
Multi-Party Computation of Polynomials and Branching
Programs without Simultaneous Interaction?

S. Dov Gordon1??, Tal Malkin2 ? ? ?, Mike Rosulek3†, and Hoeteck Wee4‡

1 Applied Communication Sciences
2 Columbia University

3 University of Montana
4 George Washington University

Abstract. Halevi, Lindell, and Pinkas (CRYPTO 2011) recently proposed a
model for secure computation that captures communication patterns that arise
in many practical settings, such as secure computation on the web. In their
model, each party interacts only once, with a single centralized server. Parties
do not interact with each other; in fact, the parties need not even be online
simultaneously.

In this work we present a suite of new, simple and efficient protocols for secure
computation in this “one-pass” model. We give protocols that obtain optimal
privacy for the following general tasks:
– Evaluating any multivariate polynomial F (x1, . . . , xn) (modulo a large RSA

modulus N), where the parties each hold an input xi.
– Evaluating any read once branching program over the parties’ inputs.

As a special case, these function classes include all previous functions for which
an optimally private, one-pass computation was known, as well as many new
functions, including variance and other statistical functions, string matching,
second-price auctions, classification algorithms and some classes of finite automata
and decision trees.

? An extended abstract of this work appears in the proceedings of EUROCRYPT 2013. This is the full version.
?? Parts of this work was completed while the author was a postdoctoral researcher at Columbia University.

? ? ? Supported in part by NSF grant CCF-1116702 and by the the Intelligence Advanced Research Project Activity
(IARPA) via Department of Interior National Business Center (DoI / NBC) contract Number D11PC20194. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of IARPA, DoI/NBC, or the U.S. Government.
† Supported by NSF grant CCF-1149647.
‡ Supported by NSF CAREER Award CNS-1237429

1 Introduction

Most of the literature on secure multi-party computation assumes that all parties remain on-
line throughout the computation. Unfortunately, this assumption is problematic in many emerging
environments, where the parties are often disconnected from the network due to geographic or power
constraints. Moreover, the protocols typically require each party to broadcast a large number of
messages to the other parties, which can be quite impractical in large distributed networks. We
would like to minimize interaction to the greatest extent possible due to practical communication
and bandwidth considerations — ideally, each party would need to send only one message.

We consider secure computation in a one-pass client-server model put forth in a recent work of
Halevi, Lindell and Pinkas [12].5 In this model, there is a single server and multiple clients, and
the goal is for the server to securely compute some function of the inputs held by the respective
clients. Each client connects to the server once (hence “one-pass”) and interacts with it, without
any other client necessarily being connected at the same time. In particular, there is no need for any
two clients to interact. This model is applicable in settings where maintaining constant network
connectivity can be problematic — for example, when deployed troops are communicating with
the central command center. It is also applicable in situations where the participants cannot be
coordinated for social reasons. Imagine trying to get thirty program committee members across
different time zones online at the same time to cast a vote. Instead, in the one-pass model, each
will receive an email instructing them to login to the server at their leisure. When all participants
have done so, the server can compute the output and post the data to a website (or email it out).
Similarly, if a website would like to gather data from its visitors, it is unreasonable to ask that
they remain logged-in to the site for the duration of the computation. Instead, as they login, they
can upload the relevant data according to the protocol, assured of their privacy, and the server can
compute the agreed-upon function offline.

1.1 Security for the One-Pass Model

We briefly outline the security model for the one-pass client-server setting and previous results
of Halevi et al. [12] — hereafter, “HLP.” First, observe that secure computation in this setting
is easy if the server is always honest, and is trusted with user data: each client simply sends its
input to the server, encrypted under the server’s public key; the server will then perform all of the
computation. However, assuming that the server is completely honest is not realistic. Instead, we
aim to protect the privacy of the honest parties’ inputs even amidst a malicious server that may
collude with some subset of the clients. Together with the requirement that the protocol be one-
pass, this imposes inherent limitations on what we can securely compute in this model. To see why
this is the case, consider parties P1, P2, . . . , Pn computing some function f(x1, . . . , xn), where party
Pi holds xi and the parties go in order P1, P2, . . . , Pn. If the server colludes with the last t parties,
then the correctness and one-pass nature of the protocol imply that the coalition can compute
the “residual function” f(x1, . . . , xn−t, ·, · · · , ·), on any choice of a t-tuple (zn−t+1, . . . , zn), and for
arbitrarily many such choices. In other words, inherent to this one-pass model is the fact that parties
P1, . . . , Pn−t must disclose enough information about their inputs to allow the remaining parties
to correctly evaluate the residual function f(x1, . . . , xn−t, ·, · · · , ·). Once the last parties have this
information, nothing can prevent them from using it repeatedly. This is in stark contrast to the
standard interactive model for secure computation, where the adversary only learns the output of
the computation on a single set of inputs, and which allows us to securely compute every efficiently
computable function [19, 10].

5 The ideas of “non-interactive” and “one-pass” computations can be further traced back to [18, 14]. See Section 1.3.

1

Due to these inherent limitations of the one-pass model, the “best possible” security guarantee
that one could hope for is that the protocol reveals no more information than what is revealed
by oracle access to this residual function f(x1, . . . , xn−t). Throughout this paper, this will be the
notion we mean when we refer to security (following [12], we will also refer to this notion as optimal
privacy); for completeness, we provide the formal definitions in Section 2.2. HLP [12] presented
practical optimally private protocols for sum of inputs, selection, and symmetric functions like
majority, and leave as an open problem whether we can obtain practical optimally private protocols
for some larger classes of functions. Indeed, there is no clear candidate for such a larger class of
functions as the previous protocols are somewhat ad-hoc and seem to rely on different ideas.

Even ignoring the issue of practical efficiency, the aforementioned functions are essentially the
only ones for which we have optimally private protocols. The main technical challenge in designing
optimally private protocols is as follows: on one hand, the view yi of the server after interaction
with party Pi should encode sufficient information about the first i inputs x1, . . . , xi to be able to
compute the function f ; on the other hand, in order to establish security, the simulator needs to
be able to efficiently reconstruct the view yi given only oracle access to the residual function
f(x1, . . . , xi, ·, · · · , ·). HLP formalize this via the notion of minimum-disclosure decomposition,
which is a combinatorial property of the function itself, providing a necessary condition for the
existence of an optimally private protocol. In addition, they demonstrate that every function with
this combinatorial property admits some optimally private protocol, albeit a highly inefficient one.
However, beyond the small classes of functions mentioned above, they do not demonstrate that any
function has such a property. Indeed, using pseudorandom functions, they demonstrate that not all
functions have a minimum-disclosure decomposition.

1.2 Our results

We present practical, optimally private protocols for two broad classes of functions: (1) sparse
polynomials over large domains, which capture many algebraic and arithmetic functions of interest,
such as mean and variance, and (2) read-once branching programs, which capture symmetric
functions, string matching, classification algorithms and some classes of finite automata and decision
trees (c.f. [15, 14]).6 Together, these two classes capture all of the functions addressed in the previous
work of HLP, and also include many more functions of interest. One such concrete example is a
second-price auction (the n-party functionality that returns the index of the largest value along
with the second largest value). This function is asymmetric, but can be represented as a branching
program. A second-price auction with n parties and discrete bids in the range {1, . . . , k} has an
associated branching program of width nk2.

For convenience, we provide a summary of our results in Figure 1.

We begin by giving a simplified exposition of the protocols (achieving security against semi-
honest adversaries), and outlining the simulation strategies used in the proof of security. In
particular, the simulation strategies provide a solution to the minimum-disclosure decomposition
problem.

Computing sparse polynomials. Consider a sparse7 polynomial F in n variables X1, . . . , Xn, where
party Pi holds an input xi for variable Xi. The parties go in the order P1, . . . , Pn. Consider the

6 For technical reasons outlined below, our protocol for computing polynomials relies on having a large input domain
(namely, ZN). On the other hand, the nature of branching programs makes them well-suited to functions with
small input domains. Thus these two classes of functions are somewhat incomparable.

7 That is, F can be written as the sum of poly(n) monomials.

2

Section 4 Section 5

class of functions sparse polynomials branching programs

hardness assumption DCR DLIN/SXDH/DCR

fixed ordering of parties? no depends

semi-honest complexity O(M) O(w)

malicious complexity O(nM |D|) O(nw|D|)

examples mean, variance
symmetric functions, first

price auction

other
DLIN/SXDH instantiations

support GS proofs

Fig. 1. Summary of our constructions. n = number of parties; w = width of branching program;
M = number of monomials; |D| = size of input domain.

following polynomial:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn).

Informally, party Pi will post to the server an encryption of the coefficients of polynomial Fi. The
next party Pi+1 will homomorphically evaluate an encryption of (the coefficients of) Fi+1 given
its input xi+1 and the previous encryption of Fi (Figure 2). To do so, the encryption scheme
must be homomorphic with respect to affine functions over the integers. We are able to realize
such an encryption scheme from the DCR assumption, which leads to a one-pass protocol for
computing sparse polynomials over ZN , where N is a RSA modulus. Overall, each party does
O(M) group operations and sends O(M) group elements, where M is an upper bound on the
number of monomials in F .

Fi−1(X) = αX3
iX

2
i+4X

4
n + β XiX

2
i+1 + γ X2

iX
2
i+1 + · · ·

αx3
i X

2
i+4X

4
n + βxiX

2
i+1 + γx2

i X
2
i+1 + · · ·

Fi(X) = αx3
i X

2
i+4X

4
n + (βxi + γx2

i)X
2
i+1 + · · ·

× x3
i × xi × x2

i

+

Fig. 2. Obtaining coefficients of Fi using the coefficients of Fi−1 and the value of xi.
Shaded boxes are encrypted values. Operations on arrows are homomorphic operations
possible in an additively homomorphic scheme.

To establish security of this protocol, we must show a simulator that can efficiently reconstruct
the coefficients of Fi given oracle access to appropriate residual function, which in this case is Fi
itself. (For technical reasons, the simulator needs to reconstruct not just the encrypted coefficients
but the coefficients themselves.) We show that by querying Fi on sufficiently many random points,
the simulator can obtain the coefficients of Fi by solving a suitable system of linear equations.

3

Computing branching programs. Consider a layered read-once branching program, where party i
holds the input xi in the i’th layer. Our protocol proceeds by evaluating the branching program in
a bottom-up manner, “percolating” output labels from the end of the branching program towards
the start node. Accordingly, we label the output layer of the branching program L0, and layers
L1, . . . , Ln proceed up from there. The parties go in order P1, . . . , Pn, and party Pi will post to the
server an encryption of the output labels on all of the nodes in the i’th layer. The next party, Pi+1,
generates an encryption of labels in layer i+1, given xi+1 and an encryption of labels in the i’th layer
(Figures 3 & 4). Due to the simplicity of the percolation operation, it suffices to use an encryption
scheme which is homomorphic with respect to the identity map (i.e., re-randomizable). Such an
encryption scheme may be realized from the DCR, DDH and DLIN assumptions (the latter two
instantiations are important for compatibility with Groth-Sahai proofs [11]). Overall, each party
does O(w) group operations and sends O(w) group elements, where w is an upper bound on the
width of the branching program.

Layer: 4 3 2 1 0

x4

x3

x3

x2

x2

x2

x1

x1

x1

x1

0

1

2

3

4

0
1

0
1
0
1

0
1
0
1
0
1

0
1
0
1
0
1
0
1

Fig. 3. A layered branching program for comput-
ing a tally among 4 parties. Output nodes are
darkly shaded.

Layer:

1

2

3

4

0

1

2

3

4

0
1
0
1
0
1
0
1

Fig. 4. How party #1 truncates the branch-
ing program, corresponding to input x1 = 1.

To establish security of this protocol, we must show a simulator that can efficiently compute
the labels that the protocol assigns to the layer corresponding to the last honest party, given oracle
access to the appropriate residual function. For each node u in the i’th layer, the simulator runs
a depth-first search to find a path to u from the start node in the branching program. The path
determines a set of inputs on which to query the residual function; the result of the query will be
the label on the node u.

The full-fledged protocol: more details. The outline above is a little over-simplified. The parties will
in fact need to use a homomorphic threshold encryption scheme, which is also re-randomizable, in
order to provide “circuit privacy” (that is, hide the homomorphic operations). Roughly speaking,
the i’th party Pi’s message will be encrypted under the public keys of parties Pi+1, . . . , Pn and the
server, so that the message will be private unless all of these parties and the server are corrupted.
The use of homomorphic threshold encryption here is analogous to previous constructions [12].

The protocols outlined above obtain optimal privacy against only semi-honest adversaries. To
achieve security against malicious adversaries, we can use a generic GMW-style compiler via non-
interactive zero-knowledge proofs in the random oracle model, in line with previous work. For our
branching-program protocol, we provide an alternative method, in the standard model, that relies
on Groth-Sahai proofs. The same approach does not apply to our polynomial-evaluation protocol,

4

since it requires an additively homomorphic encryption scheme, and none are known that are
compatible with Groth-Sahai proofs.

As with previous constructions, our protocols can often be extended to handle arbitrary ordering
of the players (which is useful in such an asynchronous interaction setting). Indeed, this is the
case for our polynomial evaluation protocols. Our branching-program protocol can also allow for
arbitrary ordering if the function computed is such that the branching program can be adjusted
“on the fly” based on the order in which the parties show up; this is the case for all symmetric
functions, as well as some asymmetric ones such as the second-price auction mentioned above.

Finally, we note that while the previously known constructions of [12] are captured as special
cases of our two protocols, our technical novelty over these previous constructions is two-fold.
First, for our polynomial-evaluation protocol we provide a novel threshold homomorphic encryption
scheme based on the DCR assumption. This is important for extending the expressivity from simple
summations to more general polynomials while keeping the protocol practical.8 Second, proving
security for our constructions (in particular, proving that the functions admit minimum-disclosure
decompositions) requires much more sophisticated simulation strategies than those required by the
previous work. In particular, for the classes of functions considered previously, there is no need to
solve systems of linear equations or solve s-t connectivity, as we do in this work.

1.3 Additional related work

Related constructions. Surprisingly, our result statements are similar to the results of Harnik, Ishai
and Kushilevitz [13, Section 4] for a very different problem. They showed how to securely compute
branching programs and sparse polynomials9, where every pair of parties makes a single call to an
oblivious transfer channel. In their setting, as in ours, the parties incrementally maintain a succinct
representation of the inputs of the first i parties. Beyond that similarity, however, the security goal
and the underlying communication model are very different. Specifically, they achieve security in
the standard MPC setting where the simulator calls the ideal functionality once (there is no “one
pass” restriction); indeed, our simulation strategy is very different from theirs. An interesting open
problem is to adapt their result on linear branching programs to our setting; the key technical
obstacle appears to be solving the analogue of s-t connectivity on the computation graph for linear
branching programs.

Related models. There is a large body of work considering the general theme of secure computation
with a restricted communication pattern. Sander, Young and Yung [18] were the first to put forth the
notion of ‘non-interactive’ secure computation, but only in the context of two-party computation.
Extensions to the multi-party setting were addressed recently in the work of Ishai et al. [16]. These
are essentially ‘two-pass’ protocols, where it is still possible to securely compute any efficiently
computable function. Secure computation in two passes was also recently considered by Asharov
et al. [1].

The notion of one-pass computation was considered by Ibrahim, Kiayias, Yung and Zhou [14].
The notion of security is however quite different – roughly speaking, they do not allow the server
to collude with the clients, which is in some sense the main source of technical difficulty in the
model we study here; their main goal is to minimize server’s storage. Ibrahim et al. also provided
an efficient protocol for computing branching programs in their model. We note that their protocol

8 Recall that if efficiency is not an issue, then we could instead rely on threshold fully homomorphic encryption, or
a threshold variant of i-hop garbled circuits [8], as shown in [12].

9 They handle sparse polynomials over bits, whereas we consider sparse polynomials over ZN . In addition, they
evaluate the branching programs top-down, whereas we do it bottom-up.

5

is very different from ours: (1) the computation is done in a top-down manner, whereas ours is done
in a bottom-up manner; and (2) the transitions from one layer to the next is encoded using a degree
w polynomial where w is the width of the branching program, and the parties homomorphically
evaluate a degree w polynomial on ciphertexts. The authors showed how to realize the latter based
on only the DCR assumption, whereas our protocol may be based on either the DDH, DLIN, or
DCR assumptions. The idea for evaluating branching programs in a bottom-up manner originates
in a paper of Ishai and Paskin [15] in a different context; their main result exploits the DCR
assumption to obtain short ciphertexts.

Other related works. We also point out that both classes of functions we consider in this work have
been studied in several recent works in a variety of different settings [4, 3, 17, 15, 14].

Organization. We summarize the general one-pass framework [12] (including minimum-disclosure
decomposition) Section 2. We provide a generic protocol construction in Section 3, and show how
to apply it to computing polynomials and branching programs in Sections 4 and 5 respectively. We
provide concrete instantiations for underlying primitives in Section 6.

2 General Framework

We design our protocols in the registered public-key infrastructure (PKI) model [2]. We assume
that in an initial setup phase every party registers a public and private key pair with a central
authority and all the public keys are made known to everyone. We discuss the exact assumptions
in Appendix A.

2.1 Decompositions

As described above, we prove that our protocols leak only the minimum possible information, even
if the server colludes with some of the players. We assume that parties P1, . . . , Pn interact with the
server in order, with P1 going first and Pn going last.10 As in [12], we define a decomposition of the
function f that the players are computing, by a sequence of functions f1, . . . , fn.

Definition 1 (Decomposition). For a function f : Dn → R, we define a decomposition of
f by a tuple of n functions, f1, . . . , fn, where f1 : D → {0, 1}∗, fi : {0, 1}∗ × D → {0, 1}∗
for 1 < i < n, and fn : {0, 1}∗ × D → R, such that for all (x1, . . . , xn) ∈ Dn, it holds
that fn(fn−1(· · · f2(f1(x1), x2) · · · , xn−1), xn) = f(x1, . . . , xn). We define a partial decomposition
inductively as f̃1(x1) = f1(x1) and f̃i(x1, . . . , xi) = fi(f̃i−1(x1, . . . , xi−1), xi).

Minimum-Disclosure Decompositions: As in the work of Halevi et al. [12], we use the notion
of a minimum-disclosure decomposition to argue that our protocols reveal as little information
as possible. For a function f , a decomposition of f given by f1, . . . , fn, some fixed inputs
x = (x1, . . . , xn), and for all i ∈ [n], we define the residual function gxi (zi+1, . . . , zn) =
f(x1, . . . , xi, zi+1, . . . , zn).

Definition 2 ([12]). A decomposition of function f , given by f1, . . . , fn, is a minimum-disclosure
decomposition if there exists a probabilistic, black-box simulator S that for any set of inputs x =
(x1, . . . , xn) having total length m, and any i ∈ [n], when S is given black-box access to an oracle
computing gxi (·), the output of the simulator satisfies Sgxi (·)(m,n, i) = f̃i(x1, . . . , xi), and the running
time of Sgxi (·)(m,n, i) is polynomial in m and n.

10 As noted before, the parties can actually interact with the server in arbitrary order for our polynomial evaluation
protocol and in many cases for the branching program protocol as well.

6

2.2 Defining Security

Security is defined using the real/ideal world paradigm [9, 12]. In the ideal world, there is a trusted
party that computes f , which is represented by some fixed decomposition, f1, . . . , fn. Each party Pi
gives input xi to the trusted party. If Pi is honest, or semi-honest, he simply uses the value xi that
was found on his input tape; a malicious Pi(z), with auxiliary information z, may use any input
of his choice. We denote the corrupted set of parties by I ⊂ {P1, . . . , Pn+1}. If Pn+1 /∈ I (i.e. if
the server is honest), the trusted party sends output f(x1, . . . , xn) to the server. If Pn+1 ∈ I, then
we let i∗ denote the largest index such that Pi∗ /∈ I (i.e. Pi∗ is the last honest party). The trusted
party ignores inputs (xi∗+1, . . . , xn) and sends f̃i∗(x1, . . . , xi∗) to the adversary controlling I. In
this case, we stress that the trusted party does not send f(x1, . . . , xn), although this can of course
be computed by the adversary once he is given f̃i∗(x1, . . . , xi∗). This subtlety becomes important
while proving security, because the simulator will have no way to extract the input of malicious
party Pj for j > i∗.

In the real world, f is computed by a sequence of protocols π = (π1, . . . , πn), where πi is a
two-party protocol between the server and Pi. Each party Pi uses input xi in πi, and, as above, if
they are honest or semi-honest, they use the input found on their input tape. The server uses his
output from πi−1 as input to πi. Each player is also given all n + 1 public keys, denoted by p̃k,
which are set up as described at the beginning of this Section.

Let S(z) denote an ideal-world adversary holding auxiliary input z and corrupting some set of
parties I. On input set x = (x1, . . . , xn) and security parameter κ, we denote the output of S(z)
and server Pn+1 by Idealf̄ ,S(z),I(x, z, 1

κ). Let A(z) denote a real-world adversary holding auxiliary
input z and corrupting the set of parties I. On input set x = (x1, . . . , xn) and security parameter
κ, we denote the output of A(z) and server Pn+1 by Realf̄ ,A(z),I(x, z, p̃k, 1

κ).

Definition 3 ([12]). We say that a protocol π = (π1, . . . , πn) securely computes a decomposition
f̄ = (f1, . . . , fn) with optimal privacy, if π is a minimum decomposition for f̄ , and if for any non-
uniform, PPT adversary A(z) corrupting some subset of parties I in the real-world, there exists a
non-uniform, PPT adversary S(z) corrupting I in the ideal-world such that{

Idealf̄ ,S(z),I(x, z, 1
κ)
}

c=
{
Realπ,A(z),I(x, z, p̃k, 1

κ)
}
.

2.3 Homomorphic threshold encryption

Our constructions require a (n-out-of-n) threshold encryption scheme which supports the following
properties in addition to the standard Enc, Dec, and Gen procedures: (These properties generalize
the “layer re-randomizable encryption” in [12, Definition 4.1].)

– To encrypt to a set of users whose corresponding public keys comprise the set S, one simply
aggregates their public keys via p̃k← Aggregate(S), and then encrypts normally treating p̃k as
a normal public key.

– The scheme is homomorphic (with respect to a class of functions we specify later when describing
our main protocols). More formally, there is a procedure Eval which takes a (possibly aggregated)
public key, a ciphertext, and a function, and outputs another ciphertext. We then require that
for all valid keypairs (sk,pk), all supported functions f , and all ciphertexts C:

Dec(sk,Eval(pk, C, f)) = f(Dec(sk, C))

– Given an encryption C under public keys pk1, . . . ,pkn, the owner of any corresponding secret
key ski, i ∈ [n], can transform C into a (fresh) encryption of the same message, under the
remaining n− 1 public keys.

7

More formally, there is a procedure Strip which takes a (aggregated) public key, a secret key, and
a ciphertext, and outputs another ciphertext. We require that, for all valid keypairs (sk∗,pk∗),
all S 3 pk∗, all plaintexts M , and all C in the support of Enc(Aggregate(S),M), we have

Strip(Aggregate(S), sk∗, C) ≈s Enc(Aggregate(S \ {pk∗}),M).

Semantic Security. For an adversary A = (A1,A2) we define the advantage AdvThEncA(k) to be:∣∣∣∣∣∣∣∣∣∣∣∣
Pr

U \ U
∗ 6= ∅ ∧ b = b′ :

(pki, ski)← Gen(1k), i = 1, . . . , n;

(U,U∗,M0,M1)← A1(1k,pk1, . . . ,pkn);

b
$← {0, 1};

C ← Enc(Aggregate({pki | i ∈ U}),Mb);

b′ ← A2(C, {ski | i ∈ U∗});

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
A threshold encryption scheme is said to be indistinguishable against chosen plaintext attacks (IND-
CPA) if for all PPT adversaries A, the advantage AdvThEncA(k) is a negligible function in k.

3 Our General Protocol

Our protocols are designed using the following high-level approach, which is essentially an
abstraction of that in [12].

1. We begin with a decomposition for the class of functions we are interested in, namely sparse
polynomials and read-once branching programs, as described in Sections 4 and 5 respectively.
We show that our decompositions are in fact minimal, proving that our protocols are optimally
private for these classes of functions.

2. We construct a semi-honest protocol by combining the decomposition with a threshold homo-
morphic encryption scheme. (See Section 3.1.) For our constructions, the only homomorphic
operations we need to support are the identity function and affine functions. In Section 6, we
provide concrete instantiations from DDH, DCR and DLIN.

3. We construct a protocol that is secure against malicious parties by having the participants first
encrypt their inputs and then prove consistency using suitable NIZKs. We provide a detailed
treatment in the design of NIZKs, where we completely specify the witnesses used by the honest
provers. (Some of these details were omitted in [12].) These results appear in Appendix B.

3.1 Protocol for Semi-Honest Adversaries

We consider n parties P1, . . . , Pn, with corresponding registered key pairs {(pki, ski)}i∈[n]. Let
f1, . . . , fn be a decomposition for f in which the parties go in order 1, . . . , n. Our protocol
is as follows: At a high level, party i sends to the server the ciphertext Ci, which is an
encryption of the value yi := fi(yi−1, xi) = f̃i(x1, . . . , xi) under the aggregated public key
p̃ki = Aggregate(pki+1, . . . ,pkn+1). Ciphertext Ci is generated by applying the encryption scheme’s
homomorphic properties to ciphertext Ci−1. In more detail:

1. Party P1 computes C1
$← Enc(p̃k1, f1(x1)) and sends C1 to the server Pn+1.

2. For i = 2, . . . , n: party Pi receives Ci−1 from the server, and sends Ci to the server, where:

Ci
$← Strip(p̃ki, ski,Eval(p̃ki, Ci−1, fi(·, xi)).

8

3. Upon receiving Cn from Pn, the server Pn+1 decrypts the ciphertext using its secret key skn+1

and outputs the result.

From the properties of Eval and Strip, it is easy to see that if all players are honest, then
Ci ≈s Enc(p̃ki, yi) for all i. Correctness then follows from the fact that f1, . . . , fn is a correct
decomposition.

Lemma 1 (Semi-honest security). If (Gen,Enc,Dec,Aggregate,Eval, Strip) is a secure threshold
encryption scheme (Section 2.3), then the above protocol is an optimally private protocol for
decomposition (f1, . . . , fn), against semi-honest adversaries.

4 Computing Sparse Multivariate Polynomials

In this section we instantiate our general framework to obtain a protocol for evaluating a
multivariate polynomial on the parties’ inputs. We begin with a simple lemma about learning
the coefficients of a multivariate polynomial via oracle queries:

Lemma 2. Let F ∈ ZN [X1, . . . , Xn] be a known multivariate polynomial with total degree d, where
N is square-free, and d ≤ p/2 for every prime p dividing N . Let M be the number of monomials
in F . Fix an (unknown) input to the polynomial (x1, . . . , xn) ∈ (ZN)n and define:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn)

Then, for each i, it is possible to learn the coefficients of the polynomial Fi by making a polynomial
number (in M and logN) of queries to an oracle for Fi.

Proof. Our approach for learning the coefficients of Fi is to simply query Fi on a sufficiently large
number of random points (the number of points to be determined later). Then the coefficients
of Fi can be viewed as unknowns in a linear system over ZN , which can be solved via Gaussian
elimination. We must show that the linear system uniquely determines Fi with high probability.

Fix i and recall that F is fixed and known. Let us say that a monomial m′ in variables
{Xi+1, . . . , Xn} is valid if there exists some monomial m ∈ F (with nonzero coefficient) such
that the degree of Xj is the same in both m′ and m, for all j ∈ {i + 1, . . . n}. Since Fi is of the
form F (x̂1, . . . , x̂i, Xi+1, . . . , Xn), every monomial of Fi must be valid. Then we may restrict our
linear system to polynomials whose monomials are all valid, by including unknowns only for the
coefficients of valid monomials. Recall that there are at most M valid monomials. Now, it suffices
to show that the linear system uniquely determines Fi, among polynomials that contain only valid
monomials.

Let p be a prime divisor of N . Fix any polynomial F ′ 6= Fi, where F ′ contains only
valid monomials. Then by the Schwartz-Zippel lemma, we have that Fi and F ′ agree on q
randomly selected points (modulo p) with probability at most (d/p)q ≤ 1/2q. There are at
most NM such multivariate polynomials F ′, and at most logN prime divisors of N , so choose
q = Mk logN log logN . Then by a union bound, we have that Fi agrees with some other F ′ on
all q random points modulo some prime divisor with probability at most 1/2k. By the Chinese
Remainder Theorem, the linear system over ZN uniquely determines Fi with probability at least
1− 1/2k.

Function decomposition. The preceding lemma suggests that, given a sparse polynomial F , we may
compute its minimum-disclosure decomposition as follows:

9

fi(·, xi) takes as input the list of coefficients for a polynomial P (Xi, Xi+1, . . . , Xn) and out-
puts the list of coefficients for the polynomial P ′(Xi+1, . . . , Xn) where P ′(Xi+1, . . . , Xn) :=
P (xi, Xi+1, . . . , Xn).

Specifically, fi proceeds as follows:

1. For each monomial of P that contains a term of the form Xt
i , multiply that coefficient by xti.

2. For each set of monomials whose degrees in Xi+1, ..., Xn are identical, add the coefficients
together.

This next Lemma follows directly from Lemma 2.

Lemma 3. The decomposition described above is a minimum-disclosure decomposition.

Secure, one-pass protocols. It is easy to see that fi(·, xi) is an affine function of its inputs.
Therefore, using our general framework in the preceding section, it suffices to construct a threshold
homomorphic encryption scheme that supports computing affine functions on encrypted values.
Indeed, we provide such an instantiation based on DCR in Appendix C.3.

Theorem 1. Under the DCR assumption, there is a one-pass protocol, secure against a semi-honest
adversary, for evaluating any F ∈ ZN [X1, . . . , Xn] with M monomials, where N is a RSA modulus
and M and the total degree of F satisfy the bounds given in Lemma 2. The protocol achieves optimal
privacy, its runtime is polynomial in M , n, and logN , and it requires O(M) exponentiations per
party.

In Section 6 and Appendix D, we will demonstrate concrete instantiations of the NIZKs
described in Appendix B. This leads to the following Theorem.

Theorem 2. Under the DCR assumption, there is a one-pass protocol in the random-oracle model,
secure against malicious adversaries, for evaluating any F ∈ ZN [X1, . . . , Xn] expressed as a sum
of monomials, where N is as in Lemma 2. The protocol achieves optimal privacy and it requires
O(nM |D|) exponentiations per party (where D denotes the input domain for each party).

5 Computing Branching Programs

In this section we describe our protocol for computing branching programs.

Overview. A (deterministic) branching program P is defined by a directed acyclic graph in which
the nodes are labeled by input variables and every nonterminal node has two outgoing edges, labeled
by 0 and 1.11 An input naturally induces a computation path from a distinguished initial node to a
terminal node, whose label determines the output. We rely on a technique of Ishai and Paskin [15]
for computing branching programs (BPs) in a bottom-up manner. Let x1, . . . , xn be the inputs to
the BP. First, without loss of generality we may make the BP layered (defined below), incurring at
most a quadratic blow-up in its size (this blow-up may be avoided in specific cases, see [15]). In a
layered BP, all nodes can be partitioned into layers L0, . . . , Ln, with the property that all nodes in
layer i ∈ {1, . . . , n} correspond to input variable Xi and have outgoing edges only into layer i− 1.
(Because we work in a bottom-up manner, we label the output layer L0, and the topmost layer
Ln.) Layer 0 contains only output nodes.

11 We note that our protocols work also for more general “linear branching programs”, where the edges are labeled
with affine functions.

10

Imagine evaluating a layered BP by “percolating” output labels from the end of the BP towards
the start node, as follows.12 Starting at layer L0, we do the following: For every edge (u, v) between
layer Li and Li−1 that is labeled with the value xi (that is, if we are at node u and Xi assumes the
value xi, we proceed to node v), copy the output label from node v to node u (there will not be a
conflict by the deterministic property of the branching program). Finally, the start node in layer
Ln is labeled with the output of the computation.

This process naturally lends itself to a decomposition of the branching program’s functionality.
Namely, the ith phase of the decomposition outputs the labels of all nodes in layer i. To show that
this decomposition is minimum-disclosure, we must argue that an adversary could also learn this
information by corrupting the server and parties i + 1 through n in the ideal world. To see why,
first assume that all nodes in the branching program are reachable from the start node. Then a
path from the start node to some node v in layer i naturally corresponds to a set of inputs that
the adversary could query to the residual function. The result of the query is the label that this
process would have assigned to node v.

Definitions. We proceed with the details of our protocol:

Definition 4 (Branching program). A branching program on variables X = (X1, . . . , Xn) with
input domain D and output range R is defined by a tuple {G = {V,E},Sout, φV , φE}. V contains a
single start node with in-degree 0, and a set of designated leaf nodes, Sout, along with any internal
nodes. The function φV assigns each node in Sout with an output value from R, and every other
node with a variable from X. φE is a function that labels each edge (u, v) ∈ E with values from D.

Definition 5 (Read-Once, Layered BP). In a layered branching program, V can be partitioned
into layers Ln, . . . , L1, L0 = Sout such that for any node u ∈ Li and v ∈ Lj, with i > j, the length
of every path from u and v is exactly i− j. A layered branching program is read-once if every node
in layer i is labeled with variable Xi (possibly after re-naming the variables).

Informally, we can think of every node in layer i as having the same height, and the same
variable assignment. Looking ahead, layer i will coincide with the input variable of player Pi. We
note that any branching program can be turned into a layered branching program with at most a
quadratic blowup in the size of V . For simplicity, we will assume that our branching programs are
already read-once, layered branching programs.

Function decomposition. Let F : Dn → R denote the function on X = (X1, . . . , Xn) described by a
read-once, layered branching program BP . Let si = |{v ∈ Li}| denote the size of layer i in BP . We
assume some (arbitrary) ordering on the nodes in each layer: let (v1, . . . , vsi) be the ordered nodes
of layer i, and (u1, . . . , usi−1) the ordered nodes in layer i − 1. We define fi : Rsi−1 × {xi} → Rsi
as follows. Let inj ∈ R denote the jth input to fi, and outk ∈ R denote the kth output. Then
outk = inj if and only if (vk, uj) ∈ E, and φE(vk, uj) = xi.

Intuitively, this decomposition percolates the output “up” the graph, stripping off layers as
it goes. For example, f1(φV (Sout), x1) fixes the variable X1 = x1 in layer 1, and percolates the
resulting output values from layer 0 up to each node in layer 1. The output nodes in Sout now
become irrelevant to the computation. Similarly, f̃i = fi(· · · f2(f1(φV (Sout), x1), x2) · · · , xi) strips

12 We note that computing branching programs in a top-down manner may also be considered in the one-pass
model. Each party simply posts an encryption of the unique active node in its layer. This leads to a minimum-
disclosure decomposition if the BP does not have redundant states, which can be achieved using a variant of the
Myhill-Nerode algorithm. However, this top-down approach requires the threshold encryption to support the BP’s
transition function as a homomorphic operation, whereas our bottom-up approach requires only re-randomizability.

11

off layers 0 through i − 1, labeling all the nodes in layer i with the correct output, and making
all layers j < i irrelevant. More specifically, consider two nodes uj ∈ Li and vk ∈ Sout. If there
exists some path p = (ei, . . . , e1) from uj to vk such that (φE(ei), . . . , φE(e1)) = xi, . . . , x1, then
f̃i(x1, . . . , xi) assigns φV (vk) to node uj .

Lemma 4. The decomposition of F described above is a minimum-disclosure decomposition.

Proof. We must show that for every i ∈ [n], there exists a simulator Sgxi (·)(m,n, i), that outputs
f̃i(x1, . . . , xi). Recall that the output of f̃i contains si = |{v ∈ Li}| values, out1, . . . outsi ∈ R. To
compute the value of outj , the simulator takes the jth node uj in layer Li and runs a breadth-
first-search on G to find a path from the start node to uj . Let xn, . . . , xi+1 denote the input
assignments associated with the edges along this path (according to φE). S queries his oracle and
sets outj = gxi (xi+1, . . . , xn).

Secure, one-pass protocols. To obtain a secure protocol using our framework in Section 2, we need
to specify the homomorphic operation required by party Pi. It is easy to verify that we only need
to re-randomize ciphertexts. By our conventions for homomorphic encryption (Section 2.3), re-
randomization is performed when Pi strips his secret key’s contribution from the ciphertext. We
do not require any homomorphic operations beyond this. A formal description of the protocol is in
Figure 5.

Branching Programs
Inputs: Player Pi holds input xi ∈ {0, 1}. Each also has a full description of the branching program, BP =
{G = {V,E},Sout, φV , φE} Let Li = {v1, . . . , vsi} denote the nodes in layer i.
Protocol:
Player P1 begins the protocol. For each vj ∈ L1,

– P1 finds u ∈ Sout such that (u, vj) ∈ E and φE(u, vj) = x1.
– He computes ψj = Enc(p̃k2, φV (u)).

P1 sends C1 := (ψ1, . . . , ψs1) to the server.

For i = 2 . . . n:

– Party Pi receives ciphertexts Ci−1 = (ψ1, . . . , ψsi−1) from the server.
– For every vj ∈ Li,
• Pi finds uk ∈ Li−1 such that (uk, vj) ∈ E and φE(uk, vj) = xi. We let ψk denote the ciphertext

corresponding to uk.
• Pi sets ψ′j = Strip(p̃ki, ski, ψk).

– Pi sends Ci := (ψ′1, . . . , ψ
′
si) to the server.

Output: Let Cn be the (single) ciphertext sent from Pn to the server. The server computes and outputs
Dec(skn+1, Cn).

Fig. 5. A protocol secure for computing branching program BP.

Theorem 3. Assuming an encryption scheme satisfying the conditions of Section 2.3 w.r.t. the
identity function, the protocol in Figure 5 is a one-pass protocol, secure against a semi-honest
adversary, for evaluating any read-once, layered branching program. The protocol achieves optimal
privacy. For branching programs of width w, the runtime is polynomial in w and n, and it requires
O(w) exponentiations per party.

12

In Section 6 and Appendix D, we provide instantiations of the NIZKs that are necessary to make
this protocol secure against malicious adversaries. This gives us the following theorem as well.

Theorem 4. Assuming an encryption scheme satisfying the conditions of Section 2.3 w.r.t. the
identity function, and that the NIZK schemes mentioned above are secure, there is a one-pass
protocol, secure against a malicious adversary, for evaluating any read-once, layered branching
program. The protocol achieves optimal privacy. For branching programs of width w and output
domain D, the runtime is polynomial in w, n and |D|, and it requires O(nw|D|) exponentiations
per party.

6 Realizing the Required Encryption & NIZK Schemes

In Appendix C, we present three threshold homomorphic encryption schemes. Two are based
on the DDH and DLIN assumptions, respectively, and support homomorphic evaluation of the
identity function (i.e., re-randomization). The third is based on the DCR assumption, and supports
homomorphic evaluation of affine functions over ZN . We rely on the first two schemes for branching
programs and the last for sparse polynomials. The full details of our malicious-secure protocol are
given in Appendix B. In Appendix D we describe concrete and efficient NIZK proofs, consistent
with our instantiations of homomorphic threshold encryption, for the statements described in the
malicious-secure protocol.

In the random oracle model, it suffices to construct appropriate Σ-protocols and then apply the
Fiat-Shamir technique. We additionally use techniques of Cramer et al. [7] to compose simple Σ-
protocols using logical conjunction and disjunction. The main challenge then is to show how party
Pi can prove that the ciphertexts Ci−1 and Ci are consistent, in that Ci was derived from Ci−1

according to the protocol (with the encryption scheme’s Strip and Eval operations). We eventually
reduce this problem to the task of proving that two ciphertexts encrypt the same value (under
different aggregated public keys), for which we provide efficient Σ-protocols.

Our instantiations based on the DDH and DLIN assumptions are compatible with our protocol
for evaluating branching programs. For these homomorphic threshold schemes, we describe efficient
NIZK proofs in the standard model, using the NIZK scheme of Groth and Sahai [11].

Acknowledgements. We thank Yuval Ishai and Yehuda Lindell for helpful discussions.

References

[1] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation
with low communication, computation and interaction via threshold fhe. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 483–501. Springer, 2012. ISBN
978-3-642-29010-7.

[2] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with relaxed set-up
assumptions. In FOCS, pages 186–195, 2004.

[3] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In CRYPTO,
2011.

[4] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In EUROCRYPT, pages
149–168, 2011.

[5] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages 41–55, 2004.
[6] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In CRYPTO,

pages 126–144, 2003.
[7] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness

hiding protocols. In CRYPTO, pages 174–187, 1994.

13

[8] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption and rerandomizable Yao circuits.
In CRYPTO, pages 155–172, 2010.

[9] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New
York, NY, USA, 2004. ISBN 0521830842.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In STOC, pages 218–229, 1987.

[11] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT, pages
415–432, 2008.

[12] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without simultaneous
interaction. In CRYPTO, 2011.

[13] D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed for secure multiparty
computation? In CRYPTO, pages 284–302, 2007.

[14] M. H. Ibrahim, A. Kiayias, M. Yung, and H.-S. Zhou. Secure function collection with sublinear storage. In
ICALP (2), pages 534–545, 2009.

[15] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In TCC, pages 575–594, 2007.
[16] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Efficient non-interactive secure

computation. In EUROCRYPT, pages 406–425, 2011.
[17] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation with ordered binary decision diagrams.

In ACM Conference on Computer and Communications Security, pages 410–420, 2006.
[18] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In FOCS, pages 554–567, 1999.
[19] A. C.-C. Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

A Additional Definitions

PKI Model. We assume that in an initial setup phase every party registers a public and private
key pair with a central authority and all the public keys are made known to everyone.

– For honest parties, these key pairs are always generated using some fixed and publicly known
key generation algorithm. (In the proof of security, the simulator generates these key pairs
according to the key generation algorithm.)

– Dishonest parties may choose their key pairs based on the public keys of the honest parties,
with the restriction that the key pairs must constitute a valid output of the key generation
algorithm. (In the proof of security, the simulator knows the private key for each dishonest
party, as provided to the central authority.)

In the full version of this paper, we will consider a relaxation to the bare PKI model, where the
dishonest party is not required to register a private key. The idea is to have the parties encrypt
their inputs using some fixed public key, provided by the trusted set-up, instead of their individual
public key.

Non-interactive Zero Knowledge. A non-interactive zero-knowledge (NIZK) proof scheme for an
NP-relation R consists of algorithms GenCRS, Prove and Verify. We require the scheme to satisfy
the following properties:

1. Completeness: For all x,w such that R(x,w) = 1, the following probability is overwhelming:

Pr[crs← GenCRS(1k);Verify(crs;x,Prove(s;x,w)) = 1]

2. Adaptive Soundness: For all polynomial-time adversaries A, the following probability is
negligible:

Pr[crs← GenCRS(1k); (x, π)← A(crs) : Verify(crs;x, π) = 1∧ 6 ∃w : R(x,w) = 1]

14

3. Zero-knowledge: There exist algorithms SimCRS and SimProof such that for all polynomial-
time adversaries A and all (x,w) satisfying R(x,w) = 1, the following two distributions are
indistinguishable:

{(crs, x, π) | crs← GenCRS;π ← Prove(crs;x,w)}
≈ {(crs, x, π) | (crs, τ)← SimCRS;π ← SimProof(crs, τ, x)}

B Handling Malicious Adversaries

To handle malicious adversaries, we will require each party Pi to carry out the above semi-honest
protocol for generating ciphertexts Ci, and, in addition, to also perform the following operations:

1. Pi encrypts his input under his own public key, Ĉi
$← Enc(pki, xi).

2. Pi prepares a proof that (Ĉi, Ci−1, Ci) is “well-formed”, corresponding to encryptions of values
xi, yi−1, yi such that xi ∈ D and yi = fi(yi−1, xi). More formally, it generates a NIZK proof πi
of the following statement (using his input, secret key, and randomness as the witness):

∃x1, r, r
′ : Ci = Enc(p̃k1, f1(x1); r) and x1 ∈ D and Ĉi = Enc(pki, xi; r

′) when i = 1

∃ski, xi, r, r′ : Ci = Strip(p̃ki−1, ski,Eval(p̃ki−1, Ci−1, fi(·, xi); r)) and xi ∈ D

and Ĉi = Enc(pki, xi; r
′) and ski is consistent with pki when i ≥ 2

where, as before, p̃ki = Aggregate(pki+1, . . . ,pkn).
3. Pi signs the message (Ci, Ĉi, πi) under his verification key vki. Call this signature σi.
4. At the start of Pi’s turn, the server sends all of the previous parties’ messages to party Pi. Upon

receiving {(Ĉj , Cj , πj , σj) | j < i} from the server, party Pi verifies the following for each j < i:

– σj is a valid signature of (Cj , Ĉj , πj).
– πj is a valid proof of the statement described above (with respect to the value Cj−1 included

in the message from the server).
If any such condition fails, then Pi aborts; otherwise Pi sends (Ĉi, Ci, πi, σi) to the server.

The server also verifies these signatures and proofs from each party. If any fail to verify, then the
server does not give output.

Lemma 5 (malicious security). If (Dec,Enc,Eval,Strip) is a secure threshold encryption scheme,
then the above protocol is an optimally private protocol for the decomposition (f1, . . . , fn), against
malicious adversaries.

Proof (Proof of Lemma 5). We first define the simulator and then show that it is sound. Recall
that we must simulate all (and only) the messages sent from honest parties to malicious parties.
We break the description of our simulator into two cases: if the server is honest, then we need to
simulate the messages sent from the server to each malicious party Pi ∈ I. If the server is malicious,
then we need to simulate the messages sent from each honest party Pi /∈ I to the server. We let i∗

denote the index of the last honest party.

The simulator begins by playing the part of the certificate authority, collecting and distributing
keys. He will create the keys on behalf of the honest players by using the honest key-generation
protocol. We stress that the simulator knows all of the secret keys in the system.

Case 1: If the server is honest, we must simulate his message to each party Pi ∈ I. Recall, the
server sends to Pi the set of messages {(Ĉj , Cj , πj , σj)}j<i, where (Ĉj , Cj , πj , σj) is the message the
server received from Pj in round j.

For each Pi ∈ I, taken in order, the simulator does the following:

15

– message simulation: The simulator must create the message sent from the honest server to
Pi. Specifically, for each j < i, the simulator must generate (Ĉj , Cj , πj , σj). If Pj ∈ I, then
the simulator simply uses the message that Pj had previously sent to the server in round j.

If Pj /∈ I, and the simulator has not yet generated (Ĉj , Cj , πj , σj) in a previous step, then it
generates these values according to the protocol, using input xj = 0. (Here we use the fact that
the simulator chose the secret keys of the honest party Pj .)

– input extraction: The simulator then receives (Ĉi, Ci, πi, σi) from Pi, which is intended for the
server. He verifies that πi is a valid proof, and that σi is a valid signature. If not, he aborts the
simulation. Otherwise, he uses ski to decrypt Ĉi, thereby extracting input xi. He sends xi to
the trusted party, and stores (Ĉi, Ci, πi, σi) for simulating later players.

The simulator has now extracted xi for each Pi ∈ I. He submits these values to the trusted party,
and outputs the views of each corrupt Pi.

Case 2: If the server is corrupt, then we only need to simulate the view of the server. Specifically,
we have to simulate messages sent from honest parties to the server. We do so as follows:

– message simulation (i < i∗): For every i /∈ I with i < i∗, the simulator creates (Ĉi, Ci, πi, σi)
honestly, using input xi = 0. (Here we use the fact that the simulator chose the secret keys of
the honest party Pi.) He sends this value to the server on behalf of Pi.

– input extraction: In round i∗ the server sends a message intended for Pi∗ . Recall, this message
has the form: {(Ĉj , Cj , πj , σj)}j<i∗ . For j < i∗, Pj ∈ I, the simulator verifies that πj is a valid
proof, and that σj is a valid signature. If not, he aborts the simulation. Otherwise, he extracts

input xj from (Ĉj , Cj , πj , σj) using Pj ’s secret key. For j > i∗, Pj ∈ I, he sets xj = 0 (these
inputs are ignored by the trusted party anyway). He sends {xj}j∈I to the trusted party.

– message simulation (i∗): Recall that in the HLP model, the trusted party ignores the inputs
from players j > i∗ and sends yi∗ = f̃i∗(x1, . . . , xi∗) to the simulator. When this happens, the
simulator generates Ci∗ ← Enc(p̃ki∗ , yi∗); Ĉi∗ ← Enc(pki∗ , 0); πi∗ as a simulated NIZK proof;
and σi∗ as a signature on these values. The simulator sends (Ĉi∗ , Ci∗ , πi∗ , σi∗) to the server on
behalf of Pi∗ , then halts outputting the view of the corrupt server.

To show the validity of the simulator, we consider a sequence of hybrid interactionsH1, . . . ,Hn+1.
Hn+1 is the real interaction in which honest parties execute with their true input; Hj is the same
as Hj+1 except that if Pj is honest and j ≤ n, then Pj runs as in the simulation described above.
Then H1 is identical to our simulation. Clearly Hj ≈ Hj+1 when Pj is corrupt, so it suffices to show
that Hj ≈ Hj+1 when Pj is honest.

If an honest party Pj rejects any of the NIZK proofs or signatures received from the server,
then Hj ≈ Hj+1 trivially, so we condition on the event that these proofs & signatures are valid.
By the adaptive soundness of the NIZK scheme and the correctness properties of the homomorphic
encryption scheme, we have that Cj−1 is in the support of Enc(p̃kj−1, f̃j−1(x1, . . . , xj−1)). Also by

the soundness of the NIZK scheme, whenever P` is corrupt, the ciphertext Ĉ` is a valid encryption
of x` under pk`. In the PKI model, the simulator has access to the secret keys of the corrupt parties.
Thus the simulator can compute the value yj−1 = f̃j−1(x1, . . . , xj−1).

As before, let i∗ denote the index of the last honest party. We show that Hj ≈ Hj+1 in the
case of j = i∗ < n+ 1 (i.e., the server is corrupt). Consider the following sequence of intermediate
hybrids:

1. H ′i∗+1 is the same as Hi∗+1 except that πi∗ is generated as a simulated NIZK proof. Since the
statement being proven is true, we have that Hi∗+1 ≈ H ′i∗+1.

16

2. Hi∗ is the same as H ′i∗+1 except that Ci∗ is generated as Ci∗
$← Enc(p̃ki∗ , yi∗) rather than Ci∗

$←
Strip(p̃ki∗−1, ski∗ ,Eval(p̃ki∗ , Ci∗−1, fi∗(·, xi∗)). By the soundness property mentioned above, and
by the correctness properties of the encryption scheme, we see that the two ways of generating
Ci∗ are statistically indistinguishable, hence H ′i∗+1 ≈s Hi∗ .

We now consider the case where j < i∗. Again we consider the following sequence of intermediate
hybrids:

1. H
(1)
j+1 is the same as Hj+1 except that πj is generated as a simulated NIZK proof. Since the

statement being proven is true, we have that Hj+1 ≈ H(1)
j+1.

2. H
(2)
j+1 is the same as H

(1)
j+1 except that Cj is generated as Cj

$← Enc(p̃kj , fj(yj−1, xj)) rather

than Cj
$← Strip(p̃kj−1, skj ,Eval(p̃kj , Cj−1, fj(·, xj)). By a similar argument as above, we have

H
(1)
j+1 ≈s H

(2)
j+1.

3. H
(3)
j+1 is the same as H

(2)
j+1 except that Cj is generated as Cj

$← Enc(p̃kj , fj(yj−1, 0)) and Ĉj is

generated as Ĉj
$← Enc(pkj , 0). Note that p̃kj includes pki∗ , the public key of an honest party.

Since neither skj nor ski∗ are included in the adversary’s view, we have H
(2)
j+1 ≈ H

(3)
j+1 by the

(threshold) semantic security of the encryption scheme.

4. H
(4)
j+1 is the same asH

(3)
j+1 except that Cj is generated as Cj

$← Strip(p̃kj−1, skj ,Eval(p̃kj , Cj−1, fj(·, 0)).

Similar to above, we have that H
(4)
j1
≈s H(3)

j+1.

5. Hj is the same as H
(4)
j+1 except that the proof πj is generated honestly. Note that the statement

being proven is true — party Pj is indeed carrying out the protocol honestly with effective input

0. Thus, similar to above, we have H
(4)
j+1 ≈ Hj .

C Realizing Threshold Homomorphic Encryption

In this section, we present three threshold homomorphic encryption schemes, similar to those
given in [12]. Two are based on the DDH and DLIN assumptions, respectively, and support
homomorphic evaluation of the identity function (i.e., re-randomization). The third is based on
the DCR assumption, and supports homomorphic evaluation of affine functions over ZN . We rely
on the first two schemes for branching programs and the last for sparse polynomials.

C.1 Instantiations from DDH

Let G be a group of prime order q specified using a generator g. The DDH assumption asserts that

gab is pseudorandom given g, ga, gb where g
$← G; a, b

$← Zq.

Key Set-Up. pp := (G, q, g). Sample sk
$← Zq and output pk := gsk.

Encryption. Enc(pk,M) where M ∈ {0, 1}. Sample r
$← Zq and output (gr,pkr · gM).

Key Aggregation. Aggregate(pk1, . . . ,pk`) outputs
∏`
i=1 pki (combines multiple public keys

into a single public key)

Evaluation. This scheme is only compatible with our protocol for evaluating branching programs.
In that protocol, we only require a re-randomization capability, and no further homomorphic
operations. Re-randomization is included as a part of the Strip operation:

17

Strip. On input a ciphertext (C0, C1), first sample r′
$← Zq. Output the new ciphertext:

(C0g
r′ , C1C

−sk
0 pkr

′
)

C.2 Instantiations from DLIN

Let G be a group of prime order q. The decision linear (DLIN) assumption is that ha+b is

pseudorandom given u, v, h, ua, vb, where u, v, h
$← G and a, b

$← Zq. We describe a threshold
encryption scheme based on the linear encryption scheme described by Boneh, Boyen, and Shacham
[5].

Key Set-Up. pp := (G, q, g) where g is a generator of G. Sample u, v, w
$← G, and x, y

$← Z∗q
satisfying ux = vy = w. Set sk = (x, y) and pk := (u, v, w).

Key Aggregation. Aggregate(pk1, . . . ,pk`): Parse pki = (ui, vi, wi) and set W =
∏`
i=1wi.

Output {(ui, vi) | i ≤ `} and W .

Encryption. Enc(pk,M) where M ∈ G. Parse pk as an aggregated public key, pk = ({(ui, vi) |
i ≤ n},W). Sample a, b

$← Zq and output (ua1, . . . , u
a
n, v

b
1, . . . , v

b
n,W

a+bm).

Evaluation. This scheme is only compatible with our protocol for evaluating branching programs.
In that protocol, we only require a re-randomization capability, and no further homomorphic
operations. re-randomization is included as a part of the Strip operation:

Strip. To strip the contribution of skn = (x, y) from ciphertext (U1, . . . , Un, V1, . . . , Vn, C), sample

a′, b′
$← Zq and output the new ciphertext:

(Ua
′

1 , . . . , U
a′
n−1, V

b′
1 , . . . , V

b′
n−1, C · (UxnV y

n)−1(W ′)a
′+b′)

where W ′ =
∏n−1
i=1 wi.

The threshold semantic security of this scheme easily reduces to the semantic security of the
standard linear encryption scheme. We note that this scheme is more efficient (requiring 2n + 1
group elements) than the generic transformation presented by HLP (requiring 3n elements in the
case of linear encryption) [12].

C.3 Instantiations from DCR

We use the ElGamal variant of Paillier’s encryption given in [6]. Fix a Blum integer N = PQ for
safe primes P,Q ≡ 3 (mod 4) (such that P = 2p+ 1 and Q = 2q + 1 for primes p, q).

Key Set-Up. pp := (N, g) where g′
$← Z∗N2 and g := (g′)N . Sample sk

$← [N2/4] and output
pk := gsk.

Encryption. Enc(pk,M) where M ∈ [N]. Sample r
$← [N2/4] and output (gr,pkr · (1 +N)M).

Key Aggregation. Aggregate(pk1, . . . ,pk`) outputs
∏`
i=1 pki (combines multiple public keys

into a single public key)

Evaluation. Given a function fa,b : ZN → ZN that maps x 7→ ax + b, on input a ciphertext
(C0, C1), output (Ca0 , C

a
1 (1 + N)b). In addition, given encryptions (C0, C1) and (C ′0, C

′
1) of x

and x′ respectively, (C0 · C ′0, C1 · C ′1) is an encryption of x+ x′.

18

Strip. On input a ciphertext (C0, C1), first sample r′
$← [N2/4]. Output the new ciphertext:

(C0g
r′ , C1C

−sk
0 pkr

′
)

D Instantiating Non-interactive Zero-Knowledge Proofs

When players are malicious, we use a NIZK proof to enforce correct behavior (cf. Appendix B).
In this section, we show how to realize these NIZK proofs. In Section D.1, we work in the random
oracle model, so it suffices to obtain Σ-protocols and then apply the Fiat-Shamir paradigm. The
idea is to break down the relation we need to enforce as the conjunction and disjunction of DDH
relations (or variants there-of) and then apply the techniques of Cramer et al. [7] to combine these
individual relations. In Section D.2, we demonstrate how to efficiently instantiate the NIZK proofs
in bilinear groups without random oracles via Groth-Sahai proofs [11].

Overview. Recall that our goal is to enforce that (Ĉi, Ci−1, Ci) satisfies the following relation:

∃ski, xi, r, r′ : Ci = Strip(p̃ki−1, ski,Eval(p̃ki−1, Ci−1, fi(·, xi); r)) and xi ∈ D

and Ĉi = Enc(pki, xi; r
′) and ski is consistent with pki for i ≥ 2

where, as before, p̃ki = Aggregate(pki+1, . . . ,pkn).

Clearly, we can write this statement as the disjunction of |D| statements, ranging over xi ∈ D.
That is, we fix xi ∈ D, and show:

∃ski, r, r′ : Ci = Strip(p̃ki−1, ski,Eval(p̃ki−1, Ci−1, fi(·, xi); r))

and Ĉi = Enc(pki, xi; r
′) and ski is consistent with pki for i ≥ 2

We will provide a Σ-protocol for this simpler statement, and then use the techniques of Cramer
et al. [7] to combine these into a single protocol for the disjunction.

In the case of branching programs, fi(·, xi) is essentially just the identity function. For
polynomials, fi(·, xi) is an affine function.

D.1 NIZK in the Random Oracle Model

NIZK for Branching Programs. For simplicity, let us work with boolean domains for now and our
ElGamal encryption instantiation. It suffices to show how a player can prove that he is behaving
consistently with input 0 (respectively 1). Recall, player Pi sends |Li| ciphertexts to the server in
this protocol, each corresponding to a node in layer Li of the branching program. We focus for
now on a single node v ∈ Li, and the denote the corresponding ciphertext by Ci. Technically, the
malicious player will have to prove the conjunction over |Li| of the statements we describe below, in
order to prove that all |Li| ciphertexts were correctly formed. Let u ∈ Li−1 be the node such that
(u, v) ∈ E, and φE(u, v) = 0. Let Ci−1 denote the ciphertext corresponding to this node that player
Pi−1 sent to the server in the previous round. Recall that in our protocol for branching programs,
fi(·, 0) is simply the identity function, so we can simplify the NIZK statement to be the following.

(Ĉi is an encryption of 0 under pki) AND
(Ci and Ci−1 are encryptions of the same value under p̃ki and p̃ki−1 respectively)

The first statement corresponds to just proving that Ĉi is a valid DDH tuple (using as witness
randomness for encryption). For completeness, we provide the appropriate Σ-protocol in Figure 6.
Let us now focus on the second part. We may write:

Ci−1 = (ui−1, ψi−1) = (gr, p̃k
r
i−1 ·M) and Ci = (ui, ψi) = (gr+ri , p̃k

r+ri
i ·M)

19

We stress that Pi knows (ri, ski) but not r or M ; here, ri denotes the randomness for Strip. Now,
observe that:

(ui/ui−1, ψi/ψi−1) = (gri ,pk−ri · p̃k
ri
i)

For a fixed generator g, write dh(ga, gb) to denote gab. Therefore, we can write ψi/ψi−1 as

dh(gr,pki) · dh(p̃ki, g
ri) = dh(ui−1,pki) · dh(p̃ki, ui/ui−1)

Indeed, Pi can prove that ψi/ψi−1 is of this form by using (ski, ri) as his witness. More specifically,
he must prove that the following tuple is of the form (ga1 , ga2 , gb1 , gb2 , ga1b1+a2b2):

(gs̃ki , ui−1, ui/ui−1, g
−ski , ψi/ψi−1) = (gs̃ki , gr, gri , g−ski , gs̃kiri−skir).

Letting a = (s̃ki, r), and b = (ri,−ski), party Pi uses b as his witness in the Σ-protocol of Figure
7.

Proof of DDH Membership in DCR groups
Inputs: The public parameters are (N, g). The language is {(g, h, u, v) ∈ (Z∗N2)4 : ∃w ∈ [N/4] s.t.u = gw, v =
hw}. Both parties have access to the instance (g, h, u, v). The prover P also has the witness w.

1. P chooses a random r
$← [N/4] and sends (g0, h0) := (gr, hr) to the verifier V .

2. V chooses a random e
$← [N3/4] and sends e to P .

3. P responds with z = r + we. V checks that (gz, hz) = (g0u
e, h0v

e).

Fig. 6. A Σ-protocol for proving DDH membership in DCR groups

NIZK for Polynomials In our protocol for computing polynomials, party Pi receives encryptions

of a set of coefficients, denoted by C
(1)
i−1, . . . C

(`)
i−1. We let m1, . . . ,m` denote the corresponding

plaintexts. As before, Pi creates a ciphertext Ci and proves that it is correctly formed for some
input xi. He does this by proving a disjunction over |D| statements, one for each possible input
value. Also as before, he may actually have to create more than one ciphertext for each possible
input (depending on how many coefficients he is expected to add together after substituting his
own input). We will simply focus on a single one of these ciphertexts, and simply note that he will
actually have to prove that all are correctly formed for some input. For simplicity, then, we assume
that the monomials corresponding to m1, . . . ,m` each have the same degree in each variable other
than xi, and, consequently, all ` coefficients are collapsed into the single one encrypted by Ci.

Intuitively, Pi must prove the following statement, given some publicly known values a1, . . . , a`,

where each aj corresponds to x
dj
i for some (known) dj .

If C
(1)
i−1, . . . C

(`)
i−1 are encryptions of m1, . . . ,m` under p̃ki−1, then

Ci is an encryption of a1m1 + · · ·+ a`m` under p̃ki

Note that both the verifier and the prover, independently, can compute an encryption of a1m1 +

· · · + a`m` under p̃ki−1 from C
(1)
i−1, . . . C

(`)
i−1. Let’s denote this by C̃i−1. Now the statement above

can be reduced to the one we saw for branching programs. Specifically, Pi simply has to prove that
Ci and C̃i−1 are encryptions of the same value, under p̃ki and p̃ki−1 respectively.

20

Proof of `-DHMULT Membership
Inputs: The public parameters are (G, q, g). The language is {(ga, gb, u) ∈ G` × G` × G : u = ga·b}. Both
parties have access to the instance (ga, gb, u). The prover P also has the witness b.

1. P chooses a random r
$← Z`

q, computes c := ga·r and sends (gr, c) to the verifier V .

2. V chooses a random e
$← Zq and sends e to P .

3. P responds with z := r + eb ∈ Z`
q. V checks that gz = gr · (gb)e and ga·z = c · ue.

(where · in the exponent refers to dot product, and for G-vectors denotes entry-wise product.)

Fig. 7. A Σ-protocol for proving `-DHMULT membership

D.2 Instantiations via Groth-Sahai Proofs

We can remove the use of random oracles by using the Groth-Sahai non-interactive proof system
[11]. This proof system is compatible with both our DDH and DLIN instantiations (used in our
protocol for evaluating branching programs).

SXDH instantiation. Here, we have a pairing e : G1×G2 → GT . Informally, the SXDH assumption
is that DDH is hard in both G1 and in G2. We can then instantiate our protocol for branching
programs using ElGamal encryptions in G1, where DDH holds.

We first show how to use Groth-Sahai proofs to prove the kinds of clauses needed for the NP
statement. Let h be any fixed generator of G2. Then we have:

skj is consistent with pkj ⇔ e(pkj , h) · e(g−1, hskj) = 1

(Ĉ0, Ĉ1) = Enc(pkj ,m; r′) ⇔

{
e(Ĉ0, h) · e(g−1, hr

′
) = 1

e(Ĉ1, h) · e
(
(pkj)

−1, hr
′) · e(m−1, h) = 1

(C0, C1) = Strip(p̃k, skj , (X,Y); r) ⇔

{
e(C0, h) · e(X−1, h) · e(g−1, hr) = 1

e(C1, h) · e(Y −1, h) · e(X,hskj) · e
(
(p̃kj+1)−1, hr

)
= 1

In the terminology of Groth-Sahai, the values skj , r, r
′ are variables (witness values), and all other

values appearing in these pairing-product equations are either public parts of the NP statement,
or can be easily computed from them. Because the right-hand side of each equation is the identity
element 1 ∈ GT , the Groth-Sahai scheme can prove them in zero-knowledge (not just witness
hiding).

For notational simplicity here, we consider a boolean input domain. Let Φb denote the NP
statement that the prover behaved consistently with input b. Thus it suffices to show how to prove
the statement Φ0 ∨ Φ1.

Groth-Sahai proofs natively support proving conjunctions of pairing-product equations, possibly
reusing variables. Thus Φ0 (resp. Φ1) can be expressed as a conjunction of the pairing-product
equations given above:

Φ0 ⇐⇒ (∃r) :
∧
k

(∏
`

e(Xk`, h
rk`) = 1

)
where each Xk` is a public constant, and each rk` is either a public constant 1, or refers to one of
the variables of r. For each variable rk`, let r̂k` denote a new variable. Then define Φ̂0(b) to be the

21

following formula:

Φ̂(b) ⇐⇒ (∃r, r̂) :

(∧
k

[∏
`

e(Xk`, h
r̂k`) = 1

])
∧

∧
k,`

e(gb, hrk`) · e(g−1, hr̂k`) = 1


This formula replaces each rk` with r̂k` in Φ0, and further enforces that r̂k` = b · rk`. Thus, when
b = 0, the statement Φ̂0(b) is trivially true (and satisfied by r̂ = 0 and any assignment to r). When
b = 1, the statement Φ̂0(b) is logically equivalent to Φ0. Thus, our approach is to prove the following
conjunction, which is logically equivalent to the disjunction Φ0 ∨ Φ1:

(∃b0, b1) : (b0 · b1 = 0) ∧ (b0 + b1 = 1) ∧ Φ̂0(b0) ∧ Φ̂1(b1) (D.1)

Intuitively, if the prover satisfies Φ1, he can set b0 = 0, b1 = 1, choose any witness for Φ̂0(b0) and
use his witness Φ̂1(b1). We can prove the new clauses introduced in equation (D.1) via the following
pairing-product equations:

b0 · b1 = 0 ⇔ e(gb0 , hb1) = 1

b0 + b1 = 1 ⇔ e(g−1, h) · e(g, hb0) · e(g, hb1) = 1

As before, all pairing-product equations have right-hand side 1 ∈ GT , so can be proven in zero-
knowledge.

DLIN instantiation. Consider an instantiation of our protocol for branching programs in which
we use our DLIN threshold encryption in G1. We use the same basic approach as above, and
it suffices to show the following pairing-product equations. Below, skj = (x, y); pkj = (u, v, w);
p̃k = ({(ui, vi)}i≤j ,W); and W ′ =

∏
i<j wi:

skj is consistent with pkj ⇔

{
e(w, h) · e(u−1, hx) = 1

e(w, h) · e(v−1, hy) = 1

(U, V,C) = Enc(pkj ,m; (a, b)) ⇔


e(U, h) · e(u−1, ha) = 1

e(V, h) · e(v−1, hb) = 1

e(C, h) · e(w−1, ha) · e(w−1, hb) · e(m−1, h) = 1

(
−→
U ′,
−→
V ′, C ′)

= Strip(p̃k, skj , (
−→
U ,
−→
V ,C); (a, b))

⇔


e(U ′i , h) · e(U−1

i , h) · e(u−1
i , ha) = 1 (∀i < j)

e(V ′i , h) · e(V −1
i , h) · e(v−1

i , hb) = 1 (∀i < j)

e(C ′, h) · e(C−1, h) · e(Uj , hx) · e(Vj , hy)
· e((W ′)−1, ha) · e((W ′)−1, hb) = 1

22

