
Encrypted Secret Sharing and Analysis by Plaintext Randomization∗

Stephen R. Tate Roopa Vishwanathan Scott Weeks
Department of Computer Science

University of North Carolina at Greensboro
Greensboro, NC 27402

May 7, 2013

Abstract

In this paper we consider the problem of secret sharing whereshares are encrypted using a public-key
encryption (PKE) scheme and ciphertexts are publicly available. While intuition tells us that the secret
should be protected if the PKE is secure against chosen-ciphertext attacks (i.e., CCA-secure), formally
proving this reveals some subtle and non-trivial challenges. We isolate the problems that this raises, and
devise a new analysis technique called “plaintext randomization” that can successfully overcome these
challenges, resulting in the desired proof. The encryptionof different shares can use one key or multiple
keys, with natural applications in both scenarios.

1 Introduction

During the past three decades, cryptography research has been very successful in developing clear notions
of security and rigorous techniques for reasoning about security of cryptographic primitives and protocols.
Formal notions of security in cryptography have evolved in essentially two main directions, with reduction-
based proofs developing from the initial work of Goldwasser and Micali [9] and simulation-based proofs
from the initial work of Goldreich, Micali, and Wigderson [8]. While we havea good understanding of
how to reason about security in these settings, there are recurring issues with composability: using one
secure protocol as a component of another protocol while retaining security inside the higher-level protocol.
Somewhat counter-intuitively, some protocols (e.g., some zero-knowledgeproofs) fail to maintain security
even when multiple copies of the same protocol are run concurrently [7].

In this paper, we explore a combination of public-key encryption (PKE) withsecret sharing, and in the
process develop a general-purpose proof technique for analysis ofcryptographic schemes and protocols that
use public-key encryption (PKE) as a component. Perhaps the simplest example of such a system is the
common practice of hybrid encryption: doing large scale encryption by first encrypting a random session
key using a PKE scheme, and then using that session key with a symmetric cipher for bulk encryption.
Due to the inefficiency of public key encryption, hybrid encryption has been standard practice since the
1980s, and our intuition tells us that if the PKE scheme and the symmetric cipher are both secure in some
sense (e.g., against chosen ciphertext attacks) then the combination of these two components into a hybrid
system should also be secure. However, despite widespread use of hybrid encryption, the security of hybrid
encryption was not rigorously established until the 2003 work of Cramer and Shoup [5]. A key insight

∗This material is based upon work supported by the National Science Foundation under Grant No. 0915735.

1

in Cramer and Shoup’s analysis was the introduction of the notion of a “key encapsulation mechanism”
(KEM), which can be built from a CCA-secure PKE scheme. The value ofKEM does not come from the
power of this new cryptographic primitive, but rather comes from the clarityit brings to theanalysisof
hybrid encryption. In this paper, we focus on improving the analysis process from the beginning, so that
we obtain clear proofs directly, with no need to introduce a new primitive suchas a KEM. While hybrid
encryption is a very simple example of this, our analysis technique can be applied to any protocol that uses a
PKE scheme to hide secrets used within the protocol — we use the term “PKE-hybrid” to refer to protocols
like this.

Unfortunately, current proof techniques are not sufficient for somePKE-hybrid problems, including the
very practical problem of secret sharing with encrypted shares. To understand this problem, consider a
standard key escrow situation, in which a company escrows copies of keys for the company’s officers so that
keys can be recovered if a certain number of board members agree. Thisis a classic threshold secret sharing
situation, but in the real world having board members keep copies of shares of all officer’s keys (which
might change somewhat regularly) locally would not be practical. A better solution would be to have each
board member maintain their own a long-term key (perhaps on a smartcard), and have the company store
encrypted shares of the escrowed keys, encrypted with board memberskeys, on a central server. This way
shares can be updated without interaction of the board members, but board members would still be needed
in order to decrypt the shares for a key recovery.

To understand why standard proof techniques do not work for this problem, consider a situation in which
a CCA-secure PKE is used to encrypt shares from a perfectk-of-n threshold secret sharing scheme. We
mirror a CCA game by creating a game in which we provide two secrets to the game oracle, which encrypts
shares of one of these secrets for the adversary who must guess which secret is used. Using standard
techniques we would try to simulate this adversary and game oracle in a CCA PKEgame to relate to the
security of the PKE scheme. However, we must make multiple encryptions and they must be consistent
across the shares that are provided. Multiple consistent encryptions suggests using a multi-query oracle
such as the left-right or real-or-random security notions of Bellareet al. [2]; however, we must allow the
adversary to decryptsomeof the encrypted shares, only disallowing decryption of a set that would allow
reconstruction of the secret. These two properties, consistent encryptions and allowing some decryptions,
are fundamentally opposed in standard techniques, making analysis of this situation particularly difficult.

1.1 Plaintext Randomization

To overcome the problems described in the previous section, we have developed a new analysis technique
that we callplaintext randomization, which we successfully use to prove a strong security result for the
general “secret-sharing with encrypted shares” problem. We believe this technique will be useful in the
analysis of a wide variety of PKE-hybrid protocols.

Consider a cryptographic problem in which security is defined using a gamebetween an adversary and
a game oracle — we don’t make any assumptions about the goal of the adversary, so that it does not need
to be a CCA-style distinguishability goal, but rather can beany adversary goal that is well-defined. The
game oracle makes some use of a PKE scheme, but this is internal to the game andnot something that
the adversary necessarily sees. The adversary may in fact have no direct access to the PKE scheme at all,
including key generation, encryption, or decryption, but only sees the effects of these operations as allowed
by the game oracle definition. Internally, all access to the PKE scheme by the game oracle goes through a
generic interface that neither depends on the precise PKE scheme being used nor gives access to randomness
used internally to the PKE functions.

Plaintext randomization then is the following technique: internal to the game oracle, every time the PKE

2

encryption function is called asEPK(p) (for plaintextp and public keyPK) we replace the plaintext with
a random stringr of the same length and instead callc = EPK(r), using ciphertextc in place of what
would have been the encrypted plaintext. To allow for consistent decryption, the game oracle remembers
these “encryptions” by storing pairs(c, p) so that if the decryption function is used by the game oracle on
ciphertextc, the plaintextp will be returned rather than the actual decryption ofc (which would giver).
By modifying the game in this way, we remove any use of meaningful ciphertexts, and the storage of pairs
(c, p) allows the game to provide restricted and consistent decryptions, solving thetwo problems that we
identified for secret sharing with encrypted shares. Furthermore, the use of ciphertexts that are unrelated
to actual plaintexts “cuts” any hybrid use of the PKE from the rest of the protocol, exactly the property we
need to enable or simplify proofs for PKE-hybrid problems.

There are a few technicalities that must be addressed for this to work, such as the ability to randomly
sample the plaintext space (defined as a “plaintext-samplable PKE” in Definition2.3) and a restriction
on how the game in question uses PKE secret keys (defined as “sk-oblivious” in Definition 2.4). Once
these formalities are established, we are able to prove a result which we callthe “Plaintext Randomization
Lemma” that bounds the difference between the adversary’s success probability in the original game and the
success probability in the modified game that uses plaintext randomization. Thisis the key to the subsequent
proof for secret sharing with encrypted shares.

Based on the high-level description given above, two questions come to mind: Is this anything more than
the well-known “real-or-random” security definition? And if multiple decryptions of a set of ciphertexts are
allowed, do selective opening attacks come into play? We address these two questions below.

1.1.1 Relation to Real-or-Random Security

In real-or-random (ROR) security, an adversary is tasked with distinguishing between the encryption of
provided plaintext and encryption of randomized plaintext [2]. Our technique replaces plaintexts with ran-
domized plaintexts in the same manner as ROR security, but our model takes chosen-ciphertext security (i.e.,
ROR-CCA) one step further by adding the ability to consistently “decrypt” some ciphertexts, regardless of
whether the real or random plaintext was encrypted.

Consider an attempt to reduce the encrypted secret sharing (ESS) problem to ROR security: an ESS
adversary could be used to create an ROR adversary in which shares of a challenge value are encrypted
with the ROR adversary, and the resulting ciphertexts provided to the ESS adversary which must decide
whether they are shares of the challenge value or unrelated ciphertexts.This is a natural definition of ESS
security, but it is inherent in the definition of ESS that the adversary should be allowed to decryptsomeof
these ciphertexts. However, if the ciphertexts come from ROR-CCA oraclequeries, then we are necessarily
disallowed from decryptingany of the ciphertexts produced in this way. Furthermore, the ESS adversary
doesn’t even know the “real” side of the “real-or-random” encryption, as the real values are embedded within
the ESS game and not revealed to the ESS adversary except through specific, controlled decryption requests.
Therefore, allowing for consistent decryptions is not something that is under the control of the adversary —
it must be embedded in the ESS game itself, which is precisely what plaintext randomization does.

In the absence of any decryptions that must be made consistent, our plaintext randomization technique
can be used simply as an abstraction for replacing PKE within a game, although the benefit is really nota-
tional in this case. In particular, if only PKE encryptions are performed (i.e., only chosen plaintext queries),
then plaintext randomization really does behave the same as ROR-CPA security, and in such a case a direct
reduction to real-or-random security might be more appropriate, depending on how the PKE is exposed to
the adversary. The examples we consider in this paper all rely on CCA security, and hence make full use of
the plaintext randomization technique.

3

1.1.2 Selective Opening Attacks

The encrypted secret sharing problem provides a set of ciphertexts tothe adversary and allows the adversary
to open some subset of these ciphertexts. The underlying plaintexts are not independent since they are
shares of a single secret, and this immediately raises a concern of selectiveopening attacks [6] and whether
IND-CCA security is sufficient for the underlying PKE scheme. While this might be a concern for some
applications, the encrypted secret sharing problem is based on trusted parties (either services or secure
hardware such as a smartcard or trusted platform module) acting as both encryption and decryption oracles,
where the randomness used in performing an encryption is never availableexternal to the trusted party.

Our modular notation for PKE schemes ensures this property: Definition 2.2 defines the interface to a
PKE scheme, and only encrypt/decrypt oracle calls are allowed, with no access to randomization used in
encryption or revealed in decryption. Applications in which randomization might be revealed and made
available to an adversary either directly or indirectly do not map to our definitions, and hence the plaintext
randomization technique could not be applied to schemes in which selective opening attacks are a danger.
The problems that we consider in this paper, natural and practical versions of encrypted secret sharing,do
map to our definitions and selective opening is not an issue. We believe that many problems involving some
type of escrow of secrets by trusted agents share these attributes.

1.2 Our Contributions

We briefly summarize the contributions of this paper below.

• We define notation that can be used in cryptographic games that use a PKE scheme inside the game
oracle, for a uniform treatment and clear identification of how the PKE scheme is integrated into the
protocol and game.

• We introduce the technique ofplaintext randomizationand prove the Plaintext Randomization Lemma,
a powerful tool for analysis of PKE-hybrid systems.

• We formally define the “secret sharing with encrypted shares” problem, where shares are encrypted
using public key encryption and a general key mapping function. We specify a PKE-hybrid scheme
that uses a CCA-secure PKE in conjunction with a perfect secret sharing scheme, and prove the
security of such a scheme.

While the original purpose of this work was to provide a security analysis for encrypted secret sharing, we
believe that the plaintext randomization technique will be useful in a wide variety of situations, and will ease
analysis of many protocols that make use of PKE as a component. As an example of this, we give a greatly
simplified analysis (compared to prior work) of hybrid encryption in Section 6.

1.3 Relation to Prior Work

Our main goal is a clean security analysis of secret sharing with encryptedshares, but the core challenge
turns out to be the problem of analyzing the composition of PKE with other operations. While our focus
is on reduction-based security models it is natural to think about composition insimulation-based models
as well. The most general and powerful model for composable cryptographic protocols is the universally
composable (UC) model due to Canetti [3], which has been developed andstudied extensively over the past
decade. Universally composable security uses simulation-based securityproofs, and has the advantage that
components proved secure in this model can be composed in arbitrarily complex ways while maintaining

4

their security. However, while providing very powerful results, the restrictions imposed by this model are
severe and make it impossible to easily utilize many simple cryptographic primitives —in fact, it is impos-
sible to establish security in the standard polynomial time UC model foranynontrivial two-party protocol
without adding additional setup assumptions [4]. While we only consider a limitedform of composition,
our results apply within the context of reduction-based security proofs and can be applied to efficient pro-
tocols that do not allow for simulation-based security proofs of the kind needed for universally composable
security.

In this work, we also make use of prior work in multi-user public-key encryption schemes. This line
of work goes back to the initial models and results of Bellare, Boldyreva, and Micali [1], and we adopt the
multi-user chosen-ciphertext security model from this prior work. Recently, Hofheinz and Jager presented
new results in this model, which provide for tighter security bounds for specific public-key encryption
schemes [11]. While these results carry over to improve some single-user bounds provided in this paper,
they only apply to the specific PKE introduced by Hofheinz and Jager, whileour main focus in this paper is
on a technique and results that apply toanyPKE scheme.

Our work also bears some similarities with hybrid encryption, as introduced byCramer-Shoup [5].
Their definition of a key-encapsulation mechanism (KEM) includes a security game in which the KEM
either encrypts a given session key or a random and unrelated sessionkey, in a similar way to our use of
plaintext randomization. However, a KEM is a single-use mechanism, and cannot be used in a consistent
way across related encryptions. Our distinct contribution with regard to thiswork is the extension of this
concept, not by defining a new cryptographic primitive like the KEM but by modularizing the proof of any
game which uses a straight PKE scheme.

2 Cryptographic Security and Games

In this paper, all of our cryptographic schemes are parameterized by a security parameter, which we will
consistently denote in this paper asλ, and we will use the standard notion of “negligible inλ” for security
arguments. Specific parameters such as key sizes will depend onλ in operation-specific ways, and security
is analyzed in terms of the probability of some event occurring as a function of λ — specifically, we want
the probability of some bad event (related to a security compromise) to be a function that decreases asλ
increases. For example, this would reflect the notion that as key sizes grow the probability of breaking
the security of a cryptosystem decreases. In fact, we would like the probability of bad events to decrease
at a rate greater than the inverse of any polynomial, leading to the notions of “negligible probability” and
“overwhelming probability” as defined below.

Definition 2.1 A functionf : Z → R is negligible in λ (or just “negligible” when f is a function of a
well-understood security parameterλ) if for every positive integerc0 there exists an integerc1 such that for
all λ > c1,

|f(λ)| <
1

λc0
.

If an event happens with probabilityp(λ), we say that the event occurs “with overwhelming probability” if
p(λ) = 1− f(λ), wheref(λ) is negligible.

Public-key cryptography is one of the foundations of modern cryptography, and is based on the idea that
encryption and decryption can use different keys that are generatedin pairs consisting of a public key (for
encryption) and a secret key (for decryption). To formalize the idea ofpublic-key encryption, we identify

5

the three core operations that any public-key encryption scheme must provide, resulting in the following
definition. Providing the full keypair, both public and secret keys, to the decryption function is slightly
non-standard, but simplifies our presentation without changing the technical aspects.

Definition 2.2 A Public-Key Encryption (PKE) scheme (referred to as “a PKE” for brevity) is defined by
four sets and three probabilistic polynomial time operations. The sets arePK, the set of public keys;SK,
the set of secret keys;PT , the set of plaintexts; andCT , the set of ciphertexts. The algorithms are the
following:

• KeyGen : 1∗ → PK × SK — when called asKeyGen(1λ), whereλ is a security parameter,
produces a random public/secret pair(pk, sk) wherepk ∈ PK andsk ∈ SK.

• Encrypt : PK × PT → CT — when called asEncrypt(pk, p), wherepk ∈ PK and p ∈ PT ,
produces ciphertextc ∈ CT . It is not required that all plaintexts be valid for every public key, so we
usePT (pk) to denote the set of valid plaintexts for a particular public keypk. If Encrypt is called
with an invalid plaintext (i.e.,p 6∈ PT (pk)), then the operation fails and special value⊥ is returned.

• Decrypt : PK×SK×CT → PT — when called asDecrypt(pk, sk, c), wherepk ∈ PK, sk ∈ SK
and c ∈ CT , produces plaintextp ∈ PT . We can similarly restrict the ciphertext set to ciphertexts
that are valid for a specific secret keysk, which we denote byCT (sk).

We require that for any(pk, sk) produced byKeyGen, and for any plaintextp ∈ PT (pk), with overwhelm-
ing probabilityDecrypt(pk, sk, Encrypt(pk, p)) = p.

This definition provides the only way to interface with the PKE scheme, and so inparticular neither
the game oracle nor the adversary can have any access to randomization used during encryption. For the
techniques described in this paper, we need PKEs that allow for random sampling from the set of valid plain-
texts, a property of all widely-used PKE schemes. We call this property “plaintext-samplability,” defined as
follows.

Definition 2.3 A plaintext-samplable PKE is a PKE scheme that, in addition to all operations of a standard
PKE scheme, supports the following operation:

• PTSample : PK×PT → PT — when called asPTSample(pk, p), wherepk ∈ PK andp ∈ PT ,
produces a random plaintext of the same length as a supplied plaintextp ∈ PT . Specifically,x is
uniformly chosen from{x |x ∈ PT (pk) and|x| = |p|}.

In reduction-based security proofs, security of cryptosystems is defined in terms of a game between a
probabilistic polynomial time (PPT) adversary and a game oracle. The oraclesets internal, persistent state
variables, and answers queries for the adversary. The goal of the adversary is typically to determine some
information in the internal state of the game oracle (e.g., a hidden bit) based juston oracle queries. A game
G is defined in terms of the interface to the game oracle, as a set of functions ofthe following form.

• G.Initialize(1λ): Sets up persistent variables that are maintained throughout the game based on a se-
curity parameterλ. This can involve generating one or more random keys, and picking a random bit
that the adversary will need to guess.

6

• G.OracleQuery(· · ·): One or more functions are defined that allow the adversary to query the oracle.
These definitions are the heart of the security game.

• G.IsWinner(a): Takes a valuea from the adversary at the end of the game, and returnstrue or false
depending on whethera is a winning answer. This is always the “final answer” for the game, and once
the adversary provides an answera for IsWinner the game no longer accepts any more oracle queries.

A game typically relies on certain cryptographic operations, which we indicateby a superscript on the
game name. For example, if some gameG makes use of PKE schemeS, we can indicate this specific version
of G by writing GS , and operations then might be denoted asGS.Initialize(1λ), etc. Games that use PKE
schemes typically do so in a generic way, treating keys as opaque objects. We are specifically interested in
protocols that treat secret keys in this way, so introduce the following terminology.

Definition 2.4 A gameG that uses a PKE schemeS is sk-oblivious if, for any keypair(pk, sk) produced
byS.KeyGen, the only way thatG usessk is to passsk back unmodified in calls toS.Decrypt. In such a
situation, we can say that “G makessk-oblivious use ofS”.

The goal of the adversary is to win the game (i.e., produce an answera such thatG.IsWinner(a) = true)
with higher probability than simply guessing an answer randomly. Typically the “answer” is a single hidden
bit that needs to be guessed, although our definition purposely avoids making this a requirement so that
other goals could be accomodated. In the case where the answer is a singlebit, the probability that a random
guess would give a winning answer is12 , and the goal is to win with probability non-negligibly larger than
1
2 , leading to the definition of the “advantage” against a game.

Definition 2.5 The “advantage” of an adversaryA in gameG is denotedAdvA,G, and defined asAdvA,G =
|P (G.IsWinner(AG(λ)))− 1

2 |, where the probability is taken over both the random choices ofA and the ran-
dom choices ofG . For some description of resource boundsB (e.g., time complexity, number of encryption
or decryption queries, etc.), we also refer to the best possible advantageof any such adversary against a
particular game, writtenAdvG(B), defined asAdvG(B) = supAAdvA,G, where the supremum is taken
over all adversariesA that meet the bounds requirementsB.

For a gameG that defines the security of some type of cryptographic scheme, the goal istypically to find
some specific schemeC such thatAdvGC is negligible.

2.1 Multi-User CCA Security

As an extension to the better-known single key CCA security model for PKE,Bellareet al. considered
security of public-key encryption when the system is used with multiple users (i.e., multiple keypairs) and
multiple challenges are made that are answered consistently [1]. This is sometimes referred to as multi-
user “left-right” security, since every encryption challenge is made with a pair of values, and the encryption
oracle consistently encrypts either the left or the right value throughout the game. A key property of this
model is that since encryption pairs are chosen by the adversary, plaintexts of the provided ciphertexts can
be related in arbitrary ways, opening up the possibility of complex attacks. The following describes the
multi-user CCA security gamePK-MUS

n parametrized by the number of usersn and a PKE schemeS.

• PK-MUS

n
.Initialize(1λ): For i = 1 to n, the oracle generates keypairs(pki, ski) = S.KeyGen(1λ),

picks a random bitb ∈ {0, 1}, and setsC as an initially empty set of challenge ciphertexts.pk1, · · · , pkn
are returned to the adversary.

7

• PK-MUS

n
.Decrypt(i, x): If (i, x) ∈ C, the oracle returns⊥; otherwise, it returnsS.Decrypt(pki, ski, x).

• PK-MUS

n
.PEncrypt(i, x0, x1): The oracle calculatesc = S.Encrypt(pki, xb), adds(i, c) to C, and

returnsc to the adversary.

• PK-MUS

n
.IsWinner(a): Takes a bita from the adversary, and returnstrue if and only if a = b.

Note thatPEncrypt (“pair encrypt”) is similar toChallenge in the standard single-key CCA2 game, except
that it can be called multiple times, and consistently encrypts either the first or second argument. While this
is equivalent to the definition of Bellareet al., we use a single multi-key oracle, as in the recent definition of
Hofheinz and Jager [11]. We give simplified results for single-key CCA security in Section 5.

3 Plaintext Randomization

In this section, we present the technique of plaintext randomization. This technique creates a PKE scheme
that can maintain some internal state between encryption and decryption requests. This stateful behavior
would not be very useful in most real-life cryptographic uses of public key encryption, since the state would
need to be protected and shared between encryption and decryption operations, which may be executed on
separate systems. Nonetheless, it is possible to define such a stateful PKEscheme, and when this PKE
is used inside a cryptographic game oracle — which can keep state secret from users of the oracle, and
encryption and decryption are performed by the same party — it turns out tobe a very useful concept.

Consider an adversaryA that plays a gameG that uses a plaintext-samplable PKE schemeS. We create
a stateful PKE scheme that is based onS, but in which ciphertexts are meaningless, and cannot reveal
any information about the corresponding plaintext other than perhaps its length. Specifically, ciphertexts
are simply encryptions of random plaintexts of a given length, and the scheme uses internal state to keep
track of plaintext/ciphertext pairs so that encryption followed by decryption gives the required result. We
formalize this idea in the following definition.

Definition 3.1 Given a plaintext-samplable PKE schemeS, theplaintext randomization of S is a set of
functions that acts as a PKE scheme, denotedS-rand, defined as follows:

• S-rand.KeyGen(1λ) computes(pk, sk) = S.KeyGen(1λ) and returns(pk, sk).

• S-rand.Encrypt(pk, p) first computesr = S.PTSample(pk, p), and thenc = S.Encrypt(pk, r).
If a tuple of the form(pk, c, ·) is already stored inS-rand’s internal state, then⊥ is returned (the
operation fails); otherwise,S-rand stores the tuple(pk, c, p), and returnsc as the ciphertext.

• S-rand.Decrypt(pk, sk, c) looks for a tuple of the form(pk, c, x) for somex. If such a tuple exists,
thenx is returned as decrypted plaintext; otherwise,p = S.Decrypt(pk, sk, c) is called andp is
returned.

Note that the Encrypt function can fail if a duplicate ciphertext is produced, but since these ciphertexts
are encryptions of random plaintexts then both the randomly chosen plaintext and randomness used in the
encryption must be a repeat of a previous encryption, which happens with negligible probability. It is
important not to confuse the above definition with an oracle that the adversary interacts with — the plaintext

8

randomization ofS replaces calls to a PKE scheme that happen internal to a security game, and the adversary
does not have direct access to these functions. Replacing a PKE schemewith its plaintext randomization
typically results in a game that is much simpler to analyze, but is a good approximation to the original game.
In particular, the following lemma shows that if the advantage against the plaintext-randomized game is
negligible, then the advantage against the original game is also negligible.

Lemma 3.1 (Plaintext Randomization Lemma)LetG be a game that makessk-oblivious use of a plaintext-
samplable public key encryption schemeS, and letS-rand be the plaintext randomization ofS. Then, for
any probabilistic adversaryA that playsGS so that the total game-playing time ofA is bounded byt, the
number of calls toS.KeyGen is bounded byn, and the number of encryption and decryption requests for
any individual key is bounded byqe andqd, respectively,

∣∣∣AdvA,GS −AdvA,GS-rand

∣∣∣ ≤ 2AdvPK-MUS
n

(t′, qe, qd),

wheret′ = t+O(log(qen)).

Proof: Given adversaryA that plays the gameG we will construct an adversaryA′ that playsPK-MUS
n , so

A′ convertsA into an adversary that attacks the basic multi-user CCA security of the underlying PKES.
A′ starts by callingPK-MUS

n
.Initialize(λ) and saves the list of public keyspk1, · · · , pkn for later use, setting

m = 0 to track the number of public keys that are “in use” byG. A′ next simulates the original adversary
A and the game oracleG, replacingG’s use of PKES with a specially constructed stateful PKE schemeS̃

that has access to the public keyspk1, · · · , pkn and counterm, as well as thePK-MUS
n oracle.S̃ provides

the standard three PKE functions as follows:

• S̃.KeyGen(1λ): If m = n (i.e., we have already usedn keypairs), this operation returns⊥ and fails.
Otherwise,S̃ incrementsm (the number of keys in use) and returns(pkm, pkm) as the generated
“keypair.” Note that the “secret key” is really just the public key, but thisis not important since we
can perform all the operations below with just this information, andG’s use ofS is sk-oblivious.

• S̃.Encrypt(pki, p) for valid public keypki: S̃ computes random plaintextr = S.PTSample(pki, p),
and then computesc = PK-MUS

n
.PEncrypt(i, p, r). The tuple(pki, c, p) is saved inS̃’s state, andc is

returned.

• S̃.Decrypt(pki, pki, c): Note that thepki here is used as both the public and the secret key, despite
the notation. The decrypt function first checks to see ifS̃’s state contains a tuple(pki, c, p) for some
p, and if such a tuple is foundp is returned as the plaintext. Otherwise,p = PK-MUS

n
.Decrypt(i, c) is

returned.

Note that all calls toPK-MUS

n
.PEncrypt store a tuple that includes the returned ciphertext, and theS̃.Decrypt

function never calls thePK-MUS

n
.Decrypt oracle with such a ciphertext, so allDecrypt calls will succeed.

A′ continues simulatingA andGS̃ until A outputs its final result,a, for gameG , at which pointA′ calls
G.IsWinner(a) to check ifA’s output wins gameGS̃. Based on this,A′ outputs its guessb′ for PK-MUS’s
secret bitb as follows:

• If A wins GS̃,A′ outputs guessb′ = 0.

• If A losesGS̃,A′ outputs guessb′ = 1.

9

Thus,A′ wins if A wins andb = 0, or if A loses andb = 1. Sinceb is uniformly distributed,

P (A′ wins) =
1

2
P (A wins GS̃ | b = 0) +

1

2
P (A losesGS̃ | b = 1) . (1)

While our simulator doesn’t know the bitb, the construction of̃S is such that whenb = 0 the game
played byA is exactlyGS (since in this case the encryption request is answered by an encryption of the real
plaintext), and whenb = 1 the game played byA is exactlyGS-rand (since in this case the encryption request
is answered using plaintext randomization). Using this observation we can simplify (1) as follows:

P (A′ wins) =
1

2
P (A wins GS) +

1

2
P (A losesGS-rand)

=
1

2
P (A wins GS) +

1

2

(
1− P (A wins GS-rand)

)

=
1

2
+

1

2
P (A wins GS)−

1

2
P (A wins GS-rand) .

By definition,AdvA′,PK-MUS
n

= |P (A′ wins) − 1
2 |, and sinceA′ only does some simple table lookups in

addition to its simulation ofA andG, which induces at mostqe andqd encryption and decryption requests,
respectively, we can boundAdvA′,PK-MUS

n

byAdvPK-MUS
n

(t′, qe, qd), wheret′ = t+O(log(nqe)). It follows
that ∣∣∣∣

1

2
P (A wins GS)−

1

2
P (A wins GS-rand)

∣∣∣∣ ≤ AdvPK-MUS
n

(t′, qe, qd) ,

and so ∣∣∣P (A wins GS)− P (A wins GS-rand)
∣∣∣ ≤ 2 AdvPK-MUS

n

(t′, qe, qd) . (2)

Returning to the original problem, comparing the advantage ofA with respect toGS andGS-rand,
∣∣∣AdvA,GS −AdvA,GS-rand

∣∣∣ =
∣∣ |P (A wins GS)− 1

2 | − |P (A wins GS-rand)− 1
2 |

∣∣ ,

and so ∣∣∣AdvA,GS −AdvA,GS-rand

∣∣∣ ≤
∣∣∣ P (A wins GS)− P (A wins GS-rand)

∣∣∣ (3)

Combining bounds (2) and (3), we conclude that
∣∣∣AdvA,GS −AdvA,GS-rand

∣∣∣ ≤ 2 AdvPK-MUS
n

(t′, qe, qd),

which is the bound claimed in the lemma statement.

4 Secret Sharing with Encrypted Shares and Limited Decryption

Loosely speaking, a secret sharing scheme consists of a dealer, who knows some secret, and a set of partici-
pants who are given shares of this secret by the dealer in such a way that only authorized sets of participants
can reconstruct the secret from their shares. Formalizing this intuitive notion is not difficult, and the formu-
lation we use is a slight modification of the 1987 definition given by Ito, Saito, and Nishizeki [12].

Formally, ann-way secret sharing scheme is one in which a secrets comes from some space of secrets
SS, and a function MakeShares: SS → PSn wherePS is the “piece space” for shares of the secret. In
particular, givens ∈ SS, MakeShares(s) produces a vector(s1, s2, · · · , sn) of shares, wheresi ∈ PS for

10

all i, and shares are identified by their index in this vector. Using notation[n] = {1, · · · , n}, an access
structureΓ ⊆ 2[n] is a set of subsets of indices that are authorized to reconstruct the secret. For any subset
(i1, i2, · · · , im) ∈ Γ we can use function Reconstruct(si1 , si2 , · · · , sim) = s to reconstructs from shares
identified by an authorized subset of indices. We require that if(i1, i2, · · · , im) 6∈ Γ then it is infeasible to
reconstructs from sharessi1 , si2 , · · · , sim , where “infeasible” can be defined either from a computational
or an information theoretic standpoint. All of the secret sharing schemes weconsider in this paper use
the information theoretic model of security, meaning that for any(i1, i2, · · · , im) 6∈ Γ all secretss ∈ SS
are equally likely, so no algorithm can extract any information abouts from these shares — such a secret
sharing scheme is calledperfect. Perfect secret sharing schemes are known and widely used for certain
specific access structures, such as Shamir’s secret sharing scheme for threshold access structures [13]. As is
typical in secret sharing work, we require thatΓ be monotone, so that if someI ∈ Γ then all supersets ofI
are also inΓ.

We are interested in schemes in which shares are encrypted using a public key scheme, so for a PKE
with plaintext spacePT we assume an embedding functione : PS → PT and a “de-embedding” func-
tion d : PT → PS so thatd(e(si)) = si for any sharesi. In what follows, use of the embedding
and de-embedding functions is implicitly assumed when shares are encryptedor decrypted. Despite the
widespread use of secret sharing, both as an independent cryptographic functionality and as a component of
other cryptographic protocols, we have not located any formal work analyzing the situation in which shares
are encrypted using a public key encryption scheme. Such a situation is similarto hybrid encryption, but
with the ultimate secret computed using a combination of decryption and secret reconstruction. Traditional
notions of indistinguishability games have serious challenges in this setting. Traditional games typically
have the restriction that once a ciphertext is produced by a challenge oracle, the adversary is not allowed
to request and receive a decryption of that ciphertext, so any reduction from a standard indistinguishability
game should similarly avoid queries on ciphertexts produced by the challengeoracle. In the setting of secret
sharing, we want to allow decryption of challenge ciphertexts as long as thefull set of decryptions produced
does not correspond to a setγ ∈ Γ that can reconstruct the secret. Our plaintext randomization technique
can handle this situation quite cleanly, while it is not clear how to start with a reduction from a traditional
ciphertext indistinguishability game.

In our formalization, we consider ann-way perfect secret sharing scheme as defined above with mono-
tone access structureΓ for which we will usek different keypairs (numbered 1 tok for convenience) to
encrypt these shares according to a key mapping functionK : [n] → [k] so that sharei will be encrypted
using key numberK(i). The scheme may depend on the access structure, and may in fact only work for
some specific subset of access structures (such as threshold accessstructures), and we assume there is some
appropriate and compact descriptionD(Γ) of valid Γ’s for a particular scheme.

Using this general key mapping function allows us to capture several different scenarios within one
general definition. For example, withk = 1 andK(i) = 1 for all i, we capture a scheme in which all shares
are encrypted with the key of a single trusted authority and shares are distributed (either to a single party
or multiple parties) so that decryption of shares is allowed based on some criteria determined by the trusted
authority. For example,Γ might be a threshold structure with thresholdt, and trusted hardware controls how
many shares may be decrypted at any particular time (this is the case in Gunupudi and Tate’s generalized
oblivious transfer scheme based on trusted hardware [10]). As another example, considerk = n escrow
authorities, all with their own keys, andK(i) = i for all i. In this case, a single user could obtain all
encrypted shares, and if the user needs to open the secret at some point the user could approach some subset
γ ∈ Γ of escrow authorities and convince them that they should decrypt the share that is encrypted with
their key. This is the scenario described in the Introduction.

11

We define the following security game for secret sharing with encrypted shares.

• ESSS.Initialize(1λ, k, n,K,D(Γ)): If this scheme does not support access structureΓ, return⊥ and do
not answer any further queries. Otherwise, the oracle generates keypairs(pki, ski) = S.KeyGen(1λ)
for i = 1, . . . , k, picks a random bitb ∈ {0, 1}, and savesn, K, andD(Γ) for later use.γ, used to
track the set of shares that have been decrypted, is initialized to the empty set. Finally, set flagc to
false, indicating that no challenge has yet been made, and returnpk1, . . . , pkk.

• ESSS.Challenge(x0, x1): If c is true, then return⊥. Otherwise, the oracle generatesn sharess1, . . . , sn
for xb, creates share ciphertexts by computingci = S.Encrypt(pkK(i), si) for i = 1, . . . , n, sets flag
c to true, and returns the vector(c1, . . . , cn) to the adversary (keeping a copy for future reference).

• ESSS.Decrypt(i, x) (wherei ∈ [k] is a key number andx is a ciphertext): Ifx 6∈ {cj | K(j) = i} (socj
was not produced by encrypting with keyi), then simply compute and returnS.Decrypt(pki, ski, x).
Otherwise,x = cj for somej withK(j) = i, so test whetherγ∪{j} ∈ Γ: if it is, return⊥; otherwise,
setγ ← γ ∪ {j} and returnS.Decrypt(pki, ski, x).

• ESSS.IsWinner(a): Takes a bita from the adversary, and returnstrue if and only if a = b.

Note that the test inESSS.Decrypt(i, x) disallows decrypting shares for a share set that would allow re-
construction of the secret, while still allowing some decryptions. Furthermore, sinceΓ is monotone, if the
ultimate set of shares that have been decrypted are from a setγ 6∈ Γ, then every subset ofγ is also not inΓ
and so this test does not restrict adversaries in any way other than not allowing them to receive a full share
set.

Since the bounds in the Plaintext Randomization Lemma depend on the number of times each key is
used, we defineqe to be the largest number of times any key is used according to our key mappingfunction.
Specifically,

qe = max
i∈[k]
|{j | K(j) = i}| .

Theorem 4.1 If ESS is a k-key perfectn-way secret sharing scheme using PKES, with qe andqd defined
as described above, then for any timet adversaryA,

AdvA,ESSS ≤ 2AdvPK-MUS
n

(t′, qe, qd).

Proof: Consider theESSS-rand, theESS game using the plaintext randomized version ofS. Let b denote the
secret random bit chosen during the initialization step, letx0 andx1 denote the challenge secrets selected
by A, and letc1, c2, · · · , cn be the ciphertexts produced by theESS oracle encrypting shares ofxb using
S-rand. At any time whileA is playingESSS-rand, its view consists of ciphertextsc1, c2, · · · , cn as well
as a set of shares that it has decrypted,si1 , si2 , · · · , sim , where{i1, i2, · · · , im} = γ 6∈ Γ (as enforced by
the ESS game). Since the decrypted shares are not inΓ and the secret sharing scheme is perfect, and since
plaintext randomization results in ciphertexts being independent of the actual shares (and hence the secret),
each secret (x0 or x1) is equally likely given the adversary’s view. Therefore,AdvA,ESSS-rand = 0.

Referring back to the Plaintext Randomization Lemma,
∣∣∣AdvA,ESSS −AdvA,ESSS-rand

∣∣∣ ≤ 2AdvPK-MUS
n

(t′, qe, qd),

and sinceAdvA,ESSS-rand = 0 we conclude with the bound stated in the theorem.

12

5 Single-User CCA Security and Results

Up until this point, we have stated results in their most general form, using the multiple-key version of CCA
PKE security defined in Section 2.1. In many settings, we are only interested ina single key version of
security, and consequently can use simpler forms of the results. In this section we present results specific to
the classical single-key notion of CCA security.

5.1 Chosen Ciphertext Security Definition

In this section, we define the adaptive chosen ciphertext security game (the standard “CCA2” game) that is
widely used for describing security of public-key encryption schemes. The basic idea is that the adversary
gets to pick two plaintexts for a “challenge,” the oracle encrypts one randomly-chosen plaintext and returns
the corresponding ciphertext to the adversary. The adversary can request as many ciphertext decryptions as
it likes, either before or after the challenge is submitted (which is what makes this the adaptive, or CCA2,
version), with the only restriction being that the oracle cannot be asked to decrypt the ciphertext returned
from the challenge. These conditions are all reflected in the definition below.

• PK-CCA2S.Initialize(λ): The oracle generates a keypair(pk, sk) = S.KeyGen(1λ), picks a random
bit b ∈ {0, 1}, setscc (for “challenge ciphertext”) to null, and returnspk.

• PK-CCA2S.Decrypt(x): If x = cc, the oracle returns⊥ to the adversary; otherwise, it computes and
returnsS.Decrypt(pk, sk, x).

• PK-CCA2S.Challenge(x0, x1): If cc is non-null (i.e., Challenge has been called previously), the oracle
returns⊥; otherwise, it setscc = S.Encrypt(pk, xb) and returnscc to the adversary.

• PK-CCA2S.IsWinner(a): Takes a bita from the adversary, and returnstrue if and only if a = b.

To be “CCA2-secure,” a PKES should be such that it is impossible for a probabilistic polynomial time
adversary to win this game, i.e., the advantage of any adversary in this game isnegligible. This is a widely-
used notion of security for PKE schemes — while weaker notions of PKE security are possible (e.g., chosen
plaintext, or non-adaptive chosen ciphertext), there are efficient schemes that have CCA2 security under rea-
sonable complexity assumptions. For example, the Cramer-Shoup public-keyencryption scheme is CCA2-
secure in the plain model, under the decisional Diffie-Hellman assumption [5].

5.2 Plaintext Randomization Lemma

We next provide a corollary that gives two alternate forms for the PlaintextRandomization Lemma, which
might be useful if a bound is desired in terms of traditional single-user, single-challenge CCA2 security. This
corollary is stated without proof, as the bounds follow directly from the Plaintext Randomization Lemma
and multi-user PKE bounds proved by Bellareet al. [1]. The second bound follows from the tighter multi-
user security that is possible from the Cramer-Shoup PKE scheme.

Corollary 5.1 Let G be a game that makessk-oblivious use of a plaintext-samplable public key encryption
schemeS, and letS-rand be the plaintext randomization ofS. Then, for any probabilistic adversaryA that
playsGS so that the total game-playing time ofA is bounded byt, the number of calls toS.KeyGen is

13

bounded byn, and the number of encryption and decryption requests for any individual key is bounded by
qe andqd, respectively,

∣∣∣AdvA,GS −AdvA,GS-rand

∣∣∣ ≤ 2qenAdvPK-CCA2S(t
′, qd) ,

wheret′ = t+O(log(qen)). Furthermore, for the Cramer-Shoup PKE scheme, denotedCS, we can bound
∣∣∣AdvA,GCS −AdvA,GCS−rand

∣∣∣ ≤ 2qeAdvPK-CCA2CS (t
′, qd) .

5.3 Encrypted Secret Sharing in the Single-Key Model

Restricting the encrypted secret sharing (ESS) problem so that only a single key is used (and so no key
mapping function is necessary), we arrive at the following corollary, which also reflects the savings that can
be achieved by using the Cramer-Shoup encryption scheme.

Corollary 5.2 If ESS is ak-key perfectn-way secret sharing scheme using PKES, with qe andqd defined
based on key mapping functionK as described above, then for any timet adversaryA,

AdvA,ESSS ≤ 2kqeAdvPK-CCA2S(t
′, qd) .

For Cramer-Shoup encryption schemeCS, we can bound

AdvA,ESSCS ≤ 2qeAdvPK-CCA2CS (t
′, qd) .

All of the results above give concrete security bounds, so we point outthe obvious high-level conclusion:
if we use a perfect secret sharing scheme with a CCA2 secure encryption scheme, then no probabilistic
polynomial time adversary can win theESS game with more than negligible probability.

6 Hybrid Encryption

In this section we provide an example of how plaintext randomization can simplify proofs other PKE-hybrid
protocols, by giving a very simple proof for the security of hybrid encryption using a standard PKE rather
than a KEM.

Definition 6.1 A hybrid encryption schemeH(P,S) combines the use of a PKE schemeP and an SKE
schemeS to produce a public-key encryption scheme defined by the following functions:

• KeyGen(1λ): Compute(pk, sk) = P.KeyGen(1λ) and return the keypair(pk, sk).

• Encrypt(pk, p): Computek = S.KeyGen(1λ) and then ciphertextsψ = P.Encrypt(pk, k) and
φ = S.Encrypt(k, p). The returned ciphertext is the pairc = (ψ, φ).

• Decrypt(pk, sk, c): Ciphertextc = (ψ, φ) is decrypted by first finding the session key usingk =
P.Decrypt(pk, sk, ψ) and then computing the final plaintextp = S.Decrypt(k, φ).

14

Since the net effect of a hybrid encryption scheme is the same as a public key encryption system, security
is defined by the multi-user CCA security notion that was given in Section 2.1. We also refer to the multi-
user CCA security of a symmetric encryption scheme in the following analysis. The SK-MU game is a
straightforward modification ofPK-MU to a symmetric encryption setting, and is omitted here.

Theorem 6.1 For any hybrid encryption schemeH(P,S), if A is an adversary that runs in timet in a game
that uses at mostn keypairs and performs at mostqe andqd encryption and decryption queries, respectively,
then

AdvA,PK-MUH
n

≤ 2 AdvPK-MUP
n

(t′, qe, qd) +AdvSK-MUS
qen

(t′, 1, qd) ,

wheret′ = t+O(log(qen)).

Proof: Consider the plaintext randomization ofH, and an adversaryA playing thePK-MUH-rand
n game: in

this situation, a ciphertext(ψ, φ) is such thatψ is completely unrelated toφ — it is just an encryption of a
random value. Therefore, any attack onH-rand can be immediately turned into an attack on the SKE scheme
S by simulatingA and adding encryptions of random values to simulate theψ portion of each ciphertext.
Each use of the SKE scheme in this scenario uses a different random key, with a single encryption per
symmetric key, and since the probability of winning the SKE game is the same asA winning theH-rand
game, we can bound the advantage ofA in thePK-MUH-rand

n game as

AdvA,PK-MUH-rand ≤ AdvSK-MUS
qen

(t, 1, qd) .

By the Plaintext Randomization Lemma, we know that

∣∣AdvA,PK-MUH −AdvA,PK-MUH-rand

∣∣ ≤ 2AdvPK-MUP (t′, qe, qd),

leading to the bound in the theorem.

While we generally state bounds in terms of concrete security, we restate this bound as a simple state-
ment about security with respect to a probabilistic polynomial-time (PPT) adversary. In particular, we say
simply that a scheme is “PK-CCA2-secure” ifAdvA,PK-CCA2 is negligible for any PPT adversaryA, and
similarly for other games.

Corollary 6.1 If P is aPK-CCA2-secure PKE scheme, andS is aSK-CCA2-secure SKE scheme, then hybrid
schemeH(P,S) is a PK-CCA2-secure PKE scheme.

7 Conclusions

In this paper we have examined the problem of encrypted secret sharing(ESS), developing a general and
flexible definition, and solving challenges posed in the analysis by developing a new, general-purpose, and
powerful technique called plaintext randomization. This technique modularizes the analysis PKE-hybrid
cryptographic protocols, and separates out the dependence on the security of the PKE scheme in a way that
is captured by the Plaintext Randomization Lemma that is proved in this paper. Beyond the immediate result
for ESS, we believe that plaintext randomization holds great promise for additional applicability, given the
prevalence of public-key encryption in cryptographic schemes and the efficient schemes that can be derived
in the reduction-based security model.

15

References

[1] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security proofs
and improvements. In: Proc. of EUROCRYPT. Volume 1807 of Springer Lecture Notes in Computer
Science. (2000) 259–274

[2] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryp-
tion. In: Proceedings of the 38th Symposium on Foundations of Computer Science (FOCS). (1997)
394–403

[3] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In:
Proc. of 42nd Symposium on Foundations of Computer Science (FOCS). (2001) 136–145 Full version
available at http://eprint.iacr.org/2000/067.

[4] Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party
computation without set-up assumptions. Journal of Cryptology19(2) (2006) 135–167

[5] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J Comput.33 (2003) 167–226

[6] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions: In memoriam: Bernard M.
Dwork 1923–1998. Journal of the ACM50(6) (November 2003) 852–921

[7] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM Journal
on Computing25(1) (1996) 169–192

[8] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:Proc. of the 19th
Symposium on Theory of Computing (STOC). (1987) 218–229

[9] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences28(2)
(1984) 270–299

[10] Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivious transfer using count-limited objects
with applications to secure mobile agents. In: Proc. of Financial Cryptography. Volume 5143 of
Springer Lecture Notes in Computer Science. (2008) 98–112

[11] Hofheinz, D., Jager, T.: Tightly secure signatures and public-keyencryption. In: Proc. of CRYPTO.
(2012) 590–607

[12] Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: Proc. of
IEEE Globecom. (1987) 99–102

[13] Shamir, A.: How to share a secret. Communications of the ACM22(11)(1979) 612–613

16

