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Abstract. We propose a general framework to develop fully homomorphic encryption schemes (FHE) without
using the Gentry’s technique. Initially, a private-key cryptosystem is built over Z,, (n being an RSA modulus).
An encryption of x € Z,, is a randomly chosen vector e such that ®(e) = x where @ is a secret multivariate
polynomial. This private-key cryptosystem is not homomorphic in the sense that the vector sum is not a
homomorphic operator. Non-linear homomorphic operators are then developed. The security relies on the
difficulty of solving systems of non-linear equations (which is a AN'P-complete problem). While the security of
our scheme has not been reduced to a provably hard instance of this problem, security is globally investigated.

1 Introduction

The theoretical problem of constructing a fully homomorphic encryption scheme (FHE) supporting arbi-
trary functions f, was only recently solved by the breakthrough work of Gentry [3]. More recently, further
fully homomorphic schemes were presented [8],[9],[1],[4] following Gentry’s framework. The underlying
tool behind all these schemes is the use of Euclidean lattices, which have previously proved powerful for
devising many cryptographic primitives. A central aspect of Gentry’s fully homomorphic scheme (and
the subsequent schemes) is the ciphertext refreshing Recrypt operation. Even if many improvements have
been made, this operation remains very costly [6], [5].

In this paper, we propose a general framework to develop FHE without using the Gentry’s technique.
We first propose a very simple private-key cryptosystem where a ciphertext is a vector e whose the
components are in Z,, n being an RSA modulus chosen at random. Given a secret multivariate polynomial
@, an encryption of z € Z, is a vector e chosen at random such that! @(e) = z. In order to resist to a
CPA attacker, the number of monomials of @ should not be polynomial (otherwise the cryptosystem can
be broken by solving a polynomial-size linear system). In order to get polynomial-time encryptions and
decryptions, @ should be written in a compact form, e.g. a factored or semi-factored form. By construction,
the generic cryptosystem described above is not homomorphic in the sense that the vector sum is not
a homomorphic operator. It is a sine qua none condition to overcome Gentry’s machinery. Indeed, as a
ciphertext e is a vector, it is always possible to write it as a linear combination of other known ciphertexts.
Thus, if the vector sum is a homomorphic operator, the cryptosystem is not secure at all. So, in order to
use the vector sum as a homomorphic operator, noise should be injected in encryptions as it is done in all
existing FHE. To overcome this, we propose to develop ad-hoc non-linear homomorphic operators. The
public key contains these operators and public encryptions while the secret key contains the multivariate
polynomial &.

OUR CONTRIBUTION. A very simple additively homomorphic cryptosystem is developed in Section 3. Its
performance is low compared to existing additively homomorphic cryptosystems (El Gamal [2], Paillier
[7], etc...). Even if improvements leading to an efficient scheme are proposed, the main objective of this

Lor &(e) = f(x) where f : E C Zn, — f(E) is a one-to-one function such that f~* is efficient.



section is to highlight the underlying ideas involved in the construction and in the security analysis of
our FHE.

In this paper, the security of cryptosystems is related to the difficulty of solving nonlinear equations
in Z,,. Unfortunately, we did not reduce the whole security of these cryptosystems to a provably hard
instance of this problem. However, several partial security results (see Proposition 3 and Proposition 9)
are proven and extensively discussed in order to globally investigate the security of our schemes. These
results provide a formal framework for the cryptanalysis by restricting the set of possible attacks. In our
opinion, the main interest of this paper is to provide new directions and new material for the development
of efficient FHE.

2 Security assumptions

Let n = pg be a n-bit RSA-modulus and k,t be positive integers. Throughout this paper, all the com-
putations are done in Z,. Let y1,y2 be randomly chosen in Z,. It is well-known that recovering? y; only
given S = y; + yo or P = yyyo is difficult assuming the hardness of factorization. In this section, we
propose to extend this.

Definition 1. A multivariate polynomial s : (Z%)H — Zy, 1s said to be:

— efficiently valuable if it can be computed in polynomial-time (with respect to n) without knowing the
factorization of n.
— K-symmetric if for any yi, ..., yx € Zt and for any permutation o of {1,...,k},

S(yb ) yli) = S(ya(l)v ) yo‘(fi))

Let m be a non k-symmetric product of values y;;. The two following problems consist of recovering m
only given k-symmetric functions s;(y1, ..., yx) where the tuples y; are chosen at random under symmetric
additive and multiplicative constraints. These two problems only differ with respect to their constraints.

Problem 1. Let Ir C I be a non-empty set, (a;)icp\1, be an arbitrary family of public values belonging to
Zt and (y1)i=1...x = (Yi1, - Y1) be & tuples of Zt, chosen at random such that for alli € I\ Ip,

K

Hyli =G

=1
Let w(y1,...,yx) be an arbitrary efficiently valuable non k-symmetric product 7 of values belonging to
{yli ’ l= 17"'55 ;ZGIF}

Problem: recovering 7(y1,...,yx) only given s1(y1,..c;Yx), e, Sm(Y1, ..., Yx) Where s1,..., s, are public effi-
ciently valuable k-symmetric polynomials (m polynomial in 7).

Problem 2. Let I, ..., I} and Ifr, ...,I; be r+ 1’ public disjoint subsets of I = {1,...,t} such that

T

p=0\{UJrrulJr | #0

=1 =1

2 41, y2 are roots of the polynomial 3* — Sy + P.



Let k tuples y; = (yi1, ..., Y1) € Zfl chosen at random such that
Vi=1.,r V=15 []w=a
i€l
Vi=1,..,7" Vl=1,..,k Z Yii = a}
ierf
where (a;)j=1,. » and (a;-) j=1,... are arbitrary public values of respectively Z;, and Z,

Let m(y1,...,yx) be an arbitrary efficiently valuable non k-symmetric product ™ of values belonging to
{yi | l=1,..,k ;i€ Ip}.

Problem: recovering 7(y1,...,yx) only given s1(y1,..c;Yx), - Sm (Y1, ---, Yx) Where s1, ..., s, are public effi-
ciently valuable k-symmetric polynomials (m polynomial in 7).

Proposition 1. Problem 1 and Problem 2 are difficult assuming the hardness of factorization.

Proof. The proof looks like the famous Rabin’s proof showing that extracting square roots is equivalent
to factoring. See Appendix A for the detail of the proof.
O

Remark 1. Proposition 1 can be generalized by considering efficiently valuable non k-symmetric polyno-
mials 7 (instead of products) in Problem 1 and Problem 2 ensuring that 7 is not trivial, i.e. there exists a
permutation o of {1,...,x} such that the probability to get m(y1, ..., yx) = T(Yos(1), -+ Yo(x)) 15 negligible.

3 An additive homomorphic cryptosystem

Let 6 € N* and n be an RSA modulus. All the computations of this section will be done in Z,,.

The set of all square m-by-m matrices over Z, is denoted by Z]"*".

wy
Throughout this paper, a vector w=| .. can be also denoted by w or (wy, ..., wy).
wy

Given two vectors w and w', the inner product of these vectors is denoted by ww'.

The number of monomials of degree d defined over v variables is equal to <d +Z B 1)

3.1 A basic private-key cryptosystem

We first define a very simple private-key cryptosystem where the plaintext space is E = {0, ..., M}. Let
S € 78%9 be a secret invertible matrix chosen at random and g be an arbitrarily element of Z of order
larger than M. Basically, to encrypt z, it suffices to randomly choose a vector r = (71, ...,75) such that
r1...rs = ¢* and to hide it with S~!, i.e. e = S~!r. To decrypt e, it suffices to compute d = Se and then
to compute the discrete logarithm of the product of the components of d, i.e. z = DLy(d;...ds). Note that
the plaintext space F should be ”small” because there does not exist efficient algorithm DL. At this step,
the cryptosystem is not homomorphic in the sense that the (vector) sum is not a homomorphic operator.

Definition 2. Let A be a security parameter and E = {0, ,..., M} be a polynomial-size set of integers E
(E will be the plaintext set). The functions KeyGen0, Encrypt0, Decrypt0 are defined as follows:



1. KeyGenO(\). Let 1,6 be positive integers indexed by A. Let n be a public n-bit RSA modulus chosen at
random and g < Z;, such that its order is larger than M. Let S be an invertible matriz of ng‘s chosen
at random. The i row of S is denoted by s; and g : Zg — Z, denotes the §-degree multivariate
polynomial defined by Ps(w) = [l;cqr,. 5 siw-

K ={g,5}
2. EncryptO(K,z € E). Choose at random a vector r = (r1,...,75) such that H?Zl ri = g* and output
e=S"1r

3. DecryptO(K,e € 7). Output
z = DL, (#5(e))

3.2 Operator Qg

Let S be the invertible matrix of Z2*% output by KeyGen0()). The function Qg : Z x Z2 — 72 is defined
by
q1(w', w') sjw’ x sqw”
Os(w',w")= | ... =51
qs(w', w") ssw' x ssw”

The function QGen inputs S and outputs the expanded representation of the polynomials ¢y, ..., gs, i.e. all the
monomial coefficients of the polynomials ;.

An implementation of this operator for § = 2 is presented in Appendix J. Concretely, by denoting
a=Sw,b=Sw" and ¢ = SQg(w',w"), we have ¢; = a;b; for all i = 1, ..., (see Figure 1).

wy w1y Wi wy
wh wh whwh
/ " ’ 17
Qs | S7H| W s R = | S
Wy Wy WaWy
wh wh wEwE
w wg wewe

Tllustration of the operator Qg for § = 6. Clearly, Qg is an
Fig. 1. additively homomorphic operator of the private-key cryptosys-
tem.

Proposition 2. The computation of Qs = (q1, ..., qs) + QGen(S) requires O(6*) modular multiplications
and the computation of w + Qg(w',w") requires O(5%) modular multiplications. Each monomial coeffi-
cient of Qg is an efficiently valuable §-symmetric polynomial defined over the § tuples y; = (Sij)j=1,...5-

Proof. (Sketch) To establish complexity results, it suffices to notice that the number of monomials of the
polynomials p; and ¢; is O(6?). Each monomial coefficient can be written as a ratio of two polynomials
defined over the tuples y;. It is well-known that any function defined over a field (here Z, and Z,) can be
written as a polynomial. It follows that each monomial coefficient can be written as a polynomial defined
over the tuples y;. By noticing that the computation of the polynomials ¢; does not require the knowledge
of the factorization of n, each monomial coefficient is efficiently valuable.

Let o be an arbitrary permutation of {1,...,d}. Let T' be the matrix such that its ith row is equal to
the o(i)!" row of S, i.e. t; = Sq(i)- 1t implies that the columns of T~ are a o-permutation of the columns



of S71, i.e. the j™ column of T~ is equal to the o(j)*" column of S~1. It follows that for all w € Z¢,
S~lw = T~ 'o(w) ensuring that QGen(S) = QGen(T). This proves that each monomial coefficient is a
k-symmetric function defined over the tuples y;.

O

Corollary 1. According to Proposition 1, it is not possible to recover any non §-symmetric product of
values s;; only given Qg assuming the hardness of factorization.
3.3 The additive homomorphic scheme

To get an additively homomorphic public-key cryptosystem, it suffices to publish m = ©()\) encryptions e,
of public values x, € E and the operator Qg < QGen(S). For instance z, = 2" for all v =1, ..., |logy M |
and z, =0 for all v = |logy M| +1,....;m

Definition 3. Let A be security parameter.

KeyGen(\). Let K = {S, g} < KeyGenO()\), (zy)v=1...m be m values® of E, e, + EncryptO(K,x,) and
Qs < QGen(S)
sk = {GPS} ; pk = {QS’ (xvv ev)vzl,...,m}

— Operator ®. Given two encryptions e and €’

e®e = Qg(e,e)

— Encrypt(pk,x € E). Choose a subset of m/2 public encryptions (ev,)i=1,..m/2 at random such that
T =Ty + oo+ Ty, and output
m/2

=D
=1

— Decrypt(sk,e). Exactly follows Decrypt0.

It is straightforward to check correctness of this scheme. A toy implementation of this scheme is presented
in Appendix J.

3.4 Security analysis.
Given v € N*, SP7 refers to the set of multi-variate polynomials ¢ : (Z;Z)T — Z,, defined by

v

¢(w17 ey wT‘) = H Sip Wy,

t=1

where r € N*, 4, € {1,...,0} and vy € {1,...,r}. A representation Ry of ¢ is said to be effective if its
storage is polynomial and if Ry allows to evaluate ¢ in polynomial time. For instance, provided 6 = ©(\),
the factored representation of @g is effective while its expanded representation is not (the number of
monomials is exponential).

3 2y =2"forallv=1,.., |log, M| and 2, = 0 otherwise.



Proposition 3. Let \ be a security parameter, (pk, sk) < KeyGen(\) and v € N* such that -y is a not
multiple of § (|y| polynomial in X). Let ¢ € SP” and Ry be an effective representation of ¢. By assuming
the hardness of factorization, recovering Ry only given pk is difficult.

Proof. Let us denote by (Tvi)(u,z‘)e{l,...,m}x{l,...,é} the random values chosen in the public encryptions
(€p)v=1....m, 1-€. (Ty1, ..y Tys) = Sey. Let y5F, ...,ygk be the § (secret) tuples defined by

ysz = (Si’ Tvi)v:l,...,m

These tuples yfk are generated according to a probability distribution statistically indistinguishable from
the probability distribution considered in Problem 1 (by choosing the coefficient of S at random, the
probability that S is not invertible is negligible) where the values s;; are not involved in multiplicative
constraints and Hle ryi = g*v. Moreover, each public value of pk is an efficiently valuable d-symmetric
polynomial defined over the tuples (y*, ..., ygk ) (see Proposition 2 for the monomial coefficients of Qg and
it is straightforward to check it for each component of e, by arguing similarly to the proof of proposition
2).

Consequently, according to Proposition 1, it is not possible to polynomially recover any non J-
symmetric product 7 of values s;; assuming the hardness of the factorization.

Let ¢ be an element of SP7, i.e. ¢(wi,...,w,) = [[}[_ $i,we,. Let wi = ... = w} = (1,0,0,...) and
T = ¢(wj,...,w;)). Because v is not a multiple of §, 7 is a non d-symmetric (efficiently valuable) product
of values of {s;i1|i = 1,...,6}. Ry allows to efficiently compute . Thus, according to Proposition 1, 7
cannot be recovered implying that R, cannot be recovered.

O

As &g € SP‘S, this result does not prove that &g cannot be recovered. Worse, it is easy to see that @g
can be easily recovered by solving a linear system* provided § = O(1). However, provided § = ©()), this
attack does not work anymore because the number of monomials of #5 becomes exponential, i.e. £2(47).
Besides, Proposition 3 implies that it is not possible to recover any factored form of @g. It implies that
it is difficult to recover the expanded representation or any effective factored representation of &@g.

But it may be possible to polynomially recover other effective representations Rgg of @g, e.g. semi-
factored forms of @g. Proposition 3 can be generalized by showing that it is difficult to recover any
non §-symmetric values defined over the tuples yfk (by extending Proposition 1 as explained by Remark
1). Consequently, to be polynomially recovered and evaluated, @g should be written with a J-symmetric
effective representation® Rg,i.e. Rgg should be expressed by a polynomial number of §-symmetric values
defined over the tuples yfk. We conjecture that such effective §-symmetric representations do not exist
(see Appendix G for a toy example highlighting this). By extending this analysis to any ¢ € SP¥, we
propose the following conjecture.

Conjecture 1. Assume that 6 = O(N\) and let ¢ € UV>0 SPY. By assuming the hardness of factorization,
recovering any effective representation of ¢ is difficult only given pk.

Unfortunately, Conjecture 1 is not sufficient to prove semantic security while we do see how semantic
security could be broken without the knowledge of polynomials of SP. Roughly speaking, this situation
looks like to RSA security analysis where it is shown that recovering the decryption polynomial is difficult
assuming the hardness of factorization while the security (one-wayness) is not formally reduced to this
assumption.

4 @g(ey) = x, (for a number of encryptions e, larger than the number of monomials of ®g) where the variables are the
monomial coefficients of @5

5 The expanded representation of &g is d-symmetric but ineffective and conversely, the factored representation of $s is
effective but not §-symmetric.



A weak version of Proposition 3 is proposed in Appendix F. In this proof, Qg is built only given a
randomly chosen é-degree polynomial p having 62 distinct roots over Z,. It is shown that the rows of S
are the eigenvectors of a matrix M which can be directly derived from Qg. Thus, it is no more difficult to
recover S given Qg when knowing the factorization of n. In Appendix K, we propose ways to randomize
the operator Qg. An interesting question arising in this setting consists of wondering whether n could
be chosen as a large/small prime. This would lead to a scheme (very) competitive with respect to other
existing additively homomorphic schemes.

4 A basic private-key cryptosystem

Let § € N* and n be an RSA modulus. In the following of the paper, all the computations will be done in
/.

— A wector B is said to be basic if B is a -vector, i.e. (by,...,bs) € Z and if

0
[Joi=1
1=1

Throughout this paper, basic vectors will be denoted with (small) capital letters.
— Given a basic vector B and a € Ly, Ba denotes the d-vector (bya, by, ..., bs).

— Let wy,...,w; be t wvectors of size m, (wi,...,w;) denotes the concatenation of these vectors, i.e.
(W1, ooy W) = (WL, ey Wipny weey Wiy eeey W) -

— Given a vector w and a matriz S, |w|s = Sw. Note that |w|s could be denoted by |w| when S is
implicitly known.

First, we define a private-key cryptosystem where the plaintext space is Z, and where the secret key
contains ¥ randomly chosen invertible matrices S, of Z£70%*70 For k = 7 = 1, a valid encryption e of
is composed of ¥ vectors ci, ..., cy defined by

C, = S;l (Byx,)

where B, are random basic vectors and x, random values satisfying x1 + ... + 3y = x. The decryption
consists of evaluating a d-degree multivariate polynomial @, i.e. ¢(e) = x. This polynomial can be written
as a sum of ¥ polynomials, each one being factorizable as a product of § linear functions. The role of the
parameter ¥ will be explained in Section 8. We let the reader see why the scheme cannot be semantically
secure with ¢ = 1 (an attacker could easily decide if an encryption encrypts 0 or not). The parameter 7
is not indexed by the security parameter . It is introduced in order to provide randomness useful for the
construction of homomorphic operators. In Section 6, we propose a construction for 7 = 3. Contrarily to
the previous cryptosystem, the FHE developed in next sections is not naturally symmetric. To overcome
this, the parameter s is artificially introduced in order to exploit Proposition 1 in the security analysis.

Definition 4. Let A\ be a security parameter and 7 € N*. The functions KeyGenl, Encryptl, Decryptl are
defined as follows:

1. KeyGenl(A, 7). Let n, K, 08,9 be positive integers indexed by A. Let n be a n-bit RSA modulus chosen at
random and (S;).=1,..9 be ¥ invertible matrices of ZETOXETO chosen at random. The it row of S, is

denoted by s,;. For anyl € {1,...,k}, Oy : (Z'ff‘s)e — Zy, denotes the §-degree multivariate polynomial
defined by:
9

@l(wl,...,wﬁ) = Z H Sz Wy

z=1 iG[l



with I = {(1 = 1)76 +1,..., (L — 1)76 + 6}
K= {(Sz)zzl,...,ﬁ}

2. Encryptl(K,z € Zy). Choose at random UkT basic vectors (Buit)(z16)e{1,....0}x{1,...x}x{1,..,r} and Uk
values (T:1) (2 )e(1,...0yx{1,..x} belonging to Zy, such that for alll =1,..., Kk

9
D ra==
z=1
Let (c;),=1,..9 be the ¥ vectors defined by:

def
Sc. (: |CZ|SZ) = ’ Bz1,1%21,Bz12,-.,Bz 1,7 H Bz2,1722,B2z22...,Bz 2,5

) 7’ B2k, 1%z k>Bzk,2s s Bz s,r D

Output

e=(c1y...,cy)

3. Decryptl(K,e € (ZZT‘S)ﬁ. Choose 1 € {1, ...,k} arbitrarily and output

z = P(e)

Proposition 4. Lete < Encryptl(K,x) and (let)(z,l,t)e{l,...,ﬁ}x{1,...m}><{1,...,7'} be the random basic vectors
and (mzl)(Zyl)e{lwﬂg}x{lw,ﬁ} be the random values used by Encryptl to generate e. Let (y;)=1,... » be K tuples
defined by

Y = (Szis Balts T21) (z,t4)€ {1, 0} X Lyt } x {(I= 1)76+1,...175)

FEach component of e is an efficiently valuable k-symmetric polynomial defined over the tuples (y1, ..., Ys)-

Proof. See Appendix B.

A short informal security analysis. Let (ey)y=1,...m be m encryptions of (zy)y=1,.. m known by the CPA
attacker. Let us consider the linear system ®1(e,) = x, for all v = 1,...,m where the variables are the
monomial coefficients of @;. As @ . are also solutions of this system, its resolution provides a linear
combination

o = 041@1 + ...+ Cv,.g@,,;

with o + ... + o, = 1 which breaks semantic security. However, provided 6 = ©()), @ has an exponential
number of monomials making this brute force attack fail.

Nevertheless, one could hope to recover a compact representation of @, e.g. a factored or semi-factored
representation. However, to achieve this, one should solve a nonlinear multivariate equation system which
is a difficult problem in general. This first analysis suggests that ¢ cannot be recovered by a CPA attacker.
Proposition 1 will be used in the security analysis of our FHE to formalize this analysis.



5 k-symmetric operators Q

This section can be seen as a generalization of Section 3.2. Let m € N* and S be an arbitrary invertible
matrix of Z™*™ where the i*" row is denoted by s;. Let p; : Z™ x Z™ — Z,, be m arbitrary polynomials.
The function Qg .. p., : Zp' X Zy' — Z;' is defined by

q1 (’U)/, w”) p1(w’, ’LU”)
1y def 1
Qs7p17"~7pm(w , W ) - “e = S

(Jm(w,,wn) pm(w/’wll)

The multivariate polynomials ¢y, ..., g, are linear combinations of the polynomials p1, ..., p,,. The function
QGen inputs S and the polynomials p1, ..., p,, and outputs the expanded representation of the polynomials
q1,---, Qm, i.€. all the monomial coefficients of the polynomials g;.

Proposition 5. Let p; : Z" X Z' — Zy, be m arbitrary 2-degree polynomials. The computation of
OS5 p1.pm < QGen(S,p1,...,pm) requires O(m*) modular multiplications and the computation of w <
Q5 pr...pm (W', ") requires O(m3) modular multiplications.

Proof. (Sketch.) The number of monomials of each 2-degree polynomial p; is O(m?).
]

Definition 5. (k-symmetric operators Q). Let k € N*. Let S,S5’,S” be three invertible matrices of
ZEmXEm - The it row of S, S, S" is respectively denoted by s;, s, . Let (pi)ie1... xm : ZE™ x ZE™ — 7™
be km 2-degree multivariate polynomials defined by

Qg
/ " / / 1 "
pi(w',w") = E Sy W X Sy W
i (%)
7j=1

where a; € N*, wi;,uls € {1,...,km}. The operator Qsp,. . p,., (also denoted by Qs (5.5 py,....pem) S

said to be k-symmetric with respect to S,S",S" if for alli € {1,....m}, j € {1l,....a;} and l € {1, ...k}

Qjplm = Q4
/ _ /
Wiy j = Uij T Im
" o
Ui g = Uiy T Im

Let Qg (8/,5") p1,...pem D€ @ K-symmetric operator and w <= Qg (s,57) py,...pem (W'; w"). Each component
of |w|g is a 2-degree polynomial function of the components of |w’|g and |w”|g~. Higher degree polynomials
p; could be considered but it would lead to very costly operators Q: the running time of such operators
Q is exponential with the degree of the polynomials p;. Roughly speaking, information hidden in |w’|g/
and |w”|g» can be manipulated by operators Q. k-symmetry provides privacy properties (see Proposition
9) for the matrices S, S’, S”: they result from Proposition 1 combined with the following proposition.

Proposition 6. Let S,5", 8" be three invertible matrices of Zy™*"™ and Qg (s,5") py,....pum b€ @M arbi-

trary k-symmetric operator with respect to S,S',S". Let (y1)i=1,..x be k tuples defined by
Y = (siv 827 sgl)i:(l—l)m—i—l,...,lm

where s, 8}, 8] are the i™ row of respectively S,5',S". Each monomial coefficient of Qg. (s s7)

is an efficiently valuable k-symmetric polynomial defined over the tuples yi, ..., Y-

yP1ssPem

Proof. See Appendix D.

Remark 2. An operator Q is said to be k-symmetric if it can be generated by efficiently valuable «-
symmetric polynomials of the tuples yi, ..., yx but it does not mean that () is itself a k-symmetric function.



6 Homomorphic operators

Throughout this section, T = 3.

6.1 Overview

Let e = (¢z)s=1,..9 and € = (c}),=1,.. ¢ be two encryptions of x and z’. We wish to elaborate a public
algorithm which computes a valid encryption €’ = (¢7),=1,_y of z + 2’ or zz’ only using k-symmetric
operators Q. Intuitively, operators Q allow to manipulate components of |c,|s, and |c}|s,. For concrete-
ness, 2-degree polynomials can be computed by these operators. By combining these operators, (almost)
arbitrary polynomials can be computed. Thanks to the constraints introduced in Encryptl, it is possible to
define the components of ||, as polynomials of the components of |c1]g,, ..., |co|s, and |c]|s;, ..., |c)y|s,: it
follows that it is possible to implement homomorphic operators by only applying (k-symmetric) operators
Q. In the next section, we propose a construction using O(926) k-symmetric operators Q.

6.2 Product of basic vectors

In this section, we propose to define simple operators over basic vectors.

Definition 6. (Products of basic vectors). Let 6,t € N*. Let B = (by,...,bs5) and B = (b}, ...,b5) be two
basic vectors.

— B X B’ denotes the basic vector
B x B’ = (b1b, ..., bsby)

— Let 0,0 be two permutations of {1,...,0}, B, B’ denotes the following basic vector

B %4 o/ B = (bg(l)b;,(l), ceny bg((;)bla/((;))

B! denotes the basic vector

B! = (b, ..., b%)

Let I ={1,....,t} x {1,...,6} and (uij); jyer be a family of indices of {1,...,6} such that
Vke{1,...,6}, #{(i,j) € Ilujj =k} =t
B*(u11:u5) denotes the basic vector
BX(u11%15) = (byyy ebyyy s ooy Dugse-Duys)

The permutations 0,0’ and the indices u;; will be chosen at random for each operator and they will be
omitted in notation, i.e. Bk, B’ and B 1) will be denoted by B x B’ and B*.

Example. B = (bl, bz, bg) and B*3 = (blblbg, bgbgbg, blbgbg).



6.3 Implementation

The operator Add is the key tool in the construction of homomorphic operators.

Definition 7. (Operator Add). Let k € N*. Let T,T',T" be three invertible matrices of Z3<0*31°
and w,w' € Zf’f‘s be two vectors such that |w|pr = (A1171,A12,A13, -, A1 Tk, Ax2, Ax3) and |w'|p =
(Alllx/17A/127A/137"'7A;1x;7A:{27A;3) where (xl')x;)l:l,...,ﬂ belong to Zn and (Ali7A;i)(l,i)E{l,...,K}X{1,...,3} are
basic vectors. The operator Addpn (1 1v) : Zf’fé X Z%’“s — Z?L"‘s is defined by

|Addr o (w,w')|pr = (Hy(@y 4 21), 11,31, 0 He(2x + 20), Le, Ji)

where E; (—Alg*A;3, Fi < E;", < FyxEj, G < E

*d l*% and 1;,J; < G~ E; for any l € {1,...,k}.

We propose to implement Add by using only x-symmetric operators Q. Many constructions can be imag-
ined. The security of our scheme is strongly related to this construction. For security considerations
detailed in Section 8, we propose a non-deterministic construction. Appendix E provides an implemen-
tation (where the operators Q are determined) of this construction and an implementation dealing with
toy parameters is presented in Figure 2.

Proposition 7. Operators Add can be implemented with 26 + 1 k-symmetric operators Q.

Proof. Our construction only deals with k-symmetric operators Q. It follows that the case x > 1 can be
straightforwardly deduced from the case k = 1. For these reasons, we fix kK = 1. For any basic vector z,
the i*" component of z is denoted by z;. Let T1, ..., Tas be invertible matrices of Z;Q’L‘SX?"S chosen at random.

1. Let B <= Ayp % A'y, C <= Ajp A7) and E < A3 A3 There exists a x-symmetric operator Qp, (7,77
allowing to compute the vector wi = Qp (7,1, (w, w') defined by

5

goun

]wﬂTI = (B:L’l, C.Ctll, E)

2. For sake of simplicity, the i'® component of |w;|r, is denoted by ;. By using the fact that B, C are
basic vectors, there is an exponential number of ways to choose (see Appendix E to see such a choice)
the values (kiu)(iu)e{1,....35) x{1,....26} belonging to {1,...,30} such that

25
(H O[klu) = (FfUl,flxi,PQw--vPé,G)
u=1 i=1,...,35

Ay

where F < E*, G < E*?°| py. ..., ps are arbitrary values and f; is the first component of F. Let us

choose such values k;, at random. By using k-symmetric operators, we compute the recursive sequence
Wy, ..., wog defined by

Wy, = QTM—(Tu_l,Tl)(wu—la wl) fOl" u = 2, ceny 2(5

such that |wy|r, = (IT;2 @k, ),—y 35 €nsuring that
‘w25|T25 == (th flx/17 P25 -5 P55 G)

3. Let H<~ F*E, 14~ G*E, J < G*E. There exists a x-symmetric operator Qpr(1,51)
compute the vector wasy1 = Qrre(1y5,1),... (W25, w1) defined by

allowing to

gooe

|wast1]|rr = (H(z1 + 2),1,7)

Output wasiq.



INPUTS:
! !
121 1T
T2 7“&
!
_ T3 ! _ T
w="T"1 cw' =T 71| 3
T4 T4
rs T8
T6 TG
INTERMEDIATE VECTORS:
o1 = rirsT)
Q2 = 7“27”21
! !
—1 a3 = T3"r1xy
w1 = Tl /
Q4 = T4To
as = 7“57"3
Qg = TGTé
1525
6566
. 3455
By choosing [kiu] = 1261 the vectors we, ws, w4 are defined by
5555
6666
a1 Q1os0 arasazas = fia;
Qs Qs e agasaeas = f2
!
1| asas 1| asasas _1 | asauasas = fiz]
we =Ty ;ws =1j ;wg =Ty _
Qs Qa0 Qu20600 = p2
(6716 %:1 505005 50505005 = (g1
QeQp (675187518 T3] Qe = g2
OuTPUT:
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(a1asaza5 + azuasas)as A
e T Yo T:Xe 1Yo i1 1 7'67"(/3
3,3
_q A505050506 =1 Ts5Ts
ws = T =T 3’3
Qe e (L5 T6Te6
!’
Q505050505 rirg
’
[eT{e 110 Ti10 7:1 07 ’I"gT65

Fig. 2. An implementation of Add for the toy parameters 6 = 2, 7 = 3 and k = 1. Recall that constraints on vectors input
in Add ensure that rire = riry = r3ry = riry = rsre = rirg = 1.
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Remark 3. The construction of Add is probabilistic: randomness coming from the randomness of operators
* and from the choice of the values k;, and the matrices T,,. This randomness is introduced to limit
malicious uses of the operators Q (see Section 8.3 for deeper explanations).

Proposition 8. The operator @ can be implemented with 9 operators Add and the operator ® can be
implemented with 9% k-symmetric operators Q and ¥( — 1) operators Add.

Proof. By arguing similarly to the proof of Proposition 7, our construction only requires to be defined
for k = 1. Let e = (¢5),=1,..9 and € = (c,),=1,... 9 be two encryptions of x and 2’ such that:

_ = ,
|CZ|S (Az1$z Az?aAz?))
— |clls. = (A%2%, Ay, ALy)

/
21

where (A, A
can compute

)i=1,.~~,3 are basic vectors. Let us start by the operator &. By using ¥ operators Add,, one

w, =Add, 5. (s..5.)(cz, L)

Clearly, (w).=1,..9 is a valid encryption of = + 2’. We state

e®d e = (wz)zzl,...,ﬁ

For sake of simplicity, the operator ® is detailed for 1 = 2 (the extension to the general case is straight-
forward). Let (T%.) (s .1eq1,2)2 be 4 invertible matrices of 7.39%3% chosen at random. First, let us build 4
vectors (W,.r)(z,1eq1,2)2 defined by

/ / / /
[wWazr |1, = (Az1 % AL @220, Asa % Alig, Az x Alig)
Each vector w,,, can be obtained by applying a k-symmetric operator Q, i.e.
/
Wy = QTZZ/&(Szst/)v---(CZ’ Cz/)

By using 2 operators Add; and Addz, one can compute wy = Add; g, (1, 150) (W11, wa2) and wy =
Addy g, (75,151) (W12, w21). Clearly, (w1, ws) is a valid encryption of zz’. We state,

e®e = (wy,ws)
n

Given a key K <+ KeyGenl(\,3), OpGen(K) outputs &, ® by invoking QGen in order to output the
92(26 +2) k-symmetric operators Q involved in the homomorphic operators. The function OpGen requires
to compute O(92£%6°) multiplications in Z,, and its storage is O(|n|9?k35%).

7 The FHE

The private-key encryption scheme of Section 4 can be transformed in an FHE by publishing the homo-
morphic operators @, ® and m encryptions (ey)i=1,.. m of public values z, € Z,: for instance z, = 2"
mod n.

Definition 8. Let A be a security parameter.



— KeyGen(X). Let K = {(S.),=1,.9} < KeyGenl(\,3), {®,0} < OpGen(K) and for all v =1,...,m,
ey < Encryptl(K, ).

sk = {(SZ)Z:Lm,’&} ; pk = {@7 ®7 (61))’1):1,...7m}
— Evaluate(C,eq,...,en). To evaluate C(eq, ..., em), it suffices to compute each gate with the public ho-
momorphic operators ® and ©.

— Encrypt(pk,x € Zy,). It consists of evaluating a secret circuit C' over the encryptions (€y)y=1,.. m such
that v = C(x1, ..., Ty ), i.e. output Evaluate(C, e, ..., en)

— Decrypt(sk,e). Ezxactly follows Decryptl.

OpGen(K) outputs 92(26+2) k-symmetric operators Q. These operators deal with the ¢ matrices S, ..., Sy
of sk and ¥?(26 + 2) — 20 other intermediate invertible matrices denoted by Sy1, ..., S92 (254+2)—9- In the
following of the paper, we will consider the (secret) tuples ylsk defined by

Sk:(

Y Suis Buzlty Tvzl) (uv,2,i,8) € {10402 (26—1)} X {Lpoeosm} X {1, 0} X {3(1—1)541,... 318} x {1,007}

where s,; denotes the i*? row of S, and where By, Tys are respectively the random basic vectors and the
random values used by Encryptl to generate the public encryptions (ey)y=1,. m. According to Proposition
4 and Proposition 6, all the public values of pk are k-symmetric polynomials of these tuples. By extending
definitions of Section 4.1, we define the following sets of polynomials:

— SP refers to the set of multi-variate polynomials ¢ : (Zi’“‘;)r — Z,, defined by

g
d(wr, ..., wy) = H Sugis W
t=1

where v, 7 € N*, i, € {1,...,3k0}, ug € {1,...,9%(26 +2) — 9} and ks € {1,...,7}.
— LSP: the set of polynomial-size linear combinations of polynomials of SP.
— SP;: the subset of SP such that i € {3(I —1)d + 1, ..., 310}

— SP7: the set of polynomials of SP of degree equal to 7, i.e.
SP” = {¢ € SP|deg(¢) = 7}

Remark 4. The number of monomials of any ¢ € SP7 is (2 (5‘;7?) Note that this number is exponential
provided v = O(A>?) and § = O()).

Security naturally deals with these polynomials because they allow to compute polynomials over the
components of |wy|s,. A representation Ry of ¢ € LSP is said to be effective if its storage is polynomial
and if it allows to evaluate ¢ in polynomial-time. The following result is a direct application of Proposition
1, 4 and 6.

Proposition 9. Let | € {1,...,k} and v € N* such that v is not a multiple of k (|y| polynomial in X).
Let ¢ € SP; U SP” be a polynomial and Ry be an effective representation of ¢. By assuming the hardness
of factorization, recovering Ry only given pk is difficult.



Proof. (Sketch. See Appendiz C for a complete detailed proof.) According to Proposition 4 and Proposition
6, pk contains only k-symmetric efficiently valuable polynomials evaluated over the tuples yi¥, ...,y
These tuples are chosen at random according to the probability distribution considered in Problem 2.
Consequently, according to Proposition 1, a polynomial attacker cannot recover any non k-symmetric
product ﬂ(yfk, ...,y,ﬁk). To conclude, it suffices to notice that an effective representation R, of ¢ allows
to polynomially compute a non k-symmetric product W(yfk, e yzk)

0

Corollary 2. By assuming the hardness of factorization, the secret matrices (Su)u:17_”7192(25+2)_19 and
the polynomials (P1)i=1,...,. cannot be polynomially recovered only given pk.

A natural arising question consists of wondering whether polynomials ¢ € SP* with ¢ > 0 can
be recovered. Let us assume x = O(AY) and § = O(\). In this case, ¢ has an exponential number
of monomials (see Remark 4). Thus, its expanded form cannot be polynomially output. Proposition 9
ensures that a polynomial attacker cannot factor ¢ with small polynomials. Consequently, a polynomial
attacker cannot recover the expanded representation or any effective factored representation of any ¢ € SP
only given pk assuming the hardness of factorization.

A representation Ry of ¢ € LSP is said to be k-symmetric if it can be generated by (an arbitrary number
of ) efficiently valuable k-symmetric polynomials of y{k, e y,‘zk For instance, the expanded representation
of the polynomial @1 +...+®, is k-symmetric®. Proposition 9 can be extended to show that it is difficult to
recover non k-symmetric effective representations (by extending Proposition 1 as explained by Remark 1).
However, it is not sufficient for ensuring security. Indeed, the expanded representation of the polynomial
P =P+ ...+ P, or @ = P...9, is k-symmetric and its knowledge would break semantic security.
Nevertheless, assuming 6 = ©@(\), the number of monomials of ¢ is exponential implying that its expanded
representation is not effective. Besides, according to Proposition 9, it is difficult to find any of its natural
effective representations, i.e. sum of products of small polynomials of SP, provided § = ©(\) and k =
O(A*Y). To be polynomially recovered and evaluated, @ should be represented by a k-symmetric effective
representation Rg, i.e. Rg should be expressed by a polynomial number of x-symmetric values defined
over the tuples ylsk. We conjecture that such a representation does not exist (see Appendix H for a toy
example highlighting this).

A polynomial attacker can only hope to recover polynomials ¢ having x-symmetric effective representations.
The construction of the FHE should ensure that such polynomials could not be used to break semantic
security. In particular, polynomials having a k-symmetric effective expanded representation could be
recovered with attacks by linearization (consisting of solving linear systems where the variables are the
monomial coefficients). Intuitively, randomness introduced in Add should prevent our scheme against such
attacks. This is extensively studied in the next section.

8 Attacks by linearization.

The public key pk can be naturally regarded as a system (Sys) of nonlinear equations (partially unknown
because of the randomness over the choice of each operator Q belonging to @ or ®) where each tuple
;¥ is a solution. Thanks to s-symmetry, the previous section tends to show that the resolution of (Sys)
is quite intractable. The attack by linearization proposed for the additively homomorphic cryptosystem
can be straightforwardly transposed for the FHE. It consists of solving the linear system

¢(€U) = Ty

5 Each monomial coefficient is a x-symmetric polynomial of y§¥, ..., yF.



where (ey)y=1,..m are encryptions of (z,)y=1,..m and ¢ is a multivariate polynomial” of degree & such
that its monomial coefficients are the variables of the linear system. Its resolution provides a linear
combination® ¢* of the decryption polynomials (@1)i=1,... x- However, provided § = ©()), this attack
fails because the number of monomials of ¢ is exponential. Because of the introduction of homomorphic
operators, efficient attacks by linearization could appear. In this section, we give a general framework to
analyze the security of the FHE with respect to these attacks.

8.1 General framework

By considering t encryptions eq, ..., e; of known values 1, ..., z;, an attacker can build r vectors wy, ..., wy,
for instance, by using public k-symmetric operators Q in an arbitrary way. Let us imagine that there are
m (m being polynomial) multivariate polynomials ¢1, ..., ¢, satisfying

2101(w1, ooy wy) + oo + 2O (w1, ..., wy) =0 (1)

where z1, ..., 2z, are functions of the encrypted values x1,...,z;. For each choice of known encryptions
e1,...,e;, we get a linear equation where the variables are the monomial coefficients of ¢;. By iterating
this process on new encryptions, we get a linear system which can be solved in polynomial time if the
number of monomials of each ¢; is polynomial. The knowledge of a solution (¢7, ..., ¢F,) satisfying this
system? can be used to break semantic security. Indeed, given a new encryption e of an unknown value
x9, the attacker builds the vectors (w9, ..., wy) by considering the encryptions €9, es..., e;. The knowledge
of the polynomials ¢7, ..., ¢y, provides relationships between z7, xs..., x¢. Fortunately, this attack does not
work if it exists 4o s.t. the expanded representation of ¢ is exponential-size'?. In next sections, we will
consider the two following oracles:

— the oracle O; inputs two (valid) encryptions ej, es belonging to pk or previously output by itself
and outputs e; @ es, e; ® e and all the intermediate vectors computed during the computation of
homomorphic operators (vectors output by operators Q).

— let Q1,...,Qp2(2542) be the ¥?(26+42) k-symmetric operators of pk. The oracle Oy inputs i € {1, ...,92(25+
2)} and two vectors w, w’ belonging to Z3% and outputs Q;(w,w’).

Before considering the real-life setting, linearization attacks will be analyzed in the two following relaxed
settings:

— Setting 1. The public operators Q are replaced by accesses to O
— Setting 2. The public operators O are replaced by accesses to Oqy

8.2 Linearization attacks in setting 1

In this section, the operators Q of pk are replaced by accesses to Q1. An attacker can recursively invoke
O; over encryptions e, ...,e, of pk and/or encryptions previously output by O;. The main tool of
our construction is the operator Add. At first, let us study it separately!' from the whole construction
by adopting the notation of Definition 7 and Proposition 7. Two vectors w and w’ are input and 2§ + 1

7 having the same monomials than the decryption polynomials &;.

8 The monomial coefficients depend on the secret values r.;, 7,; used in the encryptions e,.

¥ Note that each monomial coefficient of ¢} is a k-symmetric value defined over the tuples y§¥, ..., y*.

10 meaning that the number of monomials is exponential.

1 vectors input in each operator Add can be randomized without introducing interesting polynomials relations. It enforces
the idea that the public operators Add of pk can be studied separately and that vectors output by Add are pseudo-random
(under constraints linked to their definition). An example of such randomization is provided in Appendix H.



intermediate vectors wy, ..., was 11 are computed during the execution of Add(w, w’), each one being output

by a k-symmetric operator Q7 « ..., Qry ..., Qrre ., i.e.
w1 = Q1) (w,w')
Wy, = QTue(Tu,l,Tl)(wu—lvwl) fOI‘ u = 2, ceey 2(5

Was 11 = Qe (1ys,1y) (W25, W1)

According to the definition of setting 1, it is assumed that Add output all these vectors (and not only

wasr), ie.
(wlv ety w26+1) A Add(wa w/)

In order to homogenize notation, we rename T, T', T" to respectively T_1, Ty, Tos+1. Let us consider the
subset SPagq C SP of polynomials ¢ : (Zg’f‘s)%+3 — Z, defined by

5
¢(w—17 wo, .-y w2(5+1) = H turirwur
r=1

with v > 0, v, € {~1,...,28 + 1}, i, € {1,..,3x6}, and t,; is the i" row of T,. By definition,
¢(w,w', Add(w,w")) is a product of components of |w|r, |w'|7r, |wi|r,...,|wasi1|1s,, (denoted by |wl,
|w'|, |wi]...,|wass1] in the following of this section). Because of multiplicative constraints introduced in
our scheme, the knowledge of polynomials of SPaqq could intuitively be relevant to break security. Pri-
marily, we wonder whether it is possible to recover a linear combination z € co({z;, 2 | i = 1,...,k}) (e.g.
z =z, 2 =}, 2z = x1 + 2}) with small polynomials of SPaqq. At first, we are looking for two (small)
polynomials ¢; and ¢ such that for all (w,w’) € Z3% x Z3° satisfying constraints of Definition 7,

é1(w, w', Add(w, w')) = z¢a(w, w', Add(w, w')) (2)

In other words, we are looking for two small products 71, e of components of |w|, |w'|, |w1], ..., |wass1]
such that m; = zms. For instance, in the toy example presented in Figure 2, it can be easily verified that
there exists two linear functions ¢; and ¢o satisfying (2), e.g.

t31ws = r1ti5we

5th

where t31 and t15 are respectively the 1% row of T3 and the row of T7.

Let us examine why such relationships are damageable for security by considering the homomorphic
operator @ (the same analysis can be done for ®) in the case ¥ = 2 (for sake of simplicity). This
operator consists of computing Add; g, (s,,s,)(c1,¢]) and Addy g, (s,,5,) (€2, ¢3) (see notation of the proof
of Proposition 8). Assume that there are small polynomials satisfying (2) for both operators Add; and
Addy, i.e.

$11(c1, ¢y, Addy (c1, ) = z11012(c1, ¢4, Addy(c1, ¢)))
P21 (ca, ¢y, Adda(c2, ¢5)) = z21P22(c2, ch, Adda(ca, ¢h))

As x = x11 + x21, it provides the following polynomial relationship (leading to a linearization attack), i.e.

pr1(cr, ey, )daz(co, &y, ..) + draler, ¢, ) a1 (c2, &, ..) = xdra(er, ¢, .. ) paz(c2, &5, ...)

The construction of operators Add was oriented in order to avoid such relationships, i.e. small polynomials
satisfying (2). Intuitively, the probability (where the coin toss is the choice of the kj, in the operator
Add) that such relationships exist is expected to exponentially decrease with d. Before to experiment this
intuition, the following lemma implies that one can restrict our analysis to the case k = 1.



Lemma 1. If there exists ¢1,¢p2 belonging to SPadq satisfying (2) then there exists polynomials ¢, ¢l
belonging to SPagq N SP1 satisfying (2) such that deg(¢)) = deg(¢1) and deg(dh) = deg(p2).

Proof. See Appendix I.

Experiments consisting of exhaustively searching ¢1, ¢o with deg ¢y + deg o = d and z = 1, z = 2 or
z = x1 + 2 have been done for small values of d = 1,2,3. Concretely, the values k;,, and the vector w
were randomly generated (under the constraints of Definition 7 and proof of Proposition 7). To increase
the probability of collisions, we stated |w’| = |w|. Finally, the vectors |w],...,|was, 1| Were generated!? as
specified in the proof of Proposition 7. Then, we were looking for two products m; and my respectively
of di and do components of these vectors such that di + do = d and 71 = zmg. For fixed values of d,
the probability (the toss coin being the choice of the indexes k;,) of the existence of such polynomials
1, P2 seems to exponentially decrease with d. The results of these experiments are presented in Figure 3.
Besides, in Appendix E, we propose an instantiation of Add (where the indexes k;, are fixed) and we prove

d\d| 2 3 4 5 6 7 8 9 10 | 11|12 |13
1 0.785|0.383(0.156|0.060{0.023]0.015|0.002|0.000| - - - -
2 (1.000|0.812]0.593|0.299(0.103|0.043|0.012|0.006{0.000 - | - | -
3 [1.00|1.00|1.00{0.99|0.95|0.88|0.70 | 0.50 | 0.38 |0.23]|0.17|0.01
Estimate of the probability that there exists polynomials ¢1,¢p2 with
Fig. 3 deg ¢1 + degp2 = d satisfying (2) in function of ¢ (with 7 = 3 and

"k = 1). Each value of the table is the mean of 1000 experiments for
d=1,2 and 100 for d = 3.

(see Proposition 10) that there are not polynomials ¢1, ¢9 satisfying (2) such that deg ¢ + deg @2 < §/2.
By assuming that the mean case is not too far from the worst case, we propose the following conjecture.

Conjecture 2. It exists €9 > 0 such that the probability (the coin toss being the choice of coefficients ki, in
the construction of Add) that there exists polynomials ¢1, p2 € SPagq satisfying (2) with deg ¢1 +deg o2 =
O(0%) exponentially decreases with 9.

In other words, provided 6 = @(\), there does not exist polynomials ¢1, ¢ satisfying (2) having a number
of monomials in O (2)‘60) (see Remark 4). It implies that the attack (described above) is exponential.

Remark 5. In Appendix E, we propose an operator Add ensuring the non-existence of small polynomials
satisfying (2). It can be wondered why this operator is not adopted. The main reason is that randomness is
needed in the construction of Add in order to resist against linearization attacks in setting 2. Nevertheless,
we believe that it is possible to add randomness in the construction proposed in Appendix E and to keep
true proposition 10 at the same time.

Remark 6. Conjecture 2 assumes that the probability of the existence of small polynomials satisfying (2)
exponentially decreases. In fact, it would suffice that this probability is smaller than 1/2 and to have an
efficient procedure to test it (the existence of such polynomials).

Remark 7. We have investigated the problem of the existence of efficient linear attacks. However, the
non-existence of such attacks is not a necessary condition for the security of our scheme. Indeed, it would
suffice to show that the attacker is not able to efficiently find such attacks.

12 These experiments do not deal with the matrices (T)y=—1,...,26+1: they can be arbitrarily fixed to the identity matrix.

AAAAA



e Justification of the parameter ¥. An obvious relationship (intrinsic to the operator Add) deals with
the vector wsys (see proof of Proposition 7). Indeed, by construction

\wos| = (frz1, fas .oy fo, f12], ..)

Roughly speaking, the same coefficient f; hides both z; and ). It follows that there are two linear
functions ¢; and ¢9 satisfying

2191 (was) = x1¢2(w2s)

with ¢1(was) = tasiwaes and ¢o(was) = tass+1was. This could be a priori a source of failures for our
scheme. Let us see what happens when considering the ¢ operators Add, involved in @ (the same analysis
can be done for ®). Let e = (¢;),=1,.. 9 and € = (¢,) =1,y be two encryptions (see notation of Proposition
8) of x and 2’ and

(w217 ) wz,25+1) — Addz,Sz%(Sz,Sz)(sz CIZ)

According to the above analysis, there are 2¢ linear functions (¢.1, ¢22).=1,.. ¢ such that

z11011(w1,26) = @1 P12(w1,26)

L1091 (W9,25) = T o2 (W 25)

We let the reader see how deriving this relationship to get an efficient linear attack for the case ¥ = O(1).
Let us see that linear attacks linked to these relationships become exponential provided ¥ = ©(\©>0)
(providing a justification for this parameter). To achieve this, we first enforce the adversarial power by
revealing the values z,; to the attacker, e.g. 2,; = 1 for sake of simplicity. In this case, we get

11 = P12(wi,25)/P11(w1,25)

z91 = o2(wy 25)/Po1(wy 26)

implying the following natural (and simplest) relationship (exploiting = = 11 + ... + zy1),

9 0
x H Ga1(wz25) = Z ¢22(w1,25) H b1 (we25)
z=1 z=1 te{l,...,91\{z}

This leads to a linear attack where the degree of the involved polynomials is ¢. By using the main
argument of this paper, these polynomials are exponential-size provided § = ©()\) and ¥ = O(\X©>0)
making this attack fail.

The analysis of this section can be investigated in an informal but more intuitive way. Indeed, given
an encryption ¢ = (c;).=1,..9, a subset of strictly less than ¥ vectors ¢, is statistically indistinguishable
from random ones. Thus, intuitively, attacks exploiting the intrinsic relationship presented above should
involve at least ¥ vectors leading to attacks dealing with polynomials of degree larger than ¢ (and thus
exponential provided § = O()\) and ¥ = O(\©>0)).

Conjecture 3. Assuming § = O(\) and 9 = O(AC>Y), there are efficient linearization attacks in setting 1
with negligible probability.



8.3 Linearization attacks in setting 2

In this section, the public operators Q are replaced by Oy which simulates the computation of any public
operator Q. Arbitrary vectors can be input in Os. To compute e; @ es or e; ® ea, m = 192(26 + 2) vectors
(Wy)u=1,..m are output by operators Q, i.e. w, = qu%(gu,,su”)(wu/, wyr) where S, is an invertible
matrix chosen at random. Roughly speaking, the secret information contained in w,, are the components
of Sywy. As the matrices (Sy);—1,.. 92(25+1)—v are randomly and independently chosen, Sy, w, and Sywy,
are independent: it ensures that an attacker does not get any advantage by substituting w, by w4, in
the computation of homomorphic operators. In particular, this prevents our scheme against the existence
of relevant operators Add inputting pairs of vectors (c.,c,/) belonging to the same encryption e, i.e.
e = (c1,...,c9) (see the previous section to understand why this would be damageable for security).

Nevertheless, the adversary can substitute w, by an old vector w), previously computed. This is
not relevant assuming pseudo-randomness of encryptions produced by homomorphic operators. Other
guarantees against such substitutions come from randomness in the choice of operators Q. Let us present
an attack (exponential in §) highlighting this.

An attack. Let a € Zf’fa be an arbitrary vector and let us assume that an attacker has guessed the set

Lpgg = {u € {1, ...,2(5} K1y Q {1, ,5}}

where the values (k1y)y=1,... 25 are the ones used to build Add. For instance, Lagq = {2,4} in the example
of Figure 2. We let the reader check that Lagq contains exactly d elements. In step 2 of the construction
of Add, by substituting w; with a each time u € Laqq, it is ensured that the first component of |was]
is equal to Ax; where A is a constant depending only of a. It leads to an obvious efficient linearization
attack if the sets Laqq, have been guessed for all the 9 operators Add, involved in the operator @. To
prevent the scheme against this attack, an attacker should not guess the sets (Ladd,)z=1,..9 With a non
negligible probability. This probability is equal to

(3)

Congecture 4. Assuming § = O(\) and 9 = O(\©0>0), the non-existence of efficient linearization attacks
in setting 1 = the non-existence of efficient linearization attacks in setting 2.

The attack fails'® provided 96 = O()).

8.4 Linearization attacks in real-life setting

The only difference with the previous setting is that xk-symmetric operators Q are not anymore simulated
by Oy. New linearization attacks could appear. For instance, the values k;, used in the construction of
Add could be polynomially recovered making efficient the linearization attack described in the previous
section. Moreover, one could imagine that new k-symmetric operators Q can be polynomially derived
from public operators Q. Let us argue against this.

At this step of the paper, the authors assume that the reader should be convinced of the security of
the additively homomorphic encryption scheme. This scheme deals with the operator Qg. The security of
this scheme suggests that this operator does not introduce intrinsic failures. In the FHE, each operator
95, (S,,5,),... can be associated to a system (Sys) of nonlinear equations (2-degree equations) where the

g

variables are the coefficients of the invertible matrices Sy, S,/, Sy~. In our construction, it does not exist

13 Note that this attack is relevant for the construction proposed in Appendix E. Indeed, in this construction, Laqgq is
deterministic and thus implicitly known by the attacker, i.e. Laga = {2,4,...,25}.



two different operators Q dealing with the same triplet of matrices 5, S/, Sy. Proposition 9 says that
the coefficients of S, Sy, Sy cannot be found, meaning that the system of equations derived from each
operator Q is quite intractable. Furthermore, because of the randomness introduced in Add, the operators
Q are randomly chosen. Thus, (Sys) is widely unknown. Moreover, many ways to add randomness in
each operator Q can be imagined. The simplest way consists of adding free (not involved in constraints)
components i = 3k0 + 1, ... and of choosing p; (see Section 5) at random: an arbitrary number (each p;
provides ©(62) new variables) of new variables'* are introduced in the equations induced by each operator
Q. Another one is presented in detail in Appendix K (presented for the operator Qg but the extension
to any operator Q is straightforward).

Congjecture 5. Assuming § = O()\) and 9 = O(X©>Y), the non-existence of efficient linearization attacks
in setting 2 = the non-existence of efficient linearization attacks in the real-life setting.

8.5 Efficiency

The computation of an operator Q requires O(x35%) multiplications in Z,,. Moreover, ® requires the appli-
cation of O(190) operators Q@ and O(¥92§) for ®. Thus, by denoting by M (n) the runtime of multiplications
in Z,,, the running time per addition gate is O(9x36*M (n)) and the running time per multiplication gate
is O(92k36* M (n)). The running time of decryption is O(9x7d2M (n)). A ciphertext contains 9 3xd-vectors
in Z,, implying that the ratio cipher size/plaintext size is equal to 3x¥d. In term of storage, the biggest
part of the public key is the operator Q containing O(k36%) elements of Z,, leading to a space complexity
in

O(|n|9*K36%)

Attacks (in particular attacks by linearization) should be better quantified in order to propose instanti-
ations of parameters.

9 Discussion and open questions

In this paper, a very simple FHE based on very simple tools was developed. Its security is linked to the
difficulty of solving nonlinear systems of equations. By using arguments of symmetry, it was shown that
the resolution of the system of equations (derived from pk) is intractable. However, it is not sufficient to
ensure security against attacks by linearization. The main obstacle to prove security consists of showing
that all linear attacks are exponential. We argue in this sense but further investigations should be done.
Moreover, improvements of our scheme deal with important open questions:

— k-symmetry provides formal security guarantees but this parameter is not useful to protect the scheme
against attacks by linearization. Can this parameter be fixed to 17

— the resolution of systems of nonlinear equations is N'P-complete in Z,, even if the factorization of n
is known. Thus, it can be wondered whether n can be chosen as a large prime? a small prime?

A positive answer to these questions would lead to an efficient FHE competitive with other classical (even
not homomorphic) cryptosystems.

References
1. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus switching for fully

homomorphic encryption over the integers. In EUROCRYPT, pages 446464, 2012.

4 independent of other variables of pk



@

. T. Elgamal. A public key cryptosystem and a signature sheme based on discrete logarithms. In IEEE transactions on

Information Theory, pages 31:469-472, 1985.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178, 2009.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In EUROCRYPT,
pages 465-482, 2012.

. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes circuit. In CRYPTO, pages 850-867,

2012.

Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? IACR Cryp-
tology ePrint Archive, 2011:405, 2011.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In FUROCRYPT, pages 223-238,
1999.

Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, pages 377-394, 2010.
Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the integers.
In EUROCRYPT, pages 24-43, 2010.



A Proof of Proposition 1

The proof consists of building a polynomial algorithm of factorization A by using a solver B of Problem
1 (resp. problem 2) as subroutine. Let us denote by D the probability distribution of (y1, ..., y,) induced
by Problem 1 (resp. problem 2). D is effective in the sense that D can be simulated in polynomial-time,
ie. (y1,...,yx) can be generated at random according to D in polynomial-time given a (polynomial-time)
random generator of elements of Z,. Let us consider the following polynomial-time algorithm A:

Repeat

1. Let (y1,..y Yr) 2 7t

2. Compute s; = sj(y1,...,yx) for all j =1,...,m.

3. Compute IT = 7(y1, ..., Yx)

4. Apply B on the inputs s1, ..., Sy, i.e. IIp < B(S1,..., Sm)

until ged(IT — IIg,n) # 1
output ged(Il — IIg,n)

By construction, this algorithm is correct. Let us show that it terminates in polynomial time. First,
each step of A can be computed in polynomial-time implying that A is polynomial if the number of steps
of A is polynomial (or equivalently, if the probability to terminate at each iteration is non negligible).
As the product 7 is assumed to be non k-symmetric, it can be assumed (without loss of generality) that
(Y1, Y2, -, Ux) # T(Y2,Y1, -, Yx). Let us consider the function h : ZLX® — Z<* such that (y,...,y.) =
h(y1, ..., ys) is defined by

—y =y forl>2
— Y1, =vy1; mod p and yh, =yp; mod p forall i =1,...,t
— Y1, =y2 mod g and y5, =y1; mod ¢ for all i =1,...,¢.

Because of the symmetry of constraints, one easily checks that if (y1, ..., y,;) satisfies constraints of Problem
1 (resp. Problem 2) then (yi,...,y.) also satisfies these constraints!®. It implies that (yi,...,yx) and
(Y} -syr) = h(y1,...,yx) have the same probability under D, i.e. Pp(yi1,....yx) = Pp(y},...,y.). Let
II' = 7(y}, ..., y.). As the functions s; are k-symmetric polynomials, we get'6 s; (v, ..., y%) = 8 (Y1, -, Ys)
for all j = 1,...,m. As the variables y;; involved!” in 7 are i.i.d. according to the uniform distribution
over Zy,, the probability that IT = IT" mod ¢ is negligible (because it was assumed that 7(y1,y2, ..., yx) #
(Y2, Y1, .-, yx)) and the probability that IIp = II is equal to the probability that IIp = II'. As B
is assumed to solve Problem 1 (resp. Problem 2), I[Ip = II with non negligible probability. It implies
that IIg = II' with non negligible probability. As IT = II’ mod p and I # II'’ mod ¢, we have p =
ged(n, IT — IT'). Tt implies that A terminates (when ITg = IT") in polynomial-time.
]

B Proof of Proposition 4

First of all, by arguing similarly to proposition 2, one shows that each component is an efficiently valuable
polynomial defined over the tuples y1,...,9s. Now, let us focus on x-symmetry. There is an implicit
canonical function between the  tuples y; and the invertible matrices (S;),=1,.. ¢ and e. The subscript
Y1, ---» Y is added to precise the tuples which are considered: for instance, ey, . 4. = (cayl,,,,,yﬁ)zzlr”ﬁ

15 Because of these constraints are K-symmetric.
16 Tt is not true in general, i.e. for arbitrary x-symmetric functions s;.
17 According to Problem 1 (resp. Problem 2), i € Ir.



is the encryption related to the tuples y1,...,ys. Let us show that c. ., . 4
defined over the tuples y;. By definition

is a k-symmetric function

K

_ g1
Cz’yl""’y'{ - Szvylv--wymvz»ylvnwyﬂ

with v, 4, 4. = (B:11221,...). Let 0 be an arbitrary permutation of {1,...,x}. Then, we define the
permutation § over {1,...,k7d} as follows

B(i) = G—(MD —1)75+(¢—1 mod 75) + 1

Let T, = [t,;;] be the (invertible) matrix defined by ¢,; = szﬁ(i)ls and Wy g,y = B2y, ). By
arguing similarly to the proof of Proposition 2,

_ g1 _ =1
szylwnzyfi - SZ,yla---yynvzvylv""yH - TZ,y17---,y~w2,y1:--~7yn

Clearly T, 4.y, = S and w; ;.. y. implying that

2:Ys (1) Y0 (K) = Uz7y0'(1)7"‘7y0'(}<,)

_ o—1 _ -1 _ g1 —
czvyl)-“:yﬁ - SZ,y17...,vaz)yl7“'uy)i - TZ,yl,...,wazuylv“w'ylﬁ - SZ,ya.(1>,...,yo.<K)/Uzuya(l)r”vycr(ﬁ) - czvya(l)u'“)yd(n)

0

C Proof of Proposition 9

The tuples yfk are generated according to a probability distribution statistically indistinguishable with the
probability distribution considered in Problem 2 (by choosing the coefficients of S, at random, S, is not
invertible with negligible probability): the sets I J-X (see notation of Problem 2) contain the § components
of the basic vectors B,,;; randomly generated in Encryptl to encrypt x, and the sets I;r are the sets
{Zo115 0 xvﬂl}(v,l)e{l,...,m}X{l:l,...,/@} satisfying @y1; + ... + Tpo1 = To.

Proposition 4 and Proposition 6 ensure that all public values can be polynomially computed only
knowing x-symmetric efficiently valuable polynomials defined over the tuple yf"’ Thus, assuming hardness
of factorization, Proposition 1 ensures that it is not possible to recover any non k-symmetric product
defined over the coefficients s,;;.

Let v € N* such that v is not a multiple of x and ¢ be an element of SP” U SP;. Let wj = ... =
wy = (1,0,0,...). Ry allows to efficiently compute 7 = ¢(wj, ..., w;) which is a product of values s__ ;.
As v is not a multiple of k, 7 is a non k-symmetric product (efficiently valuable) of values belonging to
{suitlu = 1,...,0%(26 + 2) — ;i = 1,...,3xd}. Thus, according to Proposition 1, m cannot be recovered
implying that Ry cannot be recovered.

0

D Proof of Proposition 6

First of all, by arguing similarly to proposition 2, one shows that each monomial coefficient is an efficiently
valuable polynomial defined over the tuples yi,...,yx. Now, let us focus on k-symmetry. We consider
notation and conventions adopted in the proof of Proposition 4. Let x,z! be a monomial. We denote by
«; (resp. a;) the coefficient of this monomial in p; (resp. ¢;). Let a = (ay,...,ax) and a = (a1, ..., ). By
definition of the operator O,

Ay ,yn = ngl%...7yﬁay1,m,yn

18 ¢ . and s,; refer to the i*" row of respectively T and S
9 The components of v are permuted according to f5.



Given a permutation o of {1,...,x}, 5 is the permutation of {1,...,km} derived from o as done in the
proof of Proposition 4 (where 746 is replaced by m), and T is the matrix where the rows of S are permuted
with S. It follows that

_ a1 _ 1
yy ooy = Oy Wt = Tyl,.--,ynﬁ(ayh--.,ym)
_ . "
Clearly T' = Sya(l)v'“vya(m) and because of the constraints (u

o
= uij—i-lm, Ui g,
introduced in the definition of k-symmetric operators Q,

!/ "
im. = ug;+HlIm, Qipim = ;)
/B(aylv--'vyn) = O[ya(l)v”-vyo'(n)

it follows that

_ ¢-1 — ¢-1 —
aylv"-vyf@ - Sy1,...,y,{ay17---ayn - Syc.(l),...,ya.(H>aya(l)v"-vyo(m) - ayo(l)v---aya(ﬁ,)

0

E An instantiation of Add

Here, we propose a deterministic construction of the operator Add. We let the reader check that it is an
instantiation of the construction proposed in the proof of Proposition 7.

1. Just replace by B = A1y x A}y, C = A9 x A}, and E = Aj3 x Al5 by respectively B = Aqy X Al,,
C=A12 X Alll and E = A3 X A/13.
2. Let u € {2,...,6}. we define 2z, = (2ui)i=1,... 35 by

( -TleliU/QJ blbLu/QJ—i-(u mod 2) ifi=1
€1...€y ifi=2,...,0
Rui =

x’le%u/% C1-Clu/2|+(u mod 2) ifi=60+1

€1....€y ifi=0+1,...,30
Let u e {0 +1,...,20}. we define z, = (zyi)i=1,...35 by

xle%u/% bl...b[u/2J+(u mod 2) ifi=1

61...656?76 ifi=2..6

Zui =

ZE/1€%U/2J61...CLU/2J+(U mod 2) ifi =041

L €1....e5€1...€y_5 ifi=0+1,...,30
Each component of z, is a product of u components of |w;|r, and as by...bs = cj...cs = ej...es = 1, we
have
4 1 [ W
295 = (e]x1, €5, ..., €5, e5x], 1, ..., 1)

By using k-symmetric operators, we build the sequence wo, ..., wos

Wy = QTue(Tu,l,Tl)(wu—la wl)

such that for all v = 2,...,29, the 30 first components of |w,| are equal to z,: the other ones being
deduced by using x-symmetry.



3. Just replace H=FxE, I=G*E, J=G*E by respectively H=F XE, =G XE, J=GC X E.

Proposition 10. Let us adopt notation of Section 8.2. If there exists two ¢1 and ¢2 belonging to
SPagq such that for all w,w' satisfying constraints of Definition  we have z¢1(w,w’, Add(w,w")) =
¢2(w,w', Add(w,w")) then

deg(¢1) + deg(¢2) > 6/2

Proof. Because of Lemma 1, we fix k = 1. Given a set F C Z,, and I C N, E; denotes the set defined by

EI:{Hin\z'ers.t.Z]iw\eI}

zel zeE

According to notation of Definition 7, w is defined by |w| = (A1121, A12, A13). Let us denote the vector
A = (A11,A12,A13) by A = (ay, ..., ass). Moreover, we state |w'| = |w| implying that B = c.

By definition, for any ¢ € SPagq, ¢(w,w’, Add(w,w’)) is equal to the product of deg(¢$) components
of the |wy| for u = 0,...,20 + 1 (with |wg| = |w| = |w'|). Let us list and categorize these components
(Because of k-symmetry, we only consider the 3§ first components of each |w,]|):

— Some components belong to the set
6+1 4 d
X = {alxl, 2€1+ 1, 511‘1, 51611‘1, blele.%'l, veeey bl...bgelxl = 611'1}

— The other components belong to the set
¢
Y ={ao,....,a35, b2, ..., bs, €1, ..., €5, Hei,e;-” |t=1,.,07=2,....,0,u=2,....,0 + 1}
i=1

According to basic vectors constraints, a; = (as...as) ! and by = (bs....bs) ~1. Consequently,

0o olu2l
X =4 —,2e 1, 1 |u=1,...,20
az...as blu/2)+(u mod 2)+1---bs

Let 2 = {aq,...,as,b2, ...,bs,e1}. Clearly, each component of X belongs to 2(5_1,5y71. Let us consider
two products (i.e. polynomials) ¢ = m7] and ¢o = mom) of elements of X U Z such that

$1/ P2 = x1(= 2)

where 71, o are products of respectively mq, mo elements of X and 7,7} are products of respectively
ni,ny elements of Y with mq,mo, ny, ne positive integers s.t. k = my + mo < d. Note that

deg ¢1 + deg 2 = my + ma + ny + 2

The constraint 77} /memy = x1 implies that m; = mg + 1. It follows that 71 € 27" 2, >, (5-1) and
Ty € le_Ikag(mrl)é implying that

T/ € o>y —ka>6—k (3)

Recall 7] and 7} are products of respectively n; and ng of elements of Y. Thus, without loss of generality, it
can be assumed that 7} /7, € Y}, 4n,. Given t € N*, we can easily show that 7 € 2, = 7 & Yie<t/2 (because
the only possible simplifications are b;/a; = a;4s for any i = 1, ..., ). It implies that ny +ng > ko/2 > ‘Ska
implying that
0—k
1+ ng A+ mytme 2k >4/2

implying that deg ¢; + deg g2 > §/2.
]



F A weak version of Proposition 3

Proposition 11. Let A be a security parameter, (pk, sk) < KeyGen(\) and v € N* such that v is not a
multiple of 6 (|y| polynomial in X\). Let ¢ € SP” and Ry be an effective representation of ¢. By assuming
the hardness of factorization, recovering Ry only given Qg is difficult.

Proof. Let 1, ...,x5 be randomly chosen in Z,, and ag_1, ..., ¢y be the monomial coefficients of the poly-
nomial p(z) = (z — z1)...(x — x5), i.e. p(x) = 2% + as_12°~" + ... + ap. The aim of this proof consists of
building Qg according to a distribution statistically indistinguishable from QGen(K <« KeyGen(\)) such
that the knowledge of Ry = the knowledge of a non-symmetric product of z1,..., 25 which is difficult
assuming Proposition 1. This following construction is polynomial and can be decomposed in 2 steps.

Step 1. This step consists of generating a matrix M at random an in polynomial time such that x1, ..., xs
are eigenvalues of M. Let us start by considering the case § = 2, i.e. p(z) = 22+a12+ag. The characteristic
polynomial of M is r(z) = (a11 — z)(a2 — ) — a12a21. The values a;; can be chosen in polynomial time
such that r = p, i.e. a12a21 = o and a1 + ags = —ay. Indeed, it suffices to choose at random a12 and
ai1 in Z, and then to compute as; = ozoal_Q1 and age = —(a1 + a11). For 0 > 2, it suffices to randomly
choose a;; for j > 1 and to adjust the coefficients a;; to ensure r = p by solving a linear system.

Let s1, ..., 55 be the eigenvectors of M associated to the eigenvalues 1, ..., x5 such that s1; = z1, ..., S51 = 5.
Let S be the matrix such that its " row is equal to s;. Clearly S is distributed as specified in KeyGen0, i.e. at
random according to the uniform distribution among invertible matrices (the probability that S is not invertible
is negligible). In the following step, we build Qg only given M (and without knowing S).

Step 2. For sake of simplicity, let us detail the construction for § = 2. The extension to the case § > 2 is
straightforward and will be explained later. The challenge consists of building Qg = (g1, ¢2) only knowing
M (in particular, without knowing S). By writing the polynomials ¢; and ¢y as:

- q(w,w') = agz1 2] + ag(x12lhy + 2 xe) + azxer,

- @(w,w') = biza) + ba(x1xh + 2 x2) + byxeah

and by definition of these polynomials, for all w,w’ € Z‘EL and 7 € {1,2}, we have

! ! /
si(qr(w,w"), 2(w,w")) = (s;w).(s;w")
/ / / /
<:>(SZ‘16L1 + sigbl)mlxl + (sﬂag + Sing)(CCla,’Q + :clacg) + (Silag + 8i2b3)$2x2
2 / / / 2 /
= six12] + si1Si2(T175 + T x2) + STy
giving the following equalities
2
a15;1 + b1si2 = 83
a25;1 + b25i2 = 51542
2
assi1 + b3siz = s

where ¢ € {1,2}. First, we can remark that the vectors s; and sz are eigenvectors of the matrix

ay, bl
az, by
with associated eigenvalues A\; = s11 and Ao = so1. Thus, this matrix is equal to M, i.e. a1 = my1,a0 =

ma1, b1 = mo1, bo = mog. Let us see how to recover az and b3 in order to finish the construction of ¢; and
g2- It is achieved by noting that the vectors s; and s are also eigenvectors of the matrix

| ag, b2
A= |:CL3, b3:|



For any x,y € Z,, s1 and sy are eigenvectors of T, = xI + yM. To get the values (a3, b3), it suffices to
adjust z,y € Zjy in order that the first row of T, = xl + yM is equal to (ag,bs). Let T' = [t;;] be this
matrix. Thus, T' and A have the same eigenvectors with the same associated eigenvalues. It follows that

A=T

implying that as = to; and b3 = to9 finishing the construction of the polynomials ¢, g2 only given M.
More generally, for § > 2, we proceed in the same way by noticing that the matrices I, M, M?, ..., M1
are linearly independent because of Cayley-Hamilton theorem (the characteristic polynomial and the
minimal polynomial have the same roots implying that the degree of the minimal polynomial is at least
0 with non negligible probability).

To conclude. Assuming p is chosen at random, M is a matrix chosen at random such that its eigenvalues
are equal to the roots of p. S is defined as (but not built) the matrix whose the rows are the eigenvectors
of M with s;; = x;. We have shown that Qg can be built in polynomial-time only given M. Let w} = ... =
wy = (1,0,0,...). Ry allows to efficiently compute 7 = ¢(w7, ..., w;) which is a non-symmetric product
of roots of p. Consequently, according to Proposition 1, the existence of such an attacker is not possible
assuming the hardness of factorization.

O

G k-symmetric representations of polynomials

Let t = ©()\), a = (ay,...,ar) and b = (by,...,b) be two tuples of Z!, and ¢ : Z! — Z, the polynomial
defined by
gf)(:L'l, ...,:L't) = (alxl —+ ...+ ata:t)(blml + ...+ btl‘t)

The m = t(t+1)/2 monomial coefficients m;; of ¢ are 2-symmetric values defined over (a, b), i.e. my; = a;b;
and m;;<; = a;bj + a;b;. Thus, the expanded representation of ¢, i.e.

Ry (x) = > M

(i7])e{17"7t}27i§j

is a 2-symmetric representation of ¢.

Here, we wonder whether there is a more efficient (in term of storage for instance) representation Ry of
¢ only using 2-symmetric values. Clearly, R, allows to polynomially compute all the monomial coefficients
mi; (for instance m11 = ¢(1,0,0, ...)). Thus, the existence of such a representation R4 implies the existence
of a set E containing m’ < m 2-symmetric values (defined over (a, b)) allowing to polynomially compute
(without knowing the factorization of n) all the monomial coefficients m;;. We did not manage to solve
this challenge consisting of finding such a set E (which is easier than finding a more efficient representation
R, only using 2-symmetric values). For instance, in the case t = 4, the challenge consists of finding a set
E’ of strictly less than 10 2-symmetric values allowing to polynomially recover the 10 values m;; i<;, i.e.
a1by, asbs, a1by + asby, asbs, a1bs + asbq,...

Empirical searches do not allow us to succeed this challenge. Authors are convinced that such sets £’ do
not exist while they are unable to formally prove it.

H Pre-processing (randomization) vectors input in Add

Let p € N be a parameter indexed by . Let T and T’ be two given invertible matrices and let w be a
vector such that |w|pr = (A121, A2, Ag) (see notation of Definition 7. In order to simplify notation, we fix
k = 1). The operator Rand computes the vector Randy . 7 (w) defined by

|Randpr 7 (w)|p = (Ap,ll'laAp,Qa Ap,3)



where the basic vectors Aj; are defined by the following recursive sequence Aj; = A1, A12 = Az, A3 = A3
and for j =1...p

Aj1 = Aj_11%Aj-13
Ajo = Aj_12%Aj_13
Aj3 = Aj_13%Aj_13

Let T», ..., T)—1 be p—2 invertible matrices chosen at random and 7, = T". Similarly to the operator Add,
the vector Rand7 . r(w) = w, can be computed by a recursive sequence where w; = w and

’LU] == QTj(—(Tj_l,Tj_l) ('LU]'_]_, w]—l)

where |wj|T;, = (Aj171, Aj2, Aj3).

Analysis. The number of possible operator Rand is exponential in p, i.e. £2(2”). Thus, one can assume
that the vectors A,; and the vectors Aj; are pseudo-independent provided p = ©(\). Clearly, Rand does
not provide new linearization attacks provided the vectors Aj, Ao, A3 are randomly and independently
generated. Each vector input in Add can be randomized with Rand. This can be done in order to remove
possible interactions between operators Add of pk.

I Proof of Lemma 1

Let ¢ € SPagd, i.e. p(w_1,...,was11) = Hi:l tu,i, Wy, and A : SPagq — SPadd N SPy such that ¢ = A(9)
is defined by ¢'(w_1,wo, ..., wos41) = Hle tu,. i, mod 36Wy, . Clearly ¢ and ¢’ have the same degree.

Let us assume that there exists two polynomials ¢1, o satisfying (2) and let us consider two vectors
w and w’ such that |w|r = (A121,A2, A3, A1x1, A2, Ag...) and |w|pr = (A]y1, Ah, AG, Aly1, Ay, AL..). As
all the operator Q involved in Add are k-symmetric, ¢1(w,w’, Add(w,w")) = ¢ (w,w’, Add(w,w’)) and
¢2(w,w', Add(w, w')) = ¢4(w,w’, Add(w, w")) if ¢} = A(¢p1) and ¢, = A(¢2). It implies that

@y (w,w', Add(w, w')) = 2’ ¢h(w, w’, Addd(w, w"))

with 2’ being a linear combination of z1,y1. As ¢} and ¢} only deals with the 34 first components of |w|r
and |w'|7+, the previous relation remains true for all vectors w and w’ satisfying constraints of Definition
7 implying that ¢} and ¢} satisfy (2).

O

J Toy implementation of the additive homomorphic scheme

In this section, we provide an example of the implementation of the homomorphic scheme for § = 2.
S1,1 81,2]

82,1 82,2

Given S :=

with A = 511892 — 812891 € Z;:

Qs(z,y) = AL [(8228%1 - 812851)371,@1 + (s22511812 — S12521522)(T1Y2 + T2y1) + (8228%2 - 812832)3323/2
(8115%1 - 8215%1)9313/1 + (811521822 - 821811512)(9012,/2 + 96‘23/1) + (511532 - 5215%2)$2y2



Numerical application.

-n=T%*5=35

—g=2

3 8] (1 [34 2
S‘[2 4]’5 _[18 8]

_@S<

= 627 + 28z179 + 3223

HH

1

w

+ Encrypt(z; = —-3)

Nej

—_
—_

+ Encrypt(zq = 4)

< < Encrypt(z3 = —2)
o <<$1> <y1>) _ g1 (93613/1 + 24(z1y2 + x2y1) + 299623!2)
r2 )\ Y2 dz1y1 + 8(z1y2 + 2y1) + 161232
_ <34$1y1 + 27 (21y2 + 2291) + 395292)
192191 + 6(x1y2 + x2y1) + 2022y
Verification of the homomorphic operator:
—e1Dex = Qs(er,e2) = 5
’ 34
12
— e2Dez = Qs(ez,e3) = (17>
32
—e1®@e3 = Qs(er,e3) = ( 4 )

3
— Decrypt(e1 @ e2) = DLy— <q55 <34> = 2) =1=2x 4+

— Decrypt(e; @ e3) = DLg— <§Z§g <342> = 23) =-5=ux1+x3

K Randomization of operators Q

In this section, we present ways to randomize operators Q. For sake of simplicity, we focus on the additive

homomorphic encryption scheme (the extension to the FHE is straightforward). Let ¢’ > 0 and S be an

invertible matrix of Z(5+5 )% (8+8")



K.1 First method

To generate public encryptions e, € Z‘ff‘;/ of x,, 0 values r; € Z; such that ry,...,rs = g" are randomly
chosen and e, = S~ (11, ..., 75,0, ...,0) (Ps5(w) = Hle siw).
Let E be the set of all linear combination of the vectors ssi1,...,S51s. By construction, for any
u € E, ue, = 0. Let F be the set of (2-degree) polynomials z defined by z(w,w’) = vw x 7w’ +rw x v'w’
where u,v’ € F and r,7’ € Zfﬁ‘sl are arbitrary vectors. By construction, for any z € F' and any public
encryptions ey, €,,
z(€y,€y) =0

Let Qs = (q1,---,951+6') < Qgen(S) and z1,..., 2515 be randomly chosen in F. By construction, it is
ensured that the operator Qg?“d =(q1 + 21,..-, Q516" + 2515 ) satisfies for any encryptions e, e’

Qg"™(e.¢') = Qs(e, )

K.2 Second Method

To generate public encryptions e, € Z‘ff(sl of x,, one picks up at random 6 + ¢’ values r; € Z; such that
_ é
Ty Ts = ng7 61},: S 1(7;17 ces T8 T5415 "'77'54-5’) (QSS(U}) = Hi:l Siw)-
Let p; @ Z9+9 x 70+ — 7, be § 2-degree polynomials chosen at random. The operator Qg :
5+46" 6+46" 6+6" s
ZOT0 x 7O+ — Z919 is defined by
!

s1w’ X sqw’

a1 (,u)/7 ,u)//)

Qs(w,w")y =1 ... =5t
gs1o (W', w")

ssw' x ssw”
/ "
p1 (?U , W )

pﬁ/ (w/7 wl/)



