
An efficient FHE based on the hardness of solving systems of
non-linear multivariate equations

Gérald Gavin

Laboratory ERIC

University of Lyon, France

Email: gavin@univ-lyon1.fr

Abstract. We propose a general framework to develop fully homomorphic encryption schemes (FHE) without
using the Gentry’s technique. Initially, a private-key cryptosystem is built over Zn (n being an RSA modulus).
An encryption of x ∈ Zn is a randomly chosen vector e such that Φ(e) = x where Φ is a secret multivariate
polynomial. This private-key cryptosystem is not homomorphic in the sense that the vector sum is not a
homomorphic operator. Non-linear homomorphic operators are then developed. The security relies on the
difficulty of solving systems of non-linear equations (which is a NP-complete problem). While the security of
our scheme has not been reduced to a provably hard instance of this problem, security is globally investigated.

1 Introduction

The theoretical problem of constructing a fully homomorphic encryption scheme (FHE) supporting arbi-
trary functions f , was only recently solved by the breakthrough work of Gentry [3]. More recently, further
fully homomorphic schemes were presented [8],[9],[1],[4] following Gentry’s framework. The underlying
tool behind all these schemes is the use of Euclidean lattices, which have previously proved powerful for
devising many cryptographic primitives. A central aspect of Gentry’s fully homomorphic scheme (and
the subsequent schemes) is the ciphertext refreshing Recrypt operation. Even if many improvements have
been made, this operation remains very costly [6], [5].

In this paper, we propose a general framework to develop FHE without using the Gentry’s technique.
We first propose a very simple private-key cryptosystem where a ciphertext is a vector e whose the
components are in Zn, n being an RSA modulus chosen at random. Given a secret multivariate polynomial
Φ, an encryption of x ∈ Zn is a vector e chosen at random such that1 Φ(e) = x. In order to resist to a
CPA attacker, the number of monomials of Φ should not be polynomial (otherwise the cryptosystem can
be broken by solving a polynomial-size linear system). In order to get polynomial-time encryptions and
decryptions, Φ should be written in a compact form, e.g. a factored or semi-factored form. By construction,
the generic cryptosystem described above is not homomorphic in the sense that the vector sum is not
a homomorphic operator. It is a sine qua none condition to overcome Gentry’s machinery. Indeed, as a
ciphertext e is a vector, it is always possible to write it as a linear combination of other known ciphertexts.
Thus, if the vector sum is a homomorphic operator, the cryptosystem is not secure at all. So, in order to
use the vector sum as a homomorphic operator, noise should be injected in encryptions as it is done in all
existing FHE. To overcome this, we propose to develop ad-hoc non-linear homomorphic operators. The
public key contains these operators and public encryptions while the secret key contains the multivariate
polynomial Φ.

Our contribution. A very simple additively homomorphic cryptosystem is developed in Section 3. Its
performance is low compared to existing additively homomorphic cryptosystems (El Gamal [2], Paillier
[7], etc...). Even if improvements leading to an efficient scheme are proposed, the main objective of this

1 or Φ(e) = f(x) where f : E ⊂ Zn → f(E) is a one-to-one function such that f−1 is efficient.

section is to highlight the underlying ideas involved in the construction and in the security analysis of
our FHE.

In this paper, the security of cryptosystems is related to the difficulty of solving nonlinear equations
in Zn. Unfortunately, we did not reduce the whole security of these cryptosystems to a provably hard
instance of this problem. However, several partial security results (see Proposition 3 and Proposition 9)
are proven and extensively discussed in order to globally investigate the security of our schemes. These
results provide a formal framework for the cryptanalysis by restricting the set of possible attacks. In our
opinion, the main interest of this paper is to provide new directions and new material for the development
of efficient FHE.

2 Security assumptions

Let n = pq be a η-bit RSA-modulus and κ, t be positive integers. Throughout this paper, all the com-
putations are done in Zn. Let y1, y2 be randomly chosen in Zn. It is well-known that recovering2 y1 only
given S = y1 + y2 or P = y1y2 is difficult assuming the hardness of factorization. In this section, we
propose to extend this.

Definition 1. A multivariate polynomial s :
(
Zt
n

)κ → Zn is said to be:

– efficiently valuable if it can be computed in polynomial-time (with respect to η) without knowing the
factorization of n.

– κ-symmetric if for any y1, ..., yκ ∈ Zt
n and for any permutation σ of {1, ..., κ},

s(y1, ..., yκ) = s(yσ(1), ..., yσ(κ))

Let π be a non κ-symmetric product of values yli. The two following problems consist of recovering π
only given κ-symmetric functions sj(y1, ..., yκ) where the tuples yl are chosen at random under symmetric
additive and multiplicative constraints. These two problems only differ with respect to their constraints.

Problem 1. Let IF ⊂ I be a non-empty set, (ai)i∈I\IF be an arbitrary family of public values belonging to
Z∗n and (yl)l=1,...,κ = (yl1, ..., ylt) be κ tuples of Zt

n chosen at random such that for all i ∈ I \ IF ,

κ∏
l=1

yli = ai

Let π(y1, ..., yκ) be an arbitrary efficiently valuable non κ-symmetric product π of values belonging to
{yli | l = 1, ..., κ ; i ∈ IF }.

Problem: recovering π(y1, ..., yκ) only given s1(y1, ..., yκ), ..., sm(y1, ..., yκ) where s1, ..., sm are public effi-
ciently valuable κ-symmetric polynomials (m polynomial in η).

Problem 2. Let I×1 , ..., I×r and I+1 , ..., I+r′ be r + r′ public disjoint subsets of I = {1, ..., t} such that

IF = I \

 r∪
j=1

I×j ∪
r′∪

j=1

I+j

 ̸= ∅
2 y1, y2 are roots of the polynomial y2 − Sy + P .

Let κ tuples yl = (yl1, ..., ylt) ∈ Zt
n chosen at random such that

∀j = 1, ..., r ∀l = 1, ..., κ
∏
i∈I×j

yli = aj

∀j = 1, ..., r′ ∀l = 1, ..., κ
∑
i∈I+j

yli = a′j

where (aj)j=1,...,r and (a′j)j=1,...,r′ are arbitrary public values of respectively Z∗n and Zn

Let π(y1, ..., yκ) be an arbitrary efficiently valuable non κ-symmetric product π of values belonging to
{yli | l = 1, ..., κ ; i ∈ IF }.

Problem: recovering π(y1, ..., yκ) only given s1(y1, ..., yκ), ..., sm(y1, ..., yκ) where s1, ..., sm are public effi-
ciently valuable κ-symmetric polynomials (m polynomial in η).

Proposition 1. Problem 1 and Problem 2 are difficult assuming the hardness of factorization.

Proof. The proof looks like the famous Rabin’s proof showing that extracting square roots is equivalent
to factoring. See Appendix A for the detail of the proof.

�

Remark 1. Proposition 1 can be generalized by considering efficiently valuable non κ-symmetric polyno-
mials π (instead of products) in Problem 1 and Problem 2 ensuring that π is not trivial, i.e. there exists a
permutation σ of {1, ..., κ} such that the probability to get π(y1, ..., yκ) = π(yσ(1), ..., yσ(κ)) is negligible.

3 An additive homomorphic cryptosystem

Let δ ∈ N∗ and n be an RSA modulus. All the computations of this section will be done in Zn.

– The set of all square m-by-m matrices over Zn is denoted by Zm×m
n .

– Throughout this paper, a vector
→
w =

w1

...
wt

 can be also denoted by w or (w1, ..., wt).

– Given two vectors w and w′, the inner product of these vectors is denoted by ww′.

– The number of monomials of degree d defined over v variables is equal to

(
d+ v − 1

v

)

3.1 A basic private-key cryptosystem

We first define a very simple private-key cryptosystem where the plaintext space is E = {0, ...,M}. Let
S ∈ Zδ×δ

n be a secret invertible matrix chosen at random and g be an arbitrarily element of Z∗n of order
larger than M . Basically, to encrypt x, it suffices to randomly choose a vector r = (r1, ..., rδ) such that
r1...rδ = gx and to hide it with S−1, i.e. e = S−1r. To decrypt e, it suffices to compute d = Se and then
to compute the discrete logarithm of the product of the components of d, i.e. x = DLg(d1...dδ). Note that
the plaintext space E should be ”small” because there does not exist efficient algorithm DL. At this step,
the cryptosystem is not homomorphic in the sense that the (vector) sum is not a homomorphic operator.

Definition 2. Let λ be a security parameter and E = {0, , ...,M} be a polynomial-size set of integers E
(E will be the plaintext set). The functions KeyGen0, Encrypt0, Decrypt0 are defined as follows:

1. KeyGen0(λ). Let η, δ be positive integers indexed by λ. Let n be a public η-bit RSA modulus chosen at
random and g ← Z∗n such that its order is larger than M . Let S be an invertible matrix of Zδ×δ

n chosen
at random. The ith row of S is denoted by si and ΦS : Zδ

n → Zn denotes the δ-degree multivariate
polynomial defined by ΦS(w) =

∏
i∈{1,...,δ} siw.

K = {g, S}

2. Encrypt0(K,x ∈ E). Choose at random a vector r = (r1, ..., rδ) such that
∏δ

i=1 ri = gx and output

e = S−1r

3. Decrypt0(K, e ∈ Zδ
n). Output

x = DLg (ΦS(e))

3.2 Operator QS

Let S be the invertible matrix of Zδ×δ
n output by KeyGen0(λ). The function QS : Zδ

n×Zδ
n → Zδ

n is defined
by

QS(w
′, w′′)

def
=

q1(w
′, w′′)

. . .
qδ(w

′, w′′)

 = S−1

s1w
′ × s1w

′′

. . .
sδw

′ × sδw
′′


The function QGen inputs S and outputs the expanded representation of the polynomials q1, ..., qδ, i.e. all the
monomial coefficients of the polynomials qi.

An implementation of this operator for δ = 2 is presented in Appendix J. Concretely, by denoting
a = Sw′, b = Sw′′ and c = SQS(w

′, w′′), we have ci = aibi for all i = 1, ..., δ (see Figure 1).

QS

S−1


w′

1

w′
2

w′
3

w′
4

w′
5

w′
6

 , S−1


w′′

1

w′′
2

w′′
3

w′′
4

w′′
5

w′′
6



 = S−1


w′

1w
′′
1

w′
2w

′′
2

w′
3w

′′
3

w′
4w

′′
4

w′
5w

′′
5

w′
6w

′′
6



Fig. 1.
Illustration of the operator QS for δ = 6. Clearly, QS is an
additively homomorphic operator of the private-key cryptosys-
tem.

Proposition 2. The computation of QS = (q1, ..., qδ)← QGen(S) requires O(δ4) modular multiplications
and the computation of w ← QS(w

′, w′′) requires O(δ3) modular multiplications. Each monomial coeffi-
cient of QS is an efficiently valuable δ-symmetric polynomial defined over the δ tuples yi = (sij)j=1,...,δ.

Proof. (Sketch) To establish complexity results, it suffices to notice that the number of monomials of the
polynomials pi and qi is O(δ2). Each monomial coefficient can be written as a ratio of two polynomials
defined over the tuples yi. It is well-known that any function defined over a field (here Zp and Zq) can be
written as a polynomial. It follows that each monomial coefficient can be written as a polynomial defined
over the tuples yi. By noticing that the computation of the polynomials qi does not require the knowledge
of the factorization of n, each monomial coefficient is efficiently valuable.

Let σ be an arbitrary permutation of {1, ..., δ}. Let T be the matrix such that its ith row is equal to
the σ(i)th row of S, i.e. ti = sσ(i). It implies that the columns of T−1 are a σ-permutation of the columns

of S−1, i.e. the jth column of T−1 is equal to the σ(j)th column of S−1. It follows that for all w ∈ Zδ
n,

S−1w = T−1σ(w) ensuring that QGen(S) = QGen(T). This proves that each monomial coefficient is a
κ-symmetric function defined over the tuples yi.

�

Corollary 1. According to Proposition 1, it is not possible to recover any non δ-symmetric product of
values sij only given QS assuming the hardness of factorization.

3.3 The additive homomorphic scheme

To get an additively homomorphic public-key cryptosystem, it suffices to publishm = Θ(λ) encryptions ev
of public values xv ∈ E and the operator QS ← QGen(S). For instance xv = 2v for all v = 1, ..., ⌊log2M⌋
and xv = 0 for all v = ⌊log2M⌋+ 1, ...,m

Definition 3. Let λ be security parameter.

– KeyGen(λ). Let K = {S, g} ← KeyGen0(λ), (xv)v=1,...,m be m values3 of E, ev ← Encrypt0(K,xv) and
QS ← QGen(S)

sk = {ΦS} ; pk = {QS , (xv, ev)v=1,...,m}

– Operator ⊕. Given two encryptions e and e′

e⊕ e′ = QS(e, e
′)

– Encrypt(pk, x ∈ E). Choose a subset of m/2 public encryptions (evi)i=1,...,m/2 at random such that
x = xv1 + ...+ xvm/2

and output

e =

m/2⊕
i=1

evi

– Decrypt(sk, e). Exactly follows Decrypt0.

It is straightforward to check correctness of this scheme. A toy implementation of this scheme is presented
in Appendix J.

3.4 Security analysis.

Given γ ∈ N∗, SPγ refers to the set of multi-variate polynomials ϕ :
(
Zδ
n

)r → Zn defined by

ϕ(w1, ..., wr) =

γ∏
t=1

sitwvt

where r ∈ N∗, it ∈ {1, ..., δ} and vt ∈ {1, ..., r}. A representation Rϕ of ϕ is said to be effective if its
storage is polynomial and if Rϕ allows to evaluate ϕ in polynomial time. For instance, provided δ = Θ(λ),
the factored representation of ΦS is effective while its expanded representation is not (the number of
monomials is exponential).

3 xv = 2v for all v = 1, ..., ⌊log2 M⌋ and xv = 0 otherwise.

Proposition 3. Let λ be a security parameter, (pk, sk) ← KeyGen(λ) and γ ∈ N∗ such that γ is a not
multiple of δ (|γ| polynomial in λ). Let ϕ ∈ SPγ and Rϕ be an effective representation of ϕ. By assuming
the hardness of factorization, recovering Rϕ only given pk is difficult.

Proof. Let us denote by (rvi)(v,i)∈{1,...,m}×{1,...,δ} the random values chosen in the public encryptions

(ev)v=1,...,m, i.e. (rv1, ..., rvδ) = Sev. Let y
sk
1 , ..., yskδ be the δ (secret) tuples defined by

yski = (si, rvi)v=1,...,m

These tuples yski are generated according to a probability distribution statistically indistinguishable from
the probability distribution considered in Problem 1 (by choosing the coefficient of S at random, the
probability that S is not invertible is negligible) where the values sij are not involved in multiplicative

constraints and
∏δ

i=1 rvi = gxv . Moreover, each public value of pk is an efficiently valuable δ-symmetric
polynomial defined over the tuples (ysk1 , ..., yskδ) (see Proposition 2 for the monomial coefficients of QS and
it is straightforward to check it for each component of ev by arguing similarly to the proof of proposition
2).

Consequently, according to Proposition 1, it is not possible to polynomially recover any non δ-
symmetric product π of values sij assuming the hardness of the factorization.

Let ϕ be an element of SPγ , i.e. ϕ(w1, ..., wr) =
∏γ

t=1 sitwvt . Let w∗1 = ... = w∗r = (1, 0, 0, ...) and
π = ϕ(w∗1, ..., w

∗
r). Because γ is not a multiple of δ, π is a non δ-symmetric (efficiently valuable) product

of values of {si1|i = 1, ..., δ}. Rϕ allows to efficiently compute π. Thus, according to Proposition 1, π
cannot be recovered implying that Rϕ cannot be recovered.

�

As ΦS ∈ SPδ, this result does not prove that ΦS cannot be recovered. Worse, it is easy to see that ΦS

can be easily recovered by solving a linear system4 provided δ = O(1). However, provided δ = Θ(λ), this
attack does not work anymore because the number of monomials of ΦS becomes exponential, i.e. Ω(4δ).
Besides, Proposition 3 implies that it is not possible to recover any factored form of ΦS . It implies that
it is difficult to recover the expanded representation or any effective factored representation of ΦS .

But it may be possible to polynomially recover other effective representations RΦS
of ΦS , e.g. semi-

factored forms of ΦS . Proposition 3 can be generalized by showing that it is difficult to recover any
non δ-symmetric values defined over the tuples yski (by extending Proposition 1 as explained by Remark
1). Consequently, to be polynomially recovered and evaluated, ΦS should be written with a δ-symmetric
effective representation5 RΦS

, i.e. RΦS
should be expressed by a polynomial number of δ-symmetric values

defined over the tuples yski . We conjecture that such effective δ-symmetric representations do not exist
(see Appendix G for a toy example highlighting this). By extending this analysis to any ϕ ∈ SPtδ, we
propose the following conjecture.

Conjecture 1. Assume that δ = Θ(λ) and let ϕ ∈
∪

γ>0 SP
γ. By assuming the hardness of factorization,

recovering any effective representation of ϕ is difficult only given pk.

Unfortunately, Conjecture 1 is not sufficient to prove semantic security while we do see how semantic
security could be broken without the knowledge of polynomials of SP. Roughly speaking, this situation
looks like to RSA security analysis where it is shown that recovering the decryption polynomial is difficult
assuming the hardness of factorization while the security (one-wayness) is not formally reduced to this
assumption.

4 ΦS(ev) = xv (for a number of encryptions ev larger than the number of monomials of ΦS) where the variables are the
monomial coefficients of ΦS

5 The expanded representation of ΦS is δ-symmetric but ineffective and conversely, the factored representation of ΦS is
effective but not δ-symmetric.

A weak version of Proposition 3 is proposed in Appendix F. In this proof, QS is built only given a
randomly chosen δ-degree polynomial p having δ2 distinct roots over Zn. It is shown that the rows of S
are the eigenvectors of a matrix M which can be directly derived from QS . Thus, it is no more difficult to
recover S given QS when knowing the factorization of n. In Appendix K, we propose ways to randomize
the operator QS . An interesting question arising in this setting consists of wondering whether n could
be chosen as a large/small prime. This would lead to a scheme (very) competitive with respect to other
existing additively homomorphic schemes.

4 A basic private-key cryptosystem

Let δ ∈ N∗ and n be an RSA modulus. In the following of the paper, all the computations will be done in
Zn.

– A vector b is said to be basic if b is a δ-vector, i.e. (b1, ..., bδ) ∈ Zδ
n and if

δ∏
i=1

bi = 1

Throughout this paper, basic vectors will be denoted with (small) capital letters.

– Given a basic vector b and a ∈ Zn, ba denotes the δ-vector (b1a, b2, ..., bδ).

– Let w1, ..., wt be t vectors of size m, (w1, ..., wt) denotes the concatenation of these vectors, i.e.
(w1, ..., wt) = (w11, ..., w1m, ..., wt1, ..., wtm).

– Given a vector w and a matrix S, |w|S = Sw. Note that |w|S could be denoted by |w| when S is
implicitly known.

First, we define a private-key cryptosystem where the plaintext space is Zn and where the secret key
contains ϑ randomly chosen invertible matrices Sz of Zκτδ×κτδ

n . For κ = τ = 1, a valid encryption e of x
is composed of ϑ vectors c1, ..., cϑ defined by

cz = S−1z (bzxz)

where bz are random basic vectors and xz random values satisfying x1 + ... + xϑ = x. The decryption
consists of evaluating a δ-degree multivariate polynomial Φ, i.e. Φ(e) = x. This polynomial can be written
as a sum of ϑ polynomials, each one being factorizable as a product of δ linear functions. The role of the
parameter ϑ will be explained in Section 8. We let the reader see why the scheme cannot be semantically
secure with ϑ = 1 (an attacker could easily decide if an encryption encrypts 0 or not). The parameter τ
is not indexed by the security parameter λ. It is introduced in order to provide randomness useful for the
construction of homomorphic operators. In Section 6, we propose a construction for τ = 3. Contrarily to
the previous cryptosystem, the FHE developed in next sections is not naturally symmetric. To overcome
this, the parameter κ is artificially introduced in order to exploit Proposition 1 in the security analysis.

Definition 4. Let λ be a security parameter and τ ∈ N∗. The functions KeyGen1, Encrypt1, Decrypt1 are
defined as follows:

1. KeyGen1(λ, τ). Let η, κ, δ, ϑ be positive integers indexed by λ. Let n be a η-bit RSA modulus chosen at
random and (Sz)z=1,...,ϑ be ϑ invertible matrices of Zκτδ×κτδ

n chosen at random. The ith row of Sz is

denoted by szi. For any l ∈ {1, ..., κ}, Φl :
(
Zκτδ
n

)θ → Zn denotes the δ-degree multivariate polynomial
defined by:

Φl(w1, ..., wϑ) =

ϑ∑
z=1

∏
i∈Il

sziwz

with Il = {(l − 1)τδ + 1, ..., (l − 1)τδ + δ}

K = {(Sz)z=1,...,ϑ}

2. Encrypt1(K,x ∈ Zn). Choose at random ϑκτ basic vectors (bzlt)(z,l,t)∈{1,...,ϑ}×{1,...,κ}×{1,...,τ} and ϑκ
values (xzl)(z,l)∈{1,...,ϑ}×{1,...,κ} belonging to Zn such that for all l = 1, ..., κ

ϑ∑
z=1

xzl = x

Let (cz)z=1,...,ϑ be the ϑ vectors defined by:

Szcz (
def
= |cz|Sz) =

(
bz,1,1xz,1,bz,1,2, ...,bz,1,τ , bz,2,1xz,2,bz,2,2...,bz,2,τ , ..., bz,κ,1xz,κ,bz,κ,2, ...,bz,κ,τ

)
Output

e = (c1, ..., cϑ)

3. Decrypt1(K, e ∈
(
Zκτδ
n

)ϑ
. Choose l ∈ {1, ..., κ} arbitrarily and output

x = Φl(e)

Proposition 4. Let e← Encrypt1(K,x) and (bzlt)(z,l,t)∈{1,...,ϑ}×{1,...κ}×{1,...,τ} be the random basic vectors
and (xzl)(z,l)∈{1,...,ϑ}×{1,...κ} be the random values used by Encrypt1 to generate e. Let (yl)l=1,...,κ be κ tuples
defined by

yl = (szi,bzlt, xzl)(z,t,i)∈{1,...,ϑ}×{1,...,τ}×{(l−1)τδ+1,...lτδ}

Each component of e is an efficiently valuable κ-symmetric polynomial defined over the tuples (y1, ..., yκ).

Proof. See Appendix B.

A short informal security analysis. Let (ev)v=1,...,m be m encryptions of (xv)v=1,...,m known by the CPA
attacker. Let us consider the linear system Φ1(ev) = xv for all v = 1, ...,m where the variables are the
monomial coefficients of Φ1. As Φl=2,...,κ are also solutions of this system, its resolution provides a linear
combination

Φ = α1Φ1 + ...+ ακΦκ

with α1+ ...+ακ = 1 which breaks semantic security. However, provided δ = Θ(λ), Φ has an exponential
number of monomials making this brute force attack fail.

Nevertheless, one could hope to recover a compact representation of Φ, e.g. a factored or semi-factored
representation. However, to achieve this, one should solve a nonlinear multivariate equation system which
is a difficult problem in general. This first analysis suggests that Φ cannot be recovered by a CPA attacker.
Proposition 1 will be used in the security analysis of our FHE to formalize this analysis.

5 κ-symmetric operators Q

This section can be seen as a generalization of Section 3.2. Let m ∈ N∗ and S be an arbitrary invertible
matrix of Zm×m

n where the ith row is denoted by si. Let pi : Zm
n ×Zm

n → Zn be m arbitrary polynomials.
The function QS,p1,...,pm : Zm

n × Zm
n → Zm

n is defined by

QS,p1,...,pm(w
′, w′′)

def
=

q1(w
′, w′′)

. . .
qm(w′, w′′)

 = S−1

p1(w
′, w′′)

. . .
pm(w′, w′′)


The multivariate polynomials q1, ..., qm are linear combinations of the polynomials p1, ..., pm. The function
QGen inputs S and the polynomials p1, ..., pm and outputs the expanded representation of the polynomials
q1, ..., qm, i.e. all the monomial coefficients of the polynomials qi.

Proposition 5. Let pi : Zm
n × Zm

n → Zn be m arbitrary 2-degree polynomials. The computation of
QS,p1,...,pm ← QGen(S, p1, ..., pm) requires O(m4) modular multiplications and the computation of w ←
QS,p1,...,pm(w

′, w′′) requires O(m3) modular multiplications.

Proof. (Sketch.) The number of monomials of each 2-degree polynomial pi is O(m2).
�

Definition 5. (κ-symmetric operators Q). Let κ ∈ N∗. Let S, S′, S′′ be three invertible matrices of
Zκm×κm
n . The ith row of S, S′, S′′ is respectively denoted by si, s

′
i, s
′′
i . Let (pi)i=1,...,κm : Zκm

n ×Zκm
n → Zκm

n

be κm 2-degree multivariate polynomials defined by

pi(w
′, w′′) =

αi∑
j=1

s′u′
ij
w′ × s′′u′′

ij
w′′

where αi ∈ N∗, u′ij , u′′ij ∈ {1, ..., κm}. The operator QS,p1,...,pκm (also denoted by QS←(S′,S′′),p1,...,pκm) is
said to be κ-symmetric with respect to S, S′, S′′ if for all i ∈ {1, ...,m}, j ∈ {1, ..., αi} and l ∈ {1, ...κ}

αi+lm = αi

u′i+lm,j = u′ij + lm

u′′i+lm,j = u′′ij + lm

Let QS←(S′,S′′),p1,...,pκm be a κ-symmetric operator and w ← QS←(S′,S′′),p1,...,pκm(w
′, w′′). Each component

of |w|S is a 2-degree polynomial function of the components of |w′|S′ and |w′′|S′′ . Higher degree polynomials
pi could be considered but it would lead to very costly operators Q: the running time of such operators
Q is exponential with the degree of the polynomials pi. Roughly speaking, information hidden in |w′|S′

and |w′′|S′′ can be manipulated by operators Q. κ-symmetry provides privacy properties (see Proposition
9) for the matrices S, S′, S′′: they result from Proposition 1 combined with the following proposition.

Proposition 6. Let S, S′, S′′ be three invertible matrices of Zκm×κm
n and QS←(S′,S′′),p1,...,pκm be an arbi-

trary κ-symmetric operator with respect to S, S′, S′′. Let (yl)l=1,...,κ be κ tuples defined by

yl = (si, s
′
i, s
′′
i)i=(l−1)m+1,...,lm

where si, s
′
i, s
′′
i are the ith row of respectively S, S′, S′′. Each monomial coefficient of QS←(S′,S′′),p1,...,pκm

is an efficiently valuable κ-symmetric polynomial defined over the tuples y1, ..., yκ.

Proof. See Appendix D.

Remark 2. An operator Q is said to be κ-symmetric if it can be generated by efficiently valuable κ-
symmetric polynomials of the tuples y1, ..., yκ but it does not mean that Q is itself a κ-symmetric function.

6 Homomorphic operators

Throughout this section, τ = 3.

6.1 Overview

Let e = (cz)z=1,...,ϑ and e′ = (c′z)z=1,...,ϑ be two encryptions of x and x′. We wish to elaborate a public
algorithm which computes a valid encryption e′′ = (c′′z)z=1,...,ϑ of x + x′ or xx′ only using κ-symmetric
operators Q. Intuitively, operators Q allow to manipulate components of |cz|Sz and |c′z|Sz . For concrete-
ness, 2-degree polynomials can be computed by these operators. By combining these operators, (almost)
arbitrary polynomials can be computed. Thanks to the constraints introduced in Encrypt1, it is possible to
define the components of |c′′z |Sz as polynomials of the components of |c1|S1 , ..., |cϑ|Sϑ

and |c′1|S1 , ..., |c′ϑ|Sϑ
: it

follows that it is possible to implement homomorphic operators by only applying (κ-symmetric) operators
Q. In the next section, we propose a construction using O(ϑ2δ) κ-symmetric operators Q.

6.2 Product of basic vectors

In this section, we propose to define simple operators over basic vectors.

Definition 6. (Products of basic vectors). Let δ, t ∈ N∗. Let b = (b1, ..., bδ) and b′ = (b′1, ..., b
′
δ) be two

basic vectors.

– b× b′ denotes the basic vector

b× b′ = (b1b
′
1, ..., bδb

′
δ)

– Let σ, σ′ be two permutations of {1, ..., δ}, b ⋆σ,σ′ b′ denotes the following basic vector

b ⋆σ,σ′ b′ =
(
bσ(1)b

′
σ′(1), ..., bσ(δ)b

′
σ′(δ)

)
– bt denotes the basic vector

bt = (bt1, ..., b
t
δ)

– Let I = {1, ..., t} × {1, ..., δ} and (uij)(i,j)∈I be a family of indices of {1, ..., δ} such that

∀k ∈ {1, ..., δ}, #{(i, j) ∈ I|uij = k} = t

b⋆(u11,...,utδ) denotes the basic vector

b⋆(u11,...,utδ) = (bu11 ...but1 , ..., bu1δ
...butδ

)

The permutations σ, σ′ and the indices uij will be chosen at random for each operator and they will be
omitted in notation, i.e. b ⋆σ,σ′ b′ and b⋆(u11,...,utδ) will be denoted by b ⋆ b′ and b⋆t.

Example. b = (b1, b2, b3) and b⋆3 = (b1b1b3, b2b3b2, b1b2b3).

6.3 Implementation

The operator Add is the key tool in the construction of homomorphic operators.

Definition 7. (Operator Add). Let κ ∈ N∗. Let T, T ′, T ′′ be three invertible matrices of Z3κδ×3κδ
n

and w,w′ ∈ Z3κδ
n be two vectors such that |w|T = (a11x1,a12,a13, ...,aκ1xκ,aκ2,aκ3) and |w′|T ′ =

(a′11x
′
1,a
′
12,a

′
13, ...,a

′
κ1x
′
κ,a
′
κ2,a

′
κ3) where (xl, x

′
l)l=1,...,κ belong to Zn and (ali,a

′
li)(l,i)∈{1,...,κ}×{1,...,3} are

basic vectors. The operator AddT ′′←(T,T ′) : Z3κδ
n × Z3κδ

n → Z3κδ
n is defined by

|AddT ′′←(T,T ′)(w,w
′)|T ′′ = (h1(x1 + x′1), i1, j1, ...,hκ(xκ + x′κ), iκ, jκ)

where el ← al3 ⋆ a
′
l3, fl ← e⋆δl , hl ← fl ⋆ el, gl ← e⋆2δl and il, jl ← gl ⋆ el for any l ∈ {1, ..., κ}.

We propose to implement Add by using only κ-symmetric operators Q. Many constructions can be imag-
ined. The security of our scheme is strongly related to this construction. For security considerations
detailed in Section 8, we propose a non-deterministic construction. Appendix E provides an implemen-
tation (where the operators Q are determined) of this construction and an implementation dealing with
toy parameters is presented in Figure 2.

Proposition 7. Operators Add can be implemented with 2δ + 1 κ-symmetric operators Q.

Proof. Our construction only deals with κ-symmetric operators Q. It follows that the case κ > 1 can be
straightforwardly deduced from the case κ = 1. For these reasons, we fix κ = 1. For any basic vector z,
the ith component of z is denoted by zi. Let T1, ..., T2δ be invertible matrices of Z3δ×3δ

n chosen at random.

1. Let b← a11 ⋆a
′
12, c← a12 ⋆a

′
11 and e← a13 ⋆a

′
13. There exists a κ-symmetric operator QT1←(T,T ′),...

allowing to compute the vector w1 = QT1←(T,T ′),...(w,w
′) defined by

|w1|T1 = (bx1,cx
′
1,e)

2. For sake of simplicity, the ith component of |w1|T1 is denoted by αi. By using the fact that b,c are
basic vectors, there is an exponential number of ways to choose (see Appendix E to see such a choice)
the values (kiu)(i,u)∈{1,...,3δ}×{1,...,2δ} belonging to {1, ..., 3δ} such that(

2δ∏
u=1

αkiu

)
i=1,...,3δ

= (fx1, f1x
′
1, ρ2, ..., ρδ,g)

where f ← e⋆δ, g ← e⋆2δ, ρ2, ..., ρδ are arbitrary values and f1 is the first component of f. Let us
choose such values kiu at random. By using κ-symmetric operators, we compute the recursive sequence
w2, ..., w2δ defined by

wu = QTu←(Tu−1,T1)(wu−1, w1) for u = 2, ..., 2δ

such that |wu|Tu = (
∏u

l=1 αkil)i=1,...,3δ ensuring that

|w2δ|T2δ
= (fx1, f1x

′
1, ρ2, ..., ρδ,g)

3. Let h← f ⋆ e, i← g ⋆ e, j← g ⋆ e. There exists a κ-symmetric operator QT ′′←(T2δ,T1),... allowing to
compute the vector w2δ+1 = QT ′′←(T2δ,T1),...(w2δ, w1) defined by

|w2δ+1|T ′′ = (h(x1 + x′1), i, j)

Output w2δ+1.

Inputs:

w = T−1


r1x1

r2
r3
r4
r5
r6

 ; w′ = T
′−1


r′1x

′
1

r′2
r′3
r′4
r′5
r′6


Intermediate vectors:

w1 = T−1
1


α1 = r1r

′
3x1

α2 = r2r
′
4

α3 = r3r
′
1x

′
1

α4 = r4r
′
2

α5 = r5r
′
5

α6 = r6r
′
6



By choosing [kiu] =


1 5 2 5
6 5 6 6
3 4 5 5
4 2 6 1
5 5 5 5
6 6 6 6

, the vectors w2, w3, w4 are defined by

w2 = T−1
2


α1α5

α6α5

α3α4

α4α2

α5α5

α6α6

 ; w3 = T−1
3


α1α5α2

α6α5α6

α3α4α5

α4α2α6

α5α5α5

α6α6α6

 ; w4 = T−1
4


α1α5α2α5 = f1x1

α6α5α6α6 = f2
α3α4α5α5 = f1x

′
1

α4α2α6α1 = ρ2
α5α5α5α5 = g1
α6α6α6α6 = g2


Output:

w5 = T
′′−1


(α1α5α2α5 + α3α4α5α5)α6

α6α5α6α6α5

α5α5α5α5α6

α6α6α6α6α5

α5α5α5α5α5

α6α6α6α6α6

 = T
′′−1



r5r
′
5(x1 + x′

1)
r6r

′
6

r35r
′3
5

r36r
′3
6

r55r
′5
5

r56r
′5
6



Fig. 2. An implementation of Add for the toy parameters δ = 2, τ = 3 and κ = 1. Recall that constraints on vectors input
in Add ensure that r1r2 = r′1r

′
2 = r3r4 = r′3r

′
4 = r5r6 = r′5r

′
6 = 1.

�

Remark 3. The construction of Add is probabilistic: randomness coming from the randomness of operators
⋆ and from the choice of the values kiu and the matrices Tu. This randomness is introduced to limit
malicious uses of the operators Q (see Section 8.3 for deeper explanations).

Proposition 8. The operator ⊕ can be implemented with ϑ operators Add and the operator ⊙ can be
implemented with ϑ2 κ-symmetric operators Q and ϑ(ϑ− 1) operators Add.

Proof. By arguing similarly to the proof of Proposition 7, our construction only requires to be defined
for κ = 1. Let e = (cz)z=1,...,ϑ and e′ = (c′z)z=1,...,ϑ be two encryptions of x and x′ such that:

– |cz|Sz = (az1xz,az2,az3)

– |c′z|Sz = (a′z1x
′
z,a
′
z2,a

′
z3)

where (azi,a
′
zi)i=1,...,3 are basic vectors. Let us start by the operator ⊕. By using ϑ operators Addz, one

can compute

wz = Addz,Sz←(Sz ,Sz)(cz, c
′
z)

Clearly, (wz)z=1,...,ϑ is a valid encryption of x+ x′. We state

e⊕ e′ = (wz)z=1,...,ϑ

For sake of simplicity, the operator ⊙ is detailed for ϑ = 2 (the extension to the general case is straight-
forward). Let (Tzz′)(z,z′)∈{1,2}2 be 4 invertible matrices of Z3δ×3δ

n chosen at random. First, let us build 4
vectors (wzz′)(z,z′)∈{1,2}2 defined by

|wzz′ |Tzz′ = (az1 ⋆ a
′
z′1xzx

′
z′ ,az2 ⋆ a

′
z′2,az3 ⋆ a

′
z′3)

Each vector wzz′ can be obtained by applying a κ-symmetric operator Q, i.e.

wzz′ = QTzz′←(Sz ,Sz′),...
(cz, c

′
z′)

By using 2 operators Add1 and Add2, one can compute w1 = Add1,S1←(T11,T22)(w11, w22) and w2 =
Add2,S2←(T12,T21)(w12, w21). Clearly, (w1, w2) is a valid encryption of xx′. We state,

e⊙ e′ = (w1, w2)

�

Given a key K ← KeyGen1(λ, 3), OpGen(K) outputs ⊕,⊙ by invoking QGen in order to output the
ϑ2(2δ+2) κ-symmetric operators Q involved in the homomorphic operators. The function OpGen requires
to compute O(ϑ2κ4δ5) multiplications in Zn and its storage is O(|n|ϑ2κ3δ4).

7 The FHE

The private-key encryption scheme of Section 4 can be transformed in an FHE by publishing the homo-
morphic operators ⊕,⊙ and m encryptions (ev)i=1,...,m of public values xv ∈ Zn: for instance xv = 2v

mod n.

Definition 8. Let λ be a security parameter.

– KeyGen(λ). Let K = {(Sz)z=1,...,ϑ} ← KeyGen1(λ, 3), {⊕,⊙} ← OpGen(K) and for all v = 1, ...,m,
ev ← Encrypt1(K,xv).

sk = {(Sz)z=1,...,ϑ} ; pk = {⊕,⊙, (ev)v=1,...,m}

– Evaluate(C, e1, ..., em). To evaluate C(e1, ..., em), it suffices to compute each gate with the public ho-
momorphic operators ⊕ and ⊙.

– Encrypt(pk, x ∈ Zn). It consists of evaluating a secret circuit C over the encryptions (ev)v=1,...,m such
that x = C(x1, ..., xm), i.e. output Evaluate(C, e1, ..., em)

– Decrypt(sk, e). Exactly follows Decrypt1.

OpGen(K) outputs ϑ2(2δ+2) κ-symmetric operatorsQ. These operators deal with the ϑmatrices S1, ..., Sϑ

of sk and ϑ2(2δ + 2)− 2ϑ other intermediate invertible matrices denoted by Sϑ+1, ..., Sϑ2(2δ+2)−ϑ. In the

following of the paper, we will consider the (secret) tuples yskl defined by

yskl = (sui,bvzlt, xvzl)(u,v,z,i,t)∈{1,...,ϑ+ϑ2(2δ−1)}×{1,...,m}×{1,...,ϑ}×{3(l−1)δ+1,...,3lδ}×{1,...,τ}

where sui denotes the i
th row of Su and where bvzlt, xvzl are respectively the random basic vectors and the

random values used by Encrypt1 to generate the public encryptions (ev)v=1,...,m. According to Proposition
4 and Proposition 6, all the public values of pk are κ-symmetric polynomials of these tuples. By extending
definitions of Section 4.1, we define the following sets of polynomials:

– SP refers to the set of multi-variate polynomials ϕ :
(
Z3κδ
n

)r → Zn defined by

ϕ(w1, ..., wr) =

γ∏
t=1

sutitwkt

where γ, r ∈ N∗, it ∈ {1, ..., 3κδ}, ut ∈ {1, ..., ϑ2(2δ + 2)− ϑ} and kt ∈ {1, ..., r}.

– LSP: the set of polynomial-size linear combinations of polynomials of SP.

– SPl: the subset of SP such that it ∈ {3(l − 1)δ + 1, ..., 3lδ}

– SPγ : the set of polynomials of SP of degree equal to γ, i.e.

SPγ = {ϕ ∈ SP| deg(ϕ) = γ}

Remark 4. The number of monomials of any ϕ ∈ SPγ is Ω
(
δγ−1

γ!

)
. Note that this number is exponential

provided γ = Θ(λϵ>0) and δ = Θ(λ).

Security naturally deals with these polynomials because they allow to compute polynomials over the
components of |wk|Su . A representation Rϕ of ϕ ∈ LSP is said to be effective if its storage is polynomial
and if it allows to evaluate ϕ in polynomial-time. The following result is a direct application of Proposition
1, 4 and 6.

Proposition 9. Let l ∈ {1, ..., κ} and γ ∈ N∗ such that γ is not a multiple of κ (|γ| polynomial in λ).
Let ϕ ∈ SPl ∪ SPγ be a polynomial and Rϕ be an effective representation of ϕ. By assuming the hardness
of factorization, recovering Rϕ only given pk is difficult.

Proof. (Sketch. See Appendix C for a complete detailed proof.) According to Proposition 4 and Proposition
6, pk contains only κ-symmetric efficiently valuable polynomials evaluated over the tuples ysk1 , ..., yskκ .
These tuples are chosen at random according to the probability distribution considered in Problem 2.
Consequently, according to Proposition 1, a polynomial attacker cannot recover any non κ-symmetric
product π(ysk1 , ..., yskκ). To conclude, it suffices to notice that an effective representation Rϕ of ϕ allows
to polynomially compute a non κ-symmetric product π(ysk1 , ..., yskκ).

�

Corollary 2. By assuming the hardness of factorization, the secret matrices (Su)u=1,...,ϑ2(2δ+2)−ϑ and
the polynomials (Φl)l=1,...,κ cannot be polynomially recovered only given pk.

A natural arising question consists of wondering whether polynomials ϕ ∈ SPtκ with t > 0 can
be recovered. Let us assume κ = Θ(λϵ>0) and δ = Θ(λ). In this case, ϕ has an exponential number
of monomials (see Remark 4). Thus, its expanded form cannot be polynomially output. Proposition 9
ensures that a polynomial attacker cannot factor ϕ with small polynomials. Consequently, a polynomial
attacker cannot recover the expanded representation or any effective factored representation of any ϕ ∈ SP
only given pk assuming the hardness of factorization.

A representation Rϕ of ϕ ∈ LSP is said to be κ-symmetric if it can be generated by (an arbitrary number
of) efficiently valuable κ-symmetric polynomials of ysk1 , ..., yskκ . For instance, the expanded representation
of the polynomial Φ1+ ...+Φκ is κ-symmetric6. Proposition 9 can be extended to show that it is difficult to
recover non κ-symmetric effective representations (by extending Proposition 1 as explained by Remark 1).
However, it is not sufficient for ensuring security. Indeed, the expanded representation of the polynomial
Φ = Φ1 + ... + Φκ or Φ = Φ1...Φκ is κ-symmetric and its knowledge would break semantic security.
Nevertheless, assuming δ = Θ(λ), the number of monomials of Φ is exponential implying that its expanded
representation is not effective. Besides, according to Proposition 9, it is difficult to find any of its natural
effective representations, i.e. sum of products of small polynomials of SP, provided δ = Θ(λ) and κ =
Θ(λϵ>0). To be polynomially recovered and evaluated, Φ should be represented by a κ-symmetric effective
representation RΦ, i.e. RΦ should be expressed by a polynomial number of κ-symmetric values defined
over the tuples yskl . We conjecture that such a representation does not exist (see Appendix H for a toy
example highlighting this).

A polynomial attacker can only hope to recover polynomials ϕ having κ-symmetric effective representations.
The construction of the FHE should ensure that such polynomials could not be used to break semantic
security. In particular, polynomials having a κ-symmetric effective expanded representation could be
recovered with attacks by linearization (consisting of solving linear systems where the variables are the
monomial coefficients). Intuitively, randomness introduced in Add should prevent our scheme against such
attacks. This is extensively studied in the next section.

8 Attacks by linearization.

The public key pk can be naturally regarded as a system (Sys) of nonlinear equations (partially unknown
because of the randomness over the choice of each operator Q belonging to ⊕ or ⊙) where each tuple
yskl is a solution. Thanks to κ-symmetry, the previous section tends to show that the resolution of (Sys)
is quite intractable. The attack by linearization proposed for the additively homomorphic cryptosystem
can be straightforwardly transposed for the FHE. It consists of solving the linear system

ϕ(ev) = xv

6 Each monomial coefficient is a κ-symmetric polynomial of ysk
1 , ..., ysk

κ .

where (ev)v=1,...m are encryptions of (xv)v=1,...,m and ϕ is a multivariate polynomial7 of degree δ such
that its monomial coefficients are the variables of the linear system. Its resolution provides a linear
combination8 ϕ∗ of the decryption polynomials (Φl)l=1,...,κ. However, provided δ = Θ(λ), this attack
fails because the number of monomials of ϕ is exponential. Because of the introduction of homomorphic
operators, efficient attacks by linearization could appear. In this section, we give a general framework to
analyze the security of the FHE with respect to these attacks.

8.1 General framework

By considering t encryptions e1, ..., et of known values x1, ..., xt, an attacker can build r vectors w1, ..., wr,
for instance, by using public κ-symmetric operators Q in an arbitrary way. Let us imagine that there are
m (m being polynomial) multivariate polynomials ϕ1, ..., ϕm satisfying

z1ϕ1(w1, ..., wr) + ...+ zmϕm(w1, ..., wr) = 0 (1)

where z1, ..., zm are functions of the encrypted values x1, ..., xt. For each choice of known encryptions
e1, ..., et, we get a linear equation where the variables are the monomial coefficients of ϕi. By iterating
this process on new encryptions, we get a linear system which can be solved in polynomial time if the
number of monomials of each ϕi is polynomial. The knowledge of a solution (ϕ∗1, ..., ϕ

∗
m) satisfying this

system9 can be used to break semantic security. Indeed, given a new encryption e◦1 of an unknown value
x◦1, the attacker builds the vectors (w◦1, ..., w

◦
r) by considering the encryptions e◦1, e2..., et. The knowledge

of the polynomials ϕ∗1, ..., ϕ
∗
m provides relationships between x◦1, x2..., xt. Fortunately, this attack does not

work if it exists i0 s.t. the expanded representation of ϕ∗i0 is exponential-size10. In next sections, we will
consider the two following oracles:

– the oracle O1 inputs two (valid) encryptions e1, e2 belonging to pk or previously output by itself
and outputs e1 ⊕ e2, e1 ⊙ e2 and all the intermediate vectors computed during the computation of
homomorphic operators (vectors output by operators Q).

– letQ1,...,Qϑ2(2δ+2) be the ϑ
2(2δ+2) κ-symmetric operators of pk. The oracleO2 inputs i ∈ {1, ..., ϑ2(2δ+

2)} and two vectors w, w′ belonging to Z3κδ
n and outputs Qi(w,w

′).

Before considering the real-life setting, linearization attacks will be analyzed in the two following relaxed
settings:

– Setting 1. The public operators Q are replaced by accesses to O1

– Setting 2. The public operators Q are replaced by accesses to O2

8.2 Linearization attacks in setting 1

In this section, the operators Q of pk are replaced by accesses to O1. An attacker can recursively invoke
O1 over encryptions e1, ..., em of pk and/or encryptions previously output by O1. The main tool of
our construction is the operator Add. At first, let us study it separately11 from the whole construction
by adopting the notation of Definition 7 and Proposition 7. Two vectors w and w′ are input and 2δ + 1

7 having the same monomials than the decryption polynomials Φl.
8 The monomial coefficients depend on the secret values rvi, r

′
vi used in the encryptions ev.

9 Note that each monomial coefficient of ϕ∗
i is a κ-symmetric value defined over the tuples ysk

1 , ..., ysk
κ .

10 meaning that the number of monomials is exponential.
11 vectors input in each operator Add can be randomized without introducing interesting polynomials relations. It enforces

the idea that the public operators Add of pk can be studied separately and that vectors output by Add are pseudo-random
(under constraints linked to their definition). An example of such randomization is provided in Appendix H.

intermediate vectors w1, ..., w2δ+1 are computed during the execution of Add(w,w′), each one being output
by a κ-symmetric operator QT1←..., ...,QT2δ←...,QT ′′←..., i.e.

w1 = QT1←(T,T ′)(w,w
′)

wu = QTu←(Tu−1,T1)(wu−1, w1) for u = 2, ..., 2δ

w2δ+1 = QT ′′←(T2δ,T1)(w2δ, w1)

According to the definition of setting 1, it is assumed that Add output all these vectors (and not only
w2δ+1), i.e.

(w1, ..., w2δ+1)← Add(w,w′)

In order to homogenize notation, we rename T, T ′, T ′′ to respectively T−1, T0, T2δ+1. Let us consider the

subset SPAdd ⊂ SP of polynomials ϕ :
(
Z3κδ
n

)2δ+3 → Zn defined by

ϕ(w−1, w0, ..., w2δ+1) =

γ∏
r=1

turirwur

with γ > 0, ur ∈ {−1, ..., 2δ + 1}, ir ∈ {1, ..., 3κδ}, and tui is the ith row of Tu. By definition,
ϕ(w,w′,Add(w,w′)) is a product of components of |w|T , |w′|T ′ , |w1|T1 ...,|w2δ+1|T2δ+1

(denoted by |w|,
|w′|, |w1|...,|w2δ+1| in the following of this section). Because of multiplicative constraints introduced in
our scheme, the knowledge of polynomials of SPAdd could intuitively be relevant to break security. Pri-
marily, we wonder whether it is possible to recover a linear combination z ∈ co({xi, x′i | i = 1, ..., κ}) (e.g.
z = x1, z = x′1, z = x1 + x′1) with small polynomials of SPAdd. At first, we are looking for two (small)
polynomials ϕ1 and ϕ2 such that for all (w,w′) ∈ Z3κδ

n × Z3κδ
n satisfying constraints of Definition 7,

ϕ1(w,w
′,Add(w,w′)) = zϕ2(w,w

′,Add(w,w′)) (2)

In other words, we are looking for two small products π1, π2 of components of |w|, |w′|, |w1|, ..., |w2δ+1|
such that π1 = zπ2. For instance, in the toy example presented in Figure 2, it can be easily verified that
there exists two linear functions ϕ1 and ϕ2 satisfying (2), e.g.

t31w3 = x1t15w1

where t31 and t15 are respectively the 1st row of T3 and the 5th row of T1.

Let us examine why such relationships are damageable for security by considering the homomorphic
operator ⊕ (the same analysis can be done for ⊙) in the case ϑ = 2 (for sake of simplicity). This
operator consists of computing Add1,S1←(S1,S1)(c1, c

′
1) and Add2,S2←(S2,S2)(c2, c

′
2) (see notation of the proof

of Proposition 8). Assume that there are small polynomials satisfying (2) for both operators Add1 and
Add2, i.e.

ϕ11(c1, c
′
1,Add1(c1, c

′
1)) = x11ϕ12(c1, c

′
1,Add1(c1, c

′
1))

ϕ21(c2, c
′
2,Add2(c2, c

′
2)) = x21ϕ22(c2, c

′
2,Add2(c2, c

′
2))

As x = x11+x21, it provides the following polynomial relationship (leading to a linearization attack), i.e.

ϕ11(c1, c
′
1, ...)ϕ22(c2, c

′
2, ...) + ϕ12(c1, c

′
1, ...)ϕ21(c2, c

′
2, ...) = xϕ12(c1, c

′
1, ...)ϕ22(c2, c

′
2, ...)

The construction of operators Add was oriented in order to avoid such relationships, i.e. small polynomials
satisfying (2). Intuitively, the probability (where the coin toss is the choice of the kiu in the operator
Add) that such relationships exist is expected to exponentially decrease with δ. Before to experiment this
intuition, the following lemma implies that one can restrict our analysis to the case κ = 1.

Lemma 1. If there exists ϕ1, ϕ2 belonging to SPAdd satisfying (2) then there exists polynomials ϕ′1, ϕ
′
2

belonging to SPAdd ∩ SP1 satisfying (2) such that deg(ϕ′1) = deg(ϕ1) and deg(ϕ′2) = deg(ϕ2).

Proof. See Appendix I.

Experiments consisting of exhaustively searching ϕ1, ϕ2 with deg ϕ1 + deg ϕ2 = d and z = x1, z = x′1 or
z = x1 + x′1 have been done for small values of d = 1, 2, 3. Concretely, the values kiu and the vector w
were randomly generated (under the constraints of Definition 7 and proof of Proposition 7). To increase
the probability of collisions, we stated |w′| = |w|. Finally, the vectors |w1|,...,|w2δ+1| were generated12 as
specified in the proof of Proposition 7. Then, we were looking for two products π1 and π2 respectively
of d1 and d2 components of these vectors such that d1 + d2 = d and π1 = zπ2. For fixed values of d,
the probability (the toss coin being the choice of the indexes kiu) of the existence of such polynomials
ϕ1, ϕ2 seems to exponentially decrease with δ. The results of these experiments are presented in Figure 3.
Besides, in Appendix E, we propose an instantiation of Add (where the indexes kiu are fixed) and we prove

d \ δ 2 3 4 5 6 7 8 9 10 11 12 13

1 0.785 0.383 0.156 0.060 0.023 0.015 0.002 0.000 - - - -
2 1.000 0.812 0.593 0.299 0.103 0.043 0.012 0.006 0.000 - - -
3 1.00 1.00 1.00 0.99 0.95 0.88 0.70 0.50 0.38 0.23 0.17 0.01

Fig. 3.

Estimate of the probability that there exists polynomials ϕ1, ϕ2 with
deg ϕ1 + deg ϕ2 = d satisfying (2) in function of δ (with τ = 3 and
κ = 1). Each value of the table is the mean of 1000 experiments for
d = 1, 2 and 100 for d = 3.

(see Proposition 10) that there are not polynomials ϕ1, ϕ2 satisfying (2) such that deg ϕ1 +deg ϕ2 < δ/2.
By assuming that the mean case is not too far from the worst case, we propose the following conjecture.

Conjecture 2. It exists ϵ0 > 0 such that the probability (the coin toss being the choice of coefficients kiu in
the construction of Add) that there exists polynomials ϕ1, ϕ2 ∈ SPAdd satisfying (2) with deg ϕ1+deg ϕ2 =
O(δϵ0) exponentially decreases with δ.

In other words, provided δ = Θ(λ), there does not exist polynomials ϕ1, ϕ2 satisfying (2) having a number
of monomials in O

(
2λ

ϵ0
)
(see Remark 4). It implies that the attack (described above) is exponential.

Remark 5. In Appendix E, we propose an operator Add ensuring the non-existence of small polynomials
satisfying (2). It can be wondered why this operator is not adopted. The main reason is that randomness is
needed in the construction of Add in order to resist against linearization attacks in setting 2. Nevertheless,
we believe that it is possible to add randomness in the construction proposed in Appendix E and to keep
true proposition 10 at the same time.

Remark 6. Conjecture 2 assumes that the probability of the existence of small polynomials satisfying (2)
exponentially decreases. In fact, it would suffice that this probability is smaller than 1/2 and to have an
efficient procedure to test it (the existence of such polynomials).

Remark 7. We have investigated the problem of the existence of efficient linear attacks. However, the
non-existence of such attacks is not a necessary condition for the security of our scheme. Indeed, it would
suffice to show that the attacker is not able to efficiently find such attacks.

12 These experiments do not deal with the matrices (Tu)u=−1,...,2δ+1: they can be arbitrarily fixed to the identity matrix.

• Justification of the parameter ϑ. An obvious relationship (intrinsic to the operator Add) deals with
the vector w2δ (see proof of Proposition 7). Indeed, by construction

|w2δ| = (f1x1, f2, ..., fδ, f1x
′
1, ...)

Roughly speaking, the same coefficient f1 hides both x1 and x′1. It follows that there are two linear
functions ϕ1 and ϕ2 satisfying

x′1ϕ1(w2δ) = x1ϕ2(w2δ)

with ϕ1(w2δ) = t2δ,1w2δ and ϕ2(w2δ) = t2δ,δ+1w2δ. This could be a priori a source of failures for our
scheme. Let us see what happens when considering the ϑ operators Addz involved in ⊕ (the same analysis
can be done for⊙). Let e = (cz)z=1,...,ϑ and e′ = (c′z)z=1,...,ϑ be two encryptions (see notation of Proposition
8) of x and x′ and

(wz1, ..., wz,2δ+1)← Addz,Sz←(Sz ,Sz)(cz, c
′
z)

According to the above analysis, there are 2ϑ linear functions (ϕz1, ϕz2)z=1,...,ϑ such that

x11ϕ11(w1,2δ) = x′11ϕ12(w1,2δ)

...

xϑ1ϕϑ1(wϑ,2δ) = x′ϑ1ϕϑ2(wϑ,2δ)

We let the reader see how deriving this relationship to get an efficient linear attack for the case ϑ = O(1).
Let us see that linear attacks linked to these relationships become exponential provided ϑ = Θ(λϵ0>0)
(providing a justification for this parameter). To achieve this, we first enforce the adversarial power by
revealing the values x′z1 to the attacker, e.g. x′z1 = 1 for sake of simplicity. In this case, we get

x11 = ϕ12(w1,2δ)/ϕ11(w1,2δ)

...

xϑ1 = ϕϑ2(wϑ,2δ)/ϕϑ1(wϑ,2δ)

implying the following natural (and simplest) relationship (exploiting x = x11 + ...+ xϑ1),

x
ϑ∏

z=1

ϕz1(wz,2δ) =
θ∑

z=1

ϕz2(w1,2δ)
∏

t∈{1,...,ϑ}\{z}

ϕt1(wt,2δ)

This leads to a linear attack where the degree of the involved polynomials is ϑ. By using the main
argument of this paper, these polynomials are exponential-size provided δ = Θ(λ) and ϑ = Θ(λϵ0>0)
making this attack fail.

The analysis of this section can be investigated in an informal but more intuitive way. Indeed, given
an encryption c = (cz)z=1,...,ϑ, a subset of strictly less than ϑ vectors cz is statistically indistinguishable
from random ones. Thus, intuitively, attacks exploiting the intrinsic relationship presented above should
involve at least ϑ vectors leading to attacks dealing with polynomials of degree larger than ϑ (and thus
exponential provided δ = Θ(λ) and ϑ = Θ(λϵ0>0)).

Conjecture 3. Assuming δ = Θ(λ) and ϑ = Θ(λϵ0>0), there are efficient linearization attacks in setting 1
with negligible probability.

8.3 Linearization attacks in setting 2

In this section, the public operators Q are replaced by O2 which simulates the computation of any public
operator Q. Arbitrary vectors can be input in O2. To compute e1⊕ e2 or e1⊙ e2, m = ϑ2(2δ+2) vectors
(wu)u=1,...,m are output by operators Q, i.e. wu = QSu←(Su′ ,Su′′)

(wu′ , wu′′) where Su is an invertible
matrix chosen at random. Roughly speaking, the secret information contained in wu are the components
of Suwu. As the matrices (Su)i=1,...,ϑ2(2δ+1)−ϑ are randomly and independently chosen, Su′ ̸=uwu and Suwu

are independent: it ensures that an attacker does not get any advantage by substituting wu by wu′ ̸=u in
the computation of homomorphic operators. In particular, this prevents our scheme against the existence
of relevant operators Add inputting pairs of vectors (cz, cz′) belonging to the same encryption e, i.e.
e = (c1, ..., cϑ) (see the previous section to understand why this would be damageable for security).

Nevertheless, the adversary can substitute wu by an old vector w′u previously computed. This is
not relevant assuming pseudo-randomness of encryptions produced by homomorphic operators. Other
guarantees against such substitutions come from randomness in the choice of operators Q. Let us present
an attack (exponential in δ) highlighting this.

An attack. Let a ∈ Z3κδ
n be an arbitrary vector and let us assume that an attacker has guessed the set

LAdd = {u ∈ {1, ..., 2δ} : k1u ̸∈ {1, ..., δ}}

where the values (k1u)u=1,...,2δ are the ones used to build Add. For instance, LAdd = {2, 4} in the example
of Figure 2. We let the reader check that LAdd contains exactly δ elements. In step 2 of the construction
of Add, by substituting w1 with a each time u ∈ LAdd, it is ensured that the first component of |w2δ|
is equal to Ax1 where A is a constant depending only of a. It leads to an obvious efficient linearization
attack if the sets LAddz have been guessed for all the ϑ operators Addz involved in the operator ⊕. To
prevent the scheme against this attack, an attacker should not guess the sets (LAddz)z=1,...,ϑ with a non
negligible probability. This probability is equal to(

2δ
δ

)−ϑ
The attack fails13 provided ϑδ = Θ(λ).

Conjecture 4. Assuming δ = Θ(λ) and ϑ = Θ(λϵ0>0), the non-existence of efficient linearization attacks
in setting 1 ⇒ the non-existence of efficient linearization attacks in setting 2.

8.4 Linearization attacks in real-life setting

The only difference with the previous setting is that κ-symmetric operators Q are not anymore simulated
by O2. New linearization attacks could appear. For instance, the values kiu used in the construction of
Add could be polynomially recovered making efficient the linearization attack described in the previous
section. Moreover, one could imagine that new κ-symmetric operators Q can be polynomially derived
from public operators Q. Let us argue against this.

At this step of the paper, the authors assume that the reader should be convinced of the security of
the additively homomorphic encryption scheme. This scheme deals with the operator QS . The security of
this scheme suggests that this operator does not introduce intrinsic failures. In the FHE, each operator
QSu←(Su′ ,Su′′),...

can be associated to a system (Sys) of nonlinear equations (2-degree equations) where the
variables are the coefficients of the invertible matrices Su, Su′ , Su′′ . In our construction, it does not exist

13 Note that this attack is relevant for the construction proposed in Appendix E. Indeed, in this construction, LAdd is
deterministic and thus implicitly known by the attacker, i.e. LAdd = {2, 4, ..., 2δ}.

two different operators Q dealing with the same triplet of matrices Su, Su′ , Su′′ . Proposition 9 says that
the coefficients of Su, Su′ , Su′′ cannot be found, meaning that the system of equations derived from each
operator Q is quite intractable. Furthermore, because of the randomness introduced in Add, the operators
Q are randomly chosen. Thus, (Sys) is widely unknown. Moreover, many ways to add randomness in
each operator Q can be imagined. The simplest way consists of adding free (not involved in constraints)
components i = 3κδ + 1, ... and of choosing pi (see Section 5) at random: an arbitrary number (each pi
provides Θ(δ2) new variables) of new variables14 are introduced in the equations induced by each operator
Q. Another one is presented in detail in Appendix K (presented for the operator QS but the extension
to any operator Q is straightforward).

Conjecture 5. Assuming δ = Θ(λ) and ϑ = Θ(λϵ0>0), the non-existence of efficient linearization attacks
in setting 2 ⇒ the non-existence of efficient linearization attacks in the real-life setting.

8.5 Efficiency

The computation of an operator Q requires O(κ3δ3) multiplications in Zn. Moreover, ⊕ requires the appli-
cation of O(ϑδ) operators Q and O(ϑ2δ) for ⊙. Thus, by denoting by M(n) the runtime of multiplications
in Zn, the running time per addition gate is O(ϑκ3δ4M(n)) and the running time per multiplication gate
is O(ϑ2κ3δ4M(n)). The running time of decryption is O(ϑκτδ2M(n)). A ciphertext contains ϑ 3κδ-vectors
in Zn implying that the ratio cipher size/plaintext size is equal to 3κϑδ. In term of storage, the biggest
part of the public key is the operator Q containing O(κ3δ3) elements of Zn leading to a space complexity
in

O(|n|ϑ2κ3δ4)

Attacks (in particular attacks by linearization) should be better quantified in order to propose instanti-
ations of parameters.

9 Discussion and open questions

In this paper, a very simple FHE based on very simple tools was developed. Its security is linked to the
difficulty of solving nonlinear systems of equations. By using arguments of symmetry, it was shown that
the resolution of the system of equations (derived from pk) is intractable. However, it is not sufficient to
ensure security against attacks by linearization. The main obstacle to prove security consists of showing
that all linear attacks are exponential. We argue in this sense but further investigations should be done.
Moreover, improvements of our scheme deal with important open questions:

– κ-symmetry provides formal security guarantees but this parameter is not useful to protect the scheme
against attacks by linearization. Can this parameter be fixed to 1?

– the resolution of systems of nonlinear equations is NP-complete in Zn even if the factorization of n
is known. Thus, it can be wondered whether n can be chosen as a large prime? a small prime?

A positive answer to these questions would lead to an efficient FHE competitive with other classical (even
not homomorphic) cryptosystems.

References

1. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus switching for fully
homomorphic encryption over the integers. In EUROCRYPT, pages 446–464, 2012.

14 independent of other variables of pk

2. T. Elgamal. A public key cryptosystem and a signature sheme based on discrete logarithms. In IEEE transactions on
Information Theory, pages 31:469–472, 1985.

3. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
4. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In EUROCRYPT,

pages 465–482, 2012.
5. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes circuit. In CRYPTO, pages 850–867,

2012.
6. Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? IACR Cryp-

tology ePrint Archive, 2011:405, 2011.
7. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, pages 223–238,

1999.
8. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, pages 377–394, 2010.
9. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the integers.

In EUROCRYPT, pages 24–43, 2010.

A Proof of Proposition 1

The proof consists of building a polynomial algorithm of factorization A by using a solver B of Problem
1 (resp. problem 2) as subroutine. Let us denote by D the probability distribution of (y1, ..., yκ) induced
by Problem 1 (resp. problem 2). D is effective in the sense that D can be simulated in polynomial-time,
i.e. (y1, ..., yκ) can be generated at random according to D in polynomial-time given a (polynomial-time)
random generator of elements of Zn. Let us consider the following polynomial-time algorithm A:

Repeat

1. Let (y1, ..., yκ)
D← Ztκ

n

2. Compute sj = sj(y1, ..., yκ) for all j = 1, ...,m.
3. Compute Π = π(y1, ..., yκ)
4. Apply B on the inputs s1, ..., sm, i.e. ΠB ← B(s1, ..., sm)

until gcd(Π −ΠB, n) ̸= 1

output gcd(Π −ΠB, n)

By construction, this algorithm is correct. Let us show that it terminates in polynomial time. First,
each step of A can be computed in polynomial-time implying that A is polynomial if the number of steps
of A is polynomial (or equivalently, if the probability to terminate at each iteration is non negligible).
As the product π is assumed to be non κ-symmetric, it can be assumed (without loss of generality) that
π(y1, y2, ..., yκ) ̸= π(y2, y1, ..., yκ). Let us consider the function h : Zt×κ

n → Zt×κ
n such that (y′1, ..., y

′
κ) =

h(y1, ..., yκ) is defined by

– y′l = yl for l > 2
– y′1i ≡ y1i mod p and y′2i ≡ y2i mod p for all i = 1, ..., t
– y′1i ≡ y2i mod q and y′2i ≡ y1i mod q for all i = 1, ..., t.

Because of the symmetry of constraints, one easily checks that if (y1, ..., yκ) satisfies constraints of Problem
1 (resp. Problem 2) then (y′1, ..., y

′
κ) also satisfies these constraints15. It implies that (y1, ..., yκ) and

(y′1, ..., y
′
κ) = h(y1, ..., yκ) have the same probability under D, i.e. PD(y1, ..., yκ) = PD(y

′
1, ..., y

′
κ). Let

Π ′ = π(y′1, ..., y
′
κ). As the functions sj are κ-symmetric polynomials, we get16 sj(y

′
1, ..., y

′
κ) = sj(y1, ..., yκ)

for all j = 1, ...,m. As the variables yli involved
17 in π are i.i.d. according to the uniform distribution

over Zn, the probability that Π ≡ Π ′ mod q is negligible (because it was assumed that π(y1, y2, ..., yκ) ̸=
π(y2, y1, ..., yκ)) and the probability that ΠB = Π is equal to the probability that ΠB = Π ′. As B
is assumed to solve Problem 1 (resp. Problem 2), ΠB = Π with non negligible probability. It implies
that ΠB = Π ′ with non negligible probability. As Π ≡ Π ′ mod p and Π ̸≡ Π ′ mod q, we have p =
gcd(n,Π −Π ′). It implies that A terminates (when ΠB = Π ′) in polynomial-time.

�

B Proof of Proposition 4

First of all, by arguing similarly to proposition 2, one shows that each component is an efficiently valuable
polynomial defined over the tuples y1, ..., yκ. Now, let us focus on κ-symmetry. There is an implicit
canonical function between the κ tuples yl and the invertible matrices (Sz)z=1,...,ϑ and e. The subscript
y1, ..., yκ is added to precise the tuples which are considered: for instance, ey1,...,yκ = (cz,y1,...,yκ)z=1,...,ϑ

15 Because of these constraints are κ-symmetric.
16 It is not true in general, i.e. for arbitrary κ-symmetric functions sj .
17 According to Problem 1 (resp. Problem 2), i ∈ IF .

is the encryption related to the tuples y1, ..., yκ. Let us show that cz,y1,...,yκ is a κ-symmetric function
defined over the tuples yl. By definition

cz,y1,...,yκ = S−1z,y1,...,yκvz,y1,...,yκ

with vz,y1,...,yκ = (bz11xz1, ...). Let σ be an arbitrary permutation of {1, ..., κ}. Then, we define the
permutation β over {1, ..., κτδ} as follows

β(i) =

(
σ

(⌈
i

τδ

⌉)
− 1

)
τδ + (i− 1 mod τδ) + 1

Let Tz = [tzij] be the (invertible) matrix defined by tzi = szβ(i)
18 and wz,y1,...,yκ = β(vz,y1,...,yκ)

19. By
arguing similarly to the proof of Proposition 2,

cz,y1,...,yκ = S−1z,y1,...,yκvz,y1,...,yκ = T−1z,y1,...,yκwz,y1,...,yκ

Clearly Tz,y1,...,yκ = Sz,yσ(1),...,yσ(κ)
and wz,y1,...,yκ = vz,yσ(1),...,yσ(κ)

implying that

cz,y1,...,yκ = S−1z,y1,...,yκvz,y1,...,yκ = T−1z,y1,...,yκwz,y1,...,yκ = S−1z,yσ(1),...,yσ(κ)
vz,yσ(1),...,yσ(κ)

= cz,yσ(1),...,yσ(κ)

�

C Proof of Proposition 9

The tuples yskl are generated according to a probability distribution statistically indistinguishable with the
probability distribution considered in Problem 2 (by choosing the coefficients of Su at random, Su is not
invertible with negligible probability): the sets I×j (see notation of Problem 2) contain the δ components

of the basic vectors bvzlt randomly generated in Encrypt1 to encrypt xv and the sets I+j are the sets
{xv1l,, xvϑl}(v,l)∈{1,...,m}×{l=1,...,κ} satisfying xv1l ++ xvϑl = xv.

Proposition 4 and Proposition 6 ensure that all public values can be polynomially computed only
knowing κ-symmetric efficiently valuable polynomials defined over the tuple yskl . Thus, assuming hardness
of factorization, Proposition 1 ensures that it is not possible to recover any non κ-symmetric product
defined over the coefficients suij .

Let γ ∈ N∗ such that γ is not a multiple of κ and ϕ be an element of SPγ ∪ SPl. Let w∗1 = ... =
w∗r = (1, 0, 0, ...). Rϕ allows to efficiently compute π = ϕ(w∗1, ..., w

∗
r) which is a product of values s.,.,1.

As γ is not a multiple of κ, π is a non κ-symmetric product (efficiently valuable) of values belonging to
{sui1|u = 1, ..., ϑ2(2δ + 2) − ϑ; i = 1, ..., 3κδ}. Thus, according to Proposition 1, π cannot be recovered
implying that Rϕ cannot be recovered.

�

D Proof of Proposition 6

First of all, by arguing similarly to proposition 2, one shows that each monomial coefficient is an efficiently
valuable polynomial defined over the tuples y1, ..., yκ. Now, let us focus on κ-symmetry. We consider
notation and conventions adopted in the proof of Proposition 4. Let xux

′
v be a monomial. We denote by

αi (resp. ai) the coefficient of this monomial in pi (resp. qi). Let a = (a1, ..., aκ) and α = (α1, ..., ακ). By
definition of the operator Q,

ay1,...,yκ = S−1y1,...,yκαy1,...,yκ

18 tzi and szi refer to the ith row of respectively T and S
19 The components of v are permuted according to β.

Given a permutation σ of {1, ..., κ}, β is the permutation of {1, ..., κm} derived from σ as done in the
proof of Proposition 4 (where τδ is replaced by m), and T is the matrix where the rows of S are permuted
with β. It follows that

ay1,...,yκ = S−1y1,...,yκαy1,...,yκ = T−1y1,...,yκβ(αy1,...,yκ)

Clearly T = Syσ(1),...,yσ(κ)
and because of the constraints (u′i+lm,j = u′ij+lm, u′′i+lm,j = u′′ij+lm, αi+lm = αi)

introduced in the definition of κ-symmetric operators Q,

β(αy1,...,yκ) = αyσ(1),...,yσ(κ)

it follows that

ay1,...,yκ = S−1y1,...,yκαy1,...,yκ = S−1yσ(1),...,yσ(κ)
αyσ(1),...,yσ(κ)

= ayσ(1),...,yσ(κ)

�

E An instantiation of Add

Here, we propose a deterministic construction of the operator Add. We let the reader check that it is an
instantiation of the construction proposed in the proof of Proposition 7.

1. Just replace by b = a11 ⋆ a′12, c = a12 ⋆ a′11 and e = a13 ⋆ a′13 by respectively b = a11 × a′12,
c = a12 × a′11 and e = a13 × a′13.

2. Let u ∈ {2, ..., δ}. we define zu = (zui)i=1,...,3δ by

zui =



x1e
⌊u/2⌋
1 b1...b⌊u/2⌋+(u mod 2) if i = 1

e1...eu if i = 2, ..., δ

x′1e
⌊u/2⌋
1 c1...c⌊u/2⌋+(u mod 2) if i = δ + 1

e1....eu if i = δ + 1, ..., 3δ

Let u ∈ {δ + 1, ..., 2δ}. we define zu = (zui)i=1,...,3δ by

zui =



x1e
⌊u/2⌋
1 b1...b⌊u/2⌋+(u mod 2) if i = 1

e1...eδe
u−δ
i if i = 2, ..., δ

x′1e
⌊u/2⌋
1 c1...c⌊u/2⌋+(u mod 2) if i = δ + 1

e1....eδe1...eu−δ if i = δ + 1, ..., 3δ

Each component of zu is a product of u components of |w1|T1 and as b1...bδ = c1...cδ = e1...eδ = 1, we
have

z2δ = (eδ1x1, e
δ
2, ..., e

δ
δ, e

δ
1x
′
1, 1,, 1)

By using κ-symmetric operators, we build the sequence w2, ..., w2δ

wu = QTu←(Tu−1,T1)(wu−1, w1)

such that for all u = 2, ..., 2δ, the 3δ first components of |wu| are equal to zu: the other ones being
deduced by using κ-symmetry.

3. Just replace h = f ⋆ e, i = g ⋆ e, j = g ⋆ e by respectively h = f× e, i = g× e, j = g× e.

Proposition 10. Let us adopt notation of Section 8.2. If there exists two ϕ1 and ϕ2 belonging to
SPAdd such that for all w,w′ satisfying constraints of Definition 4 we have zϕ1(w,w

′,Add(w,w′)) =
ϕ2(w,w

′,Add(w,w′)) then
deg(ϕ1) + deg(ϕ2) ≥ δ/2

Proof. Because of Lemma 1, we fix κ = 1. Given a set E ⊆ Zn and I ⊆ N, EI denotes the set defined by

EI =

{∏
x∈E

xix | ix ∈ Z s.t.
∑
x∈E
|ix| ∈ I

}
According to notation of Definition 7, w is defined by |w| = (a11x1,a12,a13). Let us denote the vector

a = (a11,a12,a13) by a = (a1, ..., a3δ). Moreover, we state |w′| = |w| implying that b = c.
By definition, for any ϕ ∈ SPAdd, ϕ(w,w

′,Add(w,w′)) is equal to the product of deg(ϕ) components
of the |wu| for u = 0, ..., 2δ + 1 (with |w0| = |w| = |w′|). Let us list and categorize these components
(Because of κ-symmetry, we only consider the 3δ first components of each |wu|):

– Some components belong to the set

X = {a1x1, 2eδ+1
1 x1, b1x1, b1e1x1, b1e1b2x1,, b1...bδe

δ
1x1 = eδ1x1}

– The other components belong to the set

Y = {a2,, a3δ, b2,, bδ, e1, ..., eδ,
t∏

i=1

ei, e
u
j | t = 1, ..., δ; j = 2, ..., δ;u = 2, ..., δ + 1}

According to basic vectors constraints, a1 = (a2...aδ)
−1 and b1 = (b2....bδ)

−1. Consequently,

X =

{
x1

a2...aδ
, 2eδ1x1,

e
⌊u/2⌋
1 x1

b⌊u/2⌋+(u mod 2)+1...bδ
| u = 1, ..., 2δ

}
Let Ω = {a2, ..., aδ, b2, ..., bδ, e1}. Clearly, each component of X belongs to Ω{δ−1,δ}x1. Let us consider
two products (i.e. polynomials) ϕ1 = π1π

′
1 and ϕ2 = π2π

′
2 of elements of X ∪ Z such that

ϕ1/ϕ2 = x1(= z)

where π1, π2 are products of respectively m1,m2 elements of X and π′1, π
′
2 are products of respectively

n1, n2 elements of Y with m1,m2, n1, n2 positive integers s.t. k = m1 +m2 ≤ δ. Note that

deg ϕ1 + deg ϕ2 = m1 +m2 + n1 + n2

The constraint π1π
′
1/π2π

′
2 = x1 implies that m1 = m2 + 1. It follows that π1 ∈ xm1

1 Ωk1≥m1(δ−1) and

π2 ∈ xm1−1
1 Ωk2≤(m1−1)δ implying that

π′2/π
′
1 ∈ Ωk0≥k1−k2≥δ−k (3)

Recall π′1 and π′2 are products of respectively n1 and n2 of elements of Y . Thus, without loss of generality, it
can be assumed that π′1/π

′
2 ∈ Yn1+n2 . Given t ∈ N∗, we can easily show that π ∈ Ωt ⇒ π ̸∈ Yk<t/2 (because

the only possible simplifications are bi/ai = ai+δ for any i = 1, ..., δ). It implies that n1+n2 ≥ k0/2 ≥ δ−k
2

implying that

n1 + n2 +m1 +m2 ≥ k +
δ − k

2
≥ δ/2

implying that deg ϕ1 + deg ϕ2 ≥ δ/2.
�

F A weak version of Proposition 3

Proposition 11. Let λ be a security parameter, (pk, sk)← KeyGen(λ) and γ ∈ N∗ such that γ is not a
multiple of δ (|γ| polynomial in λ). Let ϕ ∈ SPγ and Rϕ be an effective representation of ϕ. By assuming
the hardness of factorization, recovering Rϕ only given QS is difficult.

Proof. Let x1, ..., xδ be randomly chosen in Zn and αδ−1, ..., α0 be the monomial coefficients of the poly-
nomial p(x) = (x− x1)...(x− xδ), i.e. p(x) = xδ + αδ−1x

δ−1 + ...+ α0. The aim of this proof consists of
building QS according to a distribution statistically indistinguishable from QGen(K ← KeyGen(λ)) such
that the knowledge of Rϕ ⇒ the knowledge of a non-symmetric product of x1, ..., xδ which is difficult
assuming Proposition 1. This following construction is polynomial and can be decomposed in 2 steps.

Step 1. This step consists of generating a matrix M at random an in polynomial time such that x1, ..., xδ
are eigenvalues ofM . Let us start by considering the case δ = 2, i.e. p(x) = x2+α1x+α0. The characteristic
polynomial of M is r(x) = (a11 − x)(a22 − x)− a12a21. The values aij can be chosen in polynomial time
such that r = p, i.e. a12a21 = α0 and a11 + a22 = −α1. Indeed, it suffices to choose at random a12 and
a11 in Zn and then to compute a21 = α0a

−1
12 and a22 = −(α1 + a11). For δ > 2, it suffices to randomly

choose aij for j > 1 and to adjust the coefficients ai1 to ensure r = p by solving a linear system.

Let s1, ..., sδ be the eigenvectors of M associated to the eigenvalues x1, ..., xδ such that s11 = x1, ..., sδ1 = xδ.
Let S be the matrix such that its ith row is equal to si. Clearly S is distributed as specified in KeyGen0, i.e. at
random according to the uniform distribution among invertible matrices (the probability that S is not invertible
is negligible). In the following step, we build QS only given M (and without knowing S).

Step 2. For sake of simplicity, let us detail the construction for δ = 2. The extension to the case δ > 2 is
straightforward and will be explained later. The challenge consists of building QS = (q1, q2) only knowing
M (in particular, without knowing S). By writing the polynomials q1 and q2 as:

- q1(w,w
′) = a1x1x

′
1 + a2(x1x

′
2 + x′1x2) + a3x2x

′
2

- q2(w,w
′) = b1x1x

′
1 + b2(x1x

′
2 + x′1x2) + b3x2x

′
2

and by definition of these polynomials, for all w,w′ ∈ Zδ
n and i ∈ {1, 2}, we have

si(q1(w,w
′), q2(w,w

′)) = (siw).(siw
′)

⇔(si1a1 + si2b1)x1x
′
1 + (si1a2 + si2b2)(x1x

′
2 + x′1x2) + (si1a3 + si2b3)x2x

′
2

= s2i1x1x
′
1 + si1si2(x1x

′
2 + x′1x2) + s2i2x2x

′
2

giving the following equalities 
a1si1 + b1si2 = s2i1
a2si1 + b2si2 = si1si2
a3si1 + b3si2 = s2i2

where i ∈ {1, 2}. First, we can remark that the vectors s1 and s2 are eigenvectors of the matrix[
a1, b1
a2, b2

]
with associated eigenvalues λ1 = s11 and λ2 = s21. Thus, this matrix is equal to M , i.e. a1 = m11, a2 =
m21, b1 = m21, b2 = m22. Let us see how to recover a3 and b3 in order to finish the construction of q1 and
q2. It is achieved by noting that the vectors s1 and s2 are also eigenvectors of the matrix

A =

[
a2, b2
a3, b3

]

For any x, y ∈ Zn s1 and s2 are eigenvectors of Txy = xI + yM . To get the values (a3, b3), it suffices to
adjust x, y ∈ Zn in order that the first row of Txy = xI + yM is equal to (a2, b2). Let T = [tij] be this
matrix. Thus, T and A have the same eigenvectors with the same associated eigenvalues. It follows that

A = T

implying that a3 = t21 and b3 = t22 finishing the construction of the polynomials q1, q2 only given M .
More generally, for δ > 2, we proceed in the same way by noticing that the matrices I,M,M2, ...,M δ−1

are linearly independent because of Cayley-Hamilton theorem (the characteristic polynomial and the
minimal polynomial have the same roots implying that the degree of the minimal polynomial is at least
δ with non negligible probability).

To conclude. Assuming p is chosen at random, M is a matrix chosen at random such that its eigenvalues
are equal to the roots of p. S is defined as (but not built) the matrix whose the rows are the eigenvectors
of M with si1 = xi. We have shown that QS can be built in polynomial-time only given M . Let w∗1 = ... =
w∗r = (1, 0, 0, ...). Rϕ allows to efficiently compute π = ϕ(w∗1, ..., w

∗
r) which is a non-symmetric product

of roots of p. Consequently, according to Proposition 1, the existence of such an attacker is not possible
assuming the hardness of factorization.

�

G κ-symmetric representations of polynomials

Let t = Θ(λ), a = (a1, ..., at) and b = (b1, ..., bt) be two tuples of Zt
n and ϕ : Zt

n → Zn the polynomial
defined by

ϕ(x1, ..., xt) = (a1x1 + ...+ atxt)(b1x1 + ...+ btxt)

Them = t(t+1)/2 monomial coefficientsmij of ϕ are 2-symmetric values defined over (a, b), i.e.mii = aibi
and mij,i≤j = aibj + ajbi. Thus, the expanded representation of ϕ, i.e.

Rϕ(x) =
∑

(i,j)∈{1,...,t}2,i≤j

mijxixj

is a 2-symmetric representation of ϕ.
Here, we wonder whether there is a more efficient (in term of storage for instance) representation Rϕ of

ϕ only using 2-symmetric values. Clearly, Rϕ allows to polynomially compute all the monomial coefficients
mij (for instancem11 = ϕ(1, 0, 0, ...)). Thus, the existence of such a representation Rϕ implies the existence
of a set E containing m′ < m 2-symmetric values (defined over (a, b)) allowing to polynomially compute
(without knowing the factorization of n) all the monomial coefficients mij . We did not manage to solve
this challenge consisting of finding such a set E (which is easier than finding a more efficient representation
Rϕ only using 2-symmetric values). For instance, in the case t = 4, the challenge consists of finding a set
E′ of strictly less than 10 2-symmetric values allowing to polynomially recover the 10 values mij,i≤j , i.e.
a1b1, a2b2, a1b2 + a2b1, a3b3, a1b3 + a3b1,...
Empirical searches do not allow us to succeed this challenge. Authors are convinced that such sets E′ do
not exist while they are unable to formally prove it.

H Pre-processing (randomization) vectors input in Add

Let ρ ∈ N be a parameter indexed by λ. Let T and T ′ be two given invertible matrices and let w be a
vector such that |w|T = (a1x1,a2,a3) (see notation of Definition 7. In order to simplify notation, we fix
κ = 1). The operator Rand computes the vector RandT ′←T (w) defined by

|RandT ′←T (w)|T ′ = (aρ,1x1,aρ,2,aρ,3)

where the basic vectors aji are defined by the following recursive sequence a11 = a1,a12 = a2,a13 = a3

and for j = 1...ρ 
aj1 = aj−1,1 ⋆ aj−1,3
aj2 = aj−1,2 ⋆ aj−1,3
aj3 = aj−1,3 ⋆ aj−1,3

Let T2, ..., Tρ−1 be ρ−2 invertible matrices chosen at random and Tρ = T ′. Similarly to the operator Add,
the vector RandT ′←T (w) = wρ can be computed by a recursive sequence where w1 = w and

wj = QTj←(Tj−1,Tj−1)(wj−1, wj−1)

where |wj |Tj = (aj1x1,aj2,aj3).

Analysis. The number of possible operator Rand is exponential in ρ, i.e. Ω(2ρ). Thus, one can assume
that the vectors aρi and the vectors a1i are pseudo-independent provided ρ = Θ(λ). Clearly, Rand does
not provide new linearization attacks provided the vectors a1,a2,a3 are randomly and independently
generated. Each vector input in Add can be randomized with Rand. This can be done in order to remove
possible interactions between operators Add of pk.

I Proof of Lemma 1

Let ϕ ∈ SPAdd, i.e. ϕ(w−1, ..., w2δ+1) =
∏δ

r=1 turirwur and Λ : SPAdd → SPAdd ∩ SP1 such that ϕ′ = Λ(ϕ)

is defined by ϕ′(w−1, w0, ..., w2δ+1) =
∏δ

r=1 tur,ir mod 3δwur . Clearly ϕ and ϕ′ have the same degree.

Let us assume that there exists two polynomials ϕ1, ϕ2 satisfying (2) and let us consider two vectors
w and w′ such that |w|T = (a1x1,a2,a3,a1x1,a2,a3...) and |w|T ′ = (a′1y1,a

′
2,a
′
3,a
′
1y1,a

′
2,a
′
3...). As

all the operator Q involved in Add are κ-symmetric, ϕ1(w,w
′,Add(w,w′)) = ϕ′1(w,w

′,Add(w,w′)) and
ϕ2(w,w

′,Add(w,w′)) = ϕ′2(w,w
′,Add(w,w′)) if ϕ′1 = Λ(ϕ1) and ϕ′2 = Λ(ϕ2). It implies that

ϕ′1(w,w
′,Add(w,w′)) = z′ϕ′2(w,w

′,Add(w,w′))

with z′ being a linear combination of x1, y1. As ϕ′1 and ϕ′2 only deals with the 3δ first components of |w|T
and |w′|T ′ , the previous relation remains true for all vectors w and w′ satisfying constraints of Definition
7 implying that ϕ′1 and ϕ′2 satisfy (2).

�

J Toy implementation of the additive homomorphic scheme

In this section, we provide an example of the implementation of the homomorphic scheme for δ = 2.

Given S :=

[
s1,1 s1,2

s2,1 s2,2

]
with ∆ = s11s22 − s12s21 ∈ Z∗n

QS(x, y) = ∆−1
[
(s22s

2
11 − s12s

2
21)x1y1 + (s22s11s12 − s12s21s22)(x1y2 + x2y1) + (s22s

2
12 − s12s

2
22)x2y2

(s11s
2
21 − s21s

2
11)x1y1 + (s11s21s22 − s21s11s12)(x1y2 + x2y1) + (s11s

2
22 − s21s

2
12)x2y2

]

Numerical application.

– n = 7 ∗ 5 = 35

– g = 2

– S =

[
3 8
2 4

]
, S−1 =

[
34 2
18 8

]

– ΦS

(
x1
x2

)
= 6x21 + 28x1x2 + 32x22

– e1 =

(
13
9

)
← Encrypt(x1 = −3)

– e2 =

(
11
1

)
← Encrypt(x2 = 4)

– e3 =

(
17
22

)
← Encrypt(x3 = −2)

– QS

((
x1
x2

)
,

(
y1
y2

))
= S−1

(
9x1y1 + 24(x1y2 + x2y1) + 29x2y2
4x1y1 + 8(x1y2 + x2y1) + 16x2y2

)

=

(
34x1y1 + 27(x1y2 + x2y1) + 3x2y2
19x1y1 + 6(x1y2 + x2y1) + 20x2y2

)

Verification of the homomorphic operator:

– e1 ⊕ e2 = QS(e1, e2) =

(
3
34

)

– e2 ⊕ e3 = QS(e2, e3) =

(
12
17

)

– e1 ⊕ e3 = QS(e1, e3) =

(
32
4

)

– Decrypt(e1 ⊕ e2) = DLg=2

(
ΦS

(
3
34

)
= 2

)
= 1 = x1 + x2

– Decrypt(e2 ⊕ e3) = DLg=2

(
ΦS

(
12
17

)
= 4

)
= 2 = x2 + x3

– Decrypt(e1 ⊕ e3) = DLg=2

(
ΦS

(
32
4

)
= 23

)
= −5 = x1 + x3

K Randomization of operators Q

In this section, we present ways to randomize operators Q. For sake of simplicity, we focus on the additive
homomorphic encryption scheme (the extension to the FHE is straightforward). Let δ′ > 0 and S be an

invertible matrix of Z(δ+δ′)×(δ+δ′)
n .

K.1 First method

To generate public encryptions ev ∈ Zδ+δ′
n of xv, δ values ri ∈ Z∗n such that r1, ..., rδ = gxv are randomly

chosen and ev = S−1 (r1, ..., rδ, 0, ..., 0) (ΦS(w) =
∏δ

i=1 siw).
Let E be the set of all linear combination of the vectors sδ+1, ..., sδ+δ′ . By construction, for any

u ∈ E, uev = 0. Let F be the set of (2-degree) polynomials z defined by z(w,w′) = uw× r′w′+ rw×u′w′

where u, u′ ∈ E and r, r′ ∈ Zδ+δ′
n are arbitrary vectors. By construction, for any z ∈ F and any public

encryptions ev, ev′ ,
z(ev, ev′) = 0

Let QS = (q1, ..., qδ+δ′) ← Qgen(S) and z1, ..., zδ+δ′ be randomly chosen in F . By construction, it is
ensured that the operator Qrand

S = (q1 + z1, ..., qδ+δ′ + zδ+δ′) satisfies for any encryptions e, e′

Qrand
S (e, e′) = QS(e, e

′)

K.2 Second Method

To generate public encryptions ev ∈ Zδ+δ′
n of xv, one picks up at random δ + δ′ values ri ∈ Z∗n such that

r1, ..., rδ = gxv , ev = S−1(r1, ..., rδ, rδ+1, ..., rδ+δ′) (ΦS(w) =
∏δ

i=1 siw).
Let pi : Zδ+δ′

n × Zδ+δ′
n → Zn be δ′ 2-degree polynomials chosen at random. The operator QS :

Zδ+δ′
n × Zδ+δ′

n → Zδ+δ′
n is defined by

QS(w
′, w′′) =

q1(w
′, w′′)

. . .
qδ+δ′(w

′, w′′)

 = S−1



s1w
′ × s1w

′′

. . .
sδw

′ × sδw
′′

p1(w
′, w′′)

. . .
pδ′(w

′, w′′)



