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Abstract

In some wireless environments, minimizing the size of messages is paramount due to the
resulting significant energy savings. We present CMCC, an authenticated encryption scheme
with associated data (AEAD) that is also nonce misuse resistant. The main focus for this work
is minimizing ciphertext expansion, especially for short messages including plaintext lengths less
than the underlying block cipher length (e.g., 16 bytes). For many existing AEAD schemes, a
successful forgery leads directly to a loss of confidentiality. For CMCC, changes to the ciphertext
randomize the resulting plaintext, thus forgeries do not necessarily result in a loss of confiden-
tiality which allows us to reduce the length of the authentication tag. For protocols that send
short messages, our scheme is similar to Counter with CBC-MAC (CCM) for computational
overhead but has much smaller expansion. We prove both a misuse resistant authenticated
encryption (MRAE) security bound and an authenticated encryption (AE) security bound for
CMCC. We also present a variation of CMCC, CWM, which provides a further strengthening
of the security bounds. Our contributions include both stateless and stateful versions which
enable minimal sized message numbers using different network related trade-offs.

Keywords: Energy constrained cryptography, authenticated encryption.

1 Introduction

The current paradigm of providing confidentiality and integrity protection for distributed appli-
cations through the use of encryption combined with MAC’s (Message Authentication Codes) is
reasonably efficient for many environments. In particular, for network message sizes that range
from several hundred bytes or more, having MAC’s that utilize 8-20 bytes is not unduly inefficient.
For resource constrained environments, where message lengths are often less than one-hundred
bytes, existing MAC’s impose a more significant overhead. Since it requires more energy to send
longer messages, it is important to reduce message sizes in protocols used by wireless devices. This
need becomes even more critical for low bandwidth networks.

A key reason that MAC’s need to be long is that the most popular symmetric block cipher modes
can be predictively modified by an attacker. Counter mode (CTR) can be modified by flipping bits
so the attacker can precisely control the changes to the message. Cipher Block Chaining (CBC) can
be modified such that changes to one block are predictable while the preceding block is randomized
(see [Bel96] for attacks that utilize this property). Also, the most common schemes for CCA
(Chosen Ciphertext Attack) security [KY00] utilize a CPA (Chosen Plaintext Attack) encryption
scheme combined with a MAC (Message Authentication Code) [DDN00].
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In this paper we present a new authenticated encryption mode, CMCC. CMCC utilizes a pseudo-
random function (PRF) (e.g., AES but other choices are possible). Our construction uses multiple
invocations of the PRF so that any modifications to ciphertext result in a randomized plaintext.

CBC-MAC-CTR-CBC (CMCC) mode is a general purpose authenticated encryption mode
[BN00]. We apply CBC encryption in the first round, use a MAC followed by a CTR mode in
the 2nd round, and CBC encryption again in the 3rd round (see Figures 1 - 3). We prove that
CMCC is misuse resistant [RS06]: encryptions using the same message number, plaintext, and as-
sociated data are identifiable to the adversary as such, but security is preserved if the same message
number is reused where either the plaintext or associated data is distinct. Since changes to the
ciphertext randomize the resulting plaintext, with high probability, we achieve authentication by
appending a string consisting of τ bits set to zero to the plaintext prior to encryption. Relative to
SIV [RS06], CMCC has smaller ciphertext expansion.

We obtain MRAE and AE security with competitive security bounds using only a small number
of bytes of ciphertext expansion, for a full range of message sizes.

We will make use of variable length input pseudorandom functions fi. In order to better under-
stand the intuition behind our scheme, consider the case where the plaintext is the concatenation
of the strings P1 and P2 where each string’s length equals the pseudorandom function output size
(e.g., 16 bytes in the case of AES). Consider the scheme:

X = f3(W,P1)⊕ P2

X2 = f2(W,X)⊕ P1

X1 = f1(W,X2)⊕X

where the ciphertext is X1, X2, and W is an unpredictable pseudorandom value. For maximum
security, W is unique, with high probability, for each message encrypted under a given key K. Then
if the adversary flips some bits in X1, the corresponding bits in X are flipped during decryption,
and this produces random changes to P1 during decryption (see 2nd equation). The first equation
is then applied which results in random changes to P2. A similar argument applies if we flip one
or more bits in X2. Since changes to any bits in the ciphertext result in random changes to the
plaintext, we will see that the authentication tag can be a string of zero bits appended to the
plaintext, and that the corresponding term in the security bound, due to this ciphertext expansion,
is smaller than in comparable schemes.

A common scenario is one where some packet loss and/or packet reordering may occur so that
the communication peers aren’t fully synchronized. We present two versions of our scheme with
different trade-offs to handle loss of synchronization. The stateless version uses a public message
number and its size is constrained thus limiting the number of messages that can be encrypted
under a single key while avoiding resuse of the message numbers. The stateful version uses a
private message number which is encrypted and the last few bytes of the resulting encryption are
sent with the ciphertext. This mechanism enforces a different trade-off; the limit here is on the
maximum amount of disorder between encryption order and decryption order. It also hides the
number of messages previously sent.
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1.1 Definitions for Authenticated Encryption (AE)

We give motivation for our definition of authenticated encryption.
Consider OCB or a counter mode variant (e.g., GCM) with a 4 byte authentication tag. Then

for the AE security game (see Section 2.1.1 for definition), submit the message (plaintext) with all
1’s and also the message with all 0’s. The adversary obtains a ciphertext response corresponding
to one of the plaintexts. Then randomly flip bits in this ciphertext for each new ciphertext query
and attach a random authentication tag. Then the probability of winning is q(2−32). The reason is
that this bound is the probability that one of the submitted ciphertexts is valid. If it’s valid then
we get the plaintext back which shows us the bits that we flipped. And if the flipped bits are zero,
then the original message had all 1’s and vice versa. Now compare this to CMCC with a 4 byte
zero bit authentication string. Then our AE security bound is approximately q(q − 1)(2−65) for a
12 byte message. Thus CMCC has stronger AE security given a short authentication tag. If we
run the same attack against CMCC as in the preceding paragraph, then the probability of a valid
ciphertext is approximately the same. But the corresponding plaintext would be randomized with
high probability and thus would give us no information about the challenge plaintext.

The MRAE–AE definition in [RS06] does not distinguish between the security levels in the two
cases above, but the PRI (Pseudo Random Injection) definition in [RS06] does distinguish them.

This distinction becomes more important given short authentication tags; in particular, clas-
sifying a forgery as a a complete loss of security is not always appropriate. Depending on the
application, a single forgery may not be enough to disrupt the application (e.g., VoIP), and de-
pending on the encryption scheme, it may be detectable during higher layer protocol checks. Our
security definition should be general enough to handle the case of a valid ciphertext query where
changes to the ciphertext randomize the resulting plaintext so that the upper layer protocol checks
detect and reject the message. (None of our security bounds include any factor related to upper
layer protocol checks.)

Our definition gives the Adversary encryption and decryption oracles (real world) vs. a random
injection function and its inverse and asks the Adversary to distinguish between the two (see
Section 2). This definition is the same as the PRI definition in [RS06].

1.2 Applications

For constructing a secure channel (with both confidentiality and authentication) using our encryp-
tion scheme, it follows that we can shorten or eliminate our MAC tag since the adversary cannot
make a predictable change to the encrypted message, as in many counter-mode based schemes.
(These other schemes depend on the MAC to detect such a change). With our scheme, a change to
the packet is highly likely to cause the packet to be rejected due to a failure to satisfy application
protocol checks. Another possibility (e.g., Voice over IP (VoIP)) is that the randomized packet will
have a minimal effect. With only a small probability can the adversary achieve a successful integrity
attack. Since network transmission and reception incurs significant energy utilization, it follows
that we can expect to achieve significant energy savings. Our analytical results for wireless sensor
networks show that energy utilization is proportional to packet length, and that the cryptographic
computational processing impact on energy use is minor.

If we consider VoIP, a 20 byte payload is common. The transport and network layer headers
(IP, UDP, and RTP) bring another 40 bytes, but compression [CJ99, BBD+01] is used to reduce
these fields down to 2-4 bytes. The link layer headers add another 6 bytes. Thus the total packet
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size is 30 bytes, assuming the UDP checksum of 2 bytes is included. In this case, by omitting the
recommended 10 byte authentication tag and using CMCC with 2 bytes of expansion, we obtain
a 1/5 savings in message size and corresponding savings in energy utilization. Furthermore if the
encryption boundary is just after the CID field (which is used to identify the full headers), then
the UDP checksum is encrypted and acts as a 2 byte authentication tag. Even if the adversary
was lucky enough to obtain the correct checksum, the resulting Voice payload would be noise, with
high probability.

Wireless sensor networks also use short packets [VA08] to maximize resource utilization; these
packets are often in the range of 10-30 bytes. For the adversary, large numbers of queries are likely
to be either impossible or highly anomalous in these constrained low bandwidth networks.

1.3 Our Contributions

Our contributions are as follows:

1. We give a new family of private key encryption schemes with minimal ciphertext expansion.
We obtain AE security with a competitive security bound using only a small number of bytes of
ciphertext expansion, for a full range of message sizes. When message numbers are not reused
for CMCC, we obtain a security bound which is dominated by q(q − 1)2−τ−1(1/β + 2−τ ) +
2e(q − 1)/β where β = min{α, 2B}, B is the block cipher block length in bits, and α = 28m

where Len is the byte length of the minimal length plaintext query response, m = bLen/2c
and τ is the bit length of the authentication tag.

2. CMCC is a general purpose misuse resistant authenticated encryption mode. We define
security for misuse resistant authenticated encryption and prove a MRAE security bound for
CMCC. CMCC has less ciphertext expansion than SIV [RS06]. In particular, the ciphertext
expansion τ due to the SIV IV contributes a q(q − 1)/2τ term to the SIV security bound,
whereas the CMCC ciphertext expansion due to the authentication tag adds a q(q − 1)/22τ

term to the CMCC AE bound, and a q/2τ term to the CMCC MRAE security bound.

3. We give both stateless and stateful versions of our schemes where we minimize message
number sizes in both versions. As discussed above, each version enables a different trade-off
based on the network and application parameters.

4. We present a variant of CMCC, CMCC with MAC, or CWM. CWM replaces the authenti-
cation tag consisting of zero bits in CMCC with an authentication tag consisting of a MAC
computed over the plaintext. When message numbers are not reused for CWM, we obtain a
security bound which is dominated by q2/23τ + q2/(22τβ) + q/(2τ−1β) and if message num-
bers can be reused then we obtain a bound dominated by q/22τ−1 + q2/23τ−1 + q2/(22τβ) +
q/(2τ−1β) + q2/(2α) + q2/(2β).

5. We give a rough comparison for CPU overhead, network overhead, and energy consumption
between CCM and CMCC, where energy is based on a wireless sensor node, the Mica2Dots
platform. CMCC uses less energy since its ciphertext expansion is smaller, while the number
of block cipher invocations is similar.
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1.4 Related Work

There was originally work in the IETF IPsec Working Group on a confidentiality-only mode; the
original version of ESP provided confidentiality without integrity protection [Atk95]. However,
[Bel96] showed that CBC and stream-cipher like constructions were vulnerable to attacks that
could be prevented by adding a MAC.

Given a message with redundancy, the idea that authenticity can be obtained by enciphering it
with a strong pseudorandom permutation goes back to [BR00]. The authors formally prove a bound
on adversary advantage against authenticity which requires that the probability that an arbitrary
string decodes to a valid message is low. In [AB01], the authors show that public redundancy is not
always sufficient and that private (keyed) redundancy leads to stronger authentication properties.
Struik [Str11] presented application requirements and constraints, independently of this work at
roughly the same time this work was started.

In [Des00], Desai gives CCA-secure symmetric encryption algorithms that don’t use a MAC
and don’t provide explicit integrity protection outside of the CCA-security. The most efficient one
is UFE which utilizes variable length pseudorandom functions. Its ciphertext expansion is |r| bits
where r is a uniform random value; security can be compromised if the same r is used for multiple
messages. Since r is uniform random, collisions are likely after 2|r|/2 messages. The UFE security
bound is q(q + 1)/2|r|. If the adversary can make 220 queries, then Theorem 4.6 gives a security
bound around 2−57 for CMCC with a 6 byte authentication string, given a 14 byte message. UFE
would require a 13 byte ciphertext expansion to assure the same security level.

Rogaway and Shrimpton introduced misuse resistant authenticated encryption (MRAE) in the
seminal paper [RS06], where they present the MRAE schemes SIV and PTE. SIV includes a MRAE
scheme where the expansion includes the block cipher block size (e.g., 16 byte) IV plus the nonce.
Thus CMCC is a MRAE scheme with smaller expansion (which is important for short messages),
and comparable security for applications that require less than a 16 byte MAC. Some applications
can utilize a 4 byte or smaller MAC and meet security requirements. The SIV ciphertext expansion
adds a q(q − 1)/2τ term to the SIV security bound, while the CMCC ciphertext expansion adds a
q(q− 1)/22τ term to the CMCC AE bound, and a q/2τ term to the CMCC MRAE security bound.
The RFC 5297 specification of SIV has the same number of block cipher invocations as CCM,
and roughly the same number of block cipher invocations as CMCC (see Table 5). Our security
definition is the same as the PRI security definition in [RS06].

CMCC uses the same authentication construction as PTE. However, the TES that
[RS06] recommends for PTE is not capable of encrypting messages with less than the block size of
the underlying block cipher.

Collisions in the IV [RS06] (or random message number in [Des00]) will result in loss of privacy
for the affected messages. Thus security is increased if the IV is long (e.g., 16 bytes for SIV). In other
words, decreasing ciphertext expansion results in less security. Security for our scheme increases as
message length grows, so privacy is stronger when ciphertext expansion is minimal, given message
lengths between 10 and 32 bytes. The parameter X in our scheme is similar to the σ parameter in
[Des00] and to the IV in [RS06]. These last two parameters create ciphertext expansion whereas
X does not. Our scheme is targeted at environments where minimizing ciphertext expansion is
valuable.

Other fully nonce-misuse resistant schemes include AEZ [HKR15], HS1-SIV [Kro14], Julius
[Bah14], MRO [GJMN16], HBS [IY09b], and BTM [IY09a] with the first three being Caesar Au-
thenticated Encryption competitors along with CMCC. Of the above schemes, similarly to CMCC
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AEZ addresses smaller length messages and minimal ciphertext expansion. The ciphertext expan-
sion, or stretch, is a user controlled parameter that is an input to the encryption function. The
AEZ paper does not give a security bound when message length plus stretch is less than 16 bytes.
For some message/stretch sizes between 16 and 32 bytes, the CMCC security bounds are stronger.
AEZ also makes use of a nonstandard 4 round AES function.

Processing performance for CMCC is similar to SIV, whereas the above schemes are significantly
more efficient (for processing but not energy usage) than SIV.

[BZD+16] surveys Internet facing https servers and proxies to detect nonce reuse for AES-GCM
in TLS. Their study uncovered nonce reuse thus showing the value of nonce-misuse resistance.

Shrimpton and Terashima [ST13] use a 3 round unbalanced Feistel network approach to obtain
schemes TCT1 and TCT2 where the latter has BBB (Beyond Birthday Bound) security for longer
messages (messages of length ≥ 2n where the underlying blockcipher has length n. Both schemes
are STPRP’s (Strong Tweakable PRP’s, e.g., the adversary may reuse tweaks.)

There is additional work in the area of small domain encryption including [RY13].

1.5 Organization

In Section 2, we give basic cryptographic definitions. In Section 3, we present the CMCC au-
thenticated encryption scheme with minimal ciphertext expansion. Section 4 gives the proof that
establishes security bounds for CMCC authenticated encryption and misuse resistant authenticated
encryption. We also present CWM in this section. Section 5 gives our performance analysis and
results, including a comparison of energy utilization between CMCC and CCM, for wireless sensor
nodes. In Section 6 we draw conclusions.

2 Definitions

2.1 Pseudorandomness

All strings are binary strings (if S is a string, then S ∈ {0, 1}∗.) The concatenation of two strings
S and T is denoted by S||T, or S, T where there is no danger of confusion. For a string S, |S| is its
length (in bits). If 1 ≤ i ≤ j ≤ |S|, then S[i . . . j] is the substring from the ith to the jth characters,
inclusive.

We write w ←W to denote selecting an element w from the set W using the uniform distribu-
tion. We write x← f() to denote assigning the output of the function f , or algorithm f , to x. SC

denotes the complement of set S.
Throughout the paper, the adversary is an algorithm which we denote as A.
We follow [GGM86] as explained in [Sho04] for the definition of a pseudo-random function:

Let l1 and l2 be positive integers, and let F = {hL}L∈K be a family of keyed functions where each
function hL maps {0, 1}l1 into {0, 1}l2 . Let Hl1,l2 denote the set of functions from {0, 1}l1 to {0, 1}l2 .

Given an adversary A which has oracle access to a function in Hl1,l2 or F . The adversary will
output a bit and attempt to distinguish between a function uniformly randomly selected from F
and a function uniformly randomly selected from Hl1,l2 . We define the PRF-advantage of A to be

AdvprfF (A) = |Pr[L← K : AhL() = 1]− Pr[f ← Hl1,l2 : Af () = 1]|

AdvprfF (q, t) = max
A
{AdvprfF (A)}
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where the maximum is over adversaries that submit at most q queries and run in time t.
Intuitively, F is pseudo-random if it is hard to distinguish a random function selected from F

from a random function selected from Hl1,l2 .
We also define AdvprpF (q, t) in the same manner where the comparison is with a random permu-

tation and F is a family of keyed permutations.

2.1.1 Authenticated Encryption (AE) and Misuse Resistant Authenticated Encryp-
tion (MRAE)

Given plaintext (message) set P, associated data set AD, ciphertext set C, key set K, header
string set H, and message number set N . An authenticated encryption scheme (AE) is a tuple
Π = (K, E ,D) such that E : K × H × N × AD × P → C, D : K × H × N × AD × C → P ∪ {⊥},
and D(K,H,N,A, E(K,H,N,A, P )) = P for all H ∈ H, N ∈ N , A ∈ AD, P ∈ P. If there is no
P ∈ P such that C = E(K,H,N,A, P ), then D(K,H,N,A,C) =⊥ . We write DK and EK in place
of D(K, ...) and E(K, ...).

For our security definition, we define the ideal world object as a random injective function. The
expansion function is e : H×N ×AD×P → N. The expansion function depends only on the length
of its arguments. Let InjH,N ,Ae (P, C) be the set of injective functions f from H×N ×AD×P into
C such that |f(H,N,A, P )| = |P |+ e(|H|, |N |, |A|, |P |).

Let Π = (K, E ,D) be an AE with message space P, associated data set AD, header string set
H, message number set N , and expansion e. The AE-advantage of adversary A against Π is

Adv
AE(q,t,µ)
Π (A) = Pr[K ← K : AEK(.,.,.)DK(.,.,.) ⇒ 1]−

Pr[f ← InjH,N ,Ae (P, C) : Af(.,.,.),f−1(.,.,.) ⇒ 1]

when encryption oracle queries use unique message numbers and A is restricted to asking q queries
totaling µ blocks in running time t. f−1(H,N,A,C) = P if f(H,N,A, P ) = C and returns ⊥ if no

such tuple (H,N,A, P ) exists. We define MRAE-advantage and Adv
MRAE(q,t,µ)
Π analogously except

encryption oracle queries are allowed to repeat message numbers. We also define Adv
AE(q,t,µ)
Π =

maxAdv
AE(q,t,µ)
Π (A) over all adversaries A that ask q queries totaling µ blocks in time t. We define

Adv
MRAE(q,t,µ)
Π = maxAdv

MRAE(q,t,µ)
Π (A) over all adversaries A that ask q queries totaling µ blocks

in time t for the MRAE environment where message numbers may be repeated in encryption oracle
queries. We will also consider the case where the game is restricted if the adversary submits a
decryption oracle query which returns ⊥; in this case, the adversary will not be allowed to make
additional oracle queries prior to its output. We define AdvprivE (A) = |Pr[L ← K : AEL() =
1]− Pr[A$ = 1]| for encryption scheme E with expansion τ where $ returns a random string with
τ plus the input string’s bitlength bits. We also define AdvprivE (q, t, µ) = maxAdvprivE (A) over all
adversaries A that ask q queries totaling µ blocks in time t. CTRK(N,P ) denotes Counter Mode
encryption with key K, nonce N, and plaintext P.

3 CMCC

In this section, we present CMCC. CMCC includes a stateless version with public message numbers,
and a stateful version with private message numbers. The stateless version has full misuse resistance
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against reuse of the message numbers, whereas the stateful version has resistance as well, but some
private message numbers may result in decryption failures if too far outside the decrypt window.

Figures 1 - 3 describe the stateless version of CMCC, and Figures 4 - 5 describe the stateful
version.

3.1 CMCC Stateless Encryption

We now present CBC-MAC-Counter-CBC (CMCC) mode. CMCC is a general purpose authenti-
cated encryption mode which is misuse resistant and optimized for energy constrained environments.

3.1.1 Overview

For stateless version encryption, we initially utilize CBC mode and obtain the value X. Here we
utilize EK̄ to create the CBC IV W from the message number M. This prevents the adversary from
being able to manipulate M and P1 in a way that allows collisions in X values to be created. Then
we apply a MAC algorithm to W,X and use the result as the IV for counter mode encryption to
encrypt P1 and obtain X2. Note that if the message has length less than or equal to 32 bytes, then
the output of the MAC function is xor’d with P1 to obtain X2 and additional counter blocks are
not needed. Finally we create the other half of the ciphertext, X1 using CBC mode applied to X2

and exclusive-or with X.

3.1.2 Notation

We use ⊕ to denote bitwise xor. When we xor two strings with different lengths, the longer string
is first truncated to the length of the shorter string. bj is the bit b repeated j times. Sj denotes
the bit string S repeated j times. Thus (0110)2 = 01100110. A and B is the logical AND operation
on two equal length strings A and B. The notation R128 = 012010000111 denotes the bit string
with 120 zero bits, followed by the bits 1,0,0,0,0,1,1, and 1. x << n denotes the left shift operator
(filling vacated bits with zero bits), after shifting the string x by n bits to the left. B denotes the
block length of the underlying block cipher (128 bits for AES). Ek denotes encryption using the
block cipher and input key k.

LSBj(x) and MSBj(x) denote the j least significant bytes and j most significant bytes of byte
string x respectively.

3.1.3 Padding

We will apply the padding scheme from the AES-CMAC algorithm to our mode when CBC en-
cryption is performed. One difference is that we will sometimes need to pad by a full block length
(B/8 bytes)1 and we use the same padding scheme as when the padding is between 1 and B/8− 1
bytes.

1. Given the CBC encryption key K, and byte strings S1 and S2, where |S1| ≤ |S2|. We define
pad(S1)S2 as follows:

1If S1 is a multiple of B and S2 is one byte longer, than we pad S1 with B/8 bytes. If both strings are the same
length which is a multiple of B then we do not add any padding bytes.
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2. pad length is the number of bits (which is a multiple of 8) needed to bring S1 up to the length
of S2 and then bring S1 up to a multiple of the block size. More formally,

pad length = |S2| − |S1|+B − (|S2| mod B)

where mod values are taken between 1 and B.

3. We define L = EK(0B). If the most significant bit of L is zero, then define K1 = L << 1,
otherwise, we define K1 = (L << 1) ⊕ R128. If the most significant bit of K1 is zero, then
define K2 = K1 << 1. Otherwise, we define K2 = (K1 << 1)⊕R128.

If pad length = 0, then |S1| is a multiple of B; let F be the last block of S1. We define
pad(S1)S2 to be S1 with its last block replaced with F ⊕K1.

If 1 ≤ pad length ≤ B, then we append the following string to the last (possibly empty) block
F of S1 : 10pad length−1. We denote this string as S̄1. pad(S1)S2 is S̄1 with the last B bits of
S̄1 replaced with F ||10pad length−1 ⊕K2.

3.2 CMCC Stateful Encryption - Informal Design Intuition for Private Message
Numbers

For stateful encryption, the only difference is in how the message numbers are handled: the message
number tag is T = LSBIL(EK̄(i)) for message number i. This follows the description in Section 3.3.

We allow the caller to use private message numbers. In this case,

EK̄(i)) = Mi, i ≥ 0,

for private message number i where encryption key K̄ is shared by the communication peers for the
block cipher E. If the sender and receiver communication is synchronized, then M doesn’t need to
be transmitted. Otherwise, we send the least significant 2-3 (IL) bytes of the value Mi as described
above except we eliminate Mi values from the sequence if the least significant IL byte(s) duplicate
a previous Mj ’s least significant IL byte(s) where (γ − j) ≤ 2(window size) + 1 given Mi as the
γth element in the sequence (after eliminating previous last IL-byte duplicates and Mj is the jth
element of the resulting sequence). In other words, Mi’s that are close together are selected to
have distinct least significant byte(s). This does require a small amount of additional computation
to compute the sequence of Mi values but doesn’t require significant additional work over the case
where the least significant bytes are allowed to collide (since 2(window size) + 1 will be less than
the birthday bound). The window size parameter (w s) controls how much the encryptor and
decryptor are allowed to fall out of synchronization.

Private message numbers allow the number of messages previously sent to be hidden and also
minimize the number of bytes transmitted on the wire but the scheme is stateful.

3.3 CMCC Private Message Numbers

The two communication peers are denoted as the initiator (init) and responder (resp), respectively.
There are two channels; one with the initiator as the encryptor and the responder as the decryptor,
and the other with the initiator as the decryptor and the responder as the encryptor. We will
describe the private message number (stateful) case.
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Algorithm CMCC Encrypt(P, K̄, L3, L2, L̄2, L1, N, A)
M ← (10110110)16−|N |/8||N
Z ← 0τ

W ← EK̄(M)
Q← P ||Z
L← |Q|/8
if L = 0 mod 2 then

P1 ←MSBL/2(Q)
P2 ← LSBL/2(Q)

else
P1 ←MSB(L−1)/2(Q)
P2 ← LSB(L+1)/2(Q)

end if
X ← CBC(W,pad(P1)P2 , L3)⊕ P2

Y ← X||A
V ←MAC(W ||Y, L2)
i← b|P1|/Bc
P1 = P̄1,1|| . . . ||P̄1,i||P̄1,i+1 where |P̄1,1| = . . . = |P̄1,i| = B and |P̄1,i+1| = |P1| mod B.
U ← V and (164||01||131||01||131)
X2 ← V ⊕ P̄1,1||EL̄2

(U + 1)⊕ P̄1,2|| . . . ||EL̄2
(U + i)⊕ P̄1,i+1

X1 ← CBC(W,pad(X2)X , L1)⊕X

Figure 1: CMCC Encryption: Encryption inputs are plaintext P, key K = K̄, L3, L2, L̄2, L1, public
message number N, and associated data A. CBC(IV, P,Key) is CBC encryption with initialization
vector IV, plaintext P, and key Key. MAC(P,Key) is the CMAC MAC algorithm [Dwo05] with
plaintext P and key Key. pad() is the padding algorithm defined in Section 3.1. EK̄ is the block
cipher with key K̄. |P |, the bitlength of P , is a multiple of 8, as is τ. U is obtained from V by
zeroing bits 31 and 63 to enable faster addition (prevent carries) [Har08]. U + j is integer addition,
1 ≤ j ≤ i. When xor’ing two strings of different length, the longer string is first truncated to the
length of the shorter string.
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Algorithm CMCC Decrypt(X1, X2, K̄, L3, L2, L̄2, L1, N, A)
M ← (10110110)16−|N |/8||N
Z ← 0τ

W ← EK̄(M)
X ← CBC(W,pad(X2)X1 , L1)⊕X1

Y ← X||A
V ←MAC(W ||Y, L2)
i← b|X2|/Bc
X2 = X̄2,1|| . . . ||X̄2,i||X̄2,i+1 where |X̄2,1| = . . . = |X̄2,i| = B and |X̄2,i+1| = |X2| mod B.
U ← V and (164||01||131||01||131)
P1 ← V ⊕ X̄2,1||EL̄2

(U + 1)⊕ X̄2,2|| . . . ||EL̄2
(U + i)⊕ X̄2,i+1

P2 ← CBC(W,pad(P1)X , L3)⊕X
Q = P1||P2,
U = LSBτ/8(Q)
if (U ! = Z) return ⊥
else
Q = P̃ ||Z and return Plaintext P̃
end if

Figure 2: CMCC Decryption: Decryption inputs are ciphertext X1X2, key K = K̄, L3, L2, L̄2, L1,
public message number N, and associated data A.

3.3.1 Key Generation

Keys K̄1 and K̄2 are randomly generated for the pseudorandom permutations EK̄i
i = 1, 2.

3.3.2 Initial State

uinit = uresp = 0. inite = initd = respe = respd = 0. (inite and initd are part of the initiator state;
respe and respd are part of the responder state.) IL is the number of bytes that are transmitted to
the peer for recovering the message number. w s is initialized to a positive integer. m1 = 2(w s)+1.
Initially the sequences of M values, Seq(init) and Seq(resp) are empty.

3.3.3 Creating the Sequences of Private Message Numbers

Let x be the encryptor, x ∈ {init, resp}. Let v = 1 if x = init, and let v = 2 if x = resp. Let
Seq(x) = M0, . . . ,Mxe−1.
start: candidate(M) = EK̄v

(ux)
IF LSBIL(candidate(M)) = LSBIL(Mi) for any i, 0 ≤ i ≤ xe − 1, where (xe − i) ≤ m1,
ux = ux + 1, go to start;
ELSE
{
Mxe = candidate(M); Seq(x) = M0, . . . ,Mxe

ux = ux + 1;
}
ENDIF
SeqNox[M ] = i if M is the ith element in the sequence Seq(x).
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Plaintext Z = {0}τ

divide into 2 strings 

Q

EL4 (U+1) …P1,1
EL4(U+i)

P1,2 P1,i+1

X

Pad(P1)P2
L3

A

MAC
V

CBC

pad

X1

X2

L2

P1

P2

pad Pad(X2)X CBC

L1

N{0xb6}16-|N|/8

M

EK

W

Ciphertext: X1, X2

|P1| = |P2| or 
|P1| = |P2| - 8

W||X||A

U = V and 164||01||131||01||131

Figure 3: CMCC Stateless Encryption: L4 = L̄2

3.3.4 Channel Assumption

The decryption algorithm returns ⊥ if the ciphertext was created using a message number M
that was too far out of synchronization. The following assumption guarantees that decryption is
successful (i.e., does not output ⊥).

Let y ∈ {init, resp} where y 6= x. The next ciphertext that is decrypted, X1|| . . . ||Xk||T is such
that there exists M̄ in Seq(x) such that LSBIL(M̄) = T and |SeqNox[M̄ ]− yd| ≤ w s.

Given the channel assumption, there exists M̄ such that LSBIL(M̄) = T, and the algorithm
for creating the sequence ensures that M̄ is unique.

Table 1 summarizes the parameters for the stateful scheme.

4 Proof of Security

We first give some examples illustrating attacks against CMCC. We will then prove a MRAE
security bound for CMCC (see Theorem 4.3). A key point is that ciphertext queries that do not
return invalid can be used to create new plaintexts that satisfy a relation (see examples below) that
is less likely to be satisfied given a random injection. Of course the MRAE security bound is also
an AE security bound for CMCC, but we prove a smaller AE security bound in Theorem 4.6. In

12



Algorithm CMCC Stateful Encrypt(P, K̄1, K̄2, L3, L2, L̄2, L1, i, A)
Select M such that SeqNox[M ] = i.
Z ← 0τ

Q← P ||Z
L← |Q|/8
if L = 0 mod 2 then

P1 ←MSBL/2(Q)
P2 ← LSBL/2(Q)

else
P1 ←MSB(L−1)/2(Q)
P2 ← LSB(L+1)/2(Q)

end if
X ← CBC(M,pad(P1)P2 , L3)⊕ P2

Y ← X||A
V ←MAC(M ||Y,L2)
j ← b|P1|/Bc
P1 = P̄1,1|| . . . ||P̄1,j ||P̄1,j+1 where |P̄1,1| = . . . = |P̄1,j | = B and |P̄1,j+1| = |P1| mod B.
U ← V and (164||01||131||01||131)
X2 ← V ⊕ P̄1,1||EL̄2

(U + 1)⊕ P̄1,2|| . . . ||EL̄2
(U + j)⊕ P̄1,j+1

X1 ← CBC(M,pad(X2)X , L1)⊕X
T = LSBIL(M).

Figure 4: CMCC Stateful Encryption: Encryption inputs are plaintext P, key K =
K̄1, K̄2, L3, L2, L̄2, L1, private message number i, and associated data A. State initialization is
per the Key Generation, Initial State, and Creating the Sequence of Private Message Numbers
subsections above. CBC(IV, P,Key) is CBC encryption with initialization vector IV, plaintext
P, and key Key. MAC(P,Key) is the CMAC MAC algorithm [Dwo05] with plaintext P and key
Key. pad() is the padding algorithm defined in Section 3.1. EK̄ is the block cipher with key K̄. |P |
is a multiple of 8, as is τ. U is obtained from V by zeroing bits 31 and 63 to enable faster addition
(prevent carries) [Har08]. U + l is integer addition, 1 ≤ l ≤ j. If xor’ing two strings of different
lengths, the longer string is first truncated to the length of the shorter string.
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Algorithm CMCC Stateful Decrypt(X1, X2, K̄1, K̄2, L3, L2, L̄2, L1, T, A)
x ∈ {init, resp} and x has created the ciphertext.
Let y ∈ {init, resp} where y 6= x.
There exists at most one M̄ in Seq(x) such that LSBIL(M̄) = T and |SeqNox[M̄ ]− yd| ≤ w s.
if M̄ exists, then
M = M̄
else
return ⊥
end if
i← SeqNox[M ]
if SeqNox[M ] > yd, then
yd = SeqNox[M ].
end if
Z ← 0τ

X ← CBC(M,pad(X2)X1 , L1)⊕X1

Y ← X||A
V ←MAC(M ||Y,L2)
j ← b|X2|/Bc
X2 = X̄2,1|| . . . ||X̄2,j ||X̄2,j+1 where |X̄2,1| = . . . = |X̄2,j | = B and |X̄2,j+1| = |X2| mod B.
U ← V and (164||01||131||01||131)
P1 ← V ⊕ X̄2,1||EL̄2

(U + 1)⊕ X̄2,2|| . . . ||EL̄2
(U + j)⊕ X̄2,j+1

P2 ← CBC(M,pad(P1)X , L3)⊕X
Q = P1||P2,
U = LSBτ/8(Q)
if (U ! = Z) return ⊥
else
Q = P̃ ||Z and return Plaintext P̃ , i
end if

Figure 5: CMCC Stateful Decryption: Decryption inputs are ciphertext X1, X2, key K =
K̄1, K̄2, L3, L2, L̄2, L1, message number tag T, and associated data A. State initialization is per
the Key Generation, Initial State, and Creating the Sequence of Private Message Numbers subsec-
tions above.
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Parameter Description

M per message value obtained by using PRP on private message number

EK̄() PRP used to create M values

l number of bits in the strings mapped by EK̄(); assume l = 128

q bound on number of adversary queries

IL number of bytes of ciphertext expansion

w s bound on ciphertext reordering that still ensures decrypt success

Table 1: Summary of Parameters for Stateful CMCC Scheme

Algorithm SIV-G Encrypt EL2,L̄2
(H,N,A, P )

X ← f(P, T )
IV ← CMACL2(N ||X||A)
C ← CTRL̄2

(IV, P )
return Y = IV ||C

Figure 6: SIV-G Encryption: Encryption inputs are header H = T, nonce N, associated data A,
and plaintext P.

Section 4.1, we present a CMCC variant, CMCC with MAC, or CWM. We prove a MRAE security
bound for CWM in Theorem 4.7 and a AE security bound for CWM in Theorem 4.8.

To give more insight into the best attacks and security properties of CMCC, we utilize the
following examples.
Example 1: Without the encoding step (for the zero bit authentication tag), CMCC is not MRAE
secure (the adversary advantage is large in the MRAE security game). To illustrate this fact, the
adversary submits a plaintext query followed by a ciphertext query using the same message number
M and value X2. Both queries are twice the block length of the underlying block cipher. The adver-
sary can compute X1⊕ X̄1 = X ⊕ X̄. The adversary then creates two new plaintexts by modifying
both P2 and P̄2 so that the two corresponding ciphertexts have equal X values. Note that the
two plaintexts have distinct P1 values (P11 and P12). The adversary submits both plaintexts along
with the message number M and receives the two ciphertexts whose X2 values xor to P11 ⊕ P12.
This relation is only satisfied with probability 1/α for a random injection and thus the adversary
advantage is large.

Example 2: Given a collision of X values for two plaintext queries in the MRAE security game
(message numbers may be reused). Then the adversary can modify the respective P2 values to
create two new plaintexts such that the corresponding ciphertexts have equal X values. Then the
adversary can win with high probability as in the preceding example. This attack works even if
the zero bit authentication tag is being used. Thus q(q − 1)/2α will be part of the security bound
for CMCC MRAE security.
Remark: For the stateless scheme, if there is a field in the associated data which is distinct for
each message (e.g., sequence number field), then this can be utilized for the message number and
the advantage is that no additional bytes for the message number are sent over the network.
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Algorithm SIV-G Decrypt DL2,L̄2
(H,N,A, Y )

if |Y | < B, then return ⊥ .
IV ← Y [1 . . . B], C ← [B + 1 . . . |Y |]
P ← CTRL̄2

(IV, C)
X ← f(P, T )
IV2 ← CMACL2(N ||X||A)
if IV = IV2, return P , else return ⊥ .

Figure 7: SIV-G Decryption: Decryption inputs are header H = T, nonce N, associated data A,
and Y

Lemma 4.1 ([RS06] - Theorems 2 and 7) SIV has MRAE security bound

Adv
MRAE(q,t,µ)
SIV ≤ AdvprfCMAC(q, t) +AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9.

Lemma 4.2 Consider the following generalization of the SIV [RS06] algorithm, SIV-G: We include
a distinguished string T as part of the header H. We replace the plaintext P in the PRF calculation
with f(P, T ) where f is an injective function (thus f(P, T ) = f(P̄ , T̄ ) implies P = P̄ and T = T̄ .)
See Figure 6 and 7. The security bound for SIV-G is unchanged from SIV: SIV-G has MRAE
security bound

Adv
MRAE(q,t,µ)
SIV−G ≤ AdvprfCMAC(q, t) +AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9.

Theorem 4.3 Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ =
∑q

i=1dbi/32e. B
is the cipher block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [Dwo05].
Let s be the maximum number of CMAC blocks in a query; c1 is a constant. CMCC encryption
(stateless version) is a misuse resistant authenticated encryption scheme with MRAE-advantage
bounded by

q(q − 1)/2α+ q(q − 1)/2β + 1− (1− 1/β − 2−τ )x + (5s2 + 1)q2/2B +

AdvprpE (sq + 1, t+ c1sq) +AdvprpE (sq, t) + sq(sq − 1)/2B+1 + µ(µ− 1)/2B+1 +

AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9 + 2q(q − 1)/2B+1 +AdvprpE (q, t)

given that the adversary is restricted to q queries, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response,
m = bLen/2c, assuming up to x invalid ciphertexts do not result in session termination, and τ is
the number of bits in the authentication tag.

Remark: Intuitively, there are three types of relations that distinguish CMCC from a random
injection:

1. For messages where |α| is shorter than the block length, and M = M̄, we have the relation
X2 ⊕ X̄2 = P1 ⊕ P̄1 with higher probability equal to 1/α + (α − 1)/α2 for CMCC versus
1/α for the random injection. The reason is that we may have a collision of X values with
probability 1/α and if that does not occur, the resulting V values may still be equal in the
first log2(α) bits.
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2. If M = M̄, X2 = X̄2, and P1 = P̄1, then X1⊕X̄1 = P2⊕P̄2. The latter occurs with probability
1/β for CMCC but it occurs with probability 1/β2 for a random injection.

3. For messages such that |X1| = block length, M = M̄, P2 = P̄2, and P1 6= P̄1, we have
the relation X2 ⊕ X̄2 = P1 ⊕ P̄1 with probability 1/2B given a random injection, but with
probability 0 for CMCC.

Proof: case i: All plaintexts have length ≤ 2 ∗B + 1− τ bits: We use a games based proof to
establish the bound claim for the theorem. Game G0 is depicted in Figure 8. Game G0 gives the
adversary the CMCC encryption and decryption oracles and the adversary’s probability of success
is equal to the adversary’s MRAE-advantage against CMCC.

Game G1 is the same as game G0 except we replace the CMAC MAC function with a random
function. Now consider an adversary AE,D where E and D are either the game G0 encrypt and
decrypt oracles or the game G1 encrypt and decrypt oracles. When A submits P , A, N, then X1,
X2 is returned and we give the distinguisher D X2⊕P1 = F (P,A,N) where F is either CMAC or a
random function. When A submits X1, X2, A, N then P is returned and we give the distinguisher
D X2 ⊕ P1 = F (P,A,N). When A outputs b, D also outputs b (b ∈ {0, 1}). Then A′s probability
of success is bounded by the probability bound for any adversary to distinguish CMAC from a
random function which is (5s2 +1)q2/2B +AdvprpE (sq+1, t+c1sq) [IK03] where E is the underlying
block cipher, e.g., AES, and s is the maximum number of blocks in any query.

Thus

|Pr[AG1 ⇒ 1]− Pr[AG0 ⇒ 1]| ≤ (5s2 + 1)q2/2B +AdvprpE (sq + 1, t+ c1sq)

Game G2 is the same as game G1 except the block ciphers used in CBC encryption for computing
X1 and X are replaced with random functions. Consider the game F (see Figure 9) where prf game
adversary B has oracle access to functions f1 and f2 and distinguishes between the following:

1. f1 = EL3 , f2 = EL1 , and

2. f1 = g1 ∈ H128,128, f2 = g2 ∈ H128,128 (g1 and g2 are random functions.)

f1 = EL3 if and only if f2 = EL1 . B will run AGi as a subroutine, i = 1, 2. If f1 = EL3 , then A is
in game G1, and if f1 = g1 then A is in game G2.

Each encryption query from A results in B′s query of W ⊕ pad(P1)P2 to f1. A will output a bit
indicating whether it is in game G1 or game G2. B outputs the same bit for the prf game. Thus
A′s probability of success is bounded by B′s probability of success. Let q be the number of queries
to f1. Then Adv(A, q, t) ≤ AdvprfE (q, t) where E is the block cipher.

Thus we obtain

|Pr[AG2 ⇒ 1]− Pr[AG1 ⇒ 1]| ≤ AdvprfE (q, t) ≤ AdvprpE (q, t) + q(q − 1)/2B+1

Game G3 is the same as game G2 except:

1. Initialize is modified: Initially we set QD(N,A) = ∅ for all N,A. QD(N,A) is a subset of the
plaintexts.

2. The line: if (U ! = Z) return ⊥; otherwise Q = P̃ ||Z and return Plaintext P̃ , A,N is replaced
with:
Q̄ is a random string of length |Q| such that the prefix of Q̄ of length |Q|−τ is in QD(N,A)C ,
Ū = LSBτ/8(Q̄). If (Ū ! = Z) return ⊥, else Q̄ = P̃ ||Z, return P̃ , A,N.
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3. If the adversary submits the encryption query P,A,N, then we set QD(N,A) = QD(N,A)∪
{P}.

Then the advantage of A in distinguishing G3 and G2 is bounded by the probability of ob-
taining a valid response from the decryption oracle. Consider the adversary’s optimal strategy for
obtaining a valid ciphertext response in game G2; given the ciphertext query X̄1, X̄2, N̄ . Clearly
if no encryption queries have been submitted (so no query responses have been received) then the
probability of a valid response is 2−τ . Suppose we have submitted one previous encryption query:
P1, P2, N,A returning X1, X2.

case a: N̄ = N and X̄2 6= X2.
Then the probability of a valid response is independent of this previous query since we evaluate

the random function at a new domain point. Thus X̄ is uniform random, and the value P2 will be
uniform random, so the probability of a valid response is 2−τ .

case b: N̄ 6= N and X̄2 = X2.
The argument as in case a applies; the probability of a valid response is 2−τ .

case c: N̄ 6= N and X̄2 6= X2.
The adversary may select X̄1 = X1. Then X̄ = X with probability 2−B. The input to the ran-

dom function for computing P2 will also be the same with probability 2−B; otherwise, the probabil-
ity of a valid response will be 2−τ . Thus the probability of a valid response is 2−τ +2−B(2−B+2−τ ).

case d: N̄ = N and X̄2 = X2.
We have Pr[P̄1 = P1] = 1/β and in that case if the last τ bits of X̄1 equal the last τ bits of X1

then the query is valid. We have P̄1 6= P1 with probability (β − 1)/β. In this case, P2 is uniform
random so the probability that the query is valid is 2−τ . Thus the probability of a valid query is
1/β + ((β − 1)/β)2−τ .

Case d maximizes the probability of a valid response. There are two strategies for additional
queries: multiple encryption queries followed by decryption queries or a single encryption query
followed by decryption queries. Multiple encryption queries are likely to result in distinct X2 values;
in any case, two responses with equal N and X2 values allows the Adversary to distinguish CMCC
from a PRI with high probabiity without any decryption queries (see Games G4 and G5.) Thus the
optimal strategy for multiple queries using the case d strategy is a single encryption query followed
by decryption queries.

For cases a and b, multiple encryption queries followed by ciphertext queries does not increase
the probability of a valid decryption query beyond 2−τ . Thus these strategies are suboptimal in the
multiple queries case as well.

For case c, multiple encryption queries followed by multiple decryption queries does increase
the probability of a valid decryption query. The success probability is dominated by q2(2−B−τ )
which is less than the optimal case d strategy.

Thus the optimal adversary strategy is a single plaintext query followed by successive ciphertext
queries that match the N and X2 values from the plaintext query.

The bound for Adversary success, assuming at most x, 1 ≤ x ≤ q, invalid ciphertext queries
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prior to session termination, is

|Pr[AG3 ⇒ 1]− Pr[AG2 ⇒ 1]| ≤ 1− (1− 1/β − 2−τ )x.

Game G4 is the same as game G3 except the line
X = CBC(W,pad(P1)P2 , L3)⊕ P2,
is replaced with
X = CBC(W,pad(P1)P2 , L3) ⊕ P2; if X ∈ set of used X, bad5 = true and reselect X : X ←
set of used XC . If X /∈ set of used X, set of used X = set of used X ∪ {X}. Then

|Pr[AG4 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ q(q − 1)/2α+ q(q − 1)/2B+1.

Game G5 is depicted in Figure 10. Then game G5 and game G4 are indistinguishable except
that collisions are possible in the strings S2 where C includes S1||S2. When such a collision occurs,
the games are distinguishable; the bound on collisions is q(q − 1)/2β. It is possible in game G4

that a ciphertext query that is not invalid will return a plaintext and another encrypt query with
a different plaintext returns the same ciphertext. This last sequence is not possible in game G5.
However, the bound from Game G3 allows us to assume that no valid ciphertext queries occur.
Thus

|Pr[AG5 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ q(q − 1)/2β + q(q − 1)/2B+1.

Thus the bound claimed in the theorem statement holds.
case ii: Some plaintexts have length greater than 2 ∗B + 1− τ bits:
We note that this case is a suboptimal strategy for the adversary. Game G1 is unchanged and for
game G2 the term q(q−1)/2B+1 from above is generalized to sq(sq−1)/2B+1. The game G3 bound
holds. For CBC(W,pad(X2)X) in game G3, if the every input to each random function invocation
is a previously unseen input (fresh input), then the output is random (the function is a random
function). This bound on failure here is µ(µ− 1)/2B+1 + q(q − 1)/2B+1.

Lemma 4.2 applies if all of the X values from the queries are distinct. For the function f in
the Lemma, we use P = 2nd to last blocks of P1, T = P2||1st block of P1, and f(P, T ) = X =
CBC(W,pad(P1)P2 , L3)⊕P2. The probability that the X values from the queries is not distinct is
bounded by q(q − 1)/2α+ q(q − 1)/2B+1 (where α ≥ 2B.) The X1 values and first block of X2 are
random strings when these failure events do not occur and thus the CMCC adversary’s advantage
is the same as the SIV-G advantage. Thus the CMCC adversary’s advantage in distinguishing
between games G3 and G5 is bounded by the sum of the two terms above plus the SIV-G security
bound.

Initialize: Select the CMCC key, using the uniform random distribution. Let Z be the bit string
with τ zero bits. bad4 = bad5 = false. Let set of used X = ∅.
Encrypt(P , A, N): See Figure 1 for definition.
Decrypt(C, A, N): See Figure 2 for definition.
Output: Return the adversary’s output.

Figure 8: CMCC MRAE proof Game G0

Remark: (i) We can replace the 2−τ term in the above theorem with 2−(τ+γ) where γ quantifies
the number of higher level protocol check bits. (ii) We can eliminate the 2−τ term if |P2| ≤ τ.
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Initialize: B selects keys K̄, L2, L̄2, using the uniform distribution. B has oracle access to f1 and
f2.
Response to A′s encrypt query: B computes and returns X1, X2 to A.
Response to A′s decrypt query: B computes and returns P1, P2 to A.
Output: Return A’s output.

Figure 9: Game F with PRF Adversary B.

Initialize: Select a random injection f ∈ InjN ,Ae (P, C) . Let Z be the bit string with τ zero bits.
e(N,A, P ) = τ for all N , A, and P.
Encrypt(P , A, N): Return f(N,A, P ).
Decrypt(C, A, N): f−1(N,A,C) = P if f(N,A, P ) = C and return ⊥ if no such triple (N,A, P )
exists.
Output: Return the adversary’s output.

Figure 10: CMCC MRAE proof Game G5

We now prove a security bound for the CMCC stateless AEAD algorithm; here message numbers
are not allowed to be repeated in plaintext queries. In the following, games H1, H2, H3, and H4

are identical to games G1, G2, G3, and G5 respectively, except the Hi games are in the AE security
game where queries may not reuse message numbers from previous queries.

Lemma 4.4 Let q − 1 ≤ 2τ . Given the adversary strategy in game H2 (in the AE game) where
the adversary submits a plaintext query P1, P2, N and obtains the response X1, X2. The adversary
then submits a succession of ciphertext queries of the form X̄1, X2, N where the last τ bits of X̄1

are equal to the last τ bits of X1. Given the relation

X̂1 ⊕ X̄1 = P̂2 ⊕ P̄2 (1)

Then

Pr[there are 2 distinct queries P̂1, P̂2, N, X̂1, X2 and P̄1, P̄2, N, X̄1, X2 satisfying (1) is] ≤

(q − 1)

q−2∑
i=0

(
q − 2

i

)
λ1/2

iτ < λ1e(q − 1) < 2e(q − 1)/β

where λ1 = 1/β + (β − 1)/β2.

Proof: We use induction over the number of queries. If q = 2, we have

Pr[(1) holds] = λ1 = (q − 1)

q−2∑
i=0

(
q − 2

i

)
λ1/2

iτ < λ1e.
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Suppose the lemma is valid for k = q − 1. We now prove the k = q case. We have

Pr[(1) in H2 with q queries] = Pr[(1) in H2 with first q − 1 queries] +

Pr[not (1) in H2 with first q − 1 queries ∩ (1) in H2 with qth query] ≤
Pr[(1) in H2 with first q − 1 queries] + Pr[(1) in H2 with qth query] ≤

(q − 2)

q−3∑
i=0

(
q − 3

i

)
λ1/2

iτ + λ1 + (1− λ1)

(
q−2∑
i=0

(
q − 2

i

)
2−iτ (1− 2−τ )q−2−iiλ1

)
<

(q − 2)

q−3∑
i=0

(
q − 3

i

)
λ1/2

iτ + λ1 +

q−2∑
i=0

(
q − 2

i

)
iλ1/2

iτ =

q−3∑
i=0

((
q − 3

i

)
(q − 2)λ1/2

iτ +

(
q − 2

i

)
iλ1/2

iτ

)
+ λ1 + (q − 2)λ1/2

(q−2)τ =

q−3∑
i=0

(
q − 2

i

)
(q − 2)λ1/2

iτ + (q − 2)λ1/2
(q−2)τ + λ1 =

λ1 + (q − 2)

q−2∑
i=0

(
q − 2

i

)
λ1/2

iτ <

(q − 1)

q−2∑
i=0

(
q − 2

i

)
λ1/2

iτ .

Also,
q−2∑
i=0

(
q − 2

i

)
1/2iτ <

q−2∑
i=0

1/i! < e

which completes the proof.

Lemma 4.5 Let q − 1 ≤ 2τ . Given the adversary strategy in game H3 above where the adversary
submits a plaintext query P1, P2, N and obtains the response X1, X2. The adversary then submits a
succession of ciphertext queries of the form X̄1, X2, N where the last τ bits of X̄1 are equal to the
last τ bits of X1. Then

Pr[there are 2 distinct queries P̂1, P̂2, N, X̂1, X2 and P̄1, P̄2, N, X̄1, X2 satisfying (1) is] ≥
(q − 1)2−τ/β

Proof: The probability that (1) is satisfied is bounded below by

1− (1− 2−τ/β)q−1 = 1−
q−1∑
i=0

(
q − 1

i

)
(−2−τ/β)i ≥ 1− (1− (q − 1)2−τ/β) = (q − 1)2−τ/β

Theorem 4.6 Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ =
∑q

i=1dbi/32e. B
is the cipher block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [Dwo05].
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Let s be the maximum number of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}.
CMCC encryption (stateless version) is an authenticated encryption with associated data (AEAD)
scheme with AE-advantage bounded by

q(q − 1)2−τ−1(1/β + 2−τ ) + 2e(q − 1)(1/β + (L− 1)/2B+τ + 2−B) + (5s2 + 1)q2/2B +

AdvprpE (sq + 1, t+ c1sq) +AdvprpE (sq, t) + sq(sq − 1)/2B+1 + µ(µ− 1)/2B+1 +

AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9 + 2q(q − 1)/2B+1 +AdvprpE (q, t)

given that the adversary is restricted to q queries, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response,
m = bLen/2c, and τ > 0 is the number of bits in the authentication tag. We also assume q−1 ≤ 2τ .

Proof: case 1: All plaintexts have length ≤ 2 ∗B + 1− τ bits:
For the transition from game H2 to game H3 we have two mechanisms for the adversary to

distinguish between the two: X2 ⊕ X̄2 = P1 ⊕ P̄1, and X1 ⊕ X̄1 = P2 ⊕ P̄2 (1) for two distinct
queries X2, X1, N, P1, P2 and X̄2, X̄1, N̄ , P̄1, P̄2.

We first consider distinguishing between H2 and H3 via (1):
case a: Here the adversary uses the strategy from Lemma 4.4: the adversary submits a single
plaintext query with message number N and receives a response with X1 and X2, followed by
ciphertext queries with N̄ = N, and X̄2 = X2, where the last τ bits for X̄1 are equal to the last τ
bits of X1 from the plaintext query. Then we have

|Pr[AH2 ⇒ 1]− Pr[AH3 ⇒ 1]| ≤
2e(q − 1)/β − (q − 1)2−τ/β ≤ 2e(q − 1)/β

where we have applied both Lemma 4.4 and Lemma 4.5 from above.

case b: Games H2 and H3 can also be distinguished if a collision occurs on W ⊕ pad(P1)P2 and
W ⊕ pad(X2)X between 2 distinct plaintext queries in game H2 which gives a slightly higher
probability for the relation X1 ⊕ X̄1 = P2 ⊕ P̄2 in H2 versus H3. This probability is bounded by
q(q + 1)2−2B−1. We can ignore the corresponding case where one or both queries are ciphertext
queries since the probability would be less. Furthermore, this strategy is sub-optimal compared to
the case a strategy above.

case c: Neither of the above two cases: then at least one of the CBC random function replacements
get evaluated on a point distinct from the point in any other query. Thus the probability of (1) is
the same in both H2 and H3.

We now check the adversary’s optimal strategy to distinguish between H2 and H3 based on

X2 ⊕ X̄2 = P1 ⊕ P̄1 (2)

case d: Given two previous valid ciphertext queries with identical X2, N, and last τ bits of X1 val-
ues, the adversary may leverage the technique from the examples above to create a new encryption
query that will have the same N value and which will match one of the previous query’s X value.
Then this query response can be used to distinguish between H2 and H3. The adversary advantage

22



is bounded by q(q − 1)2−τ−1(1/β + 2−τ ).

case e: Given a combination of zero or more plaintext queries and one or more ciphertext queries,
with at least two total queries. If we have a match on the last τ bits of X1 values for some queries
as well as a collision on W ⊕ pad(X2)X then the adversary can follow the approach in case d above
and distinguish between H2 and H3 based on (2) above. Note that the X2 and N values are dis-
tinct across the queries. The probability of such a collision between two queries is at best 2−B and
therefore this strategy is suboptimal.

case f: The new query (either X̄1, X̄2, N̄ or P̄1, P̄2, N̄) is such that N̄ is distinct from the N in pre-
vious queries. Then X2 ⊕ X̄2 = P1 ⊕ P̄1 occurs with the same probability in both H3 and H2 since
N̄ results in a previously unseen point for the domain of the CMAC random function replacement.

case g: The new ciphertext query is such that X̄2 and N̄ match the corresponding values in a set of
previous queries: Then the corresponding X values are distinct. So X2⊕ X̄2 = P1⊕ P̄1 occurs with
the same probability in both H3 and H2. (Here we assume that the last τ bits of the X1 values are
distinct, or alternatively, that all of the previous queries are plaintext queries, to distinguish this
case from case d above.)

case h: The new ciphertext query is such that X̄2 is distinct from and N̄ matches the corresponding
values in a set of previous queries:

Note that only one of the previous queries is a plaintext query whereas the others must be
valid ciphertext queries. Then we have a similar scenario as for case a above, and we can apply
Lemma 4.4 with the collision bound 2−τ+1/β in place of 1/β+ (β− 1)/β2. Since the latter value is
larger, this strategy is suboptimal.

case i: None of the above cases. Then the inputs to the CBC(W,pad(X2)X) random function
replacement are distinct across all queries. Thus the probability of X1 ⊕ X̄1 = X ⊕ X̄ is 1/β for
any two queries. Also, the above cases are exhaustive for (X,N) = (X̄, N̄). Thus the probability
of (2) is the same in both H2 and H3.
case 2: Some plaintexts have length greater than 2 ∗B + 1− τ bits:
The case with longer plaintexts/ciphertexts is similar to the Theorem 4.3 case ii above. The term
2e(q− 1)/β is generalized to 2e(q− 1)(1/β+ (L− 1)/2B+τ + 2−B). Also, the bound on X collisions
is q(q − 1)/2B+1.

4.1 CMCC with MAC (CWM)

In this section, we present a variant, CMCC with MAC (CWM). Figures 11 and 12 specify CWM.
For the proof of CWM AE security, the main distinction with CMCC above is that we no longer
restrict q − 1 ≤ τ. By requiring the MAC computation, CWM achieves a stronger security bound
at the cost of additional processing, when compared with CMCC.

We give the MRAE security bound and the AE security bound for CWM in the next two
theorems.

Theorem 4.7 Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ =
∑q

i=1dbi/32e. B
is the cipher block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [Dwo05].
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Algorithm CWM Encrypt(P, K̄, L3, L2, L̄2, L1, N, A)
M ← (10110110)16−|N |/8||N
Z ←MAC(P, K̄)
W ← EK̄(M)
Q← P ||Z
L← |Q|/8
if L = 0 mod 2 then

P1 ←MSBL/2(Q)
P2 ← LSBL/2(Q)

else
P1 ←MSB(L−1)/2(Q)
P2 ← LSB(L+1)/2(Q)

end if
X ← CBC(W,pad(P1)P2 , L3)⊕ P2

Y ← X||A
V ←MAC(W ||Y, L2)
i← b|P1|/Bc
P1 = P̄1,1|| . . . ||P̄1,i||P̄1,i+1 where |P̄1,1| = . . . = |P̄1,i| = B and |P̄1,i+1| = |P1| mod B.
U ← V and (164||01||131||01||131)
X2 ← V ⊕ P̄1,1||EL̄2

(U + 1)⊕ P̄1,2|| . . . ||EL̄2
(U + i)⊕ P̄1,i+1

X1 ← CBC(W,pad(X2)X , L1)⊕X

Figure 11: CWM (Stateless) Encryption: Encryption inputs are plaintext P, key K =
K̄, L3, L2, L̄2, L1, public message number N, and associated data A. CBC(IV, P,Key) is CBC
encryption with initialization vector IV, plaintext P, and key Key. MAC(P,Key) is the CMAC
MAC algorithm [Dwo05] with plaintext P and key Key. pad() is the padding algorithm defined in
Section 3.1. EK̄ is the block cipher with key K̄. |P | is a multiple of 8, as is τ . U is obtained from
V by zeroing bits 31 and 63 to enable faster addition (prevent carries) [Har08]. U + j is integer
addition, 1 ≤ j ≤ i. If xor’ing two strings of different lengths, the longer string is first truncated
to the length of the shorter string.
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Algorithm CWM Decrypt(X1, X2, K̄, L3, L2, L̄2, L1, N, A)
M ← (10110110)16−|N |/8||N
W ← EK̄(M)
X ← CBC(W,pad(X2)X1 , L1)⊕X1

Y ← X||A
V ←MAC(W ||Y, L2)
i← b|X2|/Bc
X2 = X̄2,1|| . . . ||X̄2,i||X̄2,i+1 where |X̄2,1| = . . . = |X̄2,i| = B and |X̄2,i+1| = |X2| mod B.
U ← V and (164||01||131||01||131)
P1 ← V ⊕ X̄2,1||EL̄2

(U + 1)⊕ X̄2,2|| . . . ||EL̄2
(U + i)⊕ X̄2,i+1

P2 ← CBC(W,pad(P1)X , L3)⊕X
Q = P1||P2,
U = LSBτ/8(Q)

Q = P̃ ||U
if (U ! = MAC(P̃ , K̄)) return ⊥
else
return Plaintext P̃
end if

Figure 12: CWM (Stateless) Decryption: Decryption inputs are ciphertext X1X2, key K =
K̄, L3, L2, L̄2, L1, public message number N, and associated data A.

Let s be the maximum number of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}.
CWM encryption (stateless version) is a misuse resistant authenticated encryption scheme with
MRAE-advantage bounded by

q(q − 1)/2α+ q(q − 1)/2β + (1− 1/β)((q − 1)/(2τ−1β) + (q − 1)(q − 2)/(22τβ) +

(L− 1)((q − 1)/(2B+τ−1) + (q − 1)(q − 2)/2B+2τ ) + (q − 1)/22τ−1 +

(
q − 1

2

)
1/23τ−1) +

(5s2 + 1)q2/2B +AdvprpE (sq + 1, t+ c1sq) +AdvprpE (sq, t) + sq(sq − 1)/2B+1 +

µ(µ− 1)/2B+1 +AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9 + 2q2/2B+1 +AdvprpE (q, t)

given that the adversary is restricted to q queries, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response,
m = bLen/2c, assuming up to x invalid ciphertexts do not result in session termination, and τ is
the number of bits in the authentication tag.

Proof sketch: The proof is similar to the proof of Theorem 4.3 above with the main difference
being the bound for the strategy in Lemma 4.4. Also, we use the game structure from Theorem 4.6.
Consider the strategy from Lemma 4.4 for the case where plaintexts have short length (≤ 2B+1−τ).
Then we have

Pr[(1)] = Pr[(1) with 1st query] + Pr[(1) without 1st query] =

(q − 1)(1/(2τβ) + (β − 1)/(2τβ2)) +

(
q − 1

2

)
(1/(22τβ) + (β − 1)/(β222τ )) <

(q − 1)/(22τ−1β) + (q − 1)(q − 2)/(22τβ)
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This term generalizes to

(q − 1)/(2τ−1β) + (q − 1)(q − 2)/(22τβ) + (L− 1)((q − 1)/(2B+τ−1) + (q − 1)(q − 2)/2B+2τ )

for the arbitrary length messages case.
Also, we have that

Pr[(2)] = (q − 1)/22τ−1 +

(
q − 1

2

)
1/23τ−1

We also have
Pr[AG2 ⇒ 1] ≤ Pr[(1)] + Pr[(2)]

and
Pr[AG3 ⇒ 1] ≥ (1/β)(Pr[(1)] + Pr[(2)]

Thus
|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ (1− 1/β)(Pr[(1)] + Pr[(2)]

Theorem 4.8 Let bi =number of bytes in ith query response, 1 ≤ i ≤ q. Let µ =
∑q

i=1dbi/32e. B
is the cipher block length. Let β = min{α, 2B}. Let the CMCC MAC function be CMAC [Dwo05].
Let s be the maximum number of CMAC blocks in a query; c1 is a constant. L = max1≤i≤q{bi}.
CWM encryption (stateless version) is an authenticated encryption with associated data (AEAD)
scheme with AE-advantage bounded by

(1− 1/β)q(q − 1)2−3τ−1 + (q − 1)/(2τ−1β) + (q − 1)(q − 2)/(22τβ) +

(L− 1)((q − 1)/(2B+τ−1) + (q − 1)(q − 2)/2B+2τ ) + (5s2 + 1)q2/2B +

AdvprpE (sq + 1, t+ c1sq) +AdvprpE (sq, t) + sq(sq − 1)/2B+1 +

µ(µ− 1)/2B+1 +AdvprivCTR(q, t, µ) + 5q/2B + q2/2B+9 + 2q2/2B+1 +AdvprpE (q, t)

given that the adversary is restricted to q queries, E is the underlying block cipher for CMAC
(e.g., AES), α = 28m where Len is the byte length of the minimal length plaintext query response,
m = bLen/2c, and τ > 0 is the number of bits in the authentication tag.

Proof sketch: The proof is similar to the proof of Theorem 4.6 above with the main difference
being the bound for the strategy in Lemma 4.4 and the bound for the other potentially optimal
strategy from case 1d in the proof of Theorem 4.6. The bound for the case 1d strategy is

(1− 1/β)q(q − 1)2−3τ−1

which replaces
(1− 1/β)q(q − 1)2−2τ−1

in Theorem 4.6 above.
For the strategy in Lemma 4.4, we have

(q − 1)/(2τ−1β) + (q − 1)(q − 2)/(22τβ) + (L− 1)((q − 1)/(2B+τ−1) + (q − 1)(q − 2)/2B+2τ )

which replaces the term 2e(q − 1)(1/β + (L− 1)/2B+τ + 2−B).
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Algorithm AE security bound MRAE security bound

CMCC q(q − 1)2−τ−1(1/β + 2−τ ) + 2e(q − 1)/β q/2τ + q(q − 1)/2α+ q(q − 1)/2β

CWM q2/23τ + q2/(22τβ) + q/(2τ−1β) q/22τ−1 + q2/23τ−1 + q2/(22τβ)
+q/(2τ−1β) + q(q − 1)/2α+ q(q − 1)/2β

Table 2: Dominant Terms for Security Bounds for CMCC and CWM

4.2 Security Bound Summary

Table 2 summarizes the dominant terms from the security bounds for CMCC and CWM for short
messages (less than 32 bytes), for both AE and MRAE security.

5 Performance Analysis for Wireless Sensor Networks

We discuss and compare performance to other schemes (e.g. CCM [WHF03] and others) for short
messages, including energy utilization. Energy utilization is important for low power constrained
devices and we use the measurements from [WGE+05] to make an estimate for energy consumption
on wireless sensor platforms. We compare CCM to CMCC for energy utilization.

In [WGE+05], the authors measure energy utilization for a variety of cryptographic algorithms
due to CPU utilization and networking for the Berkeley/Crossbow motes platform, specifically on
the Mica2dot sensor platform. Table 3 gives the results from [WGE+05] with respect to AES
encryption, message transmission, and message receipt.

Operation Energy Utilization

Energy to transmit one byte 59.2 µJ

Energy to receive one byte 28.6 µJ

Energy per byte of AES encryption 1.6 µJ
including key setup, averaged
over messages of 64-1024 bytes

Table 3: Energy Utilization for Operations on the Mica2Dots Platform from [WGE+05]

A key point, which is not specific to the Mica2dot platform, is that energy utilization for
transmitting or receiving a byte from the wireless network is 10-100 times greater than the energy
needed per byte of AES encryption processing, for wireless sensor nodes.

We estimate energy utilization for CCM and CMCC based on the number of AES encryption
operations (pseudorandom function evaluations) and sizes of messages. The other CPU operations
such as exclusive-or are minor usages and not counting them will not affect our results significantly.
Table 4 gives the results.

Let R = dL/16e, where L is the message length in bytes. For CCM, the number of AES block
encryptions is equal to 2R+ 2. For CMCC, the number of prf invocations (AES block encryptions)
is 4W + 1 = 3W + max{W − 1, 0} + 2 where W = dL/32e. The number drops by 1 if we assume
precomputation of the message numbers which is likely in the stateful version and possible in the
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Message Length No. CCM prf calls No. CMCC prf calls CCM energy use CMCC energy use

8 bytes 4 5 1819.2 838.4

16 bytes 4 5 2292.8 1312

20 bytes 6 5 2580.8 1548.8

24 bytes 6 5 2817.6 1785.6

32 bytes 6 5 3291.2 2259.2

48 bytes 8 9 4289.6 3308.8

64 bytes 10 9 5288 4256

80 bytes 12 13 6286.4 5305.6

128 bytes 18 17 9281.6 8249.6

Table 4: Energy utilization (µJ) for sending network messages with CCM and CMCC protection,
Mica2dot platform.

stateless version as well. CCM eliminates R prf invocations with precomputation, so CMCC has an
advantage for messages with 32 bytes or less (for number of prf invocations given precomputation),
but CCM has an advantage for longer messages.

Table 4 assumes (1) that CCM uses the minimal recommended length MAC tag of 8 bytes which
increases the length of the message by 8 bytes while CMCC includes the 2 byte message number
tag T as described above along with a 2 byte authentication string for a total of 4 bytes (2) that
both CCM and CMCC are applied to the full length message which will cause our measurements
to favor CCM slightly,2 and (3) Messages are less than 216 bytes so CCM sends a 13 byte nonce
with each message.

The amount of energy used for CCM is

(32R+ 16)(1.6µJ) + (L59.2µJ) + 16(1.6µJ) + 21(59.2µJ) = 1294.4 + 59.2L+ 51.2R(µJ)

and the amount of energy for CMCC is

4dL/32e16(1.6µJ) + (L+ 4)(59.2µJ) + 25.6µJ = 102.4dL/32e+ 59.2L+ 262.4µJ

Thus we see that energy utilization is proportional to message length. For faster schemes (e.g.,
OCB, etc.), the more efficient computations will result in an even closer correlation between message
length (including the MAC bytes) and energy utilization. The reason is that the main energy use is
in the networking, and reducing the computational load will result in a higher percentage of energy
use by networking.

We haven’t included length fields in either CCM or CMCC as part of the comparison. Including
such fields would give results very close to the ones above.

2CMCC can be applied to the application payload or additional payloads as well (e.g., IPsec). For example, the
transport layer checksum and port numbers both act as tag fields for CMCC. In other words, a random change to
these fields is likely to cause a failure in transport layer processing leading to message rejection. If link layer encryp-
tion/integrity protection is employed, then an integrity failure can be detected prior to sending a large application
layer message through multiple wireless network hops. In this case, using CMCC can result in significant energy
savings regardless of the size of the application layer messages.
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Message Length No. CMCC prf calls No. SIV prf calls No. CWM prf calls

1-16 bytes 5 4 6

17-32 bytes 5 6 7

33-48 bytes 9 8 12

49-64 bytes 9 10 13

65-80 bytes 13 12 18

81-96 bytes 13 14 19

Table 5: Number of Block Cipher Calls For CMCC, SIV, and CWM for Varying Message Sizes
(CMCC, CWM message sizes include message tag).

5.1 Implementation and Number of Block Cipher Calls

We have completed an initial implementation as part of our submission to the Caesar competition
for authenticated encryption. Details can be accessed at http://groups.google.com/group/crypto-
competitions.

Table 5 compares the number of block cipher calls for the CMCC, SIV, and CWM algorithms,
for varying message sizes. CMCC requires 3dLength/32e+2+d(Length/32)−1e block cipher calls,
where Length is the message length (including tag).

6 Conclusions

We have presented CMCC, a scheme providing provably secure misuse resistant authenticated
encryption, and it leverages existing modes such as CBC, Counter, and CMAC. The main focus
for this work is minimizing ciphertext expansion, especially for short messages including plaintext
lengths less than the underlying block cipher length (e.g., 16 bytes). Depending on the environment,
we obtain security with only 2-6 bytes of ciphertext expansion. Since changes to the ciphertext
randomize the plaintext, we can leverage the protocol checks in higher layer protocols as additional
authentication bits allowing us to reduce the length of the authentication tag. Our CWM variation
provides a further strengthening of the security bounds for the short messages scenario at the cost
of an additional MAC operation over the plaintext.

We have given a comparison of energy utilization in wireless sensor networks between CMCC
and CCM and showed that energy use is proportional to packet length. Thus CMCC can achieve
significant energy savings when applied to protocols that send short messages due to its small
ciphertext expansion. Our contributions include both stateless and stateful versions which enable
minimal sized message numbers using different network related trade-offs.
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