Encrypted Secret Sharing and Analysis by Plaintext Randoinizat

Stephen R. Tate Roopa Vishwanathan Scott Weeks
Department of Computer Science
University of North Carolina at Greensboro
Greensboro, NC 27402

May 7, 2013

Abstract

In this paper we consider the problem of secret sharing wdteaees are encrypted using a public-key
encryption (PKE) scheme and ciphertexts are publicly alsél. While intuition tells us that the secret
should be protected if the PKE is secure against chosereitigptt attacks (i.e., CCA-secure), formally
proving this reveals some subtle and non-trivial challeniee isolate the problems that this raises, and
devise a new analysis technique called “plaintext randatign” that can successfully overcome these
challenges, resulting in the desired proof. The encrypiifatifferent shares can use one key or multiple
keys, with natural applications in both scenarios.

1 Introduction

During the past three decades, cryptography research has bgesugeessful in developing clear notions
of security and rigorous techniques for reasoning about securitsypfagraphic primitives and protocols.
Formal notions of security in cryptography have evolved in essentially two digections, with reduction-
based proofs developing from the initial work of Goldwasser and Mi@lahd simulation-based proofs
from the initial work of Goldreich, Micali, and Wigderson [8]. While we haaayood understanding of
how to reason about security in these settings, there are recurring iw#thecomposability: using one
secure protocol as a component of another protocol while retainingigeinside the higher-level protocol.
Somewhat counter-intuitively, some protocols (e.g., some zero-knowfadgés) fail to maintain security
even when multiple copies of the same protocol are run concurrently [7].

In this paper, we explore a combination of public-key encryption (PKE) séitret sharing, and in the
process develop a general-purpose proof technique for analy@igmbgraphic schemes and protocols that
use public-key encryption (PKE) as a component. Perhaps the simpéeapkxof such a system is the
common practice of hybrid encryption: doing large scale encryption hlyefirsrypting a random session
key using a PKE scheme, and then using that session key with a symmetric fplhbelk encryption.
Due to the inefficiency of public key encryption, hybrid encryption hasnbstandard practice since the
1980s, and our intuition tells us that if the PKE scheme and the symmetric cighbothr secure in some
sense (e.g., against chosen ciphertext attacks) then the combinatiosefwlzecomponents into a hybrid
system should also be secure. However, despite widespread udgriof érycryption, the security of hybrid
encryption was not rigorously established until the 2003 work of CramdrShoup [5]. A key insight

*This material is based upon work supported by the National Sciencal&ton under Grant No. 0915735.

in Cramer and Shoup’s analysis was the introduction of the notion of a “kegpsulation mechanism”
(KEM), which can be built from a CCA-secure PKE scheme. The valu€Ei does not come from the
power of this new cryptographic primitive, but rather comes from the clarityings to theanalysisof
hybrid encryption. In this paper, we focus on improving the analysisgg®érom the beginning, so that
we obtain clear proofs directly, with no need to introduce a new primitive sisca KEM. While hybrid
encryption is a very simple example of this, our analysis technique can bedafpany protocol that uses a
PKE scheme to hide secrets used within the protocol — we use the term “iAtierhto refer to protocols
like this.

Unfortunately, current proof techniques are not sufficient for sSBIE-hybrid problems, including the
very practical problem of secret sharing with encrypted shares. nflerstand this problem, consider a
standard key escrow situation, in which a company escrows copies®fdethe company’s officers so that
keys can be recovered if a certain number of board members agreés @lukssic threshold secret sharing
situation, but in the real world having board members keep copies ofsshaidl officer's keys (which
might change somewhat regularly) locally would not be practical. A bettatisn would be to have each
board member maintain their own a long-term key (perhaps on a smartcadd)ase the company store
encrypted shares of the escrowed keys, encrypted with board mekdlysron a central server. This way
shares can be updated without interaction of the board members, bdtrhearbers would still be needed
in order to decrypt the shares for a key recovery.

To understand why standard proof techniques do not work for thislgmrg consider a situation in which
a CCA-secure PKE is used to encrypt shares from a pekfeftn threshold secret sharing scheme. We
mirror a CCA game by creating a game in which we provide two secrets to the gaaie,avhich encrypts
shares of one of these secrets for the adversary who must gueds setiet is used. Using standard
techniques we would try to simulate this adversary and game oracle in a CCAYRIKE to relate to the
security of the PKE scheme. However, we must make multiple encryptions epdrihist be consistent
across the shares that are provided. Multiple consistent encryptiggests using a multi-query oracle
such as the left-right or real-or-random security notions of Bekdral. [2]; however, we must allow the
adversary to decrymomeof the encrypted shares, only disallowing decryption of a set that wdlad a
reconstruction of the secret. These two properties, consistent ¢iooiyjpnd allowing some decryptions,
are fundamentally opposed in standard technigues, making analysis dfuhtss particularly difficult.

1.1 Plaintext Randomization

To overcome the problems described in the previous section, we havemEya@ new analysis technique
that we callplaintext randomizationwhich we successfully use to prove a strong security result for the
general “secret-sharing with encrypted shares” problem. We beliévéetthnique will be useful in the
analysis of a wide variety of PKE-hybrid protocols.

Consider a cryptographic problem in which security is defined using a batmeen an adversary and
a game oracle — we don't make any assumptions about the goal of thesayeso that it does not need
to be a CCA-style distinguishability goal, but rather canany adversary goal that is well-defined. The
game oracle makes some use of a PKE scheme, but this is internal to the gamat andhething that
the adversary necessarily sees. The adversary may in fact haveeobatcess to the PKE scheme at all,
including key generation, encryption, or decryption, but only seesftbetg of these operations as allowed
by the game oracle definition. Internally, all access to the PKE scheme bwiie gracle goes through a
generic interface that neither depends on the precise PKE scheme bethgar gives access to randomness
used internally to the PKE functions.

Plaintext randomization then is the following technique: internal to the gamépesery time the PKE

encryption function is called aBp (p) (for plaintextp and public keyP K') we replace the plaintext with

a random string- of the same length and instead call= Epg(r), using ciphertext in place of what
would have been the encrypted plaintext. To allow for consistent decryptie game oracle remembers
these “encryptions” by storing pai(s, p) so that if the decryption function is used by the game oracle on
ciphertextc, the plaintextp will be returned rather than the actual decryptiorcdfvhich would giver).

By modifying the game in this way, we remove any use of meaningful ciphertxtkthe storage of pairs
(c,p) allows the game to provide restricted and consistent decryptions, solvirigiéheroblems that we
identified for secret sharing with encrypted shares. Furthermore sthefuciphertexts that are unrelated
to actual plaintexts “cuts” any hybrid use of the PKE from the rest of tloéoppl, exactly the property we
need to enable or simplify proofs for PKE-hybrid problems.

There are a few technicalities that must be addressed for this to wotk asuthe ability to randomly
sample the plaintext space (defined as a “plaintext-samplable PKE” in Defi@i8)nand a restriction
on how the game in question uses PKE secret keys (definegkasbiivious” in Definition 2.4). Once
these formalities are established, we are able to prove a result which vikec&Hlaintext Randomization
Lemma” that bounds the difference between the adversary’s suaodsghpity in the original game and the
success probability in the modified game that uses plaintext randomizatioris Tiéskey to the subsequent
proof for secret sharing with encrypted shares.

Based on the high-level description given above, two questions come to Imihis anything more than
the well-known “real-or-random” security definition? And if multiple decrypsmf a set of ciphertexts are
allowed, do selective opening attacks come into play? We address thesedstmqs below.

1.1.1 Relation to Real-or-Random Security

In real-or-random (ROR) security, an adversary is tasked with digshigg between the encryption of
provided plaintext and encryption of randomized plaintext [2]. Our teglereplaces plaintexts with ran-
domized plaintexts in the same manner as ROR security, but our model takesaliphertext security (i.e.,
ROR-CCA) one step further by adding the ability to consistently “decryptiesgiphertexts, regardless of
whether the real or random plaintext was encrypted.

Consider an attempt to reduce the encrypted secret sharing (ES&mrabROR security: an ESS
adversary could be used to create an ROR adversary in which shameshallenge value are encrypted
with the ROR adversary, and the resulting ciphertexts provided to the BE&8sady which must decide
whether they are shares of the challenge value or unrelated ciphefigds a natural definition of ESS
security, but it is inherent in the definition of ESS that the adversaryldhmuallowed to decrypsomeof
these ciphertexts. However, if the ciphertexts come from ROR-CCA ogaglges, then we are necessarily
disallowed from decrypting@ny of the ciphertexts produced in this way. Furthermore, the ESS adversary
doesn’t even know the “real” side of the “real-or-random” encryptasithe real values are embedded within
the ESS game and not revealed to the ESS adversary except throaijic spentrolled decryption requests.
Therefore, allowing for consistent decryptions is not something thatdenthe control of the adversary —
it must be embedded in the ESS game itself, which is precisely what plainteikimaration does.

In the absence of any decryptions that must be made consistent, our gleameamization technique
can be used simply as an abstraction for replacing PKE within a game, althabbrikfit is really nota-
tional in this case. In particular, if only PKE encryptions are performed (rdy chosen plaintext queries),
then plaintext randomization really does behave the same as ROR-CPAysend in such a case a direct
reduction to real-or-random security might be more appropriate, demeod how the PKE is exposed to
the adversary. The examples we consider in this paper all rely on CQhityeand hence make full use of
the plaintext randomization technique.

1.1.2 Selective Opening Attacks

The encrypted secret sharing problem provides a set of ciphertekis aolversary and allows the adversary
to open some subset of these ciphertexts. The underlying plaintexts taiedapendent since they are
shares of a single secret, and this immediately raises a concern of sebgeivag attacks [6] and whether
IND-CCA security is sufficient for the underlying PKE scheme. While this migha concern for some
applications, the encrypted secret sharing problem is based on truasties deither services or secure
hardware such as a smartcard or trusted platform module) acting as logptéeon and decryption oracles,
where the randomness used in performing an encryption is never avaidbiaal to the trusted party.

Our modular notation for PKE schemes ensures this property: Definitione?irzed the interface to a
PKE scheme, and only encrypt/decrypt oracle calls are allowed, with ¢gesado randomization used in
encryption or revealed in decryption. Applications in which randomization trbghrevealed and made
available to an adversary either directly or indirectly do not map to our defisitiand hence the plaintext
randomization technique could not be applied to schemes in which selecéningpattacks are a dangetr.
The problems that we consider in this paper, natural and practical mergf@ncrypted secret sharirdp
map to our definitions and selective opening is not an issue. We believe thgfomdblems involving some
type of escrow of secrets by trusted agents share these attributes.

1.2 Our Contributions

We briefly summarize the contributions of this paper below.

e We define notation that can be used in cryptographic games that use ecR&fesinside the game
oracle, for a uniform treatment and clear identification of how the PKEmselis integrated into the
protocol and game.

e We introduce the technique plaintext randomizatioand prove the Plaintext Randomization Lemma,
a powerful tool for analysis of PKE-hybrid systems.

e We formally define the “secret sharing with encrypted shares” probldémyravshares are encrypted
using public key encryption and a general key mapping function. Wefgme®KE-hybrid scheme
that uses a CCA-secure PKE in conjunction with a perfect secret ghacimeeme, and prove the
security of such a scheme.

While the original purpose of this work was to provide a security analysisriorypted secret sharing, we
believe that the plaintext randomization technique will be useful in a widetyariesituations, and will ease
analysis of many protocols that make use of PKE as a component. As anlex@rips, we give a greatly
simplified analysis (compared to prior work) of hybrid encryption in Section 6

1.3 Relation to Prior Work

Our main goal is a clean security analysis of secret sharing with encrgptéds, but the core challenge
turns out to be the problem of analyzing the composition of PKE with otheratipas. While our focus
is on reduction-based security models it is natural to think about compositgimiration-based models
as well. The most general and powerful model for composable cryggbgr protocols is the universally
composable (UC) model due to Canetti [3], which has been developestadidd extensively over the past
decade. Universally composable security uses simulation-based sgeadfg, and has the advantage that
components proved secure in this model can be composed in arbitrarily conwgoys while maintaining

4

their security. However, while providing very powerful results, therietions imposed by this model are
severe and make it impossible to easily utilize many simple cryptographic primitiviesfaet, it is impos-
sible to establish security in the standard polynomial time UC moderignontrivial two-party protocol
without adding additional setup assumptions [4]. While we only consider a lirfotea of composition,
our results apply within the context of reduction-based security praafscan be applied to efficient pro-
tocols that do not allow for simulation-based security proofs of the kindee&r universally composable
security.

In this work, we also make use of prior work in multi-user public-key entioypschemes. This line
of work goes back to the initial models and results of Bellare, BoldyrevéiMioali [1], and we adopt the
multi-user chosen-ciphertext security model from this prior work. Riédgddofheinz and Jager presented
new results in this model, which provide for tighter security bounds foripguublic-key encryption
schemes [11]. While these results carry over to improve some single-osed$ provided in this paper,
they only apply to the specific PKE introduced by Hofheinz and Jager, whilenain focus in this paper is
on a technique and results that applhatty PKE scheme.

Our work also bears some similarities with hybrid encryption, as introduce@rbyner-Shoup [5].
Their definition of a key-encapsulation mechanism (KEM) includes a ggaame in which the KEM
either encrypts a given session key or a random and unrelated skegjdn a similar way to our use of
plaintext randomization. However, a KEM is a single-use mechanism, amebtha used in a consistent
way across related encryptions. Our distinct contribution with regard tonthik is the extension of this
concept, not by defining a new cryptographic primitive like the KEM but bylatarizing the proof of any
game which uses a straight PKE scheme.

2 Cryptographic Security and Games

In this paper, all of our cryptographic schemes are parameterized éyuaity parameter, which we will
consistently denote in this paper &sand we will use the standard notion of “negligible)ihfor security
arguments. Specific parameters such as key sizes will depekdéhaoperation-specific ways, and security
is analyzed in terms of the probability of some event occurring as a functian-e specifically, we want
the probability of some bad event (related to a security compromise) to bectiofuthat decreases as
increases. For example, this would reflect the notion that as key sizestigeoprobability of breaking
the security of a cryptosystem decreases. In fact, we would like thepildip of bad events to decrease
at a rate greater than the inverse of any polynomial, leading to the notiomeglidible probability” and
“overwhelming probability” as defined below.

Definition 2.1 A functionf : Z — R is negligible in A\ (or just “negligible” when f is a function of a
well-understood security parametgy if for every positive integet, there exists an integet, such that for
all A > ¢y,)

FACVIRS oo
If an event happens with probabilipf \), we say that the event occurs “with overwhelming probability” if
p(A) =1 — f(A), wheref(\) is negligible. I

Public-key cryptography is one of the foundations of modern crypfgraand is based on the idea that
encryption and decryption can use different keys that are gendrapeirs consisting of a public key (for
encryption) and a secret key (for decryption). To formalize the idgaubfic-key encryption, we identify

the three core operations that any public-key encryption scheme mustigroesulting in the following
definition. Providing the full keypair, both public and secret keys, to theryption function is slightly
non-standard, but simplifies our presentation without changing the tedlasigects.

Definition 2.2 A Public-Key Encryption (PKE) scheme (referred to as “a PKE” for brevity) is defined by
four sets and three probabilistic polynomial time operations. The set®#igthe set of public keysS/C,

the set of secret key$?T, the set of plaintexts; and7, the set of ciphertexts. The algorithms are the
following:

e KeyGen : 1* — PK x SK — when called as<eyGen(1), where)\ is a security parameter,
produces a random public/secret pégk, sk) wherepk € PK andsk € SK.

e Encrypt : PK x PT — CT — when called a¥ncrypt(pk, p), wherepk € PK andp € PT,
produces ciphertext € C7. It is not required that all plaintexts be valid for every public key, so we
usePT (pk) to denote the set of valid plaintexts for a particular public k&y If Encrypt is called
with an invalid plaintext (i.e.p &€ PT (pk)), then the operation fails and special values returned.

e Decrypt : PK x SK xCT — PT —when called a®ecrypt(pk, sk, c), wherepk € P, sk € SK
andc € CT, produces plaintext € P7. We can similarly restrict the ciphertext set to ciphertexts
that are valid for a specific secret ke¥, which we denote b§7 (sk).

We require that for anypk, sk) produced by eyGen, and for any plaintexp € PT (pk), with overwhelm-
ing probability Decrypt(pk, sk, Encrypt(pk,p)) =p. 1

This definition provides the only way to interface with the PKE scheme, and pariicular neither
the game oracle nor the adversary can have any access to randomizatibdwing encryption. For the
techniques described in this paper, we need PKEs that allow for raretopliag from the set of valid plain-
texts, a property of all widely-used PKE schemes. We call this propeldyritext-samplability,” defined as
follows.

Definition 2.3 A plaintext-samplable PKE is a PKE scheme that, in addition to all operations of a standard
PKE scheme, supports the following operation:

e PTSample : PKxPT — PT —when called a®T Sample(pk, p), wherepk € P andp € PT,
produces a random plaintext of the same length as a supplied plamtex®7 . Specifically,x is
uniformly chosen frox | x € PT (pk) and|z| = |p|}.

In reduction-based security proofs, security of cryptosystems isatkfinterms of a game between a
probabilistic polynomial time (PPT) adversary and a game oracle. The aetsénternal, persistent state
variables, and answers queries for the adversary. The goal ofitleesary is typically to determine some
information in the internal state of the game oracle (e.g., a hidden bit) basemhjoshcle queries. A game
G is defined in terms of the interface to the game oracle, as a set of functitmes following form.

e G.Initialize(1}): Sets up persistent variables that are maintained throughout the gandeobasese-
curity parameten. This can involve generating one or more random keys, and pickingdemaibit
that the adversary will need to guess.

e G.OracleQuery (- --): One or more functions are defined that allow the adversary to querydlk=o
These definitions are the heart of the security game.

e G.IsWinner(a): Takes a value from the adversary at the end of the game, and retuuoesor false
depending on whetheris a winning answer. This is always the “final answer” for the game, acd o
the adversary provides an answefor Iswinner the game no longer accepts any more oracle queries.

A game typically relies on certain cryptographic operations, which we indimatesuperscript on the
game name. For example, if some gaBmmakes use of PKE schen@ we can indicate this specific version
of G by writing G® , and operations then might be denoteds&sinitialize(1*), etc. Games that use PKE
schemes typically do so in a generic way, treating keys as opaque objextreWpecifically interested in
protocols that treat secret keys in this way, so introduce the following tetagp.

Definition 2.4 A gameG that uses a PKE schen® is sk-oblivious if, for any keypair(pk, sk) produced
by &.KeyGen, the only way thaG usessk is to passsk back unmodified in calls t&. Decrypt. In such a
situation, we can say thatG makessk-oblivious use 05”. |

The goal of the adversary is to win the game (i.e., produce an ansswah thaG.IsWinner(a) = true)
with higher probability than simply guessing an answer randomly. Typicallyahswer” is a single hidden
bit that needs to be guessed, although our definition purposely avoidagrthks a requirement so that
other goals could be accomodated. In the case where the answer is dgirtgkprobability that a random
guess would give a winning answerjsand the goal is to win with probability non-negligibly larger than
%, leading to the definition of the “advantage” against a game.

Definition 2.5 The “advantage” of an adversary in gameG is denotedddv4 ¢, and defined agldv s ¢ =
|P(G.Iswinner(A%()))) — 3|, where the probability is taken over both the random choice$ arfid the ran-
dom choices o6 . For some description of resource bounge.g., time complexity, number of encryption
or decryption gueries, etc.), we also refer to the best possible advanfaagy such adversary against a
particular game, writtenAdvg(B), defined asAdvg(B) = sup4 Adva,c, Where the supremum is taken
over all adversariesA that meet the bounds requiremeiits |

For a games that defines the security of some type of cryptographic scheme, the gygildally to find
some specific schen@&such thatddvge is negligible.

2.1 Multi-User CCA Security

As an extension to the better-known single key CCA security model for B€Hareet al. considered
security of public-key encryption when the system is used with multiple usersrtultiple keypairs) and
multiple challenges are made that are answered consistently [1]. This is somedif@eed to as multi-
user “left-right” security, since every encryption challenge is made withilagh values, and the encryption
oracle consistently encrypts either the left or the right value througheugdme. A key property of this
model is that since encryption pairs are chosen by the adversary, ptainfeéhe provided ciphertexts can
be related in arbitrary ways, opening up the possibility of complex attacks. fallowing describes the
multi-user CCA security gameKk-MUS parametrized by the number of userand a PKE schem&.

e PK-MUS .Initialize(1*): Fori = 1 to n, the oracle generates keypaiyss;, sk;) = &.KeyGen(17),
picks arandom bit € {0, 1}, and setg” as an initially empty set of challenge ciphertexis;, - - - , pk,
are returned to the adversary.

e PK-MU?.Decrypt(i, z): If (i,z) € C, the oracle returng ; otherwise, it return&. Decrypt(pki, sk,).

e PK-MUS.PEncrypt(i, g, z1): The oracle calculates = &.Encrypt(pk;,xy), adds(i, ¢) to C, and
returnsc to the adversary.

e PK-MUS.IsWinner(a): Takes a bitz from the adversary, and returnige if and only if a = b.

Note thatPEncrypt (“pair encrypt”) is similar toChallenge in the standard single-key CCA2 game, except
that it can be called multiple times, and consistently encrypts either the firstamdargument. While this

is equivalent to the definition of Bellaet al., we use a single multi-key oracle, as in the recent definition of
Hofheinz and Jager [11]. We give simplified results for single-key CE€eusty in Section 5.

3 Plaintext Randomization

In this section, we present the technique of plaintext randomization. Thigitpe creates a PKE scheme
that can maintain some internal state between encryption and decrypti@steqdhis stateful behavior
would not be very useful in most real-life cryptographic uses of puldicéncryption, since the state would
need to be protected and shared between encryption and decryptratiapg which may be executed on
separate systems. Nonetheless, it is possible to define such a statefgcR&e, and when this PKE
is used inside a cryptographic game oracle — which can keep state seonetigers of the oracle, and
encryption and decryption are performed by the same party — it turns tetaosery useful concept.
Consider an adversary that plays a game that uses a plaintext-samplable PKE sch&mé\e create
a stateful PKE scheme that is based®nbut in which ciphertexts are meaningless, and cannot reveal
any information about the corresponding plaintext other than perhapsigthleSpecifically, ciphertexts
are simply encryptions of random plaintexts of a given length, and therschises internal state to keep
track of plaintext/ciphertext pairs so that encryption followed by decrypgioes the required result. We
formalize this idea in the following definition.

Definition 3.1 Given a plaintext-samplable PKE schei@e the plaintext randomization of G is a set of
functions that acts as a PKE scheme, dend@ednd, defined as follows:

o G-rand.KeyGen(1*) computespk, sk) = &.KeyGen(1*) and returns(pk, sk).

e G-rand. Encrypt(pk, p) first computes = &.PT Sample(pk, p), and thenc = &.Encrypt(pk, r).
If a tuple of the form(pk, ¢, -) is already stored inS-rand’s internal state, thenL is returned (the
operation fails); otherwiseS-rand stores the tuplépk, ¢, p), and returnsc as the ciphertext.

e G-rand. Decrypt(pk, sk, c¢) looks for a tuple of the fornipk, c, =) for somez. If such a tuple exists,
thenz is returned as decrypted plaintext; otherwige= &.Decrypt(pk, sk, c) is called andp is
returned.

Note that the Encrypt function can fail if a duplicate ciphertext is produbat since these ciphertexts
are encryptions of random plaintexts then both the randomly chosen ptaamgxandomness used in the
encryption must be a repeat of a previous encryption, which happghsnegligible probability. It is
important not to confuse the above definition with an oracle that the adyénsaracts with — the plaintext

randomization o& replaces calls to a PKE scheme that happen internal to a security games adgéhsary
does not have direct access to these functions. Replacing a PKE sulittnits plaintext randomization
typically results in a game that is much simpler to analyze, but is a good approxinatlee original game.
In particular, the following lemma shows that if the advantage against the plamatedomized game is
negligible, then the advantage against the original game is also negligible.

Lemma 3.1 (Plaintext Randomization Lemma) LetG be a game that makes-oblivious use of a plaintext-
samplable public key encryption sche@eand letG-rand be the plaintext randomization @&. Then, for
any probabilistic adversaryl that playsG® so that the total game-playing time dfis bounded by, the
number of calls ta&5. K eyGen is bounded by, and the number of encryption and decryption requests for
any individual key is bounded lgy and ¢4, respectively,

AdUA,GG — AdUA7G6-rand S 2 AdUPK-MUS (t/, de, (_Zd),
wheret’ =t + O(log(gen)).

Proof. Given adversaryl that plays the game we will construct an adversary’ that playsPk-MUS, so
A’ convertsA into an adversary that attacks the basic multi-user CCA security of the lyindePKE &.

A’ starts by callindPK-MUS .Initialize(\) and saves the list of public key#;, - - - , pk,, for later use, setting
m = 0 to track the number of public keys that are “in use”®y A’ next simulates the original adversary
A and the game oracle, replacingG’s use of PKES with a specially constructed stateful PKE schegne
that has access to the public keys, - - - , pk,, and countein, as well as theK-MU® oracle. & provides

the standard three PKE functions as follows:

o é.KeyGenLl)‘)Z If m = n (i.e., we have already usedkeypairs), this operation returnsand fails.
Otherwise,& incrementsn (the number of keys in use) and returas:,,,, pk,,,) as the generated
“keypair.” Note that the “secret key” is really just the public key, but tkigot important since we

can perform all the operations below with just this information, @fsduse of& is sk-oblivious.

o &.Encrypt(pk;, p) for valid public keypk;: & computes random plaintext= &.PT Sample(pk;, p),
and then computes= PK-MU? .PEncrypt(i, p, 7). The tuple(pk;, ¢, p) is saved inS’s state, and: is
returned.

° é.Decrypt(pki,pk‘i, c): Note that thepk; here is used as both the public and the secret key, despite
the notation. The decrypt function first checks to se®’# state contains a tuplek;, c, p) for some
p, and if such a tuple is founglis returned as the plaintext. Otherwige= PK-MU? .Decrypt(i, ¢) is
returned.

Note that all calls t®K-MUS .PEncrypt store a tuple that includes the returned ciphertext, anéitlﬁhecrypt
function never calls thEK-MUf.DecIypt oracle with such a ciphertext, so dlecrypt calls will succeed.

A’ continues simulatingl andG® until A outputs its final resuly, for gameG , at which pointA’ calls

G.IsWinner(a) to check if A’s output wins games®. Based on thisA’ outputs its guess’ for PK-MU®’s
secret bith as follows:

o If AwinsGS, A’ outputs guess’ = 0.

o If AlosesGS, A’ outputs guess = 1.

Thus, A’ wins if A wins andb = 0, or if A loses and = 1. Sinceb is uniformly distributed,
. 1 . = 1 =
P(A’ wins) = 5 P(Awins G®|b=0)+ SP(A losesG® |b=1). (1)

While our simulator doesn’t know the it the construction 06 is such that whem = 0 the game
played byA is exactlyG® (since in this case the encryption request is answered by an encryptiwreal
plaintext), and wheh = 1 the game played by is exactlyc®" (since in this case the encryption request
is answered using plaintext randomization). Using this observation wdroatifg (1) as follows:

. 1) 1
P(A'wins) = _P(Awins G%) + SP(A losesG)
1 : 1 _
= §P(A winsG®) + 3 (1 — P(Awins GG'fa”d)>

1 1 . 1 .
= 5+ P(Awins G%) — 5 P(Awins GSand)
By definition, Adv ,, p.mus = |P(A’ wins) — 3|, and sinced’ only does some simple table lookups in
addition to its simulation ofA andG, which induces at mosf. andg, encryption and decryption requests,
respectively, we can boundidv 4, py yus bY Advpi yys (5 Ge, 4a), Wwheret' =t 4 O(log(nge)). It follows
that) !

';P(A winsG®) — %P(A wins gE-and)

< Ad/UPK-MUS (tlv e, Qd))

and so
‘P(A winsG®) — P(A wins GG-fa“d)‘ < 2 Advpy yus (', Ges a) - @)

Returning to the original problem, comparing the advantagé with respect tac® andg®ad,

‘AdUA’GG — Advy gean| = | [P(AWINSG®) — 3| — [P(AwinsGE™) — 7| | |

and so

’AdUA,Ges — Advy geana| <) P(AwinsG®) — P(A winsGS™) ‘ 3)

Combining bounds (2) and (3), we conclude that

‘AdvAG@ — Advy geana| <2 AvaK—MUS’ (', Ge> qa),

which is the bound claimed in the lemma statemenii

4 Secret Sharing with Encrypted Shares and Limited Decryption

Loosely speaking, a secret sharing scheme consists of a dealernaive kome secret, and a set of partici-
pants who are given shares of this secret by the dealer in such a waythauthorized sets of participants
can reconstruct the secret from their shares. Formalizing this intuitiie@mis not difficult, and the formu-
lation we use is a slight modification of the 1987 definition given by Ito, Sait Nishizeki [12].

Formally, ann-way secret sharing scheme is one in which a secceimes from some space of secrets
S§S, and a function MakeShare§S — PS™ wherePS is the “piece space” for shares of the secret. In
particular, givens € SS, MakeShares) produces a vectdrs, s, - - - , s,) Of shares, where; € PS for

10

all 4, and shares are identified by their index in this vector. Using notétipe= {1,--- ,n}, anaccess
structurel’ C 2" is a set of subsets of indices that are authorized to reconstruct thee. deor any subset

(41,92, ,im) € I' we can use function Reconstr(¢t , s;,,--- ,s;,,) = s to reconstruck from shares
identified by an authorized subset of indices. We require th@f ifs, - - - ,4,,) ¢ I then it is infeasible to
reconstruct from sharess;, s;,, - - , si,,, Where “infeasible” can be defined either from a computational
or an information theoretic standpoint. All of the secret sharing schemeson&der in this paper use
the information theoretic model of security, meaning that for @ayio, - - - ,i,,) ¢ I all secretss € SS

are equally likely, so no algorithm can extract any information aBduobm these shares — such a secret
sharing scheme is callgqebrfect Perfect secret sharing schemes are known and widely used famcer
specific access structures, such as Shamir’s secret sharing sarehreshold access structures [13]. Asis
typical in secret sharing work, we require tfiabe monotone, so that if somlec T" then all supersets &f
are also ir".

We are interested in schemes in which shares are encrypted using a mybicheme, so for a PKE
with plaintext spacé”7 we assume an embedding functien PS — P7T and a “de-embedding” func-
tiond : PT — PS so thatd(e(s;)) = s; for any shares;. In what follows, use of the embedding
and de-embedding functions is implicitly assumed when shares are encoypedrypted. Despite the
widespread use of secret sharing, both as an independent ciyitogfunctionality and as a component of
other cryptographic protocols, we have not located any formal waalkyaimg the situation in which shares
are encrypted using a public key encryption scheme. Such a situation is dirlitgbrid encryption, but
with the ultimate secret computed using a combination of decryption and secoeistruction. Traditional
notions of indistinguishability games have serious challenges in this settingitidnal games typically
have the restriction that once a ciphertext is produced by a challengle,offze adversary is not allowed
to request and receive a decryption of that ciphertext, so any reddotim a standard indistinguishability
game should similarly avoid queries on ciphertexts produced by the chalieagje. In the setting of secret
sharing, we want to allow decryption of challenge ciphertexts as long dsltiset of decryptions produced
does not correspond to a sete I' that can reconstruct the secret. Our plaintext randomization technique
can handle this situation quite cleanly, while it is not clear how to start with ectextufrom a traditional
ciphertext indistinguishability game.

In our formalization, we consider anway perfect secret sharing scheme as defined above with mono-
tone access structuite for which we will usek different keypairs (numbered 1 #ofor convenience) to
encrypt these shares according to a key mapping fundétiorjn] — [k] so that share will be encrypted
using key numbefC(i). The scheme may depend on the access structure, and may in fact okljowor
some specific subset of access structures (such as thresholdstoeetsses), and we assume there is some
appropriate and compact descriptiBl’) of valid I'’s for a particular scheme.

Using this general key mapping function allows us to capture severatafiffesscenarios within one
general definition. For example, with= 1 and/C(i) = 1 for all ¢, we capture a scheme in which all shares
are encrypted with the key of a single trusted authority and shares anbudistr (either to a single party
or multiple parties) so that decryption of shares is allowed based on som@atidéermined by the trusted
authority. For exampld; might be a threshold structure with threshgldnd trusted hardware controls how
many shares may be decrypted at any particular time (this is the case in @ianguTate’s generalized
oblivious transfer scheme based on trusted hardware [10]). Asemexample, considgs = n escrow
authorities, all with their own keys, anfd(i) = 4 for all <. In this case, a single user could obtain all
encrypted shares, and if the user needs to open the secret at sotrtgaber could approach some subset
~ € T' of escrow authorities and convince them that they should decrypt the 8kat is encrypted with
their key. This is the scenario described in the Introduction.

11

We define the following security game for secret sharing with encryptaksh

e ESSS.Initialize(1*, k, n, IC, D(I")): If this scheme does not support access strudtyreturn L and do
not answer any further queries. Otherwise, the oracle generatesitsyk;, sk;) = &.KeyGen(1?)
fori = 1,...,k, picks a random bib € {0, 1}, and saves, K, andD(I") for later use.v, used to
track the set of shares that have been decrypted, is initialized to the empHirsaly, set flage to
false, indicating that no challenge has yet been made, and rgtytn. . , pky.

e ESS®.Challenge(xg,x1): If cistrue, then returnlL. Otherwise, the oracle generateshares, .. ., s,
for x, creates share ciphertexts by computing: &. Encrypt(pky(;), si) fori = 1,...,n, sets flag
c to true, and returns the vectdr, . .., ¢,) to the adversary (keeping a copy for future reference).

e ESS®.Decrypt(i, z) (Wherei € [k] is a key number and s a ciphertext): It & {c; | K(j) = i} (SOc;
was not produced by encrypting with k€y then simply compute and retué Decrypt(pk;, sk,).
Otherwiseyx = ¢; for somej with KC(j) = ¢, so test whetheyU{j} € I': ifitis, return_L; otherwise,
sety < v U {j} and returnS. Decrypt(pk;, ski,).

e ESSC.IsWinner(a): Takes a bitu from the adversary, and returmige if and only if a = b.

Note that the test ilESS®.Decrypt(i, z) disallows decrypting shares for a share set that would allow re-
construction of the secret, while still allowing some decryptions. Furthernsoreel’ is monotone, if the
ultimate set of shares that have been decrypted are frormagét, then every subset of is also not inl*

and so this test does not restrict adversaries in any way other thallawghg them to receive a full share
set.

Since the bounds in the Plaintext Randomization Lemma depend on the nhumberogtofekey is
used, we defing, to be the largest number of times any key is used according to our key mdppatmn.
Specifically,

e = max [{j | K(j) =i} .
1€[k]

Theorem 4.1 If ESS is a k-key perfect-way secret sharing scheme using P&Ewith ¢. and ¢; defined
as described above, then for any timadversaryA,

Advygsss < 2Aal”PK-l\Aug (', ge, qa)-

Proof. Consider the&ess® ", theESS game using the plaintext randomized versiowofLet b denote the
secret random bit chosen during the initialization stepzleandx; denote the challenge secrets selected
by A, and letey, o, - - - , ¢, be the ciphertexts produced by tB8S oracle encrypting shares af, using
G-rand. At any time while A is playingESS®™, its view consists of ciphertexts, cs, - - , ¢, as well
as a set of shares that it has decrypted,s;,, - - - , s;,,, where{iy,is,--- ,ip,} = v ¢ I' (as enforced by
the ESS game). Since the decrypted shares are fioaimd the secret sharing scheme is perfect, and since
plaintext randomization results in ciphertexts being independent of thd abtras (and hence the secret),
each secrety, or z1) is equally likely given the adversary’s view. Thereforelv 4 gggsana = 0.

Referring back to the Plaintext Randomization Lemma,

Adv g pgse — Adv g pggeana| < 2 AvaK_MUg (', Ge> qa),

and sinceddv 4 gsgemns = 0 We conclude with the bound stated in the theorend

12

5 Single-User CCA Security and Results

Up until this point, we have stated results in their most general form, using thipieikey version of CCA
PKE security defined in Section 2.1. In many settings, we are only interestedimgle key version of
security, and consequently can use simpler forms of the results. In thisrsae present results specific to
the classical single-key notion of CCA security.

5.1 Chosen Ciphertext Security Definition

In this section, we define the adaptive chosen ciphertext security gaenstétidard “CCA2” game) that is
widely used for describing security of public-key encryption schemés. basic idea is that the adversary
gets to pick two plaintexts for a “challenge,” the oracle encrypts one ralydohosen plaintext and returns
the corresponding ciphertext to the adversary. The adversargeqapest as many ciphertext decryptions as
it likes, either before or after the challenge is submitted (which is what maleththadaptive, or CCA2,
version), with the only restriction being that the oracle cannot be askeectypt the ciphertext returned
from the challenge. These conditions are all reflected in the definition below

e PK-CCA2S .Initialize(\): The oracle generates a keyp@ik, sk) = &.KeyGen(1*), picks a random
bit b € {0, 1}, setsce (for “challenge ciphertext”) to null, and returps.

e PK-CCA2°.Decrypt(x): If x = cc, the oracle returnd. to the adversary; otherwise, it computes and
returnsS. Decrypt(pk, sk, x).

e PK-CCA2°.Challenge(zg, x1): If ccis non-null (i.e., Challenge has been called previously), the oracle
returnsL; otherwise, it setsc = &. Encrypt(pk, x,) and returngc to the adversary.

e PK-CCA2°.IsWinner(a): Takes a bit: from the adversary, and returtige if and only if a = b.

To be “CCA2-secure,” a PKE should be such that it is impossible for a probabilistic polynomial time
adversary to win this game, i.e., the advantage of any adversary in this gaggigble. This is a widely-
used notion of security for PKE schemes — while weaker notions of PKitisgare possible (e.g., chosen
plaintext, or non-adaptive chosen ciphertext), there are efficiertsetithat have CCA2 security under rea-
sonable complexity assumptions. For example, the Cramer-Shoup publ@keption scheme is CCA2-
secure in the plain model, under the decisional Diffie-Hellman assumption [5].

5.2 Plaintext Randomization Lemma

We next provide a corollary that gives two alternate forms for the PlaifRextdomization Lemma, which
might be useful if a bound is desired in terms of traditional single-uselsstitallenge CCA2 security. This
corollary is stated without proof, as the bounds follow directly from the BdairRandomization Lemma
and multi-user PKE bounds proved by Bellateal. [1]. The second bound follows from the tighter multi-
user security that is possible from the Cramer-Shoup PKE scheme.

Corollary 5.1 LetG be a game that makeg-oblivious use of a plaintext-samplable public key encryption
schemes, and let&-rand be the plaintext randomization &. Then, for any probabilistic adversary that
playsG® so that the total game-playing time dfis bounded by, the number of calls t&.KeyGen is

13

bounded by:, and the number of encryption and decryption requests for any individlyais bounded by
ge and gy, respectively,

’Ad’UA7GG - AdUA7GG-rand < 2qen AdUPK_CCAZS (t/, Qd) N
wheret’ = t + O(log(gen)). Furthermore, for the Cramer-Shoup PKE scheme, denéf&dve can bound

< 2¢e Advpy copzs (t',qq) -

‘Ad'l)A,GCS — Ad'UA’GC.Sfrand

5.3 Encrypted Secret Sharing in the Single-Key Model

Restricting the encrypted secret sharing (ESS) problem so that onlygle &iey is used (and so no key
mapping function is necessary), we arrive at the following corollaryckvhlso reflects the savings that can
be achieved by using the Cramer-Shoup encryption scheme.

Corollary 5.2 If ESS is a k-key perfect.-way secret sharing scheme using P&Ewith g. and ¢; defined
based on key mapping functidhas described above, then for any timadversaryA,

Adv g gsss < 2kqe Advpy copm (t',qq) -

For Cramer-Shoup encryption sche@§, we can bound

Adv 4 gsses < 2¢e Advpy copgs (t'; qa) -

All of the results above give concrete security bounds, so we pointheubbvious high-level conclusion:
if we use a perfect secret sharing scheme with a CCA2 secure encrygatieme, then no probabilistic
polynomial time adversary can win ti#S game with more than negligible probability.

6 Hybrid Encryption

In this section we provide an example of how plaintext randomization can simptifpother PKE-hybrid
protocols, by giving a very simple proof for the security of hybrid eption using a standard PKE rather
than a KEM.

Definition 6.1 A hybrid encryption schem#& (P, S) combines the use of a PKE schefend an SKE
schemeS to produce a public-key encryption scheme defined by the following fuaction

e KeyGen(1*): Compute(pk, sk) = P.KeyGen(1*) and return the keypaitpk, sk).

e Encrypt(pk,p): Computek = S.KeyGen(1?) and then ciphertextg = P.Encrypt(pk, k) and
¢ = S.Encrypt(k,p). The returned ciphertext is the pair= (¢, ¢).

e Decrypt(pk, sk, c): Ciphertextc = (v, ¢) is decrypted by first finding the session key uging
P.Decrypt(pk, sk,) and then computing the final plaintext= S. Decrypt(k, ¢).

14

Since the net effect of a hybrid encryption scheme is the same as a pubiindsyption system, security
is defined by the multi-user CCA security notion that was given in Section 2€lal®é refer to the multi-
user CCA security of a symmetric encryption scheme in the following analydi® SK-MU game is a
straightforward modification dfK-MU to a symmetric encryption setting, and is omitted here.

Theorem 6.1 For any hybrid encryption schenié(P, S), if A is an adversary that runs in timen a game
that uses at most keypairs and performs at magt andg, encryption and decryption queries, respectively,
then

Adv 4 prmun < 2 Advpiyyr (t', Ge, qa) + AdUSK-MUg‘en (t'.1,4qq) ,

wheret’ =t + O(log(gen)).

Proof. Consider the plaintext randomizationf and an adversany playing thePk-Mu?**2d game: in

this situation, a ciphertext), ¢) is such that) is completely unrelated t¢p — it is just an encryption of a
random value. Therefore, any attack®rrand can be immediately turned into an attack on the SKE scheme
S by simulatingA and adding encryptions of random values to simulateytiportion of each ciphertext.
Each use of the SKE scheme in this scenario uses a different randowikeya single encryption per
symmetric key, and since the probability of winning the SKE game is the saenasning the?-rand
game, we can bound the advantageidh the PK-MU’t"@"d game as

AdUA7PK—MUH'rand S AdUSK_MUqSSn (t, 17 qd) .

By the Plaintext Randomization Lemma, we know that

‘AdvA,PK-MUH — Adv y pr e | < 2Advp P (t', ges qa),

leading to the bound in the theorem.ll

While we generally state bounds in terms of concrete security, we restatetirid s a simple state-
ment about security with respect to a probabilistic polynomial-time (PPT) sdmerin particular, we say
simply that a scheme isPK-CCA2-secure” if Adv pk.ccaz is nNegligible for any PPT adversary, and
similarly for other games.

Corollary 6.1 If P is aPK-CCA2-secure PKE scheme, agds aSK-CCA2-secure SKE scheme, then hybrid
scheméeH (P, S) is aPK-CCA2-secure PKE scheme.

7 Conclusions

In this paper we have examined the problem of encrypted secret s{B&®), developing a general and
flexible definition, and solving challenges posed in the analysis by develapiew, general-purpose, and
powerful technique called plaintext randomization. This technique modetatize analysis PKE-hybrid
cryptographic protocols, and separates out the dependence orcthigysef the PKE scheme in a way that
is captured by the Plaintext Randomization Lemma that is proved in this pagem@the immediate result
for ESS, we believe that plaintext randomization holds great promise @titi@uhl applicability, given the
prevalence of public-key encryption in cryptographic schemes andftbiert schemes that can be derived
in the reduction-based security model.

15

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-usetting: Security proofs
and improvements. In: Proc. of EUROCRYPT. Volume 1807 of Springeture Notes in Computer
Science. (2000) 259-274

Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete securitgtinent of symmetric encryp-
tion. In: Proceedings of the 38th Symposium on Foundations of Compuitemcec(FOCS). (1997)
394-403

Canetti, R.: Universally composable security: A new paradigm foptwygraphic protocols. In:
Proc. of 42nd Symposium on Foundations of Computer Science (FOZDB)L) 136—-145 Full version
available at http://eprint.iacr.org/2000/067.

Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally congiale two-party
computation without set-up assumptions. Journal of Cryptolks§) (2006) 135-167

Cramer, R., Shoup, V.: Design and analysis of practical public-keyygtion schemes secure against
adaptive chosen ciphertext attack. SIAM J Com8t(2003) 167-226

Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.. Magic functions:nhemoriam: Bernard M.
Dwork 1923-1998. Journal of the ACBI(6) (November 2003) 852-921

Goldreich, O., Krawczyk, H.: On the composition of zero-knowledgeopsystems. SIAM Journal
on Computing25(1) (1996) 169-192

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. Pnoc. of the 19th
Symposium on Theory of Computing (STOC). (1987) 218-229

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Caewpand System Scienc2§(2)
(1984) 270-299

Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivioussfex using count-limited objects
with applications to secure mobile agents. In: Proc. of Financial Cryppbgravolume 5143 of
Springer Lecture Notes in Computer Science. (2008) 98—-112

Hofheinz, D., Jager, T.: Tightly secure signatures and publicekeyyption. In: Proc. of CRYPTO.
(2012) 590-607

Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing gé@ecess structure. In: Proc. of
IEEE Globecom. (1987) 99-102

Shamir, A.: How to share a secret. Communications of the At11)(1979) 612—613

16

