ we denote by m||m′ their concatenation. If M is a set then by m←M we denote
that m was sampled uniformly from M. If A is an algorithm then by X ← A(m) we denote that
X was output by algorithm A on input m. As usual |M| denotes the cardinality of set M and |m|
the length of bit string m. Logarithms are to base 2. By H∞ (X) we denote the min-entropy of
variable X, defined as

H∞ (X) := min
x

log(1/Pr[X = x ]) .

We assume that any algorithm, game, etc. is implicitly given a security parameter as input, even if
not explicitly stated. We call an algorithm efficient if its run-time is polynomial in the security
parameter. Probability statements of the form Pr[ step1; step2 : condition ] should be read as the
probability that condition holds after the steps are executed in consecutive order. We use standard
boolean notation and denote by ∧ the AND by ∨ the OR of two values.

5



In this paper we consider random oracles or ideal functions by which we mean functions that
provide a uniformly chosen random output (within the specified range) on every new query.

Hash Functions. A hash function is formally defined as a keyed family of functions H(1λ) where
each key k defines a function Hk : {0, 1}∗ → {0, 1}n. “Practical” hash functions are usually built via
domain extension from an underlying function h : {0, 1}d×{0, 1}k → {0, 1}s that is iterated through
an iteration scheme H to process arbitrarily long inputs [Mer89, Dam89, Riv92, Lis06, AHMP10,
GKM+11, Wu11, BDPA11a, FLS+10], with widely varying specifications. The underlying function
h usually is a compression function— the first input taking message blocks and the second an
intermediate chaining value—and we will state our results relative to compression functions. As an
exception to this rule, the Sponge construction [BDPA11b] (the design principle behind SHA-3,
aka. Keccak [BDPA11a]) iterates a permutation instead of a compression function. We discuss,
how this fits into our model in Appendix B.6.

Compression functions in practical constructions are often built from keyed permutations, for
example, via the Davies-Meyer (DM) construction [Win83]. We chose to state our results in the
ideal compression function model— where function h is assumed to be a fixed-length random
oracle—, instead of the ideal cipher model together with a construction such as DM, as we believe
it greatly improves readability as only one instead of two constructions needs to be analyzed. We
note that we expect our results to hold if the compression function is instantiated via DM and an
ideal cipher. We give a brief discussion in Appendix E.

Indifferentiability. A hash function is called indifferentiable from a random oracle if no
distinguisher can decide whether it is talking to the hash function and its ideal compression function
or to an actual random oracle and a simulator. We here give the definition of indifferentiability
from [CDMP05].

Definition 2.1. A hash construction Hh : {0, 1}∗ → {0, 1}n, with black-box access to an ideal
function h : {0, 1}d × {0, 1}k → {0, 1}s, is called (tD, tS , q, ε) indifferentiable from a random oracle
R if there exists an efficient simulator SR such that for any distinguisher D it holds that∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ ≤ ε
where the simulator runs in time at most tS , and the distinguisher runs in time at most tD and
makes at most q queries. We say Hh is (computationally) indifferentiable from R if ε is a negligible
function in the security parameter λ (for polynomially bounded tD and tS).

The advantage of a distinguisher D with respect to a simulator S in the indifferentiability game is
defined as

Advindiff
Hh,R,S(D) =

∣∣∣Pr
[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ .
We sometimes speak of the real world when meaning that the distinguisher is connected to hash
function Hh and underlying function h and of the ideal world when it is talking to random oracle
R and simulator SR.

Game Playing. We use the game-playing technique [BR06, RSS11b] and present here a brief
overview of the notation used. A self-contained introduction is given in Appendix A.

A game GF ,A1,...,Am gets access to adversarial procedures A1, . . . ,Am and to one or more so
called functionalities F which are collections of two procedures F .hon and F .adv, with suggestive
names “honest” and “adversarial”. Adversaries (i.e., adversarial procedures) access a functionality
F via the interface exported by F .adv, while all other procedures access the functionality via F .hon.
In our case, functionalities are exclusively hash functions which will be instantiated with iterative
hash constructions Hh. The adversarial interface exports the underlying function h, while the
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honest interface exports plain access to Hh. We thus, instead of writing F .hon and F .adv usually
directly refer to Hh and h, respectively. Adversarial procedures can only be called by the game’s
main procedure.

By GF ,A1,...,Am ⇒ y we denote that the game outputs value y. If the game is probabilis-
tic or any adversarial procedure is probabilistic then GF ,A1,...,Am is a random variable and
Pr
[
GF ,A1,...,Am ⇒ y

]
denotes the probability that the game outputs y. By GF ,A1,...,Am(r) we

denote that the game is run on random coins r.
For this paper we only consider the sub-class of functionality-respecting games as defined in

[RSS11b]. A game is called functionality respecting if only adversarial procedures can call the
adversarial interface of functionalities. We define LG to be the set of all functionality-respecting
games. Note that this restriction is a natural restriction if a game is used to specify a security goal
in the random oracle model since random oracles do not provide any adversarial interface.

3 A Model for Iterative Hash Functions

In the following we present a new model for iterated hash functions that allows to argue about many
functions at the same time. A similar endeavor has been made by Bhattacharyya et al. [BMN09] who
introduce generalized domain extension. For our purpose, we need a more explicit model that allows
us to talk about the execution of hash functions in great detail. Still, our model is general enough to
capture many different types of constructions, ranging from the plain Merkle-Damg̊ard over variants
such as chop-MD [CDMP05] to more complex constructions such as NMAC, HMAC [BCK96] or
even hash trees. In Appendix B.5 we give an overview over several hash constructions that are
captured by our model.

Execution Graphs - An Introduction. We model iterative hash functions Hh as directed
graphs where each message M is mapped to an execution graph which is constructed independently
of a particular choice of function h. Figure 3 presents the execution graph for a message M :=
m1‖ . . . ‖m` for the NMAC construction [BCK96] (further examples are given in Appendix B.5).
For each input message M the corresponding execution graph represents how the hash value would
be computed relative to some oracle h, that is, we require that, relative to an oracle h, a generic
algorithm EVALh on input the execution graph for M can then compute value Hh(M). Nodes in the
execution graph are either value-nodes or function-nodes. A value node (indicated by dotted boxes)
does not have ingoing edges and the outgoing edge is always labeled with the node’s label (possibly
prefixed by a constant). Function nodes represent functions and the outgoing edges are labeled
with the result of the evaluation of the corresponding function taking the labels of the ingoing
edges as input. An h-node represents the evaluation of the underlying function h. Outgoing edges
can, thus, only be labeled relative to h. Nodes labeled mp, hp or hmp correspond to preprocessing
functions (defined by the hash construction) which ensure that the input to the next h-node is of
correct length: mp processes message blocks, hp processes h-outputs and hmp, likewise, processes
the output of h-nodes but such that it can go into the “message slot” of an h-node (see Figure 3).
An execution graph contains exactly one g-node with an unbound outgoing edge which corresponds
to an (efficiently) computable transformation such as the identity or truncation. Assume that eg is
the execution graph for a message M ∈ {0, 1}∗. Then we can formalize the computation of hash
value Hh(M) with underlying function h by a deterministic algorithm EVALh(eg) which repeats
the following steps: search for a node with no input edges or where all input edges are labeled.
Compute the corresponding function (if it is an h-node, call the provided h-oracle), remove the node
and label all outgoing edges with the resulting value. The label of the single unbound outgoing
edge of the g-node is the resulting hash value.

Formalizing Hash Functions as Directed Graphs. We now formalize the above concept
to model an iterative hash construction Hh : {0, 1}∗ → {0, 1}n with a compression function of the
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Figure 3: Execution graph for NMAC for message m1‖ . . . ‖m` := M . Value IVkey1 is an initialization vector
representing the first key in the NMAC-construction. Value IVkey2 is a constant representing the second key. The
difference between initialization vectors and constants is that constants are used within the execution graph, i.e., in
conjunction with interim values, while initialization vectors are used at the beginning of the graph.

form h : {0, 1}d × {0, 1}k → {0, 1}s. For this let pad : {0, 1}∗ → ({0, 1}b)+ be a padding function
(e.g. Merkle-Damg̊ard strengthening [Dam89, Mer89]) that maps strings to multiples of block size
b. Let mp : {0, 1}∗ → {0, 1}d, hp : {0, 1}∗ → {0, 1}k and hmp : {0, 1}∗ → {0, 1}d be “preprocessing”
functions that allow to adapt message blocks and intermediate hash values, respectively. We
assume that pad, mp, hp, and hmp are efficiently computable, injective, and efficiently invertible.
Note that for many schemes these functions will be the identity function and b = d and s = k.
Let g : {0, 1}s → {0, 1}n be an efficiently computable transformation for which one can efficiently
sample from the pre-image space, that is, given a value x ∈ {0, 1}n one can sample efficiently
from g−1(x). Examples of such a transformation are the identity function (used, for example, in
SHA-1), or a truncation function (used in Chop-MD).1 Additionally we allow for a dedicated set
IV ⊂ {0, 1}∗ containing initialization vectors and constants.

We give a formal definition of the graph structure for execution graphs in Appendix B.1 and
give here only a quick overview. Execution graphs consist of the following node types: IV-nodes,
message-nodes, h-nodes, mp, hp, and hmp-nodes and a single g-node. For each message block
m1‖ . . . ‖m` := pad(M) the graph contains exactly one message-node. All outgoing edges must
again be connected to a node, except for the single outgoing edge of the single g-node. An h-node
always has two incoming edges one from an hp-node and one from either an mp or an hmp-node.
Message nodes can be connected to mp-nodes. The outbound edges from h can be connected to
either hp or hmp-nodes.2 A valid execution graph is a non-empty graph that complies with the
above rules. We require that for each message M ∈ {0, 1}∗ there is exactly one valid execution
graph and that there is an efficient algorithm that given M constructs the execution graph.

Besides valid execution graphs we introduce the concept of partial execution graphs which
are non-empty graphs that comply to the above rules with the only exception that they do not
contain a g-node. Hence, they contain exactly one unbound outgoing edge from an h-node. A
partial execution graph is always a sub-graph of potentially many valid execution graphs. Given
a valid execution graph a partial execution graph can be constructed by choosing an h-node and
removing every node that can be reached via a directed path from that h-node and then remove all
unconnected components that do not have a directed path to the chosen h-node.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to
an oracle h. We here present a slightly simplified, intuitive version of EVAL and give the complete
version along with its pseudo-code in Appendix B.1. Let eg be a valid execution graph for some
message M ∈ {0, 1}∗. To evaluate eg relative to oracle h, algorithm EVALh(eg) recursively performs
the following steps: search for a node that has no inbound edges or for which all inbound edges
are labeled. If the node is a function-node then evaluate the corresponding function using the
labels from the inbound edges as input. If the node is a value-node, use the corresponding label as
result. Remove the node from the graph and label all outgoing edges with the result. If the last
node in the graph was removed stop and return the result. Note that EVALh(eg) runs in time at

1We stress that g is efficiently computable and not an independent (ideal) compression function.
2The difference between hp and hmp is that hp outputs values in {0, 1}k which hmp outputs values in {0, 1}d. Note

that function h is defined as h : {0, 1}d × {0, 1}k → {0, 1}s.
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most O
(
|V 2|

)
assuming that eg contains |V | many nodes. If pg is a partial execution graph then

EVALh(pg), likewise, computes the partial graph outputting the result of the final h-node. We denote
by g(pg) the corresponding execution graph where the single outbound h-edge of pg is connected to
a g-node. We call this the completed execution graph for pg.

We can now go on to define iterative hash functions such as Merkle-Damg̊ard-like functions.
Informally, an iterative hash function consists of the definitions of the preprocessing functions, the
padding function and the final transformation g(·). Furthermore, we require (efficient) algorithms
that construct execution graphs as well as parse an execution graph to recover the corresponding
message.

Definition 3.1. Let IV ⊂ {0, 1}∗ be a set of named initialization vectors and |IV| be polynomial
in the security parameter λ. We say Hh

g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n is an iterative hash function
if there exist deterministic and efficient algorithms construct and extract as follows:

construct: On input M ∈ {0, 1}∗ deterministic algorithm construct outputs a valid execution
graph containing one message-node for every block in m1‖ . . . ‖m` := pad(M). For all
messages M ∈ {0, 1}∗ it holds that Hh

g,mp,hp,hmp,pad(M) = EVALh(construct(M)). For any two
M,M ′ ∈ {0, 1}∗ with |M | = |M ′| it holds that graphs construct(M) and construct(M ′) are
identical but for labels of message-nodes.3

extract: On input a valid execution graph eg, deterministic algorithm extract outputs message
M ∈ {0, 1}∗ if, and only if, construct(M) is identical to eg. On input a partial execution
graph pg, algorithm extract outputs message M ∈ {0, 1}∗ if, and only if, the completed
execution graph g(pg) is identical to construct(M). Otherwise extract outputs ⊥.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh.

We provide a detailed description of valid execution graphs, extensions to the model to, for
example, cover keyed hash constructions, as well as several examples of hash constructions that are
covered by Definition 3.1 in Appendix B. Note that neither construct nor extract gets access to
the underlying function h. Also note that by definition of algorithm extract there cannot be two
distinct valid execution graphs for the same message M ; if extract(pg) = M then pg or g(pg) is
identical to construct(M).

3.1 Important h-Queries

Considering the execution of hash functions as graphs allows us to identify certain types of
“important” queries by their position in the graph relative to a function h. Assume that Q =
(mi, xi)1≤i≤p is an ordered sequence of h-queries to compression function h. If we consider the i-th
query qi = (mi, xi) then only queries appearing before qi in Q are relevant for our upcoming naming
conventions. We call qi an initial query if, and only if, hp−1(xi) ∈ IV. Besides initial queries we
are interested in queries that occur “in the execution graph” and we call these chained queries. We
call query qi a chained query if given the queries appearing before qi there exists a valid (partial)
execution graph containing an h-node with its unbound edge labeled with value hp−1(xi). Finally,
we call query qi result query for message M , if g(qi) = Hh(M) and qi is a chained query. We define
result queries in a broader sense and independent of a specific message by considering all possible
partial graphs induced by query set Q and say that a query is a result query if it is a chained query
and if its induced partial graph pg can be completed to a valid execution graph, that is, g(pg) is a
valid execution graph. For a visualization of the query types see Figure 4.

3This condition ensures that the graph structure does not depend on the content of messages but only on its
length.
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Definition 3.2. Let Q = (mi, xi)1≤i≤p be a sequence of queries to h : {0, 1}d × {0, 1}k → {0, 1}s.
Let qi = (mi, xi) be the i-th query in Q and let Q|1,...,i denote the sequence Q up to and including
the i-th query. Let the predicate init(qi) := init(mi, xi) be true if, and only if,

hp−1(xi) ∈ IV .

We define the predicate chainedQ(mi, xi) to be true if, and only if,

init(mi, xi) ∨ ∃ j ∈ [i− 1] :
(
chainedQ(mj , xj) ∧ hp(h(mj , xj)) = xi

)
.

Let pg[h, Q|1,...,i , qi] denote the set of partial graphs such that for all pg ∈ pg[h, Q|1,...,i , qi] it holds
that all h queries occurring during the computation of EVALh(pg) are in Q|1,...,i and that the final

h-query equals qi.
4 We define the predicate resultQ(mi, xi) to be true if, and only if,

chainedQ(mi, xi) ∧ ∃pg ∈ pg[h, Q|1,...,i , qi] : g(pg) is a valid execution graph .

We drop the reference to the query set Q if it is clear from context.

Let us rephrase the concept of chained queries. Query qi is a chained query if either qi is an
initial query, or there exists a query qj that came before qi which was a chained query and for
which hp(h(qj)) = hp(h(mj , xj)) = xi. Thus, if hp(·) is the identity function, as it is for example in
chop-MD, or NMAC, we require that value xi was generated by an h-query. When later considering
keyed hash functions we also need to relax the requirements of initial queries as depending on the
construction any query can be an initial query (it is just a matter of how the key is chosen). We
elaborate on keyed hash constructions in Appendix B.2. Also, let us stress, that the predicates
hold, or do not hold, relative to the previous queries given by sequence Q and are not affected by
later queries.

m1

mp

h

init(mp(m1), hp(IV))

hp

m2

mp

h

chained(mp(m2), hp(x2))

hp

m`

mp

h

result(mp(m`), hp(x`))

hp gIV Hh(M)

Figure 4: Denoting
queries in the Merkle-
Damg̊ard construction where
value x2 is computed as
x2 := h(mp(m1), hp(IV))
and value xl is com-
puted recursively as
x` := h(mp(m`), hp(x`−1)).

3.2 Message Extractors and Missing Links

We now give two important lemmas concerning iterative hash functions. The first argues that if an
adversary does not make all h-queries in the computation of Hh(M) for some message M , then its
probability of computing the corresponding hash value is small. To get an intuition note that each
h-node has a directed path to the final g-node. As we model the underlying function as ideal, an
h-evaluation has s bits of min-entropy which are, so to speak, sent down the network to the final
g-node. We give the proof in Appendix B.4.1 together with a strengthened version of this lemma
and a variant which considers the case where the adversary in addition gets access to Hh.

Lemma 3.3. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h : {0, 1}d ×
{0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an adversary that makes at most qA
many queries to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h when algorithm A
runs on randomness r and by qryh(Hh(M)) denote the h-queries during the evaluation of Hh(M).
Then it holds that

Prr,h

[
(M,y)← Ah(1λ; r) : Hh(M) = y ∧

(
qryh(Hh(M)) \ qryh(Ah(1λ; r))

)
6= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

4If h is modeled as an ideal function then set pg[h, Q|1,...,i , qi] contains with very high probability at most one
partial graph as multiple graphs induce collisions on h.
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where \ denotes the simple complement of sets and Us denotes a random variable uniformly
distributed in {0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Next, we show that given the sequence of h-queries and corresponding answers of an adversary,
there exists an efficient and deterministic extractor E that can reconstruct precisely the set of
messages for which the adversary “knows” the corresponding hash value. We give the proof in
Appendix B.4.2.

Lemma 3.4. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and h : {0, 1}d ×
{0, 1}k → {0, 1}s a fixed-length random oracle. Let Ah be an adversary making at most qA queries
to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h (together with the corresponding
oracle answer) when algorithm A runs on randomness r. Then there exists an efficient deterministic
extractor E outputting sets M and Y with |M| = |Y| ≤ 3qA, such that

Prr,h

[
(M,y)← Ah(1λ; r);

(M,Y)← E(qryh(Ah(1λ; r))
:
∃ X ∈M : Hh(X) /∈ Y ∨(
Hh(M) = y ∧M /∈M

) ]
≤

3q2
A

2H∞(g(Us))
.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The probability is over the
coins r of Ah and the choice of random oracle h.

3.3 h-Queries during Functionality Respecting Games

We now define various terms that allow us to talk about specific queries from adversarial procedures
to the underlying function h of iterative hash function Hh during game G. Recall that, as do
Ristenpart et al. [RSS11b], we only consider the class of functionality-respecting games (see Section 2)
where only adversarial procedures may call the adversarial interface of functionalities (i.e., the
underlying function h in our case).

Definition 3.5. Let GH
h,A1,...,Am be a functionality respecting game with access to hash functionality

Hh and adversarial procedures A1, . . . ,Am. We denote by qryG,h the sequence of queries to the
adversarial interface of Hh (that is, h) during the execution of game G.

Note that qryG,h is a random variable over the random coins of game G. Thus, we can regard
the query sequence as a deterministic function of the random coins. In this light, in the following
we define subsequences of queries belonging to certain adversarial procedures such as the i-th query
of the j-th adversarial procedure.

Game GH
h,A1,...,Am can call adversarial procedures A1, . . . ,Am in any order and multiple times.

Thus, we first define a mapping from the sequence of adversarial procedure calls by the game’s main
procedure to the actual adversarial procedure Ai. For better readability, we drop the superscript
identifying game G in the following definitions and whenever the game is clear from context.
Similarly, we drop the superscript identifying oracle h exposed by the adversarial interface of
functionality Hh if clear from context.

Definition 3.6. We define AdvSeqi (for i ≥ 1) to denote the adversarial procedure corresponding
to the i-th adversarial procedure call by game G. We set |AdvSeq| to denote the total number of
adversarial procedure calls by G.

The sequence of h-queries made by the i-th adversarial procedure AdvSeqi is defined as:

Definition 3.7. By qryi we denote the sequence of queries to h by procedure AdvSeqi during the
i-th adversarial procedure call by the game’s main procedure. By qryi,j we denote the j-th query in
this sequence.

We also need a notion which captures all those queries executed before a specific adversarial
procedure AdvSeqi was called. For this, we will slightly abuse notation and “concatenate” two (or
more) sequences, i.e., if S1 and S2 are two sequences, then by S1||S2 we denote the sequence that
contains all elements of S1 followed by all elements of S2 in their specific order.
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Definition 3.8. By qry<i we denote the sequence of queries to h before the execution of procedure
AdvSeqi. By qry<i,j we denote the sequence of queries to h up to the j-th query of the i-th adversarial
procedure call. Formally,

qry<i :=

i−1∣∣∣∣∣∣
k=1

qryk and qry<i,j := qry<i ||
j−1∣∣∣∣∣∣
k=1

qryi,k

Finally, we define the sequence of h-queries by procedure AdvSeqi up-to the i-th adversarial
procedure call by the game’s main procedure. That is, in addition to queries qryi we have all queries
from previous calls to AdvSeqi by the game’s main procedure.

Definition 3.9. By qry<Ai,j we denote the sequence of queries to procedure h by the i-th adversarial
procedure AdvSeqi up-to query qry<i,j. Formally,

qry<Ai,j :=
∣∣∣∣∣∣

0<`<i,
AdvSeq`=AdvSeqi

qry` ‖
j−1∣∣∣∣∣∣
k=1

qryi,k .

Bad Result Queries. Having defined queries to the adversarial interface of the hash functionality
(i.e., underlying function h) occurring during a game G allows us to use our notation established in
Section 3.1 on h-queries: initial queries, chained queries and result queries. For example, we can say
that query qryi,j is an initial query. With this, we now define a bad event corresponding to splitting
up the evaluation of hash values via several adversarial stages (also refer to the introduction).

Informally, we call a query (m,x) to function h(·, ·) badResult if it is a result query (cp. Defini-
tion 3.2) with respect to all previous queries during the game, but it is not a chained query (and
thus not a result query) if we restrict the sequence of queries to that of the current adversarial
procedure. Note that, whether or not a query is bad only depends on queries to h prior to the
query in question and is not changed by any query coming later in the game. With this in mind,
we could denote a query (m,x) := qryi,j as a badResult query, if (note the change in the underlying
sequence for the two predicates in what is following):

resultqry<i,j (m,x) ∧ ¬chainedqry<Ai,j (m,x)

There is, however, one problem with this formalization, which only manifests when considering
certain types of keyed hash-functions (we formalize keyed hash functions in Appendix B.2 and
will use keyed hash functions in Section 5.1 when applying our composition theorem). In a keyed
construction, the key may take the role of an initial value and, thus, for such a function there is
no clear concept of an initial query. We will simply go by the convention that in this setting any
query is also an initial query which, however, implies that also every query is a chained query. To
avoid two different definitions of a badResult query we choose a slightly more complex formalization
which informally states that a query is a badResult query if it is a result query and the induced sets
of partial graphs (i.e. messages) are not identical relative to all queries and relative to the queries
of the current adversary. Remember that by pg[h, Q, q] we denote the set of partial graphs such
that pg ∈ pg[h, Q, q] if all h queries within the computation of EVALh(pg) are in Q and that the
final h-query equals q (cf. Definition 3.2). (Note also here the two different query sets qry<i,j and
qry<Ai,j):

Definition 3.10. Let GH
h,A1,...,Am be any game. Let (m,x) := qryi,j be the j-th query to function h

by adversary AdvSeqi. Then query (m,x) is called badResultAi(qryi,j) if, and only if:

resultqry<i,j (m,x) ∧ pg[h, qry<i,j , (m,x)] 6= pg[h, qry<Ai,j , (m,x)]

Note that, as we assume h to be an ideal function the set pg[h, qry<i,j , (m,x)] will contain more
than one entry only with negligible probability.
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4 Unsplittable Multi-stage Games

The formalization of iterative hash functions together with the various definitions on particular
queries during a game allows us to define a property on games that will be sufficient to argue
composition similar to that of the MRH composition theorem for indifferentiability. We call a game
G ∈ LG unsplittable for an iterative hash construction Hh, if two conditions hold:

1. For any adversary A1, . . . ,Am there exists adversary A∗1, . . . ,A∗m such that games GH
h,A1,...,Am

and GH
h,A∗1,...,A∗m change only by a small factor, and

2. During game GH
h,A∗1,...,A∗m we have that bad result queries (cp. Definition 3.10) only occur

with small probability.

Intuitively, this means that it does not help adversaries to split up the computation of hash values
over several distinct adversarial procedures. After formally defining unsplittability we will then in
Section 4.1 give the accompanying composition theorem. This informally states that if a game is
unsplittable for an indifferentiable hash construction Hh, then security proofs in the random
oracle model carry over if the random oracle is implemented by that particular hash function.

Definition 4.1. Let Hh be an iterative hash function and let h : {0, 1}d × {0, 1}k → {0, 1}s be an
ideal function. We say a functionality respecting game G ∈ LG is (tA∗ , qA∗ , εG, εbad)-unsplittable
for Hh if for every adversary A1, . . . ,Am there exists algorithm A∗1, . . . ,A∗m such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GH

h,A∗1,...,A∗m ⇒ y
]

+ εG .

Adversary A∗i has run-time at most t∗Ai and makes at most q∗Ai queries to h. Moreover, it holds for

game GH
h,A∗1,...,A∗m that:

Pr
[
∃i ∈ [|AdvSeq|],∃j ∈ [q∗Ai ] : badResultAi(qryi,j)

]
≤ εbad .

The probability is over the coins of game GH
h,A∗1,...,A∗m and the choice of function h.

We call a game unsplittable if tA∗ and qA∗ are polynomially bounded and εG and εbad are
negligible.

4.1 Composition for Unsplittable Multi-Stage Games

We here give the composition theorem for unsplittable games in the asymptotic setting. The full
theorem with concrete advantages is given together with its proof in Appendix C (the theorem
appears on page 47). We here only present a much shortened proof sketch.

Theorem 4.2 (Asymptotic Setting). Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function
indifferentiable from a random oracle R and let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function.
Let game G ∈ LG be any functionality respecting game that is unsplittable for Hh and let
A1, . . . ,Am be an adversary. Then, there exists efficient adversary B1, . . . ,Bm and negligible
function negl such that for all values y∣∣∣Pr

[
GH

h,A1,...,Am ⇒ y
]
− Pr

[
GR,B1,...,Bm ⇒ y

]∣∣∣ ≤ negl(λ) .

Proof Sketch. The proof consists of two steps. In a first step we are going to take the indiffer-
entiability simulator for Hh and transform it into a simulator with a special structure that we
call Sd. Secondly, we take the unsplittability-property of game G to get a set of adversaries
A∗1, . . . ,A∗m such that during game GF ,A

∗
1,...,A∗m bad result queries (cp. Definition 3.10) occur only

with negligible probability. This property, together, with the structure of simulator Sd then allows
to argue composition, similarly to RSS in their composition theorem for reset-indifferentiability:
Theorem 6.1 in [RSS11a] (Theorem 4 in the proceedings version [RSS11b]).
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Simulator S∗(m,x) :
1 ifM[m,x] 6= ⊥ then returnM[m,x]
2 T ← {}
3 if init(m,x) then create new partial graph from (m,x) and add it to T
4 test all existing partial graphs, if any can be extended
5 by query(m,x). If so, add result to T
6 if ∃pg ∈ T : extract(pg) 6= ⊥ then
7 M[m,x]←$ g−1(R(extract(pg)))
8 elseM[m,x]←$ {0, 1}s
9 if |T | > 0 then
10 label output edge of any graph in T with M[m,x]
11 add all graphs in T to a list of partial graphs
12 returnM[m,x]

Figure 5: Simulator S∗ for proof of Theorem 4.2. For a detailed description see Appendix C.1 and Construction C.1.
The simulator maintains a list of partial graphs that can be constructed from the sequence of queries. On a new
query (m,x) the simulator creates a temporary set T . If the query is an initial query it constructs the corresponding
partial graph for it and adds it to T . Furthermore, it tries all existing partial graphs, if they can be extended by
the current query. A query is answered either by a randomly chosen value, or in case a valid execution graph was
constructed for it by sampling a value uniformly at random from g−1(R(extract(pg)).

Construction of Sd. We begin with the construction of simulator Sd. Since Hh is indifferentiable
from a random oracle there exists a simulator S such that for any efficient distinguisher D∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ ≤ negl .

From this simulator we are going to construct a generic simulator S∗ which keeps track of all queries
internally constructing any potential partial graph for the query-sequence. We give a shortened
description of simulator S∗ in Figure 5. If a query corresponds to a result query (cp. Definition 3.2)
it ensures to be compatible with the random oracle by picking a value from the preimage of
g−1(R(extract(pg))) uniformly at random (see line 7), where pg is the corresponding partial graph.
Note that this ensures consistency with the answers of the random oracle. Otherwise, if the query
is not a result query, it simply responds with a random value (line 8). The full construction is given
as Construction C.1 in Appendix C.1. One of the challenges is to argue that the so constructed
simulator is indeed a good indifferentiability simulator. Lemma C.2 establishes that, indeed, if the
hash construction is indifferentiable, then simulator S∗ is a good indifferentiability simulator, and,
thus ∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ ≤ negl .

In a next step we derandomize simulator S∗ using the random oracle and a derandomization
technique by Bennet and Gill [BG81]. This is covered in detail in Lemma C.3 and yields simulator
Sd. The derandomization ensures that∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DR,SRd (1λ) = 1

]∣∣∣ ≤ negl .

Using Sd with unsplittable Games. Let A∗1, . . . ,A∗m be such that during game GF ,A
∗
1,...,A∗m

bad result queries occur only with negligible probability. We now set Bi := A∗i
S(i)d where every

S(i)
d denotes an independent copy of Sd. The structure of Sd ensures that non-result queries

(cp. Definition 3.2) are answered consistently over the several independent copies. Furthermore,
the fact that result queries are with overwhelming probability not bad ensures that also these are
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answered consistently. We, thus, get that

Pr
[
GH

h,A1,...,Am ⇒ y
]
≈

Pr
[
GH

h,A∗1,...,A∗m ⇒ y
]
≈ Pr

[
GR,A

∗
1
S(1)
d

R
,...,A∗m

S(m)
d

R

⇒ y

]
≈ Pr

[
GR,B1,...,Bm ⇒ y

]
♦

5 Applications

In the following we turn to the task of proving unsplittability for the various multi-stage games
from the introduction: the chosen distribution attack (CDA) game (Section 5.2), the message-locked
encryption (MLE) game (Section 5.4), the universal computational extractor (UCE) (Section 5.5)
as well as the RSS proof-of-storage game (Section 5.6). While for the RSS proof-of-storage game
we will give a direct proof (see Section 5.6) we prove the results for CDA, MLE and UCE via a
meta result on games using keyed hash functions.

5.1 Unsplittability of Keyed-hash Games

Hash functions can be considered in a keyed setting, where a key is included in the computation of
every hash value. HMAC or NMAC were designed as keyed functions, other hash functions such
as the Merkle-Damg̊ard variant chop-MD can be adapted to the keyed setting, for example, by
requiring that the key is prepended to the message. In the following we write Hh(κ,M) to denote
an iterative hash construction with an explicit key input (see Appendix B.2 for how keyed hash
constructions are captured by our framework for iterative hash functions). One big difference to
unkeyed hash functions is that execution graphs for keyed hash functions do not necessarily have
IV-nodes. That is, the role of an initialization vector can—this is, for example, the case with
NMAC—be taken by the key. In other words, we need to adapt our notion of an initial query.
In all our constructions and proofs, initial queries have been used solely for achieving a slight
performance gain (for example, when extracting evaluation graphs from a list of queries, one can
identify irrelevant queries if a query cannot be filled into an existing chain that starts with an initial
query). Thus, for keyed hash functions we define that any query (m,x) to h is also a (potential)
initial query.

Given a key κ and message M it, however, makes sense to talk about the queries at the outer rim
of the corresponding execution graph construct(κ,M). By this we mean queries in the execution
graph which are independent of the choice of compression function h, or in other words, h-nodes
that do not have any preceding h-nodes. To capture such queries (relative to a message M and
key κ) we use the predicate outerκ,M (m,x) and talk of “outer queries” (see Figure 6).

Many keyed constructions are designed such that the key is used in all outer queries. HMAC
and NMAC are of that type, and also the adapted Merkle-Damg̊ard variants such as chop-MD or
prefix-free-MD [CDMP05] can be regarded to be of that type, if the key is always prepended to the
message. We call such hash functions key-prefixed hash functions.

Definition 5.1. A keyed iterative hash function Hh is called key-prefixed, if for all κ ∈ K and all
M ∈ {0, 1}∗

∀(m,x) ∈ qryh(Hh(κ,M)) : ¬outerκ,M (m,x) ∨ mp−1(m) = κ ∨ hp−1(x) = κ

where K denotes the key-space of function Hh.
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Figure 6: NMAC as a keyed hash function with keys κ1 and κ2 coming from key space K. We treat κ-nodes (key-nodes)
analogously to IV-nodes (also see Appendix B.2). In a keyed construction we identify queries at the outer rim, that
is, queries that do not depend on the choice of function h as outer query. Note that we can only identify such queries
relative to a key κ and message M .

Keyed-Hash Games. Consider a game that only makes keyed hash-queries. By this we mean
that either the game is defined using a keyed hash function directly (such as the UCE game; see
Figure 1), or it can be restated as such by identifying a part of each query as key, for example,
because some parameter is prepended to every hash query. We will see that we can recast the CDA
and the MLE game in this way.

Definition 5.2. We call a game G ∈ LG a keyed-hash game, if G only makes keyed hash queries.
We denote by KG[Hh, r] the set of keys used by G when run on coins r and with hash function Hh,
and require that KG[Hh, r] is polynomially bounded and chosen independently of the adversarial
procedures.

We now show that an interesting sub-class of keyed-hash games are unsplittable for key-
prefixed hash functions. We consider keyed-hash-games where only the last stage adversary gets to
see the hash key (or keys) used by the game while all previous adversarial stages do not. As we
will see this exactly matches the setup of the chosen distribution attack (CDA) game (Section 5.2),
the message-locked encryption (MLE) game (Section 5.4) as well as the universal computational
extractor (UCE) (Section 5.5). The result is given by the following theorem.

Theorem 5.3. Let G ∈ LG be a keyed-hash game where adversarial procedures A1, . . . ,Am are
called exactly once and in this order. Let Hh be a key-prefixed iterative hash-function that is
indifferentiable from a random oracle. Let h : {0, 1}d × {0, 1}k → {0, 1}s be an ideal function.
Denote by View[Ai;Hh, r] the view of adversary Ai, i.e., the random coins of Ai together with its
input and answers to any of its oracle queries when game G is run with coins r and function Hh.

If for every efficient extractor E and for every efficient adversary Ai (for i = 1, . . . ,m− 1) there
exists negligible function negl such that

Prr
[
κ← E(View[Ai;Hh, r]) : κ ∈ KG[Hh, r]

]
≤ negl(λ)

and adversary Am gets KG[Hh, r] as part of its input then G is unsplittable for Hh.

Remark. The theorem also holds if key set KG[Hh, r] remains hidden from all adversarial stages.

We prove Theorem 5.3 in several steps. As a first step we identify relevant queries during a
game. Informally, a query is relevant if it is made by game G and not only by an adversarial
procedure. We will then show that without having access to the key(s) used by the game, it is
unlikely that an adversarial procedure will make a relevant query. Furthermore, given access to the
key(s) one can easily recognize non-relevant queries. This then allows us to answer non-relevant
queries differently from relevant queries thereby ensuring that bad queries do not occur which in
turn implies unsplittability.
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Game Relevant Queries. Let qryH
h
[
GH

h,A1,...,Am(r)
]

be the list of queries by game G (running

on random coins r) to the honest interface of the functionality (i.e., Hh) and let

qryh
[
GH

h,A1,...,Am(r)
]

:=
{

(m,x) : ∃M ∈ qryH
h
[
GH

h,A1,...,Am(r)
]
, (m,x) ∈ qryh(Hh(M))

}
be the list of queries by game G, when run on random coins r, to h triggered by queries to the
honest interface of the functionality. (Note that the adversarial procedures A1, . . . ,Am never query
the honest interface.) For fixed random coins r and an adversarial h-query qryi,j during game

GH
h,A1,...,Am(r) we set

G-relevant(qryi,j ; r) ⇐⇒ qryi,j ∈ qryh
[
GH

h,A1,...,Am(r)
]

That is, we call an adversarial query G-relevant if the same query occurs during the honest
computation of an Hh query by game G.

The next lemma captures that we can replace the adversarial interface h given to an adversarial
procedure by one that differs from h on all points except for points that are also queried indirectly
by the game, without changing the outcome of the game (or rather its distribution over the choice
of ideal functionality h).

Lemma 5.4. Let game G ∈ LG be any functionality respecting game and Hh an iterative hash
function with ideal function h : {0, 1}d × {0, 1}k → {0, 1}s. Fix random coins r and adversary
A1, . . . ,Am. Then it holds for every value y that

Prh

[
GH

h,A1,...,Am(r)⇒ y
]

= Prh,f

[
GH

h,Ah′
1 ,...,Ah′

m(r)⇒ y
]

where the adversaries on the right side get access to function h′ instead of function h where h′ is
defined as

h′(m,x) :=

{
h(m,x) if (m,x) ∈ qryh

[
GH

h,A1,...,Am(r)
]

f(m,x) else

for an independent fixed-length random oracle f and the probability is over the choice of h in the
first case and h and f in the second.

Proof. The proof is readily established by noting that if h is not queried on a value (m,x) then it
has min-entropy s bits and the simulation by h′ is perfect.

In other words, if h-queries that are not G-relevant are answered not by h but with an
independently chosen random function it is sufficient that they are answered consistently over the
various adversarial procedures for the game not to change.

We will use the notion of G-relevant queries to prove Theorem 5.3. As a first step we prove a
simplified version. Here the setup is a two-staged keyed-hash game but it is established that the
first stage adversary does not make G-relevant queries with overwhelming probability. In this case,
we show that game G is unsplittable for any key-prefixed iterative hash-function.

Lemma 5.5. Let G ∈ LG be a two-stage keyed-hash game where adversarial procedures A1 and A2

are called exactly once and in this order. Let Hh be a key-prefixed iterative hash-function and let
h : {0, 1}d×{0, 1}k → {0, 1}s be an ideal function. If for every efficient adversary A1 the probability
of making G-relevant queries during GH

h,A1,A2 is negligible and adversary A2 gets KG[Hh, r] as
part of its input then G is unsplittable for Hh.

Proof. We construct adversary A∗1 to run A1 and answer any h-query with a value drawn uniformly
at random from {0, 1}s. Adversary A∗1 outputs whatever A1 outputs. Note that A∗1 does not use
its h-oracle. Similarly, we construct adversary A∗2 to run A2 and output whatever A2 outputs.
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Adversary A∗2 keeps an internal list of all h-queries by A2 and constructs potential partial graphs
(this can for example be done similar to the extractor from Lemma 3.4). On receiving query (m,x)
it checks if all initial queries in the corresponding partial graph are correctly keyed with a key in
KG[Hh, r] (note that A∗2 gets set KG[Hh, r] as input). If this is the case, it forwards the query to
its h oracle. Otherwise it simply returns a random value in {0, 1}s.

By construction, it follows that any G-relevant query made by A2 is forwarded to h by A∗2.
Furthermore, since adversary A1 does not make G-relevant queries (with overwhelming probability)
we have that shared queries by A1 and A2 will not be G-relevant and will be answered by A∗1
(resp. A∗2) with a randomly chosen value in {0, 1}s.

It remains to ensure that shared queries by A1 and A2 are answered consistently. For this we
derandomize the adversaries using a similar approach as in Lemma C.2. Let qh denote an upper
bound on the number of h queries by adversaries A1 and A2. To answer query (m,x) adversary A∗i
will compute:

r ← h(〈1〉 , 0k)⊕ . . .⊕ h(〈2qh + 1〉 , 0k)

y ← h(m⊕ r, x⊕ r) //with appropriate padding

return y

Because of the restrictions on the number of queries, this is a perfect simulation of generating
uniformly random values for A1 and A2.5 On the other hand, the same query by A1 and A2 to
their oracles is now answered consistently by A∗1 and A∗2. This is true unless A∗2 answers the query
using its h oracle since the corresponding partial graph has correct outer queries (correct relative to
key set KG[Hh, r]). By the strengthened missing link lemma (Lemma B.2) the probability that A1

makes such a query is, however, negligible. By Lemma 5.4 the distribution of this adapted game is
negligibly close to the original game with adversaries A1 and A2.

It remains to argue that bad result queries do not occur. Assume that A∗2 makes a bad query
(mbad, xbad). Then, during the computation of A∗1 there must be a query (m,x) with answer y such
that hp(y) = r ⊕ xbad. As by construction r remains hidden from A1 such a query can only occur
with negligible probability.

Remark. Note that the lemma can be straightforwardly adapted to m adversaries A1, . . . ,Am
that are each called once and in this order and where the restrictions for A1 apply to all adversaries
except for the last stage Am which takes the role of A2 in the lemma. In the proof simply apply
the same steps as for adversary A1 to all but the last adversary which also here plays the role of
A2. In the upcoming discussion we stick to the level of only two adversaries to simplify notation.

To make use of the just proven lemma, we need to give sufficient conditions under which an
adversarial procedure does not make any G-relevant queries. In the following lemma we consider
games where the first adversarial procedure is not given access to the key used by the game to
make keyed hash queries. This, we formalize by requiring that no extractor, given the view of A1

can output a key κ ∈ KG[Hh, r] where KG[Hh, r] (see Definition 5.2 of keyed hash games) denotes
the hash keys used by game G with hash function Hh when run on random coins r. The view of
adversary A1 is denoted by View[A1;Hh, r] and contains the random coins of A1 together with its
input and answers to any of its oracle queries when game G is run with coins r and function Hh.

Lemma 5.6. Let G ∈ LG be a keyed-hash game such that adversarial procedure A1 is the first
adversarial procedure called by G and is called only once. Let Hh be a key-prefixed iterative hash-
function that is indifferentiable from a random oracle. Let h : {0, 1}d × {0, 1}k → {0, 1}s be an
ideal function. Denote by View[A1;Hh, r] the view of adversary A1, i.e., the random coins of A1

together with its input and answers to any of its oracle queries.

5We note that instead of computing y as h(m⊕ r, x⊕ r) one could also use a pseudorandom function with r as
key. As r remains hidden from adversaries A1 and A2 the simulation would be computationally indistinguishable.
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If for every efficient extractor E and for every efficient adversary A1 there exists negligible
function negl such that

Prr
[
κ← E(View[Ai;Hh, r]) : κ ∈ KG[Hh, r]

]
≤ negl

then A1 does not make G-relevant queries with overwhelming probability.

Proof. We show that if adversary A1 makes G-relevant queries, that we can either extract a key in
KG[Hh, r] or build a distinguisher that wins in the indifferentiability game. For this let S∗ be the
simulator constructed from S according to construction C.1. Then by Lemma C.2 and the fact
that Hh is indifferentiable, we have that∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ ≤ negl . (1)

We assume that the simulator aborts if one of the two failure condition occurs:

Condition B1: Simulator S∗ generates an output value M[m,x] such that there exists (m′, x′) 6=
(m,x) for which g(M[m′, x′]) = g(M[m,x]).

Condition B3: The simulator keeps an additional list L of all queries to it. When on a new query
(m,x) a new partial graph pg is generated it tests for all earlier queries (m′, x′) ∈ L whether
pg can be extended by (m′, x′). If any query is found, the simulator fails.

Failure condition B1 captures that the simulator generates a collision. Failure condition B3, on the
other hand, captures a situation in which the simulator on a new query (m,x) generates a partial
graph which could be extended by an earlier query to the simulator. By the first game hop in the
proof of Lemma C.2 we know that these failure conditions only occur with negligible probability.
We here repeat the argument:

For event B1 note that the simulator chooses its outputs uniformly at random from {0, 1}s.
Hence a collision occurs only with negligible probability. For event B3 note that for a partial graph
pg to be extendable by an earlier query (m′, x′) ∈ L it must hold that hp−1(x′) = pg.y. As partial
graph pg was generated only after query (m′, x′) was queried to the simulator by the distinguisher
we can bound the probability of guessing value x′ such that a later query to the underlying simulator
SR yields value hp−1(x′) with the birthday bound as q2 · 2−s−1.

We construct a distinguisher D for the indifferentiability game as follows. Distinguisher D
gets access to a functionality F := (F .hon,F .adv) which is either (Hh, h) or (R,SR∗ ) and has to

distinguish between the two settings. Distinguisher D runs game GF .hon,AF.adv1 ,...AF.advm . Let QG
denote the set of queries by G to F .hon and let QA denote the queries by adversary A1 to F .adv.
After executing game G, distinguisher D tests if A1 made a G-relevant query. For this it computes
for all messages (κ,M) ∈ QG hash value HF .adv(κ,M) and records the occurring F .adv-queries
in set Qτ . Distinguisher D outputs 0 if the intersection is empty and 1 otherwise (in this case
adversary A1 succeeded in making a G-relevant query).

Let us assume that the lemma does not hold and that adversary A1 makes G-relevant queries
with noticeable probability ε. Then, when (F .hon,F .adv) = (Hh, h) distinguisher D will always
notice when A1 makes a G-relevant query and will, thus, with probability ε output 1 and 0 otherwise.
Let us now consider setting (F .hon,F .adv) = (R,SR∗ ). By equation (1) we have that the output
distribution of D must be negligibly close to outputting 1 with probability ε. Thus, for equation (1)
to hold it must be that also in this setting the intersection QA ∩Qτ is not empty with probability ε.

Consider the state of simulator S∗ after the execution of AS
R
∗

1 . By construction, for each query
(m,x) ∈ QA the simulator might maintain one or more partial graphs such that the sole unbound
edge is labeled with x (or rather hp−1(x) but for simplicity we here simply assume that hp is the
identity function). In the following we argue that neither type of query (queries for which the
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simulator maintains partial graphs and those for which it does not maintain partial graphs) can
lead to a G-relevant query.

First we consider queries (m,x) ∈ QA for which the simulator maintains a partial graph such
that the sole unbound edge is labeled with x. That the simulator contains such a partial graph means
that the query is a chained query (or an initial query). However, with overwhelming probability it
is chained with respect to a key not in KG[Hh, r] (that is a key, that is not used by the game), as
otherwise we can build an extractor to extract the key. On the other hand, by construction, all
queries in Qτ are chained with respect to a key in KG[Hh, r]. This means that the corresponding
partial graph is different from any of the partial graphs maintained for queries in QA. If two such
partial graphs now have their sole unbound edges labeled with the same value, this implies that
a collision occurred on a query to S∗. This, however violates failure condition B1 which we have
already argued happens only with negligible probability.

It remains to consider queries (m,x) ∈ QA for which the simulator S∗ does not maintain a

partial graph after the execution of AS
R
∗

1 . For this, assume that there is (κ,M) ∈ QG such that

query (m,x) occurs during the computation of HS
R
∗ (κ,M) (and, thus, (m,x) ∈ Qτ ). During the

computation of HS
R
∗ (κ,M) query (m,x) is a chained query (unless it is an outer query in which

case we can extract a key) and thus simulator S∗ will maintain a partial graph such that the sole
unbound edge is labeled with value x. This, however, directly violates failure condition B3 as here
a query that appeared earlier in the computation could be used to extend a new partial graph.

Remark. Note that, again, the lemma can be straightforwardly adapted to m adversaries
A1, . . . ,Am where all adversaries up to the last one share the restrictions of adversary A1. In
this case the argument simply iterates over the adversaries proving at the i-th step that the i-th
adversary cannot make G-relevant queries conditioned on that all previous adversaries do not make
G-relevant queries.

We can now prove Theorem 5.3 which establishes unsplittability for any keyed-hash game
by combining Lemmas 5.5 and 5.6.

Proof of Theorem 5.3. With Lemma 5.6 we have that adversaries A1 to Am−1 do not make any
G-relevant queries. The result then follows with Lemma 5.5. Also see remarks after Lemmas for
how to extend them to m adversaries.

5.2 The Chosen Distribution Attack Game

In the following section we show unsplittability for the chosen distribution attack (CDA) security
game. CDA captures a security notion of deterministic public key encryption schemes [BBN+09].
We begin by recalling the basic definitions for the non-adaptive CDA game.

Public-Key Encryption. A public-key encryption scheme AE := (KGen, E ,D) consists of three
efficient algorithms: a key generation algorithm KGen that given the security parameter generates a
keypair (pk, sk), an encryption algorithm E that, being given a message m, randomness r, and the
public key pk, outputs a ciphertext c, and the decryption algorithm D that, given a ciphertext c
and secret key sk, outputs a plaintext message or a distinguished symbol ⊥.

CDA Security. The CDA game (depicted in Figure 1) captures the security of public-key
encryption schemes where the randomness used to encrypt may not be sufficiently random after
all, i.e., it may not have sufficient min-entropy [BBN+09]. For the remainder of this and the
next section we denote by ω > 0 the size of messages and by ρ > 0 the size of randomness for
encryption scheme E . In the CDA-game adversary A1 implements a so called (µ, ν)-mmr-source
which is a probabilistic algorithm that outputs a triplet of vectors (m0,m1, r), each of size ν.
Vectors m0 and m1 contain messages, that is, each component is of size ω and vector r corresponds
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to randomness, that is each component is of size ρ. Furthermore, to exclude trivial attacks, it
is required that (mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Finally, one
requires that components have sufficient min-entropy µ independent of the random oracle, that is
for all 1 ≤ i ≤ ν, all b ∈ {0, 1}, all r ∈ {0, 1}ρ, and all m ∈ {0, 1}ω it holds that

Pr
[

(mb[i], r[i]) = (m, r)|(m0,m1, r)← AR1 (1λ),R
]
≤ 2−µ .

The advantage of an adversary A := (A1,A2) in the CDA game where adversary A1 is a valid
(µ, ν)-mmr-source is given as

AdvCDA
AE,Hh(A1,A2) := 2 · Pr

[
CDAHh,A1,A2

AE ⇒ true
]
− 1 .

CDA is unsplittable. To show that CDA is unsplittable we use Therom 5.3 and show that
the CDA game fulfills the requirements stated therein. The CDA game is a two-stage game. In
order to meet the requirements of Theorem 5.3 we need to ensure that the game is keyed. For
this, we need two things. 1) we require that all hash queries by the encryption scheme are keyed.
For this we require that the encryption scheme’s public key is used as hash key. 2) we need that
the probability of guessing the public key for encryption scheme AE is negligible for adversary A1.
We define the maximum public-key collision probability in the style of [BBO07]. This intuitively
captures the probability of guessing a public key as generated by a PKE scheme’s KGen algorithm:

maxpkAE := max
w∈{0,1}∗

Pr
[

(pk, sk)← KGen(1λ) : pk = w
]

(2)

Restricting CDA as described above and applying Theorem 5.3 we get:

Lemma 5.7. Let AE be a public-key encryption scheme with negligible maxpkAE . Let the encryp-
tion scheme query its hash functionality Hh using key pk as hash key. Then, the non-adaptive

CDAH
h,A1,A2

AE game (cf. Figure 1) is unsplittable for any key-prefixed iterative hash function.

We note that many encryption schemes proposed for deterministic encryption are of the
form that they prepend the public-key to all their hash function queries. Examples include
the Encrypt-And-Hash scheme as well as the Encrypt-With-Hash scheme from [BBO07] and the
Randomized-Encrypt-With-Hash scheme from [BBN+09]. Thus, if the hash function is instantiated
with, for example, Merkle-Damg̊ard variants such as chop-MD or prefix-free-MD or with HMAC or
NMAC the above lemma applies.

5.3 The Adaptive Chosen Distribution Attack Game

In the adaptive CDA game [BBN+09] (also see Figure 8) the first adversary can adaptively generate
ciphertexts before it has to output the two message vectors m0,m1 and the randomness vector r.
For this, we give adversary A1 access to an oracle ENC, which allows to encrypt messages under
the public key, but without having to give A1 access to the public key (except, of course, what is
revealed by ENC-queries).

PK-EXT Security. In order to prove that the adaptive CDA game is unsplittable we need
an extra assumption on the encryption scheme: namely, given the encryption of a message, it should
be infeasible to extract the public key used in the encryption. Bellare et al. [BBDP01] define the
notion of key indistinguishability (IK-CPA, see Figure 21) for public-key encryption schemes which
intuitively captures that no adversary given an encryption can learn anything about the public key
used for the encryption. The notion is defined as an indistinguishability notion, where a first-stage
adversary gets two distinct public keys and outputs a message. According to some secret bit b this
message is encrypted with one of the two public keys and given to a second stage adversary that has
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PK-EXTA,H
h

AE

(pk, sk)← KGen(1λ)

pk′ ← AENC,h(1λ)
return (pk = pk′)

procedure ENC(m, r)

return EH
h

(pk,m; r)

Figure 7: Game PK-EXT

aCDAHh,A1,A2

AE (1λ)

b← {0, 1}
(pk, sk)← KGen(1λ)

(m0,m1, r)← AENC,h
1 (1λ)

c← EH
h

(pk,mb; r)

b′ ← Ah
2(pk, c)

return (b = b′)

procedure ENC(m0,m1, r)

return EH
h

(pk,mb; r)

Figure 8: The adaptive CDA game

to guess b. Note that this notion cannot be fulfilled by any PKE scheme if the adversary is allowed
to chose the randomness used in the encryption. Here the second-stage adversary can simply, on its
own, recompute the ciphertext for both public keys and compare the outcome to its input.

We propose a weaker notion that can be met even if the adversary chooses the randomness used
by the encryption scheme. We define the notion of PK-EXT (short for public-key extractability)

for public-key encryption schemes. Game PK-EXTA,H
h

AE is shown in Figure 7. An adversary can
make multiple queries to an encryption oracle and then has to output a guess for the public key
that was used for the encryptions. We define the advantage of an adversary A by

AdvPK-EXT
AE (A) := Pr

[
PK-EXTAAE ⇒ true

]
.

Note that this property is a natural strengthening of the property that public keys output by
the key generation algorithm should not be guesseable. However, it is still quite a weak property as
it only requires that super-logarithmically many bits of the public key have to remain hidden. In
Appendix D we prove that our new notion is met by the REwH1 scheme [BBN+09] if the underlying
PKE scheme is IK-CPA secure. Examples of IK-CPA-secure schemes are, for example, the El
Gamal or the Cramer-Shoup schemes [CS98]. We can further show that in case the adversary
cannot specify the randomness, then PK-EXT is directly implied by IK-CPA.

The adaptive CDA game is unsplittable. The proof in the adaptive setting is essentially
equivalent to the proof in the non-adaptive setting: it follows with Theorem 5.3.

Lemma 5.8. Let AE be a public-key encryption scheme such that for any efficient adversary A
the advantage against public-key extractibility is negligible:

AdvPK-EXT
AE (A) ≤ negl

Let the encryption scheme query its hash functionality Hh using key pk as hash key. Then, the

adaptive CDAH
h,A1,A2

AE game (cf. Figure 1) i is unsplittable for any key-prefixed iterative hash
function.

5.4 Message Locked Encryption

Message locked encryption [BKR13] is a notion very similar to CDA, yet for the symmetric setting.
It is a security notion for symmetric encryption schemes where the encryption key is derived from
the to-be encrypted message. This allows for secure deduplication of data, a property useful, for
example, in the cloud storage setting. Here, a storage provider wants to save storage capacity by
not storing equivalent files multiple times (encrypted under different keys). If the encryption key
only depends on the message (and possible public parameters), then the cloud provider can detect
multiple copies of the same file and store it only once.

An MLE scheme consists of five algorithms MLE := (P,K, E ,D, T ) where K, E ,D is a symmetric-
encryption scheme, P is a probabilistic algorithm to generate a public parameter P and T is a
tagging algorithm (which is used for deduplication and not important for our discussion).
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PRV-CDAHh,A1,A2

MLE (1λ)

P ← P
b← {0, 1}
(m0,m1, Z)← Ah

1(1λ)
for i = 1 . . . |m| do

c[i]← EH
h

P (KP (mb[i]),mb[i])

b′ ← Ah
2(P, c, Z)

return (b = b′)

PRV$-CDAHh,A1,A2

MLE (1λ)

P ← P
b← {0, 1}
(m, Z)← Ah

1(1λ)
for i = 1 . . . |m| do

c1[i]← EH
h

P (KP (m[i]),m[i])

c0[i]← {0, 1}|c1[i]|

b′ ← Ah
2(P, cb, Z)

return (b = b′)

CE.KGen(M)

K ← Hh(P,M)
return K

CE.Enc(K,M)

C ← SE(K,M)
return C

CE.TGen(C)

T ← Hh(P,C)
return T

CE.Dec(K,C)

M ← SD(P,C)
return M

Figure 9: The PRV-CDA and PRV$-CDA MLE-security games from [BKR13] on the left. On the right the convergent
encryption (CE) using a symmetric encryption scheme SE = (SK,SE ,SD). Note that the tag generation algorithm
TGen is not relevant for the security games.

In Figure 9 we give the IND-CDAMLE and IND$-CDAMLE security games on the left and the
popular convergent encryption (CE) scheme [BKR13, DAB+02] on the right. In the IND-CDAMLE

security game a public parameter P is generated in the first step. Then the first adversarial stage
A1 is run (without having access to parameter P ) and outputs two message vectors m0,m1 as well
as some state Z. Similarly to CDA it is required that all entries in mi are of the same length for
i ∈ {0, 1} and vectors m0 and m1 have the same length. Further, mji1 6= mji2j for any two distinct
i1, i2 ∈ [|m0|] and j ∈ {0, 1}, that is, all values in each vector are distinct. Finally, both vectors
should be unpredictable given state Z, that is each entry needs to have sufficient min-entropy
conditioned on Z. According to a secret bit b every entry in b is then encrypted using a key
constructed by algorithm KP that gets public parameter P and the message to be encrypted. Then
the second stage adversary gets ciphertext vector c and state Z and has to guess hidden bit b.

Variant IND$-CDAMLE captures a stronger property demanding that encryptions of unpredictable
messages are indistinguishable from random strings of the same length.

Both security games are closely related to the CDA security game. One crucial difference,
however, is that the two adversarial stages are able to communicate almost in the clear via state Z.
In their CDA security proof for NMAC, Ristenpart et al. [RSS11b] use a strong property on the
encryption scheme to make the two adversarial stages completely independent. This technique will
not work for MLE, since via Z the two stages are always dependent on one another.

Using Theorem 5.3 it is, however, easily seen that both security games IND-CDAMLE and
IND$-CDAMLE are unsplittable for key-prefixed hash functions as long as the probability of
guessing public parameter P is negligible:

Lemma 5.9. Let MLE := (P,K, E ,D, T ) be an MLE scheme scheme that only makes keyed queries
to hash function Hh using parameter P as generated by algorithm P. Then, the IND-CDAMLE and
IND$-CDAMLE games are unsplittable for any key-prefixed iterative hash function.

5.5 Universal Computational Extractors

Universal computational extractors (UCE) are a recently introduced standard model assumption by
Bellare, Hoang and Keelveedhi [BHK13] that aims at replacing random oracles for a large class of
applications. The idea is to have constructions proven as UCE-secure possibly in an idealized model
(so far only random oracle constructions are known) and then to base the security of applications
on the UCE assumption rather than the random oracle assumption directly.

Bellare et al. showed that the hash construction HR(κ,m) := R(k‖m) is UCE secure in the
random oracle model, where R is a random oracle. They conjectured, that also HMAC is UCE
secure in the idealized model, where the iterated compression function is assumed to be ideal: that
is, exactly the model we are studying in this paper.

In the following we show that their conjecture was correct, that is, HMAC is UCE secure (UCE2,
to be precise [BHK13]). In fact, we show a stronger statement, namely that the UCE security
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UCES,DHh (1λ)

b← {0, 1}; κ← K
L← Sh,Hash(1λ); b′ ← Dh(1λ, k, L)
return (b = b′)

Hash(x)

if T [x] = ⊥ then

if b = 1 then T [x]← Hh(κ, x)

else T [x]← {0, 1}`

return T [x]

Figure 10: The UCE-security game from [BHK13].

game depicted in Figure 10 is unsplittable for any key-prefixed iterative hash function that is
indifferentiable from a random oracle.

The UCE game (see Figure 10) is a two-stage keyed-hash game. Initially, the game chooses a
hash key κ from the key space. Then the first adversary, the so-called source S is run and outputs
some leakage L. The source has access to an oracle Hash which, according to hidden bit b returns
either real hash values (under key κ) or uniformly random values. The leakage L is then given to a
distinguisher D together with the hash key κ (note that the source did not get the hash key) and
has to guess whether the source was talking to the actual hash function or not. The rule out trivial
attacks, it is required that the source is unpredictable, that is, for all efficient predictors it holds
that the probability of finding a Hash query by the source given leakage L is negligible.

Applying Theorem 5.3 we and noting that the output of the source is not changed by the
intermediary adversary in the proof of Theorem 5.3 we get:6

Lemma 5.10. Let Hh be a key-prefixed iterative hash-function with fixed message-rate, that is
indifferentiable from a random oracle, then Hh is UCE2-secure.

5.6 The Proof-Of-Storage Game and Multi-Round Hash Functions

With the next lemma we establish that the challenge-response game (cf. Figure 1) from the
introduction is unsplittable for any two-round iterative hash construction. Liskov’s Zipper Hash
construction [Lis06] is an example of a two-round hash function. In an r-round hash construction
the entire message is processed r-times. We give an introduction to multi-round iterative hash
constructions and how they are captured in our framework in Appendix B.3.

Lemma 5.11. The proof-of-storage game CRPHh,A1,A2
p,c (cf. Figure 1) is unsplittable for any

r-round iterative hash construction Hh
r with r ≥ 2.

Proof. We show that no adversary (A1,A2) has noticeable probability in winning the CRP game
in case the hash functionality is instantiated with a two-round indifferentiable hash construction.

To win in the CRP game with a two-round hash function, A2 must compute value Hh
2 (M ||C)

which, according to Definition 3.1, can be written as g(h(m,x)) where g is some transformation
and (m,x) is the input to the final h-call in the second round of the computation of Hh

2 (M ||C).
By Lemma 3.3 we have that if only a single h-query in the evaluation of Hh

2 (M ||C) is not queried,
then the probability of outputting Hh

2 (M ||C) is at most

qA1 + qA2

2s
+

1

2H∞(g(Us))
.

6The observation that the newly constructed adversary does leak the same information and makes no additional
queries to its Hash oracle is needed to argue that it remains unpredictable (resp. reset-secure). For further details we
refer to [BHK13].
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We now argue that adversary A1 cannot query h-queries in Hh
2 (M ||C) that correspond to

h-nodes occurring in the second round. Challenge C is of length c bits and, thus, can be guessed by
A1 with probability at most 2−c. As C will be part of one or multiple message-block-nodes in the
execution graph construct(M ||C), we have that A1 is able to make all h-queries in the first round
of construct(M ||C) with probability at most

qA1

2c
.

Similarly, adversary A2 is given only n bits of information from the first round and is, thus, missing
at least p− n bits of message M . Thus, the probability, that it is able to make all h-queries in the
second round is upper bounded by

qA2

2p−n
.

If we set adversary (A∗1,A∗2) as A∗1 = A1 and A∗2 as the procedure that simply outputs a guess
for value Z, then we have that bad result queries do not occur and we have that for all values y

Pr
[
CRPHh,A1,A2

p,c ⇒ y
]
≤ Pr

[
CRP

Hh,A∗1,A∗2
p,c ⇒ y

]
+
qA1

2−c
+

qA2

2p−n
+
qA1 + qA2

2s
+

1

2H∞(g(Us))
.

5.7 A Conjecture on Two-Stage Games and Future Work

Finally we want to present a conjecture on games consisting of exactly two stages (note that all
security games in this paper are examples of a two stage game). We include this conjecture, since
we believe it provides some insights into the nature of multi-stage games and multi-round hash
constructions. Furthermore, proving such a result would be a huge step forward, as this would be
the first truly generic positive result on indifferentiability in a multi-stage setting.

Conjecture 5.12. Any two-stage functionality-respecting game is unsplittable for any r-round
iterative hash function Hh

r with r ≥ 2.

The idea behind Conjecture 5.12 is simple. In a two-stage game, a bad query can only be made
by the second-stage adversary. Let us consider two-round hash functions. Then we can distinguish
between two cases in the event that bad(m,x) occurs for some query (m,x) by A2. Let pg be
the partial execution graph corresponding to query (m,x). Then, either (m,x) corresponds to an
h-node in pg in the first, or in the second round (the probability of it corresponding to two h-nodes
can be upper bounded by the probability of an h-collision).

In the first case, the entire second round is computed by the second stage adversary A2 and
thus it must know the entire message corresponding to the partial graph as all message-block-nodes
from round 1 reappear in round 2 (see Definition B.1). In this case, however, A2 could have simply
computed Hh

2 (M) directly. For the second case a similar argument applies. Here the entire first
round is computed by A1 which must hence know the entire message M . As bad queries can only
occur with non-negligible probability if there is sufficient communication between the adversaries,
adversary A1 could, thus, have also passed on Hh(M) instead of some intermediate value.
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A Game Playing

For the discussion in this paper we use the game playing technique as described in [BR06, RSS11b].
Games consist of procedures which in turn consist of a sequence of statements together with some
input and zero or more outputs. Procedures can call other procedures. If procedures P1 and P2

have inputs and outputs that are identical in number and type, we say that they export the same
interface. If a procedure P gets access to procedure F we denote this by adding it in superscript
PF . All variables used by procedures are assumed to be of local scope. After the execution of a
procedure the variable values are left as they were after the execution of the last statement. If
procedures are called multiple times, this allows them to keep track of their state.

A functionality F is a collection of two procedures F .hon and F .adv, with suggestive names
“honest” and “adversarial”. Adversaries access a functionality F via the interface exported by
F .adv, while all other procedures access the functionality via F .hon. In our case, functionalities
are hash functionalities which will either be instantiated with typical iterative hash constructions
or with random oracles. For iterative hash constructions the adversarial interface accesses the
compression function and the honest interface provides access to the complete hash function as
specified, i.e., F .hon := Hh and F .adv := h. Note that access to the compression function is
sufficient to compute Hh. For a random oracle, on the other hand, there is no distinction between
adversary access and honest access and we can assume that the adversarial interface simply forwards
calls to the honest interface. As in this paper we are solely talking about iterative hash functions
we will usually not write F .hon and F .adv, but directly refer to hash function Hh and underlying
function h, respectively.

A game G consists of a distinguished procedure called main (which takes no input) together
with a set of procedures. A game can make use of functionality F and adversarial procedures
A1, . . . ,Am (together called “the adversary”). Adversarial procedures have access to the adversarial
interface of functional procedures and, as any other procedure, can be called multiple times. We,
however, restrict access to adversarial procedures to the game’s main procedure, i.e., only it can call
adversarial procedures and, in particular, adversarial procedures cannot call one another directly.

By GF ,A1,...,Am we denote a game using functionality F and adversary A1, . . . ,Am. If F ′ exports
the same interface as F , and for 1 ≤ i ≤ m adversary A′i exports the same interface as Ai, then
GF

′,A′1,...,A′m executes the same game G with functional procedure F ′ and adversary A′1, . . . ,A′m.
We denote by GF ,A1,...,Am ⇒ y the event that game G produces output y, that is procedure main
returns value y. If game G uses any probabilistic procedure then GF ,A1,...,Am is a random variable
and by Pr

[
GF ,A1,...,Am ⇒ y

]
we denote the probability (over the combined randomness space of

the game) that it takes on value y. Sometimes we need to make the random coins r explicit and
write GF ,A1,...,Am(r) to denote that the game is run on random coins r.

Games are random variables over the entire random coins of the game and the adversarial
procedures. For functionalities F and F ′ and adversaries A1, . . . ,Am and A′1, . . . ,A′m, we can thus
consider the distance between the two random variables. Our security approach is that of concrete
security, i.e., we say two games are ε-close if for all values y it holds that

Pr
[
GF ,A1,...,Am ⇒ y

]
≤ Pr

[
GF

′,A′1,...,A′m ⇒ y
]

+ ε .

In asymptotic terms this means that if ε is negligible in the security parameter, then it follows that
for all efficient distinguishers the two games are indistinguishable:∣∣∣Pr

[
D(GF ,A1,...,Am , 1λ) = 1

]
− Pr

[
D(GF

′,A′1,...,A′m , 1λ) = 1
]∣∣∣ ≤ ε(λ) .

Functionality Respecting Games. In this paper we only consider the class of functionality-
respecting games LG as defined by Ristenpart et al. [RSS11b]. A game is called functionality
respecting if only adversarial procedures can call the adversarial interface of functionalities. Note
that this restriction is quite natural if a game is used to specify a security goal in the random oracle
model since random oracles do not provide any adversarial interface.
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B Formalizing Iterative Hash Functions

B.1 Execution Graphs

In the following section we formally describe execution graphs for iterative hash functions (see
Section 3). We describe the structure of the execution graph for message m1‖ . . . ‖m` := pad(M).
An execution graph is a directed graph where nodes represent constants or functions while edges
define the evaluation path. An execution graph contains exactly one unbound outgoing edge. The
graph consists of the following node and edge types:

IV-node: For every string iv ∈ IV there can exist an IV-node with in-degree 0. Outgoing edges
are of type h-edge or m-edge labeled with value iv. If the outgoing edge is of type h-edge
(resp. m-edge) it must hold that iv ∈ {0, 1}s (resp. iv ∈ {0, 1}b).

message-node: For every message block mi (for 1 ≤ i ≤ `) there exists a node with in-degree 0
and out-degree at least 1. Outgoing edges are of type m-edge labeled with value mi (possibly
prefixed or postfixed with the message block counter).

mp-node: A mp-node has in-degree 1 which takes an m-edge and out-degree 1. The outgoing edge
is of type mp-edge.

hp-node: A hp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is of
type hp-edge.

hmp-node: A hmp-node has in-degree 1 taking an h-edge and out-degree 1. The outgoing edge is
of type mp-edge. We add the additional restriction that ingoing h-edges may not come from
IV-nodes.

h-nodes: An h-node has in-degree 2, an mp-edge and a hp-edge, and has out-degree at least 1.
Outgoing edges are of type h-edge.

g-node: There exists a single g-node with in-degree 1, taking an h-edge and out-degree 1. The
outgoing edge is not connected to a node.

We call IV and message-nodes value-nodes and all other node types function-nodes. All outgoing
edges must be connected to a node with the only exception being the outbound edge from the
single g-node.

A valid execution graph is a graph that is not empty and complies with the above rules. For
each message M ∈ {0, 1}∗ there is exactly one valid execution graph.

We will also need the concept of partial execution graphs which is a non-empty graph that
complies to the above specified rules with the only exception that it does not contain a g-node.
However, it must contain exactly one unbound outgoing h-edge.

We define EVAL to be a generic, deterministic algorithm evaluating execution graphs relative to
an oracle h. Let pg be a an execution graph for some message M ∈ {0, 1}∗. To evaluate pg relative
to oracle h, algorithm EVALh(pg) first verifies the graph structure validating ensuring it is either
a valid execution graph or a partial execution graph (note that this is independent of additional
restrictions put due to a concrete construction). It then performs the following steps to compute
the hash value: search for a node that has no inbound edges or for which all inbound edges are
labeled. If the node is a value node, then remove the node (in this case the outgoing edges are
already labeled). If the node is a function node then evaluate the corresponding function using the
labels from the inbound edges as input. Remove the node from the graph and label all outgoing
edges with the result. If the last node in the graph was removed stop and return the result. Note
that EVALh(pg) runs in time at most O

(
|V 2|

)
assuming that pg contains |V | many nodes. Note that

if pg is a partial execution graph then EVALh(pg), likewise, computes the partial graph outputting
the result of the final h-node. Further, if pg is a partial execution graph, then we denote by g(pg)
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Algorithm: EVALh(pg)

y ← ⊥
if (pg is not correct partial graph) then return y
while (pg contains nodes) do

foreach (node in pg) do
if (node is value-node) then remove node from pg
if (node is function-node ∧ all inbound edges are labeled) then
y ← evaluateh(node)
label all outgoing edges of node with y
remove node and inbound edges from pg

return y

Algorithm: evaluateO(node)

if (node is mp-node) then
return mp(node.in-m)

if (node is hp-node) then
return hp(node.in-h)

if (node is hmp-node) then
return hmp(node.in-h)

if (node is h-node) then
m← node.in-mp
x← node.in-hp
return O(m,x)

if (node is g-node) then
return g(node.in-h)

Figure 11: The generic evaluation algorithm EVALh. For the evaluation of function nodes we denote by node.in-T the
label of the ingoing edge of type T.

the corresponding execution graph where the single outbound h-edge of pg is connected to a g-node.
We call this the completed execution graph for pg. We give the pseudo-code of algorithm EVAL in
Figure 11.

Remark. In the above model, we have defined the preprocessing nodes to have in-degree 1. For
certain constructions (such as, for example, the double-pipe construction [Luc04], see Section B.5.4)
this requirement needs to be relaxed. Such relaxations slightly complicate the definition of initial,
chained and result queries (see Section 3.1) but do not change the presented results (in an asymptotic
setting).

B.2 Keyed Hash Constructions

Hash functions can be keyed, that is, hash values are computed relative to a key. Keying of hash
functions can be done either by design (which we refer to as explicit) or implicitly by embedding
the key in the message before computing the hash value. Example of explicitly keyed hash functions
are HMAC and NMAC. Examples of implicitly keyed hash functions would be the plain Merkle-
Damg̊ard function where the key is always prepended to the message before hashing it. That is, for
example, for chop-MD [CDMP05] we could have the following keyed construction.

keyed-chopMD(κ,M) := chopMD(κ‖M)

To capture keyed hash constructions Hh : K × {0, 1}∗ → {0, 1}n in our framework we need to
extend Definition 3.1 and additionally define the key-space K and specify how keys are included
in the execution graph. Algorithm construct then takes as input a message M ∈ {0, 1}∗ and key
κ ∈ K. In execution graphs we introduce a special node type for keys called κ-node. For easier
notation we reuse preprocessing functions hp and mp but we note that also new functions could be
introduced.

κ-node κ-nodes have in-degree and out-degree 1. The outgoing edges are of type m-edge or h-edge
and the i-th κ-node is labeled by κ.

Furthermore, we require that algorithm extract has to extract not only the message but also the
corresponding key(s).

Initial Queries. Depending on the iterative hash construction we also have to adapt the
definition of initial queries; Definition 3.2. So far, we defined initial queries with respect to set IV.
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In keyed hash constructions a κ-node might be used instead of an IV-node (this is, for example,
the case with NMAC). For such hash constructions we relax the definition of initial queries and
simply assume that any query is potentially an initial query. Note that for NMAC this is indeed
the case and that it is just a matter of key choice.

B.3 Multi-Round Iterative Hash Functions

m1

mp

m`

mp

mp mp

IV hp hp

roundhphpgHh(y)

h h

h h

Figure 12: Zipper Hash in accordance to Definition B.1

Most hash functions only make a single pass
over the message to compute the hash value.
Multiple message-passes (or rounds, as we call
them) may, however, lead to a stronger hash
function. A good example of such a multi-round
hash function is Liskov’s Zipper Hash [Lis06]
and we have depicted the corresponding execu-
tion graph in Figure 12. Zipper Hash can be
regarded as a two pass Merkle-Damg̊ard construction where message blocks are first processed
in natural order and then, additionally, in reversed order. For such multi-round iterative hash
functions we extend our model of execution graphs to include special round-nodes that partition the
computation into multiple rounds. In each round, each message block mi must be processed by an
h-node. Furthermore, the output of roundi must be processed by an h-node in the next round i+ 1.

round-node There exist r − 1 round-nodes with in-degree 1 taking an h-edge and out-degree 1.
The outgoing edge is of type h-edge copying the label of the ingoing edge to the label of the
single outbound edge. round-nodes partition the graph into distinct subgraphs and edges may
not connect mp-nodes, hp-nodes, hmp-nodes or h-nodes in different subgraphs. We call the
subgraph before the first round-node first round graph, the subgraph between the i-th and
i+ 1-st round-node the i+ 1-st round graph and the subgraph after the r − 1-st round-node
the r-th round graph.

g-node The single g-node must be in the r-th round graph.

message-node For every message block mi (for 1 ≤ i ≤ `) there exists a node with in-degree 0
and out-degree at least r. For each message-node and round graph i there must be at least a
single outbound m-edge connecting a mp node in the i-th round graph. Outgoing edges are of
type m-edge and labeled with value mi (possibly post- or prefixed with the message block
counter or round counter) assuming the edge goes into the j-th round graph.

With this extended definition of execution graphs we can now define a notion of multi-round
iterative hash functions.

Definition B.1. Let the setup be as in the previous Definition 3.1. We call iterative hash function
Hh
r,g,mp,hp,hmp,pad : {0, 1}∗ → {0, 1}n an r-round iterative hash function, if corresponding algorithm

construct generates execution graphs containing r − 1 round-nodes.

When functions g, mp, hp, hmp and pad are clear from context we simply write Hh
r . Note that,

this definition naturally extends the previous definition as the two are equivalent for r = 1.

B.4 Properties of Iterative Hash Functions

B.4.1 A Missing Link in Hh

In the following we prove the missing link lemma from Section 3 which intuitively states, that if an
adversary does not make all queries in the chain of a correct hash computation for some message
M , then it has only negligible chance of learning the hash value of M .
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Lemma 3.3 (restated). Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let
h : {0, 1}d × {0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an adversary that makes
at most qA many queries to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h when
algorithm A runs on randomness r and by qryh(Hh(M)) denote the h-queries during the evaluation
of Hh(M). Then it holds that

Prr,h

[
(M,y)← Ah(1λ; r) : Hh(M) = y ∧

(
qryh(Hh(M)) \ qryh(Ah(1λ; r))

)
6= ∅

]
≤ qA

2s
+

1

2H∞(g(Us))

where \ denotes the simple complement of sets and Us denotes a random variable uniformly
distributed in {0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Proof. Assume adversary A succeeds, that is, it outputs a message M and value y such that
Hh(M) = y and there exists an h-query (m,x) which occurs during the evaluation of Hh(M) but
which was not queried by A. We consider the execution graph pg← construct(M) which induces
a partial order on its nodes. That is, if n1 and n2 are nodes in pg then we write n2 � n1 if, and only
if, there exists a directed path from node n1 to node n2 in pg. Relative to oracle h we can identify
an h-node in graph pg for which the two input edges transport values m and x (that is, the edges
will be labeled with values m and x when applying the generic algorithm EVALh(pg)). We call this
node nodem,x and in case there are multiple choices we simply choose one at random. As A does
not query h(m,x) it holds that this value has min-entropy s-bits, that is, H∞ (h(m,x)) = s. Value
h(m,x) is transported on all outgoing edges from nodem,x. Each of these edges is connected to an
hp or an hmp-edge. By definition we have that

H∞ (hp(Us)) = H∞ (hmp(Us)) = s

where Us is a random variable uniformly distributed in Us. In other words, as preprocessing
functions hp and hmp are injective they do not decrease entropy. Thus the sole outgoing edge of the
preprocessing node transports s-bits of min-entropy to an h-node node∗ for which node∗ � nodem,x.

Let noderes denote the final h-node in graph pg. As for any h-node node′ in pg it holds

node′ = noderes ∨ noderes � node′

we get by recursively repeating the above argument that one of the input edges to noderes transports
s bits of min-entropy. Let (mres, xres) be the values transported on the two edges going into the
final h-node noderes. Then, we have that the probability that A queries h on (mres, xres) if it did
not query h(m,x) is upper bounded by qA · 2−s.

By the above discussion we also directly yield that H∞ (h(mres, xres)) = s. Thus the probability
of A guessing value y such that g(h(mres, xres)) = y is upper bounded by 2−H∞(g(Us)) where again
Us denotes a random variable uniformly distributed in {0, 1}s.

The last lemma can be strengthened by showing that if an adversary does not make query
(m,x) ∈ qryh(Hh(M)) for some message M then it will not be able to make any query (m′, x′) for
which nodem′,x′ � nodem,x. Here we denote by nodem,x the set of h-nodes in the execution graph
construct(M), for which the two input edges are labeled with values m and x relative to function
h. By � we denote a partial order function and write

nodem′,x′ � nodem,x

if there exists n′ ∈ nodem′,x′ and n ∈ nodem,x such that there is a directed path from n′ to n in
graph construct(M). Note that this is all relative to a function h.

Lemma B.2. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h :
{0, 1}d × {0, 1}k → {0, 1}s be a fixed-length random oracle. Let Ah be an adversary that makes at
most qA many queries to h. Let qryh(Ah(1λ; r)) denote the the adversary’s queries to oracle h when
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algorithm A runs on randomness r and qryh(Hh(M)) the h-queries during the evaluation of Hh(M).
Then it holds that

Prr,h

 (M,m, x)← Ah(1λ; r) :

(m,x) ∈ qryh(Hh(M)) ∧

∃(m′, x′) ∈ qryh(Hh(M)) :
(

(m′, x′) /∈ qryh(Ah(1λ; r)) ∧

nodem,x � nodem′,x′

)
 ≤ qA

2s

The probability is over the choice of random oracle h and the coins r of A.

Proof. The proof follows with the same argument as in the proof of Lemma 3.3. Let for a message
M and graph construct(M) and fixed-length random oracle h

nodem,x � nodem′,x′

that is, there exists a path from a node n′ ∈ nodem′,x′ to a node n ∈ nodem,x in graph construct(M)
relative to function h (note that we defined nodem,x as sets). If (m′, x′) is not queried by A to h,
that is (m′, x′) /∈ qryh(Ah(1λ; r)) then we have that value h(m′, x′) is a random variable with s bits
of min-entropy. Furthermore, since this value is “passed down the graph” we have, by a recursive
argument, that the input-edge-labels (relative to h) for any h-node n for which n � n′ is again a
random variable with at least s bits min-entropy. Thus, the probability of an adversary A querying
h on (m,x) such that (m,x) are the labels on the input edges of node n (relative to h) is upper
bounded by qA · 2−s.

Next, we give a second version of the missing link lemma where we now let the adversary
also get access to the actual hash construction Hh. In this case we can give a reduction to an
indifferentiability simulator. In other words, if the hash construction is indifferentiable from a
random oracle, no such adversary exists.

Lemma B.3. Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and let h :

{0, 1}d × {0, 1}k → {0, 1}s be a fixed-length random oracle. Let AHh,h be an adversary that makes

at most qA many queries to h and Hh, respectively. Let qryh(AHh,h(1λ; r)) denote the adversary’s

queries to oracle h when algorithm A runs on randomness r, let qryH
h
(AHh,h(1λ; r)) denote the

adversary’s queries to Hh and let qryh(Hh(M)) denote the h-queries during the evaluation of Hh(M).
Then for any indifferentiability simulator S there exists a distinguisher D such that

Prr,h

 (M,y)← AH
h,h(1λ; r) :

Hh(M) = y ∧M /∈ qryH
h

(AH
h,h(1λ; r))∧(

qryh(Hh(M)) \ qryh(AH
h,h(1λ; r))

)
6= ∅

 ≤ qA · Advindiff
Hh,R,S(D)+

2qA
2min(d,s)

+
4q2A

2H∞(g(Us))+1

where \ denotes the simple complement of sets and Us denotes a random variable uniformly
distributed in {0, 1}s. The probability is over the choice of random oracle h and the coins of A.

Proof. Assume adversary A succeeds when running on random coins r. Let us by (M,y) denote its
output and let us call (mM , xM ) the final h-query in the computation of EVALh(construct(M)).
Then it holds that g(h(mM , xM )) = y.

We first argue that (mM , xM ) ∈ qryh(AHh,h(1λ; r)) with high probability. As adversary A is
successful, it does not query Hh on M . It directly follows, that then either value y is guessed, or
that A found a collision for h or for Hh. A collision for Hh implies either a collision under h or a
collision of two result queries under g. We can, thus, upper bound the probability by

Pr
[

(mM , xM ) /∈ qryh(AHh,h(1λ; r))
]
≤ 1

2H∞(g(Us))
+

q2
A

2s+1
+

q2
A

2H∞(g(Us))+1
(3)
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Let us denote by Qout the queries that the adversary “left out” in the chain of M , that is

Qout :=
{

(m,x) ∈ qryh(Hh(M)) : (m,x) /∈ qryh(AHh,h(1λ; r))
}
.

As A is successful we have that |Qout| ≥ 1. Furthermore, we observe that but for the probability
in equation (3) the query set qryh(AHh,h(1λ; r)) contains the result under h for at least one of the
queries in Qout. In other words,

∃(m,x) ∈ Qout, ∃(m′, x′) ∈ qryh(AHh,h(1λ; r)) :
(
x′ = hp(h(m,x)) ∨m′ = hmp(h(m,x))

)
.

Let us call (mout, xout) a query in Qout for which this holds. As adversary A does not query h on
(mout, xout) it must learn yout := h(mout, xout) by some other means. As h is random, the probability
of guessing it is upper bounded by qA ·2−s. The only other possibility is to deduce it via calls to Hh.
From a query Hh(M ′) for some message M ′ the adversary learns the outcome of the corresponding
result query (mM ′ , xM ′), that is it learns g(h(mM ′ , xM ′)). By equation (3) we have already excluded
the possibility of an h-collision. It follows, that for one query M ′ ∈ qryH

h
(AHh,h(1λ; r)) it holds

that (mout, xout) = (mM ′ , xM ′). By the above explanation we have that

Pr
[
∀M ∈ qryH

h

(AHh,h(1λ; r)),∀(mout, xout) ∈ Qout : (mM , xM ) 6= (mout, xout)
]
≤ qA

2s
(4)

where again by (mM , xM ) we denote the final h query in the computation of EVALh(construct(M)).
This, however, implies that the execution graph pg′ ← construct/g(M

′) (i.e., the execution graph
of M ′ without the final g-node) is a subgraph of the execution graph of pg← construct(M). (Note
that, whether or not pg′ is a subgraph of pg is independent of the choice of h.)

We need one final observation. Adversary A given Hh(M ′) = g(h(mM ′ , xM ′)) is able to
reconstruct yout = h(mM ′ , xM ′). Let ε denote the success probability of A. Then, as h is a random
function it holds that the preimage space of g(h(mM ′ , xM ′)) is at most qA/ε, that is,∣∣g−1 (g(h(mM ′ , xM ′)))

∣∣ ≤ qA
ε

In other words, if ε is noticeable and qA polynomial, then the preimage space of g must be
polynomial.

We now build a distinguisher D in the indifferentiability game. Distinguisher D gets access to
functionality F := (F .hon,F .adv) which is either (Hh, h) in the real world, or (R,SR) in the ideal
world and where S is some indifferentiability simulator and R is a random oracle. Distinguisher
D lazily samples an ideal function h′. It runs adversary A giving it access to Hh′ and h′. Note
that this computation is completely local to D. If the adversary succeeds, D extracts messages M
and M ′ such that the execution graph of M is a subgraph of M ′. (Note that due to the structure
of execution graphs this extraction is efficiently implementable.) It constructs the corresponding
execution graphs pg ← construct(M) and pg′ ← construct(M ′). It then consistently relabels
all message nodes with random values (such that pg remains a subgraph of pg′) and extracts the
resulting messages M ← extract(pg) and M ′ ← extract(pg′).

Distinguisher D then queries its left oracle F .hon (which is either Hh or the random oracle R)
on message M to receive y and on message M ′ to receive y′. Finally, it picks a random x ∈ g−1(y)
and computes the remainder of the execution graph for M ′ using its right oracle (which is either h
or SR) starting from the final node of the subgraph for M ′ and using value x as the label of the
outgoing edge of that node. If the two computations match it outputs 1, else it outputs 0.

Analysis. Assuming that the adversary is successful and that the events discarded in equations (3)
and (4) the distinguisher will succeed in extracting the two messages as described. In the real world,
the computation will match with probability 1/

∣∣g−1
∣∣, that is,

Pr
[
DHh,h(1λ) = 1

]
≥ 1

|g−1|
≥ ε

qA
.
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In the ideal world, however, as the simulator will not see the queries related to message M , its
probability of correctly guessing value R(M ′) is at most 2−|M |. As we can assume that M is at
least one message block long we have that this probability is less than 2−d:

Pr
[
DR,S(1λ) = 1

]
≤ 1

2d
.

It follows that

Advindiff
Hh,R,S(D) =

∣∣∣Pr
[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR(1λ) = 1

]∣∣∣ ≥ ∣∣∣∣ εqA − 1

2d

∣∣∣∣ .
and hence ε is upper bounded by

ε ≤ qA · Advindiff
Hh,R,S(D) +

qA
2d

Combining this with equations (3) and (4), we can estimate the success probability of adversary A
as

Pr[A is successful ] ≤qA · Advindiff
Hh,R,S(D) +

qA
2d

+
1

2H∞(g(Us))
+

q2
A

2s+1
+

q2
A

2H∞(g(Us))+1
+
qA
2s

≤qA · Advindiff
Hh,R,S(D) +

2qA
2min(d,s)

+
4q2
A

2H∞(g(Us))+1

B.4.2 Extractor for Hash Function Hh

We now prove the extractor lemma from Section 3. Note that the extractor is such, that it
reconstructs exactly those messages M for which an adversary “knows” the corresponding hash
value.

Lemma 3.4 (restated). Let function Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and
h : {0, 1}d × {0, 1}k → {0, 1}s a fixed-length random oracle. Let Ah be an adversary making at
most qA queries to h. Let qryh(Ah(1λ; r)) denote the adversary’s queries to oracle h (together with
the corresponding oracle answer) when algorithm A runs on randomness r. Then there exists an
efficient deterministic extractor E outputting sets M and Y with |M| = |Y| ≤ 3qA, such that

Prr,h

[
(M,y)← Ah(1λ; r);

(M,Y)← E(qryh(Ah(1λ; r))
:
∃ X ∈M : Hh(X) /∈ Y ∨(
Hh(M) = y ∧M /∈M

) ]
≤

3q2
A

2H∞(g(Us))
.

Value Us denotes a random variable uniformly distributed in {0, 1}s. The probability is over the
coins r of Ah and the choice of random oracle h.

Proof. We will first present extractor E (see Figure 13) to then argue that it achieves the claimed
bound. Extractor E will work with partial graphs that we will store in a set PG. Without loss of
generalization we assume that Q does not contain the same query twice, that is A does repeat
queries to h.

The extractor will do a single pass over query sequence Q. In each step extractor E initializes
new partial graphs if the current query is an initial query. A freshly initialized graph consists of
either an IV-node connected to a hp-node, a message-block-node (or possibly a second IV-node)
connected to a mp-node and an h-node which is connected to the mp and hp nodes. The outgoing
h-edge is free. We denote the creation of new partial graphs for query (m,x) by

new PartialGraph(mp−1(m), hp−1(x))
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Whenever a new partial graph is constructed (or later extended) we compute the value of the
sole outgoing h-edge and denote it by pg.y ← y. Note that, by construction we have that
pg.y = y = EVALh(pg).

For each query (m,x, y) ∈ Q (where (m,x) denotes the query and y the oracle answer)
additionally to checking if it is an initial query we try to extend existing partial graphs in PG by this
query. A partial graph pg ∈ PG can be extended if its sole outgoing h-edge which transports value
pg.y can be connected to a new h-node constructed from query (m,x). This is the case, if and only if,
(i) pg.y = hp−1(x) or if (ii) pg.y = hmp−1(m). Note that for the second case, where pg.y = hmp−1(m)
we can only extend the partial graph if there is also pg′ ∈ PG such that pg′.y = hp−1(x) as otherwise
the hp-node would not have all its input edges bound, thus the new partial graph is constructed
from two previously existing graphs.7 If we extend a partial graph, a new partial graph is generated
for the extended graph and the old one is kept in PG. We denote by

pg.extendedBy(m,x)

the partial graph generated from pg and extended by query (m,x, y) ∈ Q (corresponding to case
(i), see above) and by

pg.extendedBy(pg′,m, x)

the partial graph generated from the two partial graphs pg and pg′ extended by query (m,x, y) ∈ Q
which corresponds to case (ii). Again, after a new graph is constructed we set pg.y← y. Note that
also here, by construction, we have that pg.y = y = EVALh(pg).

After all partial graphs are constructed the extractor then recovers for each partial graph the
sequence of message-blocks using algorithm extract. These, form the set of target messages output
by extractor E . Furthermore, if extract(pg) outputs a message M , then, by construction we have
that g(pg.y) = EVALh(pg) = Hh(M). This forms the set of target hash values Y. We give the
pseudo-code for extractor E in Figure 13.

It remains to argue that extractor E has the claimed runtime, as well as that the target set M
as output by E is sufficient. For the run-time note that the extractor makes a single pass over the
query set Q. If adversary A did not find collisions in h (which only happens with probability less
than q2

A · 2−s−1) in each step at most 3 new partial graphs are generated. Thus, with overwhelming
probability the number of generated partial graphs is at most 3|Q| = 3qA (for the case that more
than 3qA partial graphs are found we assume that E stops and the adversary wins which corresponds
to parts of the first term in the statement of Lemma 3.4). For each of the partial graphs we run
extract once, which leaves us with a runtime of O (3qA · te) where te denotes the run-time of
deterministic algorithm extract.

Let us now show thatM is sufficient. By Lemma 3.3 we have that all h-queries occurring during
the computation of Hh(M) must be in Q but for probability

qA
2s

+
1

2H∞(g(Us))

Furthermore, the queries appear in the correct order but for probability qA
2s (see Lemma B.2).

Putting it all together, we have that if A does not find any collision on h (which occurs at most
with probability q2

A · 2−s−1) then for any M output by A all h-queries in Hh(M) must be in Q but
for the guessing probability

qA
2s

+
1

2H∞(g(Us))
.

Furthermore, the queries must appear in topologically correct order but for probability qA ·2−s. Then,
however, the corresponding message M is reconstructed also by E as by definition it reconstructs
partial graphs if all queries appear in topologically correct order.

7See the HMAC or NMAC construction (Appendix B.5) for an example, where this case can occur.
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Extractor: E(Q)
1 M← {};Y ← {};PG ← {}
2 for i = 1 . . . |Q| do /* building partial graphs */
3 (m,x, y)← Q[i]
4 if init(m,x) then
5 newG← new PartialGraph(mp−1(m), hp−1(x))
6 newG.y← y
7 PG ← PG ∪ newG
8 /* try to extend partial graphs */

9 foreach pg ∈ PG : pg.y = hp−1(x) do
10 newG← pg.extendedBy(m,x)
11 newG.y← y
12 PG ← PG ∪ newG
13 foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
14 newG← pg.extendedBy(pg′,m, x)
15 newG.y← y
16 PG ← PG ∪ newG
17 foreach pg ∈ PG do /* building target message set */

18 M ← extract(pg)
19 if M 6= ⊥ do
20 M←M∪M
21 Y ← Y ∪ g(pg.y)
22 return (M,Y)

Figure 13: The extractor for Lemma 3.4.

B.5 Examples: Hash Constructions in Compliance with Definition 3.1

B.5.1 Merkle-Damg̊ard-like Functions

In the following we show that Merkle-Damg̊ard-like functions such as the plain or chop-MD
constructions, are covered by Definition 3.1. The difference between chop-MD and the plain
Merkle-Damg̊ard construction only lies in the final transformation g which is the identity for plain
Merkle-Damg̊ard and which truncates the output of the final compression function call in case of
chop-MD.

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp gIV Hh(M)

Figure 14: Merkle-Damg̊ard Construction

Merkle-Damg̊ard constructions use a single IV that is connected to the first hp-node. Given
message blocks m1‖ . . . ‖m` = pad(M) for M ∈ {0, 1}∗ it is easy to see that algorithm constructcan
construct the corresponding execution graph depicted in Figure 14 in time linear in the number of

message blocks, that is O
(
|M |
d

)
. Similarly checking an execution graph for validity and extracting

the message from a valid (partial) graph can be done in time linear in the number of nodes.
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B.5.2 NMAC and HMAC

In the following we show how NMAC and HMAC [BCK96] fit into Definition 3.1. NMAC and
HMAC are originally keyed hash constructions, but can be “de-keyed” by fixing the key to a
constant initialization vector. We here give the formalization NMAC in the unkeyed setting and for
HMAC in the keyed setting. Note that the only difference is that for the keyed setting we exchange
the corresponding IV nodes for κ-nodes (see Section B.2).

HMAC and NMAC are the first constructions where we use the hmp preprocessing function.
The running times of construct and extract are equivalent to the running times for the basic
Merkle-Damg̊ard constructions.

m1

mp

h
hp

m2

mp

h
hp

m`

mp

h
hp

h

hmp

g

IVkey1

IVkey2
hp Hh(M)

Figure 15: NMAC: note the use of the hmp node to connect the final h-node to the plain Merkle-Damg̊ard construction.
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Figure 16: The HMAC construction in the keyed setting with κ-nodes κ1 and κ2 (see Section B.2). Note that HMAC
is similar to NMAC except that the actual keys are now generated by h-calls.

B.5.3 Hash Tree

In Figure 17 we show how hash trees fit into Definition 3.1. For simplicity we assume that the
number of message blocks ` is a power of 2. Given message blocks m1‖ . . . ‖m` = pad(M) for
M ∈ {0, 1}∗ it is easy to see that we can construct the corresponding execution graph in time
log-linear in the number of message blocks, that is O(` log `). Extracting the message of a given
partial graph can be done in time of a (reverse) breadth first search starting from the final h-node.

B.5.4 The Double-Pipe Construction / Extensions to the Model

Stefan Lucks [Luc04] proposes several tweaks to the design of iterated hash functions to, for example,
rule out generic attacks such as Joux’ multi-collision attack [Jou04]. In Figure 18 we show how
the double-pipe construction fits into Definition 3.1. Note that to support constructions like the
double-pipe construction we must slightly extend our model of iterative hash functions. We must
now allow that hp-nodes not only have in-degree 1 but 2. Besides slightly complicating the definition
of initial queries and chained queries —we now have to split the pre-image of hp−1(x) into multiple
values— the proofs and intuition presented in this paper work analogously.
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Figure 17: A hash tree in the formalization of Definition 3.1.

m1

mp

m1

mp

h

h

hp

hp

m2

mp

m2

mp

h

h

hp

hp

m`

mp

m`

mp

h

h

hp

hp

hp
h

g Hh(M)

IV

IV

IV

mp

Figure 18: The double-pipe construction from [Luc04]. Note that the message-block-nodes are split for better drawing.
They should, however, be regarded as a single node.

B.6 The Sponge Construction

In the following section we describe what changes need to be done to the model to capture the sponge
construction [BDPA11b] used in SHA-3. The sponge construction is one of the few exceptions that
does not iterate a compression function, but a permutation f : {0, 1}n → {0, 1}n. To process a
message m1‖ . . . ‖m` = pad(M) sponge starts with an empty state IV = 0n which is split into the
bitrate r and capacity c Messages are shorter than the state—in SHA3 one of the recommended
ratios is 576 bit messages and 1024 bit capacity resulting in a 1600 bit state—and in each round the
current message block is xored onto the first part of the state r. The capacity is never touched by
message blocks directly. After the message is xored onto the state the current state is run through
the permutation (r′‖c′)← f(r‖c) to complete the round. We depict the computation of sponge in
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Figure 19: The Sponge Construction. A state split into rate and capacity is iteratively processed through a permutation
f . In each round the current message block is xored onto the first r bits of the state. The remaining c bits (the
sponge’s capacity) is never directly influenced by a message block. The final transformation g outputs a substring of
the first r bits of the state.

Figure 19. Note that for Keccak the preprocessing functions hp and mp are the identity. The final
transformation g outputs the first ` bits of the current state, for example 512 bits.8

Next we describe how to adapt the definition of initial, chained and result queries for sponge. To
be consistent with our established notation we think of f as having two inputs f : {0, 1}r×{0, 1}c →
{0, 1}r × {0, 1}c where the first input corresponds to the first r bits of the state (the bitrate) and
the second input to the remaining c bits (the capacity). A query (m,x) to f is an initial query if
hp−1(x) = IVc, where IVc denotes the capacity parts of the initialization vector. For chained and
result queries the definitions remain the same.

Consequences on Results. In all our proofs we use only three properties of ideal compression
functions: 1) over the choice of compression function h the random variable h(m,x), for fixed m
and x has high min-entropy. This is used to argue that hash values cannot be learned without
querying all h-queries that also occur within an honest execution (see the missing link lemma;
Lemma 3.3). 2) Function h is perfectly collision resistant, that is, finding collisions on h requires
approximately 2s/2 many invocations where {0, 1}s denotes image-space of h. This is used to show
that an extractor exists that on seeing all h-queries by an adversary can reconstruct any execution
graph, which also the adversary has access to (see the extractor lemma; Lemma 3.4 as well as
Lemma C.2). Finally, 3) we require that a hash value Hh(M) for a message M does not leak any
more information on queries to h during the computation of Hh(M) than does message M (see, for
example, Lemma B.3).

We expect our results also to hold for the sponge setting where the ideal compression function
is exchanged for an ideal permutation (and the adversary might also have access to its inverse) and
in the following paragraph present our reasoning. We note, however, that we have not formally
verified this claim.

Clearly, an ideal permutation fulfills the high-entropy requirement. For the collision resistance
note, that in the sponge construction we are concerned with collisions on the capacity part (that
is the last c output bits). Thus, similarly to compression functions, an adversary must make
approximately 2c/2 queries to find a collision. Note, however, that the adversary also has access
to the inverse of permutation f and can use it to generate collisions. For this note that the input
f within an execution graph is only partly controlled by the adversary, that is, the capacity is
never touched directly. Thus, in order to “connect” to partial execution graphs via an inverse query
to f requires the adversary to find a target collision for which we can directly upper bound the
probability by q2−s where q denotes the number of queries by the adversary. Finally, for the third
requirement note that a hash value Hh(M) is computed as g(h(m,x)) for some result query (m,x).
In the case of sponge g is greatly compressing— in SHA-3, for example, from 1600 bits to 512—and,
hence value h(m,x) cannot be reconstructed given only g(h(m,x)) even with unbounded resources.

8If one combines the xoring of the message block with the execution of the permutation, then the sponge
construction is in fact a chopMD construction with compression function h(m, (r|c)) := f(r ⊕m|c).
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Simulator S∗(m,x) :
1 if M[m,x] 6= ⊥ then return M[m,x]
2 T ← {}
3 if init(m,x) then
4 T ← T ∪ new PartialGraph(mp−1(m), hp−1(x))
5 /* extend existing graphs */

6 foreach (pg, pg′) ∈ PG × PG : pg.y = hmp−1(m) ∧ pg′.y = hp−1(x) do
7 T ← T ∪ pg.extendedBy(pg′,m, x)
8 foreach pg ∈ PG : pg.y = hp−1(x) do
9 T ← T ∪ pg.extendedBy(m,x)
10 /* test for conditions B2, B3 and if true then abort */

11 if ∃pg ∈ T : extract(pg) 6= ⊥ then
12 M[m,x]←$ g−1(R(extract(pg)))
13 else
14 M[m,x]← {0, 1}s
15 /* test for condition B1 and if true then abort */

16 foreach pg ∈ T then
17 pg.y←M[m,x]
18 PG ← PG ∪ pg
19 return M[m,x];

Figure 20: Simulator S∗ from Construction C.1 as pseudo-code. The conditions named in comments in lines 10 and
15 are defined in the second game hop in the proof of Lemma C.2.

C The Composition Theorem 4.2

In this section we present the proof of Theorem 4.2. The proof appearing on page 47 makes use of
a generic simulator and a derandomization technique for this simulator. We present the generic
simulator in the upcoming Section C.1 and the derandomization step in Section C.2. Once having
established these results we present the complete proof of Theorem 4.2 in Section C.3. A proof
sketch and the outline of these three steps is given in Section 4.1.

C.1 A Generic Indifferentiabilitiy Simulator

In the following we show that for any indifferentiable hash construction we can use a generic
simulator which replies with randomly chosen values on any non result query and only on result
queries picks a value consistent with the random oracle. For this we consider the following simulator
S∗ that uses similar techniques to that of the extractor of Lemma 3.4 (see Figure 13). We also use
a similar syntax as for the proof of Lemma 3.4.

Construction C.1. We give the pseudo-code of simulator S∗ when receiving query (m,x) in
Figure 20. We assume that it initializes table M← [] and set PG ← {} before processing the first
query.

As in Lemma 3.4 we denote the value of the sole outgoing h-edge of a partial graph pg, relative
to an execution with simulator S∗, by pg.y (which is assigned in line 17). This value is used, as in
extractor E (see Lemma 3.4) to check whether partial graphs can be extended (lines 6 and 8).

A Description of S∗. We give the pseudo-code of simulator S∗ in Figure 20. The Simulator is
very similar to the extractor from Lemma 3.4. Simulator S∗ keeps a table M for storing all the
queries it received and a set PG for storing partial graphs that it creates. On receiving a query
(m,x) simulator S∗ checks table M whether the query has been queried before. If so it returns
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the same result as before: M[m,x]. If it is a fresh query it takes similar steps as extractor E
in Lemma 3.4 to generate new partial graphs which it temporarily stores in set T . For this it
checks whether the query is an initial query, or whether it extends any of the partial graphs that
were generated during previous calls. To compute the output, the simulator checks if any of the
generated partial graphs correspond to a valid execution graph, that is, whether the query was a
result query (see Definition 3.2 and description of model in Section 3). If this is the case, it picks a
value uniformly at random from the preimage of g−1(R(extract(pg)) and sets

M[m,x]←$ g−1(R(extract(pg))

(see line 12). Again note that this execution branch corresponds to result queries and the simulator
thus picks the value such that it is consistent with the random oracle. If, on the other hand, no
partial graph was generated or no partial graph can be completed to a valid execution graph, that is,
extract(pg) = ⊥ for all pg ∈ T , then simulator S∗ chooses a value M[m,x]← {0, 1}s uniformly at
random to answer the query (see line 14). Let us stress, that this value is generated independently
of the state of the simulator, but it depends only on the query and the simulators random coins.
Finally, for all generated partial graphs pg ∈ T the simulator sets value pg.y to M[m,x] and adds
the newly created partial graph to its set of graphs PG (lines 17 and 18). It returns value M[m,x].

Simulator S∗ is a good indifferentiability simulator. In the following we show, that
simulator S∗ as described above is a good indifferentiability simulator game as the underlying
simulator S that it is build from. This is captured by the following lemma:

Lemma C.2. Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function and R a random oracle.
Let simulator S∗ be constructed as in Construction C.1 that exports the same interface as h :
{0, 1}k × {0, 1}d → {0, 1}s. Then for any distinguisher D making at most q oracle queries there
exists distinguisher D′ such that

Advindiff
Hh,R,S∗(D) ≤ q · Advindiff

Hh,R,S(D′) +
2q

2min(d,s)
+

13q2

2H∞(g(Us))+1
.

Proof. We want to upper bound the indifferentiability advantage of a distinguisher D for simulator
S∗:

Advindiff
Hh,R,S∗(D) =

∣∣∣Pr
[
DHh,h(1λ) = 1

]
− Pr

[
DR,SR∗ (1λ) = 1

]∣∣∣ .
For the proof we use a game based approach (similar to the indifferentiability proofs in [CDMP05])

starting from experiment Pr
[
DR,SR∗ (1λ) = 1

]
in GAME1 until we reach the target experiment

Pr
[
DHh,h(1λ) = 1

]
in GAME4 summing up the distinguishing probabilities in the individual game

hops.

GAME1. We start with the original security game:

Pr[ GAME1 ] = Pr
[
DR,SR∗ (1λ) = 1

]
GAME2. This game is as the previous game, but for a slightly changed simulator. The new
simulator S0 works as simulator S∗ but looks for conditions that might be exploited by a distinguisher
and deliberately fails in such a situation. That is, S0 fails if one of the following failure conditions
occur on receiving query (m,x):

Condition B1: Simulator S∗ generates an output value M[m,x] such that there exists (m′, x′) 6=
(m,x) for which g(M[m′, x′]) = g(M[m,x]).
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Condition B2: Simulator S∗ generates two partial graphs pg and pg′ that can both be completed,
that is, extract(pg) 6= ⊥ and extract(pg′) 6= ⊥.

Condition B3: The simulator keeps an additional list L of all queries to it. When on a new query
(m,x) a new partial graph pg is generated it tests for all earlier queries (m′, x′) ∈ L whether
pg can be extended by (m′, x′). If any query is found, the simulator fails.

Let GAME2 be the event that distinguisher D outputs one in this setting, i.e.,

Pr[ GAME2 ] = Pr
[
DR,SR0 (1λ) = 1

]
.

The responses between the distinguisher in GAME1 and GAME2 can only differ, if the simulator
reaches one of the failure conditions. For the difference between games GAME1 and GAME2 it
holds that

|Pr[ GAME2 ]− Pr[ GAME1 ]| ≤ Pr

[
3⋃
i=1

Bi holds for any of the queries

]

We consider the failure conditions in turn.

For event B1 note that the simulator chooses its outputs uniformly at random from {0, 1}s.
Thus, we can directly estimate the probability of event B1 (a collision) as

Pr[B1 holds for any of the queries ] ≤
(
q

2

)
· 2−H∞(g(Us)) ≤ q2

2H∞(g(Us))+1

where Us denotes a random variable uniformly distributed in {0, 1}s.
Failure condition B2 corresponds to the simulator generating two partial graphs pg and pg′

on one query that can both be completed to valid execution graphs. Note that, by definition, in
this case extract(pg) 6= extract(pg′) and hence the simulator could not choose an output that is
consistent with both partial graphs. This, however, directly implies a collision in the simulator’s
output and thus

Pr[B2 holds for any of the queries ] ≤ q2

2s+1

For event B3 note that for a partial graph pg to be extendable by an earlier query (m′, x′) ∈ L
it must hold that hp−1(x′) = pg.y.9 As partial graph pg was generated only after query (m′, x′)
was queried to the simulator by the distinguisher we can bound the probability of guessing value
x′ such that a later query to the underlying simulator SR yields value hp−1(x′) with the birthday
bound as q2 · 2−s−1. Thus,

Pr[B3 holds for any of the queries ] ≤ q2

2s+1

Putting it all together (via a union bound) we have that

|Pr[ GAME2 ]− Pr[ GAME1 ]| ≤ Pr

[
3⋃
i=1

Bi hold for any of the queries

]

≤ q2

2H∞(g(Us))+1
+

2q2

2s+1
≤ 3q2

2H∞(g(Us))+1
(5)

9Note that the condition hmp−1(m′) = pg.y individually is not sufficient to allow for a graph to be extended which
is why we can ignore it here.
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GAME3. We now change the left oracle (i.e., the random oracle) such that the left oracle is always
consistent with the right oracle. That is, instead of the random oracle we now give the distinguisher
access to HS0 , that is, the iterative hash construction with the simulator S0 as oracle. Let GAME3

be the event that distinguisher D outputs one in this setting, i.e.,

Pr[ GAME3 ] = Pr
[
DHS0 ,SR0 (1λ) = 1

]
.

We will show that a distinguisher can only detect a difference in the view of GAME2 and
GAME3 if the simulator S0 fails in at least one of the two games. In other words we show that
in GAME2 the responses of the simulator are always consistent with the random oracle, unless it
explicitly fails.

For this note that the simulator uses the exact technique of the extractor from Lemma 3.4 to
build its internal view. Furthermore, failure conditions B1 to B3 imply that the extraction properly
succeeds in case the simulator sees all relevant queries. That is, collisions do not occur (B1), the
answer of the simulator is consistent with the random oracle on result queries (B2) and that later
generated partial graphs cannot be combined with earlier generated partial graphs (B3). Thus, the
only chance to not be consistent in game GAME3 is, if the distinguisher manages to come up with
the result of an intermediary query without querying the simulator, in which case the simulator
would not recognize a potential result query. This, however, directly translates to an adversary in
Lemma B.3 which we can turn into an indifferentiabiltiy distinguisher.

It follows that we can bound the difference between games 2 and 3 with Lemma B.3 and, thus,

|Pr[ GAME3 ]− Pr[ GAME2 ]| ≤ q · Advindiff
Hh,R,S(D′) +

2q

2min(d,s)
+

4q2

2H∞(g(Us))+1
.

GAME4. In GAME4 we make the game independent of the random oracle. That is, we now
change the simulator to always choose output values for new queries as a uniformly random string
in {0, 1}s. Furthermore, we remove any failure conditions from the simulator. This yields simulator
S1 which effectively simulates a fixed length random oracle via lazy sampling. Let GAME4 be the
event that distinguisher D outputs one in this setting, i.e.,

Pr[ GAME4 ] = Pr
[
DHS1 ,S1(1λ) = 1

]
.

It holds that a distinguisher can only differentiate between games GAME3 and GAME4 if

• In game GAME3, simulator S0 explicitly fails

• In game GAME4, simulator S1 reaches a state in which simulator S0 would have explicitly
failed.

For failure conditions we need to take conditions B1 to B3 into account. Putting it all together we
have that

|Pr[ GAME4 ]− Pr[ GAME3 ]| ≤ Pr[S3 fails in GAME3 ] + Pr[S4 reaches a failure condition ]

=
6q2

2H∞(g(Us))+1

We can now complete the proof of the theorem as we have reached the target view. Note that
simulator S1 effectively implements a fixed length random oracle. Thus:∣∣∣Pr

[
DHh,h(1λ) = 1

]
− Pr

[
DHS1 ,S1(1λ) = 1

]∣∣∣ = 0

and hence, summing up the probability loss in the various game steps we get

Advindiff
Hh,R,S∗(D) ≤ q · Advindiff

Hh,R,S(D′) +
2q

2min(d,s)
+

13q2

2H∞(g(Us))+1
.

45



C.2 Derandomizing the Generic Simulator

We now show how the generic simulator constructed in the previous section can be derandomized.
Note that the simulator distinguishes between result queries and non result queries (cp. lines 12 and
14 in Figure 20). Result queries are answered using the underlying simulator. As this simulator is
probabilistic we need to define how randomness is generated for it. Likewise, we need to define how
random values are chosen deterministically for non-result queries (cp. line 14 in Figure 20). Note
that for non-result queries, the response is independent of gathered state, that is, it only depends
on the query and the random coins of the simulator.

For the derandomization we rely on techniques developed by Bennet and Gill [BG81] who show
that relatively to a random oracle BPP and P are identical.

Lemma C.3. Let Hh : {0, 1}∗ → {0, 1}n be a iterative hash function and R a random oracle.
Let simulator S∗ be constructed as in Construction C.1 and let it export the same interface as
h : {0, 1}k × {0, 1}d → {0, 1}s. Fix tD ∈ N. Then there exists an efficient and deterministic
simulator Sd such that for any distinguisher D with run-time bounded by tD it holds that

Pr
[
DR,Sd

R
(1λ) = 1

]
= Pr

[
DR,SR∗ (1λ) = 1

]
.

Proof. We construct deterministic simulator Sd as follows. Simulator Sd works exactly as simulator
S∗ except for the generation of outputs in lines 12 and 14 in Figure 20. For answering a result query
(m,x) (line 12) we generate the randomness for choosing the preimage of g−1(R(extract(pg))
deterministically as

R(1tD+1‖m‖x)‖R(1tD+2‖m‖x)‖ . . .

picking the i-th bit of the stream as the i-th random bit.
For answering a non-result query (m,x) (line 14 in Figure 20) we compute the answer as

R(0tD+1‖m‖x) .

If we denote with R the random variable, mapping to the random bits used by simulator S∗
and by RRd the random variable, mapping to the coins used by deterministic simulator Sd (over the
choice of random oracle) then their statistical distance (denoted by δ(·, ·)) is zero, that is:

δ(R,RRd ) :=
1

2

∑
x

∣∣Pr[R = x ]− PrR
[
RRd = x

]∣∣ = 0

As furthermore the queries to generate the random bits are larger than any queries made by any
distinguisher with run time bounded by tD it follows that

Pr
[
DR,Sd

R
(1λ) = 1

]
= Pr

[
DR,SR(1λ) = 1

]

The simulator constructed in Lemma C.3 is not only deterministic, but it is also stateless
with respect to non-result queries. That is, any non-result query (m,x) will be answered as
R(0tD+1‖m‖x) which is independent of any gathered state.

C.3 Proof of the Composition Theorem for unsplittable Games: Theorem 4.2

With Lemma C.3 and C.2 we can now prove Theorem 4.2. For this, let us restate Theorem 4.2
from page 13, this time in a concrete setting.
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Theorem 4.2. Let Hh : {0, 1}∗ → {0, 1}n be an iterative hash function indifferentiable from a
random oracle R and let h : {0, 1}d×{0, 1}k → {0, 1}s be an ideal function. Let game G ∈ LG be any
functionality respecting game that is (tA∗ , qA∗ , εG, εbad)-unsplittable for Hh and let A1, . . . ,Am
be an adversary. Then, for any indifferentiability simulator S there exists adversary B1, . . . ,Bm
and distinguisher D such that for all values y

Pr
[
GH

h,A1,...,Am ⇒ y
]
≤ Pr

[
GR,B1,...,Bm ⇒ y

]
+ εG + εbad+

qD · Advindiff
Hh,R,S(D) +

2q

2min(d,s)
+

13q2
D

2H∞(g(Us))+1

with

qD ≤ qG,0 +
m∑
i=1

qG,i · qA∗i .

Values qG,0 and qG,i denote upper bounds on the number of queries by game G to the honest interface
of the hash functionality and to the i-th adversarial procedure, respectively.

Proof. The proof of our result almost directly follows with Theorem 6.1 in [RSS11a] (Theorem 4 in
the proceedings version [RSS11b]), that is, the composition theorem by RSS for reset indifferentia-
bility.

Let A∗1, . . . ,A∗m be such that during game GF ,A
∗
1,...,A∗m bad result queries occur only with

probability εbad, that is, ∣∣∣Pr
[
GH

h,A1,...,Am
]
− Pr

[
GH

h,A∗1,...,A∗m
]∣∣∣ ≤ εG .

The RSS composition theorem for reset-indifferentiability tells us that for adversary A∗1, . . . ,A∗m
and simulator S there exists an adversary B1, . . . ,Bm and distinguisher D such that

Pr
[
GH

h,A∗1,...,A∗m
]
≤ Pr

[
GR,B1,...,Bm

]
+ Advreset-indiff

Hh,R,S (D) .

Adversary Bi is defined as BRi := A∗i
SR , that is a separate instance of simulator S is used in

each procedure Bi. Distinguisher DF .hon,F .adv is defined as D := GF ,A1,...,Am such that a reset call
precedes any adversarial procedure call A∗i [RSS11b]. For the remainder of the proof we show how
to construct a simulator that is able to handle the reset calls made by D.

Simulator Construction. Let S∗ be the simulator given by construction C.1. We derandomize
S∗ with Lemma C.3 and call the resulting simulator Sd. For Lemma C.3 we need additionally to
specify the runtime-bound. We use the runtime-bound of the above defined RSS distinguisher D
and denote it by tD.

As described, adversary Bi in the RSS composition theorem is defined as Bi := A∗
S(i)
d

i where

S(i)
d denotes an independent copy of simulator Sd. By construction, we know that for all non-result

queries the simulation is guaranteed to be consistent, as independent instances of simulator Sd
give the same answer to the same query. Further, by construction, during game GR,B1,...,Bm bad
result queries happen only with probability at most εbad. Thus, for result queries, all queries in the
corresponding partial graph are with probability at least 1− εbad queried by the same adversarial
procedure in correct order. As this allows the procedure’s copy of the simulator Sd to recognize the
partial graph, it follows that also result queries can be answered consistently by the respective copy
of simulator Sd. Thus, with Lemma C.2 (the construction of simulator S∗) and the fact that the
advantage is not changed by the derandomization, we have that there exists distinguisher D′ such
that

Advreset-indiff
Hh,R,S (D) ≤ εbad + qD · Advindiff

Hh,R,S(D′) +
2q

2min(d,s)
+

13q2
D

2H∞(g(Us))+1
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where the factor εbad is due to the probability of bad result queries.
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game IK-CPAA1,A2

AE (1λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)

(pk1, sk1)← KGen(1λ)
m, st← A1(pk0, pk1)

c← EH
h

(pkb,m)

b′ ← Ah
2(c, st)

return (b = b′)

Figure 21: Key Indistinguishability under Chosen-Plaintext Attack

D Public-Key Extractability (PK-EXT) for PKE Schemes

Bellare et al. [BBDP01] define the notion of key indistinguishability (IK-CPA, see Figure 21) for
PKE schemes which intuitively captures that no adversary can tell with which key, out of a known
set, a ciphertext was encrypted. The notion is formalized as an indistinguishability experiment,
where two keys are generated and given to the first-stage adversary A1 which outputs a target
message. According to a secret bit b the message is encrypted with one of the two keys and the
ciphertext is given to the second-stage adversary A2 which has to output a guess for b (note that
as there is no restriction on the state shared by the two adversaries this is essentially a single-stage
notion). The advantage of an adversary A := (A1,A2) against IK-CPA is defined as

AdvIK-CPA
AE (A) := 2 · Pr

[
IK-CPAAAE ⇒ true

]
− 1

It is easy to see that if the adversary can additionally choose the randomness of the scheme the
notion cannot be fullfilled, as adversary A2 could then simply recompute the ciphertext for both
keys and check which one it received.

In this section we show that our notion of PK-EXT-secure PKE schemes is fullfilled by the
REwH1 scheme [BBN+09], if the underlying scheme is IK-CPA secure. Further, if the adversary
cannot choose the randomness then IK-CPA implies PK-EXT for any PKE scheme.

Randomized-Encrypt-with-Hash. The Randomized-Encrypt-with-Hash (REwH1) scheme
[BBN+09] builds on a PKE schem AEr := (KGenr, Er,Dr) in the random oracle model. The REwH1
scheme inherits key generation KGen and decryption D from AEr, while encryption is defined as

ER(pk,m; r) := Er (pk,m;R(pk‖m‖r)) .

D.1 Adaptive IK-CPA

For our result we need to adapt the IK-CPA notion such that the adversary can adaptively generate
ciphertexts. Let us call the adaptive notion aIK-CPA. We depict the corresponding security game
in Figure 22. As is the case for the standard IND-CPA notion for public key encryption, IK-CPA
implies aIK-CPA. The proof follows from a standard hybrid argument.

Proposition D.1. Let A be an aIK-CPA adversary making at most t queries to oracle LoR. Then
there exists adversary B running in time of A, such that

AdvaIK-CPA
AE (A) ≤ t · AdvIK-CPA

AE (B)

We define IK-CPA0A1,A2

AE exactly as IK-CPAA1,A2

AE except that bit b is set to zero at the beginning

of the game and the game returns the guess of adversary A2. Likewise, we define IK-CPA1A1,A2

AE
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game aIK-CPAAAE(1
λ)

b← {0, 1}
(pk0, sk0)← KGen(1λ)

(pk1, sk1)← KGen(1λ)

b′ ← ALoR(pk1, pk2)
return (b = b′)

procedure LoR(m)

return E(pkb,m)

Figure 22: Adaptive Key Indistinguishability under Chosen-Plaintext Attack

where bit b is set to one. This allows us to write the advantage of an adversary A := (A1,A2)
against IK-CPA as:

AdvIK-CPA
AE (A) := Pr

[
IK-CPA1A1,A2

AE ⇒ 1
]
− Pr

[
IK-CPA0A1,A2

AE ⇒ 1
]

Similarly, we define games for the adaptive version:

AdvaIK-CPA
AE (A) := Pr

[
aIK-CPA1AAE ⇒ 1

]
− Pr

[
aIK-CPA0AAE ⇒ 1

]
(6)

Proof of Proposition D.1. Let, without loss of generality, adversary A make exactly t queries. We
define a sequence of adversaries Bi := (Bi1,Bi2) (for 0 < i ≤ t) against IK-CPA having access to an
adversary A against aIK-CPA. Adversary Bi1 gets as input two public keys pk0, pk1. It simulates
oracle LoR as follows: for the first i− 1 queries m it answers with E(pk0,m). For the i-th query m,
adversary Bi1 simply outputs m together with its state. Adversary Bi2 receives as input ciphertext
c which is either E(pk0,m) or E(pk1,m) and the state. It returns c as answer to the LoR-query.
Adversary Bi2 answers all further LoR-queries m from adversary A with E(pk1,m) and outputs as
guess for bit b whatever adversary A outputs.

If b equals zero, then adversary Bt perfectly simulates the LoR oracle and likewise if b equals
1 then adversary B0 perfectly simulates the LoR oracle. Let B := (B1,B2) be the adversary that
chooses 0 < i ≤ t uniformly at random to then implement adversary Bi. Thus, we have that

Pr[B outputs 0|b = 0 ] :=
t∑

j=1

Pr
[
Bj outputs 0|b = 0 ∧ i = j

]
· Pr[ i = j ]

=
1

t

t∑
j=1

Pr
[
Aj outputs 0

]
(7)

where Aj is the adversary in the adaptive aIK-CPA game getting an LoR-oracle that on the first j
queries uses public key pk0 and on the remaining queries uses public key pk1. Likewise, we have
that

Pr[B outputs 1|b = 1 ] :=

t∑
j=1

Pr
[
Bj outputs 1|b = 1 ∧ i = j

]
· Pr[ i = j ]

=
1

t

t−1∑
j=0

Pr
[
Aj outputs 1

]
(8)

Putting it all together, we have that

AdvIK-CPA
AE (B) = Pr

[
IK-CPA1B1,B2AE ⇒ 1

]
− Pr

[
IK-CPA0B1,B2AE ⇒ 1

]
= Pr

[
IK-CPA1B1,B2AE ⇒ 1

]
− 1 + Pr

[
IK-CPA0B1,B2AE ⇒ 0

]
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With equations (7) and (8) this yields

= Pr[B outputs 1|b = 1 ] + Pr[B outputs 0|b = 0 ]− 1

=
1

t

 t−1∑
j=0

Pr
[
Aj outputs 1

]
+

t∑
j=1

Pr
[
Aj outputs 0

]− 1

=
1

t

(
Pr
[
A0 outputs 1

]
+ Pr

[
At outputs 0

])
+

1

t

t−1∑
j=1

(
Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

])
− 1

As (Pr
[
Aj outputs 1

]
+ Pr

[
Aj outputs 0

]
) = 1 for all 1 ≤ j ≤ t− 1 this is

=
1

t
(Pr[ aIK-CPA1⇒ 1 ] + Pr[ aIK-CPA0⇒ 0 ])− 1

t

=
1

t
(Pr[ aIK-CPA1⇒ 1 ]− Pr[ aIK-CPA0⇒ 1 ] + 1)− 1

t

Finally, with equation (6) we get the advantage statement of the theorem:

=
1

t
AdvaIK-CPA

AE (A)

which concludes the proof.

D.2 REwH1 with IK-CPA implies PK-EXT

We can now show that the Randomized-Encrypt-with-Hash scheme is PK-EXT-secure if the
underlying PKE scheme is IK-CPA-secure. We only consider the PK-EXT-notion in the random
oracle model. Note that, as it is a single-stage notion this suffices for composition in the MRH
theorem. Remember that maxpkAE denotes the maximum probability of a collision for a public-key
as generated by KGen, defined in equation (2).

Theorem D.2. Let A be a PK-EXT adversary making at most qA random oracle queries. Then
there exists an adversary B running in time of A, such that

AdvPK-EXT
REwH1 (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .

Proof. We assume, without loss of generality, that adversary A does not repeat queries to its
oracles.

We define adversary B against aIK-CPA. Adversary B gets as input two public keys pk0 and
pk1 and runs adversary A against PK-EXT. It simulates A’s queries to the ENC oracle using its
LoR-oracle simply ignoring the randomness. That is, if (m, r) is a query by A to the ENC-oracle,
then B answers this as LoR(m). Let q be a query to the random oracle by A. Before answering, B
tests if the first bits of query q equal one of the public keys, that is, if

q|1,...,|pk0|
= pk0 or if q|1,...,|pk1|

= pk1 .

If this is the case, then B terminates A and outputs 0 if the first bits were equal to pk0 and 1
otherwise. If the first bits did not equal either of the keys it responds with R(q). If adversary A
terminates with guess pk′ then adversary B outputs 0 if pk′ = pk0, it outputs 1 if pk′ = pk1, and
else outputs a random bit.
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Let the event bad1 be defined as A queries its random oracle on message pk1−b‖x where x is a
some bit string, which in turn leads to B outputting a wrong guess for b. As no information about
pk1−b is leaked to adversary A we can bind the probability of bad1 via a union bound with

Pr[bad1 ] ≤ qA ·maxpkAE

where qA denotes the number of random oracle queries by adversary A.
Let the event bad2 be defined as A outputs guess pk′ = pk1−b. With the same argument this

probability is bound by
Pr[bad2 ] ≤ maxpkAE

If events bad1 and bad2 do not occur then note that adversary B perfectly simulates the oracles
that are expected by A. Adversary A expects the encryption scheme to use randomness generated
as R(pk‖m‖r). This means that as A never queries the random oracle on pk‖m‖r (this is implied
by ¬bad1), it must expect the scheme to use uniformly random coins. This is exactly what is done
by the LoR oracle. In this case adversary B wins whenever A outputs a correct guess (or queries
the random oracle on pkb‖x). This concludes the proof.

A simple adaption of the proof yields, that if the adversary in the PK-EXT game is not allowed
to specify the randomness used by the encryption scheme, then PK-EXT is directly implied by
IK-CPA.

Lemma D.3. Let A be a PK-EXT adversary which is not allowed to specify the randomness used
by the encryption scheme. Then there exists an adversary B running in time of A, such that

AdvPK-EXT
AE (A) ≤ AdvaIK-CPA

AE (B) + (qA + 1) ·maxpkAE .
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E The Ideal Cipher Model vs. the Ideal Compression Function
model

We have stated all of our results relatively to ideal compression functions h : {0, 1}k × {0, 1}d →
{0, 1}s. In this section we briefly discuss the relation between ideal compression functions and ideal
ciphers, where an ideal cipher is a function chosen uniformly at random from all keyed permutations
E : {0, 1}k × {0, 1}n → {0, 1}n where for each key κ ∈ {0, 1}k function Eκ(·) := E(κ, ·) defines a
random permutation.

Compression functions in hash functions are often build from keyed permutations, for example,
using the Davies-Meyer (DM) construction [Win83], which relative to keyed permutation E :
{0, 1}k × {0, 1}n → {0, 1}n defines a compression function as h(m,x) := Em(x)⊕ x. We give the
schematic of the construction in Figure 23.

E

m

x ⊕

Figure 23: The Davies-Meyer construction [Win83] of a compression function from an (ideal) keyed permutation E.

Now it is easily seen, that the DM construction is not an ideal compression function, since given
values h(m,x) ⊕ x and y it is possible to reconstruct value x = E−1

m (h(m,x)⊕ x), which for an
ideal compression function should not be possible [CDMP05]. We do, however, expect that the DM
construction can be plugged into all our statements which are then analyzed in the ideal cipher
setting. Note that we did not formally verify this claim. In the following we do, however, give our
reasoning: As discussed also for the sponge construction (see Section B.6), our proofs make use of
three properties of compression functions:

1. To argue that hash values cannot be learned without querying all h-queries that also occur
within an honest execution (see the missing link lemma; Lemma 3.3), we require that over
the choice of h the random variable h(m,x), for fixed m and x has high min-entropy. For the
DM construction this is the case as over the choice of E value Em(x)⊕ x can take any value
in {0, 1}n.

2. We require that compression function h is collision resistant in order to rule out that two
execution graphs labeled relative to h have a common subgraph which includes the final node
g (see the extractor lemma; Lemma 3.4 as well as Lemma C.2). Dodis et al. [DRS09] show
that the DM construction is preimage aware (PrA) which implies collision resistance.

3. We require that a hash value Hh(M) for a message M does not leak any more information
on queries to h during the computation of Hh(M) than does message M (see the proof of
Theorem 5.3). This can be interpreted as, given value Hh(M) the strengthened missing link
lemma still holds (see Lemma B.2). Hash values are computed as g(h(m,x)) for a result
query (m,x) where x is a chaining value and which translates to g(Em(x)⊕ x) for the DM
construction. As E is an ideal cipher, value Em(x)⊕ x is uniformly distributed in {0, 1}s. As
x is a chaining value and by (1) and the strengthened missing link lemma has full entropy,
value x cannot be learned but for a local re-computation of Hh (M), or via exhaustive search
on E and E−1.

Let us note that if hash function Hh is required to be indifferentiable from a random oracle, that
then this naturally translates to HDME

needing to be indifferentiable from a random oracle. For the
case of HMAC, NMAC, and various Merkle-Damg̊ard variants including chopMD and prefix-free-MD
Coron et al. [CDMP05] have given analyses in precisely this setting.
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