Dynamic Cube Attack on Grain-v1

Majid Rahimi - Mostafa Barmshory -
Mohammad Hadi Mansouri - Mohammad
Reza Aref

Received: 2013 / Accepted: -

Abstract This article aims to present dynamic cube attack on Grain-v1. Dynamic
cube attack finds the secret key by using distinguishers gained from structural
weakness. The main idea of dynamic cube attack lies in simplifying the output
function. After making it simpler, dynamic cube attack will be able to exploit
distinguishing attack for recovering the secret key. In this paper, we investigate
Grain-v1 to which key recovery attack has never been applied because its feedback
function is so sophisticated. we apply dynamic cube attack on it by utilizing both
intelligent choices of Initial Value variables and appropriate simplifications. Our
attack is done in feasible time complexity, and it recovers all bits of the key while
the number of initialization rounds in Grain-v1 is decreased to 100. This attack is
faster than exhaustive search by a factor 232

Keywords stream cipher - Grain-v1 - dynamic cube attack - key recovery attack

1 Introduction

Grain-v1[l] is a hardware oriented stream cipher resisting against all previous
cryptanalytic attack because not only does it have suitable tap positions and
update functions, but also the number of its initialization rounds provides it with
high non-linear degree. It causes this algorithm to make its way to final phase of
eSTREAM project.

Distinguishing attack is one of the most effective attacks implemented on
stream ciphers. It is closely associated with key recovery attack since if it finds
a serious weakness, it may lead to key recovery attack. This attack is applied
by different methods among which chosen IV attack is one of the most success-
ful ones[2]. Not any cryptanalyst is now capable of directly analyzing the ANF
(algebraic normal form) representation of any cryptosystem because of its high
complexity, whereas chosen IV gives cryptanalysts the chance to analyze it in-
directly via choosing some bits of IV as variable and considering remaining bits
of IV as well as all bits of key as constant. The structure of cube tester [], cube

M. Rahimi
E-mail: md.rahimy@gmail.com

2 Majid Rahimi et al.

attack and dynamic cube attack is based on the chosen IV attack, and each one
applies this attack with a particular purpose. This paper concentrates dynamic
cube attack on Grain-v1 and elaborates on how to use it in key recovery attack.

The aim of cube tester is to distinguish an ANF of cipher from a random
function where every monomial is present by 0.5 probability, i.e. a random function
in terms of public and secret variables is algebraically dense. Hence, cube tester
targets the number of monomials in an ANF of cryptosystem, where it has just
access to black box representation. For this purpose, four main steps are involved.
Firstly, a subset of IV is chosen named cube variables. Secondly, all conditions
of this subset are loaded as the input of the black box. Thirdly, all outputs are
summed. Finally, cube tester exploits the resultant sums to evaluate whether the
number of monomials is either sparse or dense. If it is sparse, it will be more likely
distinguishable via testing two characteristics, being balanced and including low
degree monomials.

Cube attack[3] is identical to cube tester, and it can be applied to any cryp-
tographic scheme having public and secret variables, whose goal is to distinguish
monomials in which every single bit of the key presents. In other words, it detects
linear monomials based on the key bits in the ANF representation. After finding
such monomials, cube attack will be capable of easily using them for key recov-
ery attack because such monomials lead to linear equations in key bits that can
be solved by Gaussian elimination method. Since cube attack was published, it
has been the most successful attack on Trivium[3]. However, cube attack is just
practical in a small number of cryptosystem because linear monomials exist in
a high-degree ANF representation with low probability. This issue motivated the
cryptanalysts to find a more general method for cube attack. Much of cryptana-
lytic attacks exploit structure of the cipher whereas cube attack recovers the key,
and cube tester distinguishes an ANF of cipher just through a large number of
queries[3]. It is plainly visible that if cryptanalysts find a way to exploit struc-
ture of cipher in either cube tester or cube attack, they will be more successful.
One of the best ways is simplifying the ANF representation of cipher by using the
structure of cipher, and then applying either cube tester or cube attack.

While the key and IV of cryptosystem are not completely combined, existence
of high-degree monomials, playing a key role in cipher resistant against cube tester,
will heavily depend on few non-linear operations. In this way, cryptanalyst can
simplify the ANF representation of cipher through setting to zero the state bits
existing in such non-linear operations. In dynamic cube attack[4], attacker tries
to both find and set to zero these state bits via utilizing the dedicated public
bits named dynamic variables. The best previous attack[5] applied to reduced
variant of Grain-128[6], where a number of initial rounds are reduced from 256
to 213, can just recover 2 key bits. Whereas, dynamic cube attack is applied to
two reduced variants of Grain-128[4] in which it obtains the full 128-bit key faster
than exhaustive search. First and second attack are applied to 207 and 250 out
of 256 respectively that second attack is faster than exhaustive search by a factor
of roughly 228[4}. More importantly, when 10 bits of the key are considered as
constant, dynamic cube attack can be applied to the original version of Grain-128
recovering the full 118-bit key faster than exhaustive search by a factor of roughly
2'574]. In these attacks, cryptanalysts focus on nullifying a particular non-linear
operation existing in output function of Grain-128 since this term is the most non-
linear term which high-degree monomials in the ANF representation arises from.

Dynamic Cube Attack on Grain-v1 3

For nullifying this term, they set certain public variables, existing in the feedback
function of NFSR, as dynamic variables. This nullification enables cryptanalysts
to use cube tester in order to recover the key of Grain-128[4].

This paper presents dynamic cube attack on Grain-v1. Unlike Grain-128, high-
degree monomials in the ANF representation of Grain-vl stem from most of, in-
stead of one, non-linear operations in update function of the NFSR. It seems that
Grain-v1 will resist against dynamic cube attack because nullifying all these non-
linear operations is too complex and not faster than exhaustive search. However,
this article aims to introduce whole these non-linear operations by using the re-
cursive description of the ciphers update function and analysing state bits that are
involved in them to make the attack applicable. It leads to a significant point if
only seven state bits are set to zero, high-degree monomials in the ANF represen-
tation will be omitted. Although seven state bits must be set to zero, cryptanalysts
are faced with a sophisticated problem in neutralizing more than one state bit.
According to dynamic cube attack, when desiring to set one state bit to zero, at-
tackers divide the IV bits into three categories dynamic variables, cube variables
and constant assigned variables[4], hence it is more likely that a special IV bits
is chosen as dynamic variable in neutralizing one of the state bits and as cube
variable in neutralizing other one at the same time. Such conflicts cause dynamic
cube attack to fail since during the attack every IV bit can belong to one category.
We address this problem via intelligent choices of the IV bits to avoid any conflict,
and then we are capable of recovering the key of Grain-vl when its initialization
rounds are decreased to 100. It should be noted that the process of choosing IV is
a complex, manual one.

2 Dynamic cube attack

The idea of attack is simplifying the ANF representation of the cipher in order
to intensify either the bias of cube tester or the non-random features of the ANF
representation. To elaborate this idea, it is considered that cryptanalysts are able
to write the ANF representation P as follows in which it is divided into the three
polynomials P;, P> and Ps :

P=P P+ P3 (1)

P is both known and simple polynomial, P> is unknown, dense polynomial and
Ps3 is partly simple polynomial. Being dense, P> is more likely behaves randomly
and resists against cube testers, thus P is likewise immune from cube testers.
Understandably, if cryptanalysts can set P; to zero, they derive P = P3. P is now
non-random polynomial and can be distinguished from random one by cube tester
since Pz is partly simple polynomial.

In both cube attack and cube tester, the public variables are classified into
two categories. First those variables cryptanalyst sums the output of the cipher
over them named cube variables, second those ones are not summed over and are
considered as constant (most of the time zero) named constant assigned variables.
In dynamic cube attack, the number of public variables that do not belong to cube
variables is not considered as constant, named dynamic variables, since cryptana-
lyst sets P1 to zero by assigning a function to each one of them. These functions are

4 Majid Rahimi et al.

made up of a few, usually one, cube public variables and some expression of pri-
vate variables. The next section clarifies how assigning such functions to dynamic
variables causes P; to be omitted.

3 Outline of attack on Grain-v1l

In contrast to Grain-128, the update function of the NFSR is denser which is com-
posed of non-linear operations of wide range of degrees from two to six (instead of
two and three). It leads to presence of more high-degree monomials in the ANF
representation, thus cryptanalysts are forced to simplify it more in order to enable
themselves to apply cube tester to Grain-v1l. Most likely, simplifying entire these
non-linear operations is infeasible since this process is very time consuming and
has a higher complexity than exhaustive search. For getting through this trouble,
we seek an optimum technique by which we are able to simplify the ANF repre-
sentation with the least nullification in the update function of the NFSR. Hence,
we write all non-linear operations in terms of their recursive descriptions, then we
precisely investigate them to find such simplification. It can be observed that set-
ting only seven state bits to zero will incredibly simplify the ANF representation.
However, it seems that nullifying these state bits will be still very complex due to
two significant issues: classification of the IV variables and high complexity of the
attack.

In the case of the former, in dynamic cube attack, the attacker sets a state bit
to zero through assigning a special amount to much of IV variables existing in the
recursive description, where recursive description are equal to zero while attacker
replaces these amounts in recursive description. Thus, the category of each IV
is completely associated with the structure of recursive description. Regarding
different kind of amounts, this process classifies the IV variables to three groups[4]
dynamic variables, cube variables and constant assigned variables. Since recursive
description of every state bit is independent, nullifying more than one state (seven
state bits) may lead to conflict in assigning IV variables. In other words, it is more
likely that a special IV bits is chosen as dynamic variable in neutralizing one of
the state bit and as cube variable in neutralizing other one at the same time. Such
conflicts cause attacker to be unsuccessful in setting all state bits to zero as during
the attack every IV bit can be assigned to one category. This paper tackles this
problem via intelligent choices of the IV bits without any conflict.

In relation to the latter, in dynamic cube attack, complexity relies on the num-
ber of guesses and cube variables[4]. The key idea behind our attack is existence of
trade-off between the number of guesses and cube variables, i.e. growth in guesses
triggers reduction in cube variables and vice versa. Since, escalating the state bits
which must be nullified cause the number of guesses to increase , and the ANF
representation to simplify more accordingly . It directly impacts on reducing cube
variables[4], thus this trade-off prevents from overgrowth of complexity while we
desire to set seven state bits to zero. More significantly, dynamic cube attack is
capable of retrieving the key bits via those guesses which are equivalent to linear
expression in terms of key[4]. Hence, when the number of guesses (or the number
of state bits have to be nullified) grows, the chance of recovering more key bits
will grow. This issue will increasingly enhance the complexity of attack.

Dynamic Cube Attack on Grain-v1 5

Our attack is a feasible full key recovery attack on a new variant of Grain-v1
using 100 initialization rounds rather than 160, and this attack exploits output
bits of 100-110. It includes two phases, preprocessing and online, that each one
has two steps.

4 Description of Grain-v1

This section provides a brief explanation on Grain-v1, precise description can be
found in [1]. The cipher is made up of three main building blocks, an LFSR, an
NFSR and an output function. Its state comprises a 80-bit LEFSR and a 80-bit
NFSR named s;, s; +1,..., s; + 79 and bi, b; + 1,..., b; + 79 respectively. The
update functions of the LFSR and NFSR are respectively defined as follows:

Si+80 = S;i + Si4+13 + Si+23 + Si+38 + Sit+51 + Sit+62- (2)

bitso =i + b; + bito + bit14 + bipo1 + biyog + biy3s + bits7 + bipas+
bit+s2 + biteo + bite2 + bitobit1s + bit3szbitsr + biteobites+
bi+21bi+280i433 + bita5bi4520i160 + bit150i4+21bit60bit+63+ 3)

bi+33bi+37bi+520i+60 + bi+9bit28bitasbites+

bit+obit15bi121bi128bit33 + bit37bitasbitsabiteobites+

bit21bi128bi133bi137bi1 45051 52.

The output function is shown as below in which the variables xo, z1, 2, x3
and x4 are equivalent to the tap positions s; + 3, s; + 25, s; + 46, s; + 64 and
bi + 63 respectively.

z = Z bitr + h(Si+3, Si+25, Si+46, Si+64, bi+63)
ke (4)
A=1,2,4,10,31,43, 56.

Grain-v1 generates output from a 80-bit key and a 64-bit IV loaded in ini-
tialization process, where the bits of the key and IV are put in NFSR and LFSR
respectively, and then the remaining 16 bits of LFSR are set to 1. It is consec-
utively clocked 160 times without any output in order to combine the key and

Iv.

5 Dynamic cube attack on Grain-v1

5.1 Preprocessing phase

In preprocessing phase, we select the state bits that should be set to zero, then we
elaborate how to do so by assigning special amount to IV variables. Preprocessing

phase performs once for every round with different secret keys. When the secret
key is altered, the online phase must be iterated.

6 Majid Rahimi et al.

Step 1 This phase is a sophisticated, manual process because attackers must ex-
actly analyze the ANF representation where this analysis can not be fully auto-
matically performed. We would desire to decompose the ANF representation of
Grain-v1 into three polynomials as we mentioned above while applying dynamic
cube attack to this cipher. Similar to Grain-128, the ANF representation of Grain-
vl is so complex to be decomposed in such a way. Thus, this paper exploits the
recursive description of the Grain-v1’s update functions to find the best decom-
position.

As for Grain-v1, there are more non-linear operations in the update function
of NFSR (from degree two to degree six) that they have effect on high degree
monomials appearance in the ANF representation in comparison to Grain-128. In
this situation, simplification of the higher degree operations does not cause the
ANF representation to become vulnerable to cube tester, e.g. simplifying either
bi121bi128bit33bitr37bi1a5biis2 or bigarbirasbirs2bire0bites. The solution lies in
focusing on writing the recursive description for entire state bits taking part in
non-linear terms of NFSR’s update function. These state bits are as follows:

{bit9,bit15,biy21,bito8, bit33, bitar, biyas, bits2, bite0, bite3}

In this approach, we aim to simplify (not nullify) these state bits because
setting to zero just one state bit in upper rounds is impractical. According to the
structure of Grain-v1, we are able to write every state bit by applying the recursive
description as bellow:

bitjoc <o = bi—80+j+210i—80+5+28bi—80+;+33bi—80+;j+37bi—80+;+45
bi—80+j+52 + bi—80+j+9bi—80+j+15bi—80+5+21bi—80+j+28
bi—80+5+33 + bi—80+5+37bi—80+5+45bi—80+j+52bi—80+5+60
<o+ bi—80+j+63 + bi—go+jt21 + Si—80+j (5)

We write these state bits by using equation 5, and then we inspect them in
order to find the state bits by which we can increasingly simplify state bits of
NFSR’s update function. Those state bits which were calculated at the earlier
stage of initialization step can be simplified much easier. Hence, we just specify
how to simplify one of the simple ones (e.g. biy21). Regarding other state bits,
the main conclusions are presented, and precise explanation for these state bits
is proposed in appendix A. Regarding equation 6 and 7, making up monomials
which maximally include six state bits, both b;19 and b;+15 are simple and are
not required to be simplified.

bi+o = bi—50b;—43b;_38b;_34b;_26bi—19 + bi_62b;—4356b;—50b;—43
bi—zg+--- (6)

bit15 = bi—4ab;_37b;_32b; _28b; 20b;—13 4+ bi—56b; —50bi—44b; 37
bi—32 + b;_28b;_20b;—13b; _5b; 2 + - - -
(7)

As for equation 8, if b;j_r is nullified, the significant terms of degree five and
six are nullified and b; 421 makes up monomials which maximally include 14 state
bits rather than 15. Since the ANF of the earlier b;_7 is much simpler to assess
and participate in other state bits (bit2s8, bi+as and bi152) simultaneously, b;—7

Dynamic Cube Attack on Grain-v1 7

State bit | Nullification The level of simplification

bi+31 bi_4a Makes up monomials which maximally include
14 state bits instead of 20.

bi+a3 bi_a Two terms of high degrees are nullified.

bi+s6 b;_3 and bj;13 | Makes up monomials which maximally include
48 state bits instead of 103.

Table 1 The results of those state bits participating in update function linearly.

is the best choice for nullification. This way is true for nullifying other state bits.
According to appendix A, b;42g is identical to b;4+21, i.e. if we set bj_7 to zero,
the significant terms (highest non-linear degree terms) are set to zero accrodingly.

bit21 = bi—_38b;—31bi—26b;i—22bi—14b;—7 + bi—50bi—44b; _38bi—31

bi—26 + bi—22bi—14b;—7(bi—58bi—51bi—46bi—a2b;_34bi_27 +

bi—70bi—64bi—58bi—51bi—46 + bi—a2bi—34b;_27b;_19bi—16)
(bi—55bi—a8bi—a3bi_39b;—31bi—24 + bi—67bi—61bi—55bi—a8
bi—a3bi—30bi—31bi—24bi—16bi—13) + - - (8)

In relation to the other state bits, nullifying b;_10 and bjy13 cause b;4+33 to
be significantly nullified and to make up monomials which maximally consist of
nine state bits instead of twenty. Nullifying b;_10 and b;jy17 leads to the best
simplification of b; 137, causing it to make up monomials which maximally include
two state bits rather than 29. Nullifying b;_7 and b;;17 leads to the significant
terms of b; 45, causing it to make up monomials which maximally include 31 state
bits instead of 48. Similar to b;t45, bi452 is significantly simplified by setting b;_~
and biy17 to zero, causing it to make up monomials which maximally include
forty state bits rather than 72. Nullifying bj_11, bi—s and b;417 leads to the best
simplification of b;1¢0, causing it to make up monomials which maximally include
fifty state bits instead of 126. Nullifying bj_g and b;y20 causes the significant
terms of b;+63 to be nullified, and b;4¢3 to make up monomials which maximally
include 102 state bits rather than 146.

As was mentioned above, if attackers simplify the ANF representation more,
the number of secret keys which are retrieve and the chance of success for recov-
ering them will increase . Hence, we focus on the most simplification of update
function.

Lower round strategy: In lower rounds, In addition to simplifying the non-linear
terms, we aim to nullify those state bits taking part in update function linearly
such as bjys1, biyas and biyse. The results are briefly stated in table 1. As a
consequence, in lower rounds, ten state bits are totally nullified. The ten state
bits also cause some other state bits to simplify. In table 2, some of them are
mentioned.

Upper round strategy: In upper rounds, nullifying ten state bits is infeasible since
we are unable to classify the IV variables without conflict. It forces us to neglect
some state bits nullification due to attack’s success, especially ones taking part in
linear term of update function . In total, just seven state bits are nullified for
upper rounds. The consequences are mentioned in table 4.

8 Majid Rahimi et al.

State bit | Nullification The level of simplification

biyo3 b;_5 The most non-linear terms are nullified.

biyo8 b;_7 The most non-linear terms are nullified.

bit36 b;_11 and b;_7 | Makes up monomials which maximally include
18 state bits instead of 29.

bit39 bi_7 and bj;17 | Makes up monomials which maximally include
27 state bits instead of 38.

bita0 b;_~7 and b;j;20 | Makes up monomials which maximally include
22 state bits instead of 37.

Table 2 Some other state bits simplified via nullifying these ten state bits.

State bit | Nullification
bito1 b;_~7

bitos bi_7

bit33 bi_10 and bij 13
biy37 b;i_10 and bj; 17
bitas bij_7 and bi 17
bits52 bi_7 and bi 17
bi+60 b;j_11 and bj17
bit63 b;_2 and bji20

Table 3 The state bits nullified in upper rounds.

After the update function is exactly analyzed, it is realized that we can nullify
ten state bits up to 100 initialization rounds. Thus, we nullify ten state bits in
Grain-vl with 100 initialization rounds and seven state bits in Grain-vl with
more than 100 initialization rounds (from 100 to 110).

Step 2 This phase is also a sophisticated, manual process. Unlike Grain128, this
phase is a big challenge because entire IV variables have to be classified into three
categories without conflict. In this phase, we will nullify ten state bits for lower
rounds and seven state bits for upper ones. We will be capable of doing so via
intelligent choices of IV variables.

Regarding update function of Grain-vl [1], ANF representation of any state
bit includes different kinds of monomials. We divide these monomials into four
classes as belows:

classl Monomials making up one IV variable, i.e. they are linear in terms of IV.

class2 Monomials making up one IV and one key variable, i.e. they are linear in
terms of IV and key.

class3 Monomials making up key variables, they can be of any degree.

class4 Those monomials which do not belong in previous classes.

This division alleviates classification of IV variable to dynamic variables, cube
variables and constant assigned variables. One IV of the first class is assigned
to dynamic variables and others are considered as zero. The second class must be
chosen as cube variables. All monomials belonging to the third class are considered
as a new equation called pr. Forth class in which every monomial consists of one
IV variable at least, we have to nullify all of them by assigning constant value to
IV variables (usually zero).

Dynamic Cube Attack on Grain-v1 9

Since these state bits become too sophisticated after many initialization steps,
they must be written by using recursive description as well. It causes the ANF
representation of every state bit to be straightforward, and to be more simpli-
fied. Hence, this method is iterated while the ANF representation becomes simple
enough. Then, cryptanalysts can easily classify the IV variables by our division.

However, due to existing common IV bits in the ANF representation of different
state bits, the conflict is likely to be inevitable. For tackling the problem, we use
special technique for common IV bits. First, those IV bits participating in more
than state bits are identified. Then, those state bits in which such IV bits can just
belong to one class determine the class of them. In order to specify how to nullify
more than one state bit by intelligent choice, we explain it for the earlier state bits
with 100 initialization rounds in which the most simplification is done. Precise
explanations about other state bits with 100 initialization rounds are stated in
appendix B.

According to step 1, {b;—11, bi—10, bi—8, bi—7,bi—5,bi—4,bi—3,bi113, bit17,bit20}
must set to zero; b;—11, bj—10 and b;_g are earlier state bits and more easier for
nullification. These three state bits are equal to bgo+9, bgo+10 and bgp+12 in out-
put bit 100 respectively. Thus, the recursive descriptions of these state bits are as
follows:

bi—11 = bgg = bso+9
= 89 + b1o + b11 + b1z + b1s + big + bag + bzo + b37 + bao + b4
+ba6 + bs2 + bsa + be1 + bes + beg + br1br2 + bigboa + - -
+ba6 -+ - br2 + b3o - - be1 + $34 + S12 + S55b72 + 512534855

+512555 + S12855b72 + S55b72 (9)

bi—10 = boo = bso+10
= 510 + b1o + -+ + br2 + by + bigbas + - + ba7 -+ - br3
+b31be2 + 535 + 513 + S56 + b73 + 513535556 + 513556
+513856b73 + S56b73 (10)

bi—8 = bg2 = bso+12
= 812 +bi2 + -+ + brabrs + b21bor + -+ + bag - - brs
+b33 - -bae + 537 + 515 + 885 + b5 + 515537558 + 515558

+515558b75 + s37858b75 + S58b75 (11)

In the case of bgg, we assign zero to si2 and s34, and select sg as dynamic
variables and ss5 as cube variable. Therefore, the equation 9 is converted to sg +
pri + ss5(1 + br2) as we mentioned above. If sg is chosen pri + ss5(1 + br2), bsg
will be set to zero. Since pr1 and 1 + br2 consist of key bits , their amounts are
unknown and have to be guessed in online phase.

In relation to bgp, we assign zero to si3 and s3s, and select s1p9 as dynamic
variables and sse as cube variable. As a consequence, the equation 10 is converted
to s10 + pra2 + ss6(1 + b73); boo will be nullified by assigning pra + ss6(1 + br3) to
s10- In online phase, pr2 and 1 + b73 must be guessed.

10 Majid Rahimi et al.

State bit Other state bits nullified | Constant assigned variables Cube variables | Dynamic variables | The number of guess terms
bi—a=bgs | s80 Zero = {19,41}, one = {62} {51} {16}

bi—3 = boy bgo Zero = {25,46} {49} 0,17} 2

b;+13 = b113 bg5,bgg,b93, b95 Zero= 8, 30, 58},0’% = {36} 51} 5, 33} 3

bi+17 = bi17 | bs1,bs2,bs3,bog,b100, 583 | Zero={4,6,7,22,26,27,28,29,41,47} | {49,50,51,55} 1,2,3,44,45,54} | 7

b#gg = b120 684768671)102' blog, 586, 587 Zero= 26, 52, 53} 50, 55} 31, 32,40, 48, 57} 5

Table 4 The main results about nullification of other state bits

As for bga , we assign zero to s37 and ssg, and select s15 as dynamic variables.
Consequently, the equation 11 is converted to s15 + prs; and one polynomial must
be guessed. Not that we are forced to assign zero to ssg since it is necessary for
nullifying bi+13 = b113.

In b;_7 = bos = bgo+13 (Appendix B), we assign zero to ssg, and choose s3g
as dynamic and ss1 as cube variable. Regarding si6 is common IV variable and
have to be selected as dynamic for nullifying b;_4 = bgg, we assign pis + s51 to it.
Thus, b;_7 is converted to s3s + pra + s51. By choosing pi4 + s51 for ssg, we can
set bgs to zero. In online phase, pi4 must be guessed.

In bi_5 = bgs = bgo+15, we assign zero to se1, and select s1g as dynamic
variable and ss9 as cube one. Regarding s40 is common IV variable and have to
be selected as dynamic for nullifying b; 120, we assign prag + ss0(1 + ber) to it. By
choosing pis + ss50(1 4 be7) for sis, we can set bgs to zero. In online phase, pis
must be guessed; (1 + be7) will be guessed in nullifying b;420.

According to the structure of b;_4 = bgs = bgo+16,we are unable to zero it
directly, we must nullify sgo first. If sgo be nullify, conflict will happen. Thus, we
simplify and convert it to Pre + Prio + ss1. Then, we assign zero to si9 and s41,
and assign one to se2. Finally, we select si1¢ as dynamic variables, which is equal
to P}5 + s51, and s51 as cube variable that are caused bgg to be nullified.

Nullification of the remaining state bits is more complex since we are unable
to nullify them directly. In each one, we have to zero a number of other state bits.
The prime results are classified in table 4 and precise explanations are stated in
appendix B.

5.2 Online phase

In this phase, we illustrate how the key bits are retrieved given the parameters of
preprocessing phase.

Step 1 we first select a big cub and set whole subcubes summing over them. The
size of subcubes is at least d — 3 (considering the size of big cube is d). Then, we
guess entire secret expressions that exist in dynamic variables to calculate them
during the cube summations. In Grain-V1 with 100 initialization rounds, we choose
d = 9 as the size of big cube where five IV bits were determined and others must
be selected from following set. Note that some selections of big cubes give the
better consequences than other which depend on the structure of Grain-V1.

{11, 14, 20,21, 23,24, 38, 39, 42, 43, 46, 60, 63}

Dynamic Cube Attack on Grain-v1 11

Step 2 Given that the number of secret expressions is e, the number of guesses is
2¢. For any guess, sum over the subcubes selected in previous step with dynamic
variables accordingly and the constant assigned bits in preprocessing phase. Thus,
a list of sums (with dimension of 2¢) are obtained from any guess. Then, the
guesses score, which is the number of one in list of summation, are calculated for
any guess and sorted from the lowest score to the highest score.

In dynamic cube attack [4], the guess score is measure of non-randomness in
the subcube summation. In other words, those guesses having the lowest score are
most likely the correct guesses for the secret expressions. Consequently, calculation
of the guess having lowest score is the simple technique for finding the value of
secret expression.

However, depending on the parameters of the attack and the structure of algo-
rithm, this technique does not always lead to correct answer since there are likely
to be guesses having a score is equal to the lowest score. For instance,, unlike other
rounds, we are able to usually find correct guess for different random key in 100th
round due to the most simplification.

Full key recovery attack: If we find the value of the linear expressions, we are capa-
ble of retrieving those key bits existing in such expression by Gaussian elimination.
Thus, we focus on finding the value of linear expressions that exactly contain only
a key bit, and retrieve these key bits by assigning the corresponding value from
the best guess.

In output bit 100, we gain four linear expression and retrieve four key bits
accordingly. We repeat this technique for other rounds, while we nullify seven
state as stated in table 2. Due to classification of IV bits is easier, we can derive
more linear expression by changing both dynamic and cube variable. Note that
the attack fail to retrieve the correct guess with more probability in upper rounds.
Altogether, we gain 51 key bits from different linear expressions existed in output
bits 100-110. The remaining key bits are calculated by exhaustive search.

Complezity: The size of subcube is at least d — 3, and the size of secret expressions
is e. Thus, the complexity of summing over all its subcubes is limited to d22¢+¢. We
could retrieve 51 key bits by dynamic cube attack and the remaining 29 key bits by

exhaustive search. Consequently, the complexity is equal to 51 x 262 x 233 4229 ~
218,

6 Conclusion and Open Issues

In this paper, we first specified how to effectively simplify the output function
of Grain-vl. Then, we could nullified more than one state bits via the suitable
classification of IV bits. These classifications enabled us to apply dynamic cube
attack which is the first key recovery attack on reduced version of Grain-v1. Finally,
we could establish a full key recovery attack with feasible time complexity.

An important future work is applying this technique to either Grain-v1 with
more initialization rounds or other algorithms with the same structure. We com-
mence to apply this attack to other variant of Grain-v1 that needs to spend more
time for stating precise explanation.

12

Majid Rahimi et al.

7 Appendix A

bitas =bi—14bi—7bi_2[bit2 = bi_57bi_50bi—a5bi—41b;—33bi—26 + bi—69

bi—63bi—57bi—50bi—a5 + bi—41b;—33b; —26bi—18bi—15 + - - -][bit10
= bi—a9b;_42b;_37b;_33b; _25b; 18 + bi_61bi_55b; _49b; _42b;_37
+ bi—33bi—25bi—18bi—10bi—7 + + -] [bit17 = bi—a2bi—35bi—30bi—26
bi—18bi—11 + bi—54bi—a8bi—12bi—35bi—30 + bi—26bi—18bi—11bi—3
bi + -]+ bi—26bi—20bi—14bi—7bi—2 + [bit+2 = bi—57bi—50bi—a5

bi—41bi—33bi—26 + bi—69bi—63bi—57bi—50bi—a5 + bi—41b;i—33
bi—26bi—18bi—15 - - - |[bi+10 = bi—a9bi—a2b;—37b;—33bi_25bi— 18+
bi—61bi—55b;i—a9b; —42b; 37 + bi—33b; —25b; —18b; —10bi—7 + - - -]
[bi17 = bi—a2bi—35bi—30bi—26bi—18bi—11 + bi—54bi_4s

bi_42b;—35Di—30 + bi—26bi—18bi—11b;—3b; - - -][Dit25 = bi_34 (12)
bi—27bi—22bi—18bi—10bi—3 + bi—46bi—10bi—34bi—27b;—22 + bi—15
bi—10bi—3([bi+5 = bi—54bi—47bi—42b;—38bi—30bi—23 + bi—66bi—60
bi—s5abi—a7bi—a2 + bi—38bi—30bi—23bi—15bi—12 + - - -])([bi+s = bi—51
bi—44b;—39bi—35b;—27bi—20 + bi—63bi—57bi—51b;—4abi—39 + bi—35
bi—27bi—20bi—12bi—9 + -+]) + - - -] [bi42s = bi—31bi—24b;i—19bi—15

bi—7bi + bi—azbi—37b;i—31bi—24bi—19 + bi—15bi—7b; ([bi+s = bi—51
bi—44bi—39bi—35bi—27bi—20 + bi—63bi—57bi—510i—14bi—39 + bi—35
bi—27bi—20bi—12bi—g + -+ -])([bi+12 = bi—as8bi—41bi_36bi—32bi_24

bi—17 + bi—60bi—54bi—a8bi—41bi—36 + bi—32bi—24bi—17bi—9bi 6+

Dynamic Cube Attack on Grain-v1 13

bits2 =bi—7bi[bit5 = bi—5abi—a7bi—42bi—38bi—30bi—23 + bi—66bi—60
bi—54bi—a7bi_a2 + bi_38b;_30bi—23b;i—15bi—12 + .. .][bito =
bi—50bi—43bi—38b;i—34b;—26bi—19 + bi—620i—56bi—50bi—43
bi—3s + bi—34bi—26bi—10bi—11bi—8 + ..]J[bit17 = bi—42bi_35
bi—30bi—26bi—18bi—11 + bi—54bi—a8bi—12bi—35bi—30 + bi—26
bi—18bi—11bi—3b; + + - - |[bit24 = bi—35bi—28bi—23bi—19bi—11
bi—4 + bi—a7bi—a1b;i—35b;_28bi—23 + bi—19bi—11bi—4([bita =
bi—55bi—48bi—43bi—30bi—31bi—24 + bi—67bi—61bi—55bi—a8
bi—a3 + bi—39bi—31bi—24bi—16bi—13 + .. .])([bi+7 = bi—52bi—a5
bi—40b;—36b;—28b; 21 + bi_64b; _58b; _52b; _45b; 40 + b;i_36
bi—28bi—21bi—13bi—10 +...]) + .. .]bi—19bi—13bi—7b;
[bits = bi—5abi—a7rb;—42b;—38b;—30bi—23 + bi—66bi—60bi—54bi—a7
bi—a2 + bi—38bi—30bi—23bi—15bi—12 + .. .] + [bi+9 = bi—50bi—43
bi—38bi—34bi—26bi—19 + bi—62bi—56bi—50bi—a3b;—38 + bi—34bi—26
bi—19bi—11bi—s + ..][bi+17 = bi—a2bi—35bi—30bi—26bi—18
bi—11 + bi—s4bi—agbi—a2bi_35b;—30 + bi—26bi—18bi—11bi—3b; + - -]
[bit24 = bi—35bi—28bi—23bi—19bi—11b;—4 + bi_a7b;_41b;_35b;_28
bi—23 + bi—19bi—11bi—a([bita = bi—55b;—agbi—a3bi_39bi—31bi—24+
bi—e7bi—61bi—55bi—agbi—a3 + bi—39bi—31bi—24bi—16bi—13 + .. .]) (13)
([bit7 = bi—s2bi—a5bi—a0bi—36bi—28bi—21 + bi—6abi—58bi—52bi—_a5
bi—40 + bi—36bi—28bi—21bi—13bi—10 + ...]) + .. .]([bi+32 = bi—27bi—20
bi—15bi—11bi—3([bit+a = bi—55bi—a8bi—43bi_30bi_31b;_24 + bi_67
bi—61bi—55bi—a8bi—a3 + bi—39bi—31bi—24bi—16bi—13 + ...]) + bi—39
bi—33bi—27bi—20bi—15 + bi—11bi—3([bi+a = bi—55bi_agbi—_a3bi_39
bi—31bi—24 + bi—67bi—61bi—550i—a8bi—a3 + bi—30bi—31bi—24bi—16
bi—13 4+ ...])([bi+12 = bi—agbi—a1bi—36bi—32bi—24bi—17 + bi—e0bi—54
bi—agbi—a1bi—36 + bi—32bi—24b;i—17b;—9bi—6 + .. .]) ([bi+16 = bi—aa
bi—37bi—32bi—28bi—20bi—12 + bi—56bi—50bi—14b;—37b;i—32 + bi—2s
bi—20bi—13bi—15bi—2 + ...]) + .. .])([bi+35 = bi—24bi—17bi—12bi—gb;
([bit7 = bi—s2bi—a5bi—s0bi—36bi—28bi—21 + bi—6abi—58bi—52b; 45
bi—40 + bi—36bi—28bi—21bi—13bi—10 + .. .]) + bi—36bi—30bi—24bi—17
bi—12 + bi—8bi([bit7 = bi—52bi—45bi—40bi—36bi—28bi—21 + bi—6abi—58
bi—52bi—a5bi—a0 + bi—36bi—28bi—21bi—13bi—10 + .. .])([bi+15 =
bi—44bi—37bi—32b;—28bi—20bi—13 + bi—56bi—500i—14bi—37bi—32+
bi—28bi—20bi—13bi—5bi—2])([bi+18 = bi—a1bi—34bi—29bi—25bi—17
bi—10 + bi—53bi—a7bi—41bi_34bi_29 + bi—_25bi—17bi—10bi—2([bit1 =
bi—58bi—51bi—46bi—42b;—34b;—27 + bi—70bi—64bi—58bi—51b; 46+
bi—a2bi—34bi—o7bi—19bi—16+...])+...])+...]) ...

14 Majid Rahimi et al.

8 Appendix B
The way of nullification the state bits by classification of IV bits

bi—11 = bgg = bgo+9
= S9 + b1o + b11 + b13 + b1s + b19 + b23 + b3o + b37 + bao + b4z +
bag + bs2 + bsa + be1 + bes + beg + br1br2 + bigbaa + -+ + bag - - br2 +

b3o - - - be1 + $34 + S12 + S55b72 + S12534555 + S12555 + S1255D5b72 +

S55b72 (14)
bgo = s9 + Pr1 + s55(1 + br2) (15)
s9 = Pri+ ss55(1 + br2) (16)

cube bites: {55}
Dynamic bits: {9}
Zero Bits: {12,34}

bi—10 = boo = bgo+10
= 510 + bio + -+ - + br2 + br3 + biobas + .. + ba7..b73 +

ba1be2 + S35 + s13 + S56 + brs + S13835856 + S13856 + 13856073 +

s56b73 (17)
boo = s10 + Pra + ss6(1 + b73) (18)
S10 = P7“2 + 856(1 + b73) (19)

cube bites: {56}
Dynamic bits: {10}
Zero Bits: {13,35}

bi—s = bg2 = bgo+12
= s12 + bi2 + .. + brabrs + b21ba7 + .. + bag..b7s +

b33..bag + s37 + s15 + ss5 + brs + s15537558 + S15558 + S15558b75 +

537558b75 + S58b75 (20)
bo2 = s15 + Pra + sss(1 + brs) (21)
S15 = PT3 (22)

cube bites: {}
Dynamic bits: {15}
Zero Bits: {37,58}

Dynamic Cube Attack on Grain-v1 15

bi—7 = bgs = bso+13
= 513 + b1z + .. + brsbre + bazbag + .. + bso..b76 +

b34..bgs + s38 + 516 + S50 + b76 + 516538559 + 516559 + S16559b76 +

538559076 + S59b76 (23)
bos = P}5 + Pra+ ss51 + s38 = Pry + S51 + S38 (24)
538 = Pra+ ss1 + s38 (25)

cube bites: {51}
Dynamic bits: {38}
Zero Bits: {59} Gusse bit: {1}

bi—5 = bos = bso+15
= $15 + bis + .. + br7 + baabso + .. + bs2..brs +

b36..be7 + s40 + s18 + s61 + S18540561 + S18S61 + S18561b78 +

540861b79 + s61b7 (26)
bos = Prig + Prs 4+ ss0(1 + ber) + s18 = Prs + ss0(1 + ber) + s1s (27)
s18 = Prs + ss0(1 + ber) (28)

cube bites: {50}
Dynamic bits: {18}
Zero Bits: {61} Gusse bit: {2}

bi—4 = bos = bso+16
= s16 + bie + --- + brs + b2asb3z1 + - - - + sa1 + s19580 + S62580
4519541562 + 519562580 + S62b79580 + S80b79 + b79

+519862b79 + S41562b79 (29)

580 = 862 + S38 + S23 + 513 + 53 + S51 + S0 + Pr + sa5 + bes
453 X 1+ 46564 + 1 X b3 + 53525546 + S3546 X 1
+53546b63 + 525546b63 + S64be3 X 1
= Pre + sa9(1 + bes) + Prio + sao(1 + bes) + s51
= Pre + Prio + ss1 (30)

bos = Prs + sso + s16 = Prs + s51 + s16 (31)

16

Majid Rahimi et al.

s16 = Prs + s51

Cube bites: {51}

Dynamic bits: {16}

Zero assigned bits: {19,41}

One assigned bits: {62}

The number of guessed term: {1}

bi—3 = bor = bgo+17
=817+ bi7+ -+ bgo + bsa - -bgo + b3e - - - beg + 542
+520881 + 563581 + Sg1bso + 520542563 + 520542581

+520842b80 + S42563bs0 + s63581bs0

bso = so +bo+ -+ bgz + -+ bg7---be3z + ba1---bs2
+525 + 53 + 546 + b3 + 53525546 + 53546 + S3546b63
+525546b63 + 516063
= Pre + sa6(1 + be3) + so + s3
= 80 + Pre + Prio + sa9(1 + bes)
= 50+ Pre + sa9(1 + bes)

Cube bites: {49 which was used before}

Dynamic bits: {0}

Zero assigned bits: {25, 46}

One assigned bits: {—}

The number of guessed term: {1}

bor = s17 + bar + -+ + bro + -+ + bz - - beo = Pr7 + s17

s17 = Prr

Cube bites: {—}

Dynamic bits: {17}

Zero assigned bits: {—}

One assigned bits: {—}

The number of guessed term: {1}

bi+13 = b113 = bso+33
= 833 + b3z + -+ + bss + bsg + bgz + bos + bos + - - -
+b70 - - - boe + bsa - - - bgs + S58 + 536597 + 579597 + S36558579

+536558597 + 536558096 + S58579b96 + S79597b96

{bgg, baz, bgs } which were set to zero before.

(32)

(33)

(34)

(35)

(36)

(37)

Dynamic Cube Attack on Grain-v1 17

bss = s5+bs+ - +bes+ -+ baz---besg +bae - bs7
+830 + 88 + 851 + bes + $8530551 + S8S51 + S8S51b68 + 530851068
+551b6s
= 55+ Prs + s51(1 + bes) (38)

s5 = Prg + 851(1 + b68) (39)
Cube bites: {51}
Dynamic bits: {5}
Zero assigned bits: {8,30}

One assigned bits: {—}
The number of guessed term: {2}

b113 = s33 + b3z + -+ brs - -bge + bsa - - - bgs + S36597 + S97
= 533 + Prs (40)

s33 = Prg (41)

Cube bites: {—}
Dynamic bits: {33}
Zero assigned bits: {58}
One assigned bits: {36}
The number of guessed term: {1}

biy17 = b117 = bso+37
= 537 + b37 4 b3g + - - - 4 bg2 + bsg + bz + bg7 + bgg + - - -
+b74 - -b1oo + bss - - - bgg + se2 + s405101 + S101b100
+5835101 + 540562583 + 405625101 + S40562b100

+s62583b100 + 58351010100 (42)

{bsg, bos, by7, s37} which were set to zero before.

583 = 53 + 516 + 536 + Sa1 + s54 + 1 + bes + s6 + s28 + 549 + 1 X bes
+56528849 + 56549 + S6549b66 + 52854966 + S49b66
= 83 + S6 + S16 1+ S26 + S28 + S49 + S54 + S6528549 + S6S549
+56549b66 + 528549b66 + 51966 (43)

{s6, s16, 28 } which were set to zero before.
{s3} which is dynamic variable and used in nullifying bigo.

sg3 = Prio + s26 + S41 + 549 + S54
s54 = Prio + sa9 (44)

18 Majid Rahimi et al.

Cube bites: {49}
Dynamic bits: {54}
Zero assigned bits: {26,41}
One assigned bits: {—}
The number of guessed term: {1}

bga = s2 +ba + -+ bes + -+ + b3g -+ bes + b2z - - - bsa + s27

+55 + 548 + bes + s5527548 + S5548 + S5548b65 + 527548065

+548b65 (45)
bga = s2 + sa8 + priz + s51(1 + bes) (46)
s2 = priz + s51(1 + bes) (47)

Cube bites: {51}
Dynamic bits: {2}
Zero assigned bits: {—}
One assigned bits: {—}
The number of guessed term: {1}

b1oo = 820 +b20+ -+ +bso +bg2 + -+ bs7---bg3 +b3g---b71 + S45
4523584 + 566584 + S84b83 + 523545584 + 523545566 1 523545b83

+545566b83 + S66584bs3 (48)
{bgo, s20} which were set to zero before.

{bs2, bs3} which will be set to zero.

bgs = s3+bg+---+bes+ -+ bso---bes + bas---bss + s28

+56 + 549 + bes + S6528549 + S6S49 + S6S49bes + S28519b66

+549b66 (49)
bgs = s3 + prio + sa9(1 + bes) (50)
s3 = prio + sa9(1 + bess) (51)

Cube bites: {49}
Dynamic bits: {3}
Zero assigned bits: {6, 28}
One assigned bits: {—}
The number of guessed term: {2}

Dynamic Cube Attack on Grain-v1 19
bioo = s45 + pri1 + Ss4
= +bg7 + sa5 +pri1 + s4 + 517+ S42 + 55 +S27 + 1+ bs + - - -
+57 + 529 + 550 + S67 + S7550b67 + 529550067 + S50b67
= $45 + pri1 + sso(1 + ber) + ss5 (52)
Cube bites: {50,55}
Dynamic bits: {45}
Zero assigned bits: {4,7,27,29}
One assigned bits: {—}
The number of guessed term: {1}
bgg = s19 + b19 + - - + brg + bs1 + bg2 + b2 + brg + - - -
+bgo---b3zs+ -+ bga---bse 4 -+ 544 + 522583
4565583 + 583bs2 + 522544583 + 522544565 + S22544bs2
+544565b82 + S65583582
= S44 + priz + $22844 + S81 (53)
bgo = s81 (54)
Cube bites: {—}
Dynamic bits: {44}
Zero assigned bits: {22}
One assigned bits: {—}
The number of guessed term: {1}
bs1 =s1+br+---+bea+ -+ b3g---bea+ b2z bs3
+526 + S4 + S47 + bea + 54526547 + S4547 + 54547b64
+526547b64 + S47564
= 81 + S26 + Sa7 + pria (55)
bi17 = $1 + Sa7(1 + bea) + s26547bsa + pr + pria
= S1 + pria (56)

Cube bites: {—}
Dynamic bits: {1}
Zero assigned bits: {47}
One assigned bits: {—}
The number of guessed term: {1}

20

Majid Rahimi et al.

bit20 = bi20 = bso+40 = S40 + bao + ba1 + - - - 4 bgs + bo2 + bos
+b100 + b1o2 + -+ + b77 - - b103 + be1 - - - bo2 + Se5 + 5435104
45865104 + 543565586 + 5435655104 + 5435650103

+s65586b103

{bss, ba2, bos, bioo} which were set to zero before.
{b102, bio3} which will be set to zero.

b1os = s23 + b2z +--- +bg3 +bss + -+ beo - - bse + baz - - - bra
+548 + 526587 + 569587 + S87bge + 526548587 + 526548569

+526548b86 + S48569bs6 + S69537bs6

{bss, bss, s23} which were set to zero before.
{bss, ss7} which will be set to zero.

bse = s6 +bs + -+ beg+ -+ baz---beg + ba7---bs7 + 531 + 59

+552 + beo + 59531552 + S9S52 + S9S52b69 + S10552b69 + S52b69

{s9} which was used as dynamic variable before.

bse = s31 + Prig + ss5(1 + br2)

s31 = Prig + ss5(1 + br2)
Cube bites: {55}

Dynamic bits: {31}

Zero assigned bits: {52}

One assigned bits: {—}

The number of guessed term: {1}

587 = 87 4 510 + 820 + 830 + Pr + s32 + 545 + 553 + 558 + S69

4510532553 + 510553 + S10553b70 + 532553b70 + S53b70

{s7, 820, $30, 558} which were set to zero before.
{10, $45} which were used as dynamic variables before.

ss7 = Prig + ss0(1 + be7) + s55 + $32 + $53 + S10532853

+510853 + S10553b70 + 532553070 + S53b70

sg7 = Prig + ss50(1 + be7) + s55 + 32

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

Dynamic Cube Attack on Grain-v1

21

s32 = Prig + 550(1 + b67) + S55

Cube bites: {50, 55}
Dynamic bits: {32}
Zero assigned bits: {53}
One assigned bits: {—}
The number of guessed term: {1}

b1os = s4s8 + Pr1s

S48 = Pris

Cube bites: {—}
Dynamic bits: {48}
Zero assigned bits: {26}
One assigned bits: {—}
The number of guessed term: {1}

bio2 = s22 +baz 4 - -+ bga 4+ bga + - - 4+ be1 - - bgs 4 baz - - - bys
+547 + 525586 1 568586 + Ssebss + 525547586 + S25547568
+525547b85 + Sa7568bs5 1 s68586bs5
{s22, 47, bss } which were set to zero before.

{ss6} which will be set to zero.
{bga} which will be simplified.

bsa = 54 +ba+ - +ber + -+ bar-- b7 + bas - - - bse
+829 + 87 + 850 + be7 + 57529550 + 7850 + S7850b67 + 520850067
+550b67
= Prig + ss0(1 + be7)

{84, 87, 829} which were set to zero before.

586 = S6 + 89 + 519 + 520 + Pr + 531 + S44 + 552 + 557 + S68

459531552 + 59852 + 59552b69 + 531552b69 + S52b60

{s6, 519, $29 } which were set to zero before.
{59, 844} which were used as dynamic variables before.

sgs = Pri7 + ss5(1 + br2) + 31 + S52 + S57 + S9531852

459552 + S9S52b69 + S31552b69 + S52b69

{ss2} which was set to zero before.

sg¢ = Pri7 + ss7

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

22

Majid Rahimi et al.

ss7 = Priy
Cube bites: {—}
Dynamic bits: {57}
Zero assigned bits: {—}

One assigned bits: {—}
The number of guessed term: {1}

bio2 = bsa + Pr
= Prig + ss0(1 + be7)

bi20 = s10 + Pr + Prig + sso(1 + ber) + Pr
840 + Prao + s50(1 + be7)

s40 = Prag + s50(1 + be7)

Cube bites: {50}
Dynamic bits: {40}
Zero assigned bits: {—}
One assigned bits: {—}
The number of guessed term: {1}

References

(73)

(74)

(75)

(76)

1. M. Hell, T. Johansson, and W. Meier, “Grain-a stream cipher for constrained environments.

estream, ecrypt stream cipher project, report 2005/010, 2005.”

2. H. Englund, T. Johansson, and M. Sénmez Turan, “A framework for chosen iv statistical
analysis of stream ciphers,” Progress in Cryptology—-INDOCRYPT 2007, pp. 268-281, 2007.
3. L. Dinur and A. Shamir, “Cube attacks on tweakable black box polynomials,” Advances in

Cryptology-EUROCRYPT 2009, pp. 278-299, 2009.

4. I. Dinur and A. Shamir, “Breaking grain-128 with dynamic cube attacks,” in Fast Software

Encryption, pp. 167-187, Springer, 2011.

5. S. Fischer, S. Khazaei, and W. Meier, “Chosen iv statistical analysis for key recovery attacks
on stream ciphers,” Progress in Cryptology-AFRICACRYPT 2008, pp. 236-245, 2008.

6. M. Agren, M. Hell, T. Johansson, and W. Meier, “A new version of grain-128 with authen-
tication,” in Symmetric Key Encryption Workshop, SKEW (February 2011), 2011.

