
A Ciphertext-Policy Attribute-Based Proxy Re-Encryption with
Chosen-Ciphertext Security

Kaitai Liang1, Liming Fang2, Duncan S. Wong1, and Willy Susilo3

1 Department of Computer Science, City University of Hong Kong, China
kliang4-c@my.cityu.edu.hk, duncan@cityu.edu.hk

2 Nanjing University of Aeronautics and Astronautics, Jiangsu, China
fangliming@nuaa.edu.cn

3 School of Computer Science and Software Engineering, University of Wollongong, Australia
wsusilo@uow.edu.au

Abstract. Ciphertext-Policy Attribute-Based Proxy Re-Encryption (CP-ABPRE) extends the traditional
Proxy Re-Encryption (PRE) by allowing a semi-trusted proxy to transform a ciphertext under an access
policy to the one with the same plaintext under another access policy (i.e.attribute-based re-encryption).
The proxy, however, learns nothing about the underlying plaintext. CP-ABPRE has many real world ap-
plications, such as fine-grained access control in cloud storage systems and medical records sharing among
different hospitals. Previous CP-ABPRE schemes leave how to be secure against chosen-ciphertext attacks
(CCA) as an open problem. This paper, for the first time, proposes a new CP-ABPRE to tackle the
problem. The new scheme supports attribute-based re-encryption with any monotonic access structures.
Despite our scheme is constructed in the random oracle model, it can be proved CCA secure under the
decisional q-parallel bilinear Diffie-Hellman exponent assumption.

Keywords: Proxy Re-Encryption, Ciphertext-Policy Attribute-Based Proxy Re-Encryption, Bilinear Map,
Chosen-Ciphertext Security.

1 Introduction

Introduced by Sahai and Waters [25], Attribute-Based Encryption (ABE), which is a generalization
of Identity-Based Encryption (IBE), is able to effectively increase the flexibility of data sharing such
that only parties satisfying specific policy are allowed to access the data. It comes in two flavors: one is
the key-policy ABE (KP-ABE), and the other is the ciphertext-policy ABE (CP-ABE). In the former,
ciphertexts are labeled with attribute sets and private keys are associated with access structures that
specify which kinds of ciphertexts the receiver is able to decrypt. In the latter, however, the case is
complementary. That is, ciphertexts are related to access structures, and attribute sets are assigned to
private keys. ABE is applicable to many network applications, such as targeted broadcast and audit
log applications [15].

We use medical data sharing as an example to illustrate the usage of CP-ABE and motivate our
work as well. Consider the following scenario. A heart-disease patient Alice would like to find a clinic
for regular medical examination via an on-line medical service agent (e.g., healthgrades4). The clinic
must be located within 10 km of Campbelltown, the doctors (assigned to her) of the clinic must be the
senior attending doctors and be expert at cardiology. For convenience, we denote Alice’s requirements
as I1 = {Cardiology ∧ Senior Attending Doctor ∧ Location : within 10 km of Campbelltown}.
To protect the confidentiality of her medical record, Alice prefers to encrypt the record under I1 (i.e.
EncI1(mAlice)) before sending to the on-line medical service agent (“the Agent”). The Agent (that
knows I1) then searches candidates satisfying I1 in its database. Suppose there is a clinic matching I1.
The Agent forwards Alice’s ciphertext to the clinic. Note that the Agent cannot access the medical data
without knowledge of the private key (where such a key is associated with an attribute set satisfying
I1).

4 http://www.healthgrades.com/.

2

Upon receiving Alice’s ciphertext, the clinic that satisfies I1 is able to decrypt the ciphertext using
its private key so as to access the medical record. To keep trace of the medical record, the clinic may
back up the ciphertext locally. Suppose some cooperation is required in the process of the treatment,
Alice’s medical record has to be transferred to hospitals with the following requirements. The hospitals
have to be located within 15 km of Hurstville, and the doctors (assigned to the cooperation) of the
hospitals should be the attending or chief doctors and must be expert at cardiology as well. Denote
the above requirements as I2 = {Cardiology ∧ (Attending Doctor ∨ Chief Doctor) ∧ Location :
within 15 km of Hurstville}. Suppose there are two hospitals, say hospital A and hospital B, which
satisfy I2.

In traditional data sharing, sharing Alice’s medical record with A and B (without losing confiden-
tiality), the clinic has to first recover mAlice and further encrypt the record under I2 (i.e. EncI2(mAlice))
before sending to A and B. However, if there are N patients who need to be cooperatively treated
among the clinic, A and B, then the clinic will suffer from N pairs of encryption and decryption for
their patients’ records (See Fig. 1). This might be undesirable in practice due to high computational
complexity.

Fig. 1. Traditional Attribute-Based Encryption Data Sharing

To make data sharing be more efficiently, Proxy Re-Encryption (PRE) is proposed. Introduced
by Mambo and Okamoto [23] and first defined by Blaze, Bleumer and Strauss [6], PRE extends the
traditional Public Key Encryption (PKE) to support the delegation of decryption rights. It allows a
semi-trusted party called proxy to transform a ciphertext intended for a party A into another ciphertext
of the same plaintext intended for party B. The proxy, however, learns neither the decryption keys nor
the underlying plaintext. PRE is a useful cryptographic primitive and has many applications, such as
secure distributed files systems [1,2] and email forwarding [6].

To date, PRE has been extended to adapt different cryptographic settings. Employing PRE in
the context of ABE, Liang et al. [20] proposed the first ciphertext-policy attribute-based proxy re-
encryption (CP-ABPRE) scheme, in which a proxy is allowed to transform a ciphertext under a
specified access policy into the one under another access policy (i.e. attribute-based re-encryption).

Using CP-ABPRE the medical records sharing above can be efficiently fulfilled as follows (See Fig.
2). The clinic, acting as a delegator, notifies a cloud (storage) server (acting as the proxy) that the
hospitals satisfying I2 (i.e., delegatees), should be granted the decryption rights of the medical records.
The server will then transform the ciphertexts of the medical records under I1 to the ones under I2
using a re-encryption key (e.g., rkI1→I2 which is generated by the clinic), such that A and B (the
hospitals satisfying I2) can decrypt the records. Note that the server does not learn the contents (of
the medical records).

3

Fig. 2. Ciphertext-policy attribute-based proxy re-encryption

We argue that CP-ABPRE explores the applications of PRE and has many real world applica-
tions, such as fine-grained data sharing in on-line medical service systems (such as Healthgrades5,
Scripps Health6). For example, in an on-line medical service system, a couple (who settles down in
Sydney) prefers to find doctors with the following requirements to remedy their child’s bronchitis. De-
note the requirements as I3 = {Paediatrician ∧Bronchitis ∧ (Consultant ∨Registrar) ∧ Location :
Downtown of Sydney}. The parent encrypts the child’s medical record under I3 before uploading
to the system. Because the system has no corresponding private key related to I3, it cannot access
the record. The system then forwards the ciphertext to the doctors satisfying I3

7. Nevertheless, when
one of the doctors goes out for medical trip or for vacation, it is necessary to find some trustworthy
substitutes whom can check the medical record. By employing CP-ABPRE a doctor can first specify a
new access policy, such as I4 = {Paediatrician∧Bronchitis∧ (Senior Registrar ∨Registrar)}, and
then generates a re-encryption key (which can transform the ciphertext under I3 into the one under
I4) for his/her proxy. When the doctor is absent, the proxy can translate the ciphertext of the record
to the one which can be only decrypted by the doctors satisfying I4.

Previous CP-ABPRE schemes are only secure against chosen-plaintext attacks (CPA). The exis-
tence of CP-ABPRE with chosen-ciphertext security has been open. We note that CPA security might
be not sufficient in general protocol settings as it only achieves the very basic requirement from an
encryption scheme, i.e. secrecy against “passive” eavesdroppers. When CP-ABPRE is implemented
within a large protocol or system, a much wider array of attacks are possible. For example, the adver-
sary may have control over the ciphertexts so as to affect the decryption values or learn some partial
information of decryption result.

CCA security, however, allows the adversary to access the decryption oracle, i.e. achieving the
ability to read the underlying plaintext related to the ciphertexts of its choice. This is able to pre-
clude insider attacks. For example, a legitimate doctor of some hospital is able to acquire pairs of
CP-ABPRE ciphertexts and plaintexts as previous knowledge. But the CCA security guarantees that
he/she still cannot gain any useful knowledge of the underlying plaintext of the challenge ciphertext
after his/her retirement. CCA security also implies non-malleability that guarantees that if the ad-
versary modifies given ciphertexts, then the corresponding decryption yields invalid results. That is,
even if the ciphertexts are modified and re-transferred to other hospitals (whom are not the recipients
specified by original sender), the underlying medical records still cannot be accessed. Therefore, it is
desirable to propose CCA secure CP-ABPRE scheme in practice.

5 http://www.healthgrades.com/.
6 http://www.scripps.org/.
7 Suppose the system uses a cloud (with considerable storage capability) to store the information of doctors.

4

Another open problem left by previous CP-ABPRE schemes is how to support any monotonic
access policy. In practical use, it is desirable to enable a CP-ABPRE to support expressive and flexible
realization for access policy. This paper also deals with this problem.

1.1 Our Contributions

In this work we formalize the definition for CP-ABPRE. Specifically, in our definition an attribute set
and an access structure is required as auxiliary input to the re-encryption key algorithm; meanwhile,
an attribute set is required in the input to the private key generation and decryption algorithms.

Regarding to the security models, we propose the selective access structure and chosen ciphertext
security (IND-sAS-CCA) game for CP-ABPRE. Note that it is the first time to define chosen ciphertext
security model for CP-ABPRE in the literature; and meanwhile, the game above can be easily converted
to the adaptive access structure and chosen ciphertext security (IND-aAS-CCA) one (details can be
seen in Section 2.2). We consider the IND-sAS-CCA game into two different aspects: one is to allow
the adversary to achieve an original ciphertext as the challenge ciphertext; the other is to allow the
adversary to achieve a re-encrypted ciphertext as challenge. We refer to the security of the former and
the latter as IND-sAS-CCA security at original ciphertext (i.e. IND-sAS-CCA-Or) and IND-sAS-CCA
security at re-encrypted ciphertext (i.e. IND-sAS-CCA-Re), respectively. In this paper we also show
that the IND-sAS-CCA-Or security implies selective collusion resistance. Note that in [22] selective
collusion resistance is also called as selective master key security.

The construction of a CP-ABPRE with CCA security is an open problem left by previous CP-
ABPRE schemes. This paper proposes the first single-hop unidirectional CP-ABPRE to tackle the
problem. It is also worth mentioning that the existing CP-ABPRE schemes only support AND gates
on (multi-valued) positive and negative attributes, while our scheme allows ciphertexts to be associated
with any monotonic access formula. Despite our scheme is constructed in the random oracle model, it
can be proved IND-sAS-CCA secure under the decisional q-parallel bilinear Diffie-Hellman exponent
(q-parallel BDHE) assumption.

Difficulty of Converting Previous CPA Secure CP-ABPRE to Be Secure against CCA.
As stated in [20], to convert a CPA secure CP-ABPRE scheme to be CCA one is a challenging open
problem. One might think that some cryptographic primitives might come to help, such as the CHK
transformation [7]. The well-known CHK transformation can be used to convert a CPA secure PKE
scheme to be secure against CCA. The transformation, however, cannot be trivially employed in a
CPA secure PRE scheme so as to achieve CCA security. This is so because the CHK transformation
is used to prevent ciphertext from being mutated, but at the same time, PRE allows a ciphertext
to be transformed into another ciphertext. Namely, we use CHK transformation to guarantee the
validity of ciphertexts leads to a fact that the modification part brought by re-encryption cannot be
virtually protected. Thus, trivially employ the CHK transformation in the PRE setting often results
in a Replayable CCA security (RCCA) [9]. The classic instances are [21,11,13].

We here use an example to make a specific explanation. Suppose there is a CPA secure CP-ABPRE
scheme which is constructed in the standard model, and its original ciphertext is (A,B,C). In re-
encryption, suppose the proxy at least generates (at least) a new component A′, and outputs (A′, B,C)
as the re-encrypted ciphertext such that the corresponding delegatee can recover the plaintext from
(A′, B,C) by using his private key. Using the CHK transformation, the delegator may make a signature
D for (A,B,C) and output (Kv, A,B,C,D) as the original ciphertext, where Kv is the verification
key corresponding to D. To validate the signature, the proxy has to keep A as an auxiliary output,
i.e. outputting (Kv, A,A

′, B,C,D). Despite the integrity of (A,B,C) can be verified by Kv and D,
A′ can be arbitrarily mutated by adversary. On the other hand, if only B and C are bound by D,
then A’s integrity cannot be guaranteed. Note that to validate the CHK transformation one keynote
should be noticed that the verification key Kv must be “sealed” in ciphertext components such that

5

an adversary cannot simply choose a new signing and verification key pair (K ′v,K
′
s) and further make

a new signature D′ for (A,B,C).
One might doubt that the proxy might choose to sign A′ such that the re-encrypted ciphertext

is bound by signature. Nevertheless, this approach seems to be insensible. Suppose the proxy makes
a signature D′ for A′ using a new signing key K ′s, and outputs (Kv, A,B,C,D,K

′
v, A

′, D′) as the re-
encrypted ciphertext, where K ′v is the verification key associated with D′. An adversary may launch
the following attacks: it first mutates A′ as A′′, next chooses (K ′′s ,K

′′
v), and then signs A′′ in D′′.

The adversary finally outputs (Kv, A,B,C,D,K
′′
v , A

′′, D′′). Here the verification is passed but the
ciphertext is mutated. The reason behind the attacks is that A′ as a single component is loosely
related to the original ciphertext and K ′v.

A naive solution for the problem is to request the proxy to not only encrypt A′ under a new access
policy which associates with the delegatees’ attributes, but also make signature for the new ciphertext
as the manner of original ciphertext. However, this approach comes at a price that the communication
bandwidth and decryption complexity are both increased. Furthermore, the proxy might suffer from
malicious attacks or invasion by adversary. Thus, this solution might be easily experienced the same
attacks introduced in the previous paragraph. In some privacy-preserving CP-ABPRE setting, i.e. the
proxy does not know the corresponding delegatees’ attributes, this solution is inappropriate as well.

Therefore, using the CHK transformation as a black box to turn the existing CPA secure CP-
ABPRE schemes to be secure against CCA that is not trivial. In section 4, we show an efficient
solution to address the difficulty.

1.2 Related Work

In 2005 Sahai and Waters [25] introduced the concept of ABE. There are two categories of ABE, KP-
ABE and CP-ABE. Goyal et al. [15] proposed the first KP-ABE, in which a ciphertext is related to a set
of attributes, and each private key corresponds to an access policy over the attributes. The decryption
can be fulfilled correctly if and only if the attribute set of the ciphertext satisfies the access policy on
the decryptor’s private key. Reversely, Bethencourt et al. [5] proposed CP-ABE where the ciphertext
is associated with an access policy and the private key is related to an attribute set. Note that we here
mainly focus on reviewing CP-ABE. Later on, Cheung and Newport [10] proposed a provably secure
CP-ABE scheme which only supports AND gates over attributes. The first fully expressive CP-ABE
was proposed by Waters [26]. Using dual system encryption, Lewko et al. [18] proposed a fully secure
CP-ABE which leads to some loss of efficiency compared to the most efficient scheme proposed in [26].
Recently, Attrapadung et al. [3] proposed a CP-ABE with constant-size ciphertexts.

Following the introduction of decryption rights delegation by Mambo and Okamoto [23], Blaze et
al. [6] formalized proxy re-encryption and proposed a seminal bidirectional PRE scheme. After that,
Ivan and Dodis [17] formalized the definitions of bidirectional and unidirectional proxy functions. In
2005, Ateniese et al. [1,2] proposed three unidirectional PRE schemes with CPA security. Later on,
many classic PRE schemes (e.g., [8,16,21]) have been proposed.

To implement PRE in the attribute-based cryptographic setting, Liang et al. [20] defined CP-
ABPRE, and proposed a concrete construction based on a CP-ABE scheme [10] in which access policy
is only represented as AND gates on positive and negative attributes. Mizuno and Doi [24] proposed
a hybrid PRE scheme (in general) where the scheme can bridge ABE and IBE in the sense that
ciphertexts generated in the context of ABE can be converted to the ones which can be decrypted in
the IBE setting. Luo et al. [22] proposed a CP-ABPRE scheme which supports AND gates on multi-
valued and negative attributes. The aforementioned CP-ABPRE schemes, however, are only secure
against CPA and supports AND gates over attributes. The construction of a CCA secure CP-ABPRE
supporting any monotonic access policy remains open. This paper deals with this problem.

We here compare our scheme with previous CP-ABPRE schemes, and summarize the comparison in
terms of public/private key size, ciphertext/re-encryption key size, re-encryption cost and properties,

6

in Table 1. We let f be the size of an access formula, A be the number of attributes on a user’s private
key, U be the number of all attributes defined in the system, mv be multi-valued attribute, + be
positive attribute and − be negative attribute. Besides, we use ce and cp to denote the computational
cost of an exponetiation and a bilinear pairing. To the best of our knowledge, our scheme is the first
of its kind to achieve CCA security and to support any monotonic access formula (over attributes).

Table 1. Comparison with [20,22,24]

Schemes Public/Private Ciphertext/ Re-Encryption Selective Model Attributes Expression
Key Size ReKey Size Cost /CCA Security

CP-ABPRE [20] O(U)/O(U) O(U)/O(U) O(U) · cp ! /# AND gates on + and −
CP-ABPRE [22] O(U2)/O(U) O(U)/O(U) O(U) · cp ! /# AND gates on mv and −
CP-ABPRE [24] O(U)/O(U) O(U)/O(U) O(1) · ce +O(U) · cp ! /# AND gates on + and −
Our CP-ABPRE O(1)/O(A) O(f)/O(A) O(A) · ce +O(A) · cp ! /! Any monotonic access formula

2 Definitions and Security Models

In this section, we concentrate on formulating the definition of CP-ABPRE systems. Before proceeding,
we first review some notations used in our definition.

Definition 1. (Access Structure [4]) Let P = {P1, P2, ..., Pn} be a set of parties. A collection
AS ⊆ 2P is monotone if ∀B,C: if B ∈ AS and B ⊆ C then C ∈ AS. An access structure (resp.,
monotonic access structure) is a collection (resp., monotone collection) AS of non-empty subsets of
P, i.e., AS ⊆ 2P \ {∅}. The sets in AS are called the authorized sets, and the sets not in AS are called
the unauthorized sets.

In ABE the role of the parties is taken by the attributes. The access structure AS contains all authorized
sets of attributes. In this paper we work on monotone access structures. As shown in [4], any monotone
access structure can be represented by a linear secret sharing scheme.

Definition 2. (Linear Secret Sharing Schemes (LSSS) [26]) A secret-sharing scheme Π over
a set of parties P is called linear (over Zp) if

– The shares for each party form a vector over Zp.
– There exists a matrix an M with l rows and n columns called the share-generating matrix for Π.

For all i = 1, ..., l, the ith row of M is labeled by a party ρ(i), where ρ is a function from {1, ..., l} to
P. When we consider the column vector v = (s, r2, ..., rn), where s ∈ Zp is the secret to be shared,
and r2, ..., rn ∈ Zp are randomly chosen, then M ·v is the vector of l shares of the secret s according
to Π. The share (M · v)i belongs to party ρ(i). For any unauthorized set, no such constants exist.
We use LSSS matrix (M,ρ) to represent an access policy in this paper.

Note that every LSSS according to the above definition achieves the linear reconstruction prop-
erty [4]. Suppose that Π is an LSSS for the access structure AS. Let S ∈ AS (that is, S satisfies the
access structure; we also denote this case as S |= (M,ρ)) be any authorized set, and let I ⊂ {1, 2, ..., l}
be defined as I = {i : ρ(i) ∈ S}. There will exist constants {wi ∈ Zp}i∈I such that

∑
i∈I wi · λi = s

if {λi} are valid shares of any secret s according to Π. Note that as shown in [4] {wi} can be found
(with knowledge of M and I) in time polynomial in the size of the share-generating matrix M .

7

2.1 Definition of CP-ABPRE

Definition 3. A Single-Hop Unidirectional Ciphertext-Policy Attribute-Based Proxy Re-Encryption
(CP-ABPRE) scheme consists of the following seven algorithms:

1. (param,msk) ← Setup(1k,U): on input a security parameter k ∈ N and an attribute universe U ,
output the public parameters param and a master secret key msk.

2. skS ← KeyGen(param,msk, S): on input param, msk and an attribute set S that describes the
key, output a private key skS for S. Note that like traditional CP-ABE each private key skS is
associated with an attribute set S.

3. rkS→(M ′,ρ′) ← ReKeyGen(param, skS , S, (M
′, ρ′)): on input param, a private key skS and the

corresponding attribute set S, and an access structure (M ′, ρ′) for attributes over U , output a re-
encryption key rkS→(M ′,ρ′) that can be used to transform a ciphertext under (M,ρ) to another
ciphertext under (M ′, ρ′), where S |= (M,ρ). Note that (M,ρ) and (M ′, ρ′) are disjoint8.

4. C(M,ρ) ← Enc(param, (M,ρ),m): on input param, an access structure (M,ρ) for attributes over U ,

and a plaintext m ∈ {0, 1}k, output an original ciphertext C(M,ρ) which can be further re-encrypted.
We assume that the access structure is implicitly included in the ciphertext.

5. CR(M ′,ρ′) ← ReEnc(param, rkS→(M ′,ρ′), C(M,ρ)): on input param, a re-encryption key rkS→(M ′,ρ′),

and an original ciphertext C(M,ρ), output a re-encrypted ciphertext CR(M ′,ρ′) if S |= (M,ρ) or a

symbol ⊥ indicating either C(M,ρ) is invalid or S 2 (M,ρ). Note that CR(M ′,ρ′) cannot be further
re-encrypted.

6. m← Dec(param, S, skS , C(M,ρ)): on input param, an attribute set S and its corresponding private
key skS, and an original ciphertext C(M,ρ), output a plaintext m if S |= (M,ρ) or a symbol ⊥
indicating either C(M,ρ) is invalid or S 2 (M,ρ).

7. m ← DecR(param, S′, skS′ , C
R
(M ′,ρ′)): on input param, an attribute set S′ and its corresponding

private key skS′, and a re-encrypted ciphertext CR(M ′,ρ′), output a plaintext m if S′ |= (M ′, ρ′) or a

symbol ⊥ indicating either CR(M ′,ρ′) is invalid or S′ 2 (M ′, ρ′).

For simplicity, we omit param in the expression of the algorithm inputs in the rest of the paper.

Correctness: For any k ∈ N, any attribute set S (S ⊆ U) with its cardinality polynomial to k,
any access structure (M,ρ) for attributes over U and any message m ∈ {0, 1}k, if (param,msk) ←
Setup(1k,U), skS ← KeyGen(msk, S), for all S used in the system, we have

Dec(S, skS , Enc((M,ρ),m)) = m;

DecR(S′, skS′ , ReEnc(ReKeyGen(skS , S, (M
′, ρ′)), Enc((M,ρ),m))) = m,

where S |= (M,ρ) and S′ |= (M ′, ρ′).

2.2 Security Models

In the following we define the security notions for CP-ABPRE systems. Prior models for CP-ABPRE
only consider the IND-sAS-CPA security, below we define a complete IND-sAS-CCA security game.

Definition 4. A single-hop unidirectional CP-ABPRE scheme is IND-sAS-CCA secure at original
ciphertext if no probabilistic polynomial time (PPT) adversary A can win the game below with non-
negligible advantage. In the game, C is the game challenger, k and U are the security parameter and
attribute universe.

1. Initialization. A outputs a challenge access structure (M∗, ρ∗) to C.

8 Suppose (M,ρ) and (M ′, ρ′) are two access structures. For any attribute x satisfies (M,ρ), x does not satisfy (M ′, ρ′).
For such a case, from now on, we say that (M,ρ) and (M ′, ρ′) are disjoint.

8

2. Setup. C runs Setup(1k,U) and sends param to A.

3. Query Phase I. A is given access to the following oracles.

(a) Private key extraction oracle Osk(S): on input an attribute set S, C runs skS ← KeyGen(msk, S)
and returns skS to A.

(b) Re-encryption key extraction oracle Ork(S, (M ′, ρ′)): on input an attribute set S, and an
access structure (M ′, ρ′), C returns rkS→(M ′,ρ′) ← ReKeyGen(skS, S, (M ′, ρ′)) to A, where
skS ← KeyGen(msk, S).

(c) Re-encryption oracle Ore(S, (M ′, ρ′), C(M,ρ)): on input an attribute set S, an access structure

(M ′, ρ′), and an original ciphertext C(M,ρ), C returns CR(M ′,ρ′) ← ReEnc(rkS→(M ′,ρ′), C(M,ρ))

to A, where rkS→(M ′,ρ′) ← ReKeyGen(skS , S, (M
′, ρ′)), skS ← KeyGen(msk, S) and S |=

(M,ρ).

(d) Original ciphertext decryption oracle Od2(S,C(M,ρ)): on input an attribute set S and an original
ciphertext C(M,ρ), C returns m ← Dec(S, skS, C(M,ρ)) to A, where skS ← KeyGen(msk, S)
and S |= (M,ρ).

(e) Re-encrypted ciphertext decryption oracle Od1(S′, CR(M ′,ρ′)): on input an attribute set S′ and

a re-encrypted ciphertext CR(M ′,ρ′), C returns m ← DecR(S′, skS′, C
R
(M ′,ρ′)), where skS′ ←

KeyGen(msk, S′) and S′ |= (M ′, ρ′).

Note that if the ciphertexts queried to oracles Ore, Od2 and Od1 are invalid, C simply outputs ⊥.

In this phase the following queries are forbidden to issue:

– Osk(S) for any S |= (M∗, ρ∗); and

– Ork(S, (M ′, ρ′)) for any S |= (M∗, ρ∗), and Osk(S′) for any S′ |= (M ′, ρ′).

4. Challenge. A outputs two equal length messages m0 and m1 to C. C returns C∗(M∗,ρ∗) = Enc((M∗,

ρ∗), mb) to A, where b ∈R {0, 1}.
5. Query Phase II. A continues making queries as in Query Phase I except the following:

(a) Osk(S) for any S |= (M∗, ρ∗);

(b) Ork(S, (M ′, ρ′)) for any S |= (M∗, ρ∗), and Osk(S′) for any S′ |= (M ′, ρ′);

(c) Ore(S, (M ′, ρ′), C∗(M∗,ρ∗)) for any S |= (M∗, ρ∗), and Osk(S′) for any S′ |= (M ′, ρ′);

(d) Od2(S,C∗(M∗,ρ∗)) for any S |= (M∗, ρ∗); and

(e) Od1(S′, CR(M ′,ρ′)) for any CR(M ′,ρ′), S
′ |= (M ′, ρ′), where CR(M ′,ρ′) is a derivative of C∗(M∗,ρ∗). As

of [8], the derivative of C∗(M∗,ρ∗) is defined as follows.

i. C∗(M∗,ρ∗) is a derivative of itself.

ii. If A has issued a re-encryption key query on (S, (M ′, ρ′)) to obtain the re-encryption
key rkS→(M ′,ρ′), and achieved CR(M ′,ρ′) ← ReEnc(rkS→(M ′,ρ′), C

∗
(M∗,ρ∗)), then CR(M ′,ρ′) is

a derivative of C∗(M∗,ρ∗), where S |= (M∗, ρ∗).

iii. If A has issued a re-encryption query on (S, (M ′, ρ′), C∗(M∗,ρ∗)) and obtained the re-encrypted

ciphertext CR(M ′,ρ′), then CR(M ′,ρ′) is a derivative of C∗(M∗,ρ∗), where S |= (M∗, ρ∗).

6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

The advantage of A is defined as ε1 = AdvIND−sAS−CCA−OrCP−ABPRE,A (1k,U) = |Pr[b′ = b]− 1
2 |.

Remarks. The model above can be converted to the IND-aAS-CCA-Or game by allowing A to output
the challenge access structure (M∗, ρ∗) in the challenge phase. Meanwhile, there is no restriction for
A in Query Phase I. Besides, C will output the challenge ciphertext if the forbidden queries defined in
Query Phase I of the above game are never made.

The definition of IND-sAS-CCA-Re security can be defined in an orthogonal manner as follows.

Definition 5. A single-hop unidirectional CP-ABPRE scheme is IND-sAS-CCA secure at re-encrypted
ciphertext if the advantage ε2 = AdvIND−sAS−CCA−ReCP−ABPRE,A (1k,U) is negligible for any PPT adversary A

9

in the following experiment. Set O1 = {Osk, Ork, Ore, Od2, Od1}.

ε2 = |Pr[b′ = b : ((M∗, ρ∗), State1)← A(1k); (param,msk)← Setup(1k,U); (m0,m1, (M,ρ), State2)← AO1

(param, State1); b ∈R {0, 1};CR∗(M∗,ρ∗) ← ReEnc(rkS→(M∗,ρ∗), C(M,ρ)); b
′ ← AO1(CR∗(M∗,ρ∗), State2)]−

1

2
|,

where State1 and State2 are the state information, (M,ρ) and (M∗, ρ∗) are disjoint, (M∗, ρ∗) is
the challenge access structure, S |= (M,ρ), rkS→(M∗,ρ∗) ← ReKeyGen(skS , S, (M

∗, ρ∗)), C(M,ρ) ←
Enc((M , ρ), mb), Osk,Ork,Ore,Od2,Od1 are the oracles defined in Definition 4. However, these oracles
are restricted by the following constraints. For Osk, the query on S is forbidden to issue for any
S |= (M∗, ρ∗). For Ork, it works as in the IND-sAS-CCA-Or game. Ore will output ⊥ if A queries
invalid original ciphertexts or re-encrypted ciphertexts. There is no restriction for Od2 except that
the oracle will reject invalid original ciphertexts. If A queries to Od1 on (S,CR∗(M∗,ρ∗)) or invalid re-

encrypted ciphertexts, the oracle outputs ⊥, where S |= (M∗, ρ∗).

Remarks. In Definition 5 Ork must follow the constraints defined in Definition 4. This is necessary
because in selective access structure model the challenger cannot construct a valid private key for
any S |= (M∗, ρ∗). Thus the re-encryption key rkS→(M ′,ρ′) has to be randomly generated, where A is
allowed to query Osk(S′) for any S′ |= (M ′, ρ′). If such a re-encryption key can be issued by A, then
A can distinguish the simulation from the real attack9. In this case, to generate the corresponding
re-encryption, Ore must be provided for A. Note that Definition 5 can be regarded as a weaker notion
when compared with the (adaptive) re-encrypted ciphertext security model defined in traditional PRE.

The model above can be also converted to the IND-aAS-CCA-Re game as follows. A is allowed
to output (M∗, ρ∗) in the challenge phase. There is no restriction for A to query Ork. Besides, Ore is
unnecessary as A is allowed to query any re-encryption key.

We now proceed to the selective collusion resistance for CP-ABPRE. Like collusion resistance
defined in traditional PRE, this security notion also guarantees that a dishonest proxy cannot com-
promise the entire private key of the delegator even it colludes with the corresponding delegatee.
However, an adversary is required to output an attribute set that it wishes to attack before the setup
phase. The selective collusion resistance model can be defined via the identical manner introduced
in [20,22], we hence omit the details. Instead, we prefer to show that the IND-sAS-CCA-Or security
already implies selective collusion resistance.

Theorem 1. Suppose a single-hop unidirectional CP-ABPRE scheme is IND-sAS-CCA-Or secure,
then it is selective collusion resistant as well.

Please refer to Appendix A for the proof of Theorem 1.

3 Preliminaries

We first give a brief review of bilinear maps and the decisional q-parallel BDHE assumption, and next
introduce the target collision resistance hash function.

Bilinear Maps. Let BSetup denote an algorithm that, on input the security parameter 1k, outputs
the parameters for a bilinear map as (p, g,G,GT , e), where G and GT are two multiplicative cyclic
groups with prime order p ∈ Θ(2k) and g is a generator of G. The efficient mapping e : G×G→ GT has
three properties: (1) Bilinearity : for all g ∈ G and a, b ∈R Z∗p, e(ga, gb) = e(g, g)ab; (2) Non-degeneracy :
e(g, g) 6= 1GT , where 1GT is the unit of GT ; (3) Computability : e can be efficiently computed.

9 This is so because A can verify whether such a re-encryption key is valid or not as follows: A first generates a ciphertext
of a chosen message m under (M∗, ρ∗), re-encrypts the ciphertext using the re-encryption key, and then decrypts the
re-encrypted ciphertext using skS′ . If the decryption outputs m, then the re-encryption key is valid.

10

Definition 6. Decisional q-parallel BDHE Assumption [26]. Given a tuple y=

g, gs, ga, ..., ga
q
, ga

q+2
, ..., ga

2q

∀1≤j≤q gs·bj , ga/bj , ..., ga
q/bj , ga

q+2/bj , ..., ga
2q/bj

∀1≤j,k≤q,k 6=j ga·s·bk/bj , ..., ga
q ·s·bk/bj ,

the decisional q-parallel BDHE problem is to decide whether T = e(g, g)a
q+1·s, where a, s, b1, ..., bq ∈R

Zp, T ∈R GT and g is a generator of G. Define AdvD−q−parallelBDHEA = |Pr[A(y, e(g, g)a
q+1·s) =

0] − Pr[A(y, T) = 0]| as the advantage of adversary A in winning the decisional q-parallel BDHE
problem. We say that the decisional q-parallel BDHE assumption holds in (G,GT) if no PPT algorithm
has non-negligible advantage.

Target Collision Resistant Hash Function. Target Collision Resistant (TCR) hash function was
introduced by Cramer and Shoup [12]. A TCR hash function H guarantees that given a random
element x which is from the valid domain of H, a PPT adversary A cannot find y 6= x such that
H(x) = H(y). We let AdvTCRH,A = Pr[(x, y) ← A(1k) : H(x) = H(y), x 6= y, x, y ∈ DH] be the
advantage of A in successfully finding collisions from a TCR hash function H, where DH is the valid
input domain of H, k is the security parameter. If a hash function is chosen from a TCR hash function
family, AdvTCRH,A is negligible.

4 A New CP-ABPRE with CCA Security

In this section we construct a new CP-ABPRE in the random oracle model with CCA security. Prior
to proposing the scheme, we first introduce some intuition behind our construction. We choose Waters
ABE (the most efficient construction proposed in [26]) as a basic building block of our scheme due to
the following reasons. The construction of Waters ABE scheme enables us to convert the scheme to
be an ABE Key Encapsulation in the random oracle model. Specifically, in our construction a content
key that is asymmetrically encrypted under an access policy is used to hide a message in a symmetric
way. Furthermore, Waters ABE scheme utilizes LSSS to support any monotonic access formula for
ciphertexts. It is a desirable property for CP-ABPRE systems when being implemented in practice.
In addition, the construction for ciphertexts, whose size is linear in the size of formula, is able to help
us relieve the communication cost incurred by re-encryption and the generation of re-encryption key.

CCA Security. As discussed in Section 1.1, the biggest challenge would be how to achieve CCA
security while not jeopardizing the properties of attribute-based re-encryption, unidirectionality and
collusion resistance. In our construction, we use some technique, which is like the FO [14] conversion,
to capture CCA security. Specifically, in the construction of ciphertext we utilize a TCR hash function
to “sign” the ciphertext’s components as well as the description of LSSS, and meanwhile, construct a
“verification key” to check the validity of such a “signature”. In algorithm Enc, it can be seen that
the “signature” is D and the verification key is A3 such that the validity of ciphertext can be checked

by e(A2, g1)
?
= e(g,A3) and e(A3, H4(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ)))

?
= e(g1, D), S

?

|= (M,ρ). In
algorithm ReEnc, the proxy could first check the above equations so as to guarantee the re-encryption
to intake correct values. Besides the well-formness of the components {(Bi, Ci)|1 ≤ i ≤ l} should be
verified as they are the input for re-encryption as well. To capture such a requirement, we let the

proxy check e(
∏
i∈I B

wi
i , g)

?
= e(A2, g

a) ·
∏
i∈I(e(C

−1
i , H3(ρ(i))wi)). After fulfilling the re-encryption,

the proxy will output the re-encrypted ciphertext (S, (M,ρ), A1, A3, (B1, C1), ..., (Bl, Cl), D, A4,
rk4). For a legitimate delegatee, he/she is able to check the validity of the re-encrypted ciphertext as
(M,ρ), A1, A3, (B1, C1), ..., (Bl, Cl) are “signed” by D and S is “signed” in rk4 (which will be further
elaborated later). Besides, A4 is tightly related to the original ciphertext’s components A1 and A3 due

to a fact that A3
?
= g

H1(m,β)
1 can tell whether A4 is mutated or not.

11

As to the generation of re-encryption key rkS→(M ′,ρ′) from an attribute set S to a new access
policy (M ′, ρ′), it can be seen that S and (M ′, ρ′) are “signed” in D′, and the signature can be checked
by A′2. rk1, rk3, Rx are tightly related to rk4 via δ, and rk1 is bound with rk2 with θ, where rk4 is
the encryption of δ under (M ′, ρ′) with CCA security. Here if rk1, rk2, rk3 and Rx are mutated by an
adversary, the corresponding re-encryption will yield an invalid results corresponding to rk4; on the
other hand, if the description of S and (M ′, ρ′), and the encryption rk4 are mutated, the proxy can

tell by checking e(A′2, H6(A
′
1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′)))
?
= e(g,D′). Thus the construction

precludes an adversary from generating a new and valid re-encryption key rkS′→(M ′,ρ′) or rkS→(M ′′,ρ′′)

based on knowledge of rkS→(M ′,ρ′).
Taking a more specific look at the re-encryption key, we can see that only the private key of

the delegator is taken as an input. Accordingly, our scheme is non-interactive in the generation of
re-encryption key (which saves the bandwidth of communication) and unidirectional. Due to the
construction of rk1 an adversary cannot compromise the entire private key of the delegator without
knowledge of θ even if it colludes with the corresponding delegatee. This captures collusion resistance.
As to single-hop property, it can be achieved as follows. Algorithm ReEnc shows that A3 (i.e. gs1) is a
necessary component for re-encryption. However, such a component is not included in rk4 such that
rk4 is out of the capability of being re-encrypted. Thus our scheme is single-hop as well.

Note that the definition of the relevant variables used above can be seen in our scheme.
The description of our new CP-ABPRE scheme with CCA security is as follows. Unless stated

otherwise, we let U be the attributes universe in the system, and S be an attribute set, S ⊆ U .

1. Setup(1k,U). Given a security parameter k and U , run (p, g,G,GT , e)← BSetup(1k). Choose two
random values a, α ∈ Z∗p, a random generator g1 ∈ G, and set the following TCR hash functions

H1 : {0, 1}2k → Z∗p, H2 : GT → {0, 1}2k, H3 : {0, 1}∗ → G, H4 : {0, 1}∗ → G, H5 : {0, 1}k → Z∗p,
H6 : {0, 1}∗ → G. The public parameters are param = (p, g, G, GT , e, g1, g

a, e(g, g)α, H1, H2,
H3, H4, H5, H6), and the master secret key is msk = gα.

2. KeyGen(msk, S). Given msk and an attribute set S, choose t ∈R Z∗p, and set the private key skS
as

K = ga·t · gα, L = gt,∀x ∈ S Kx = H3(x)t.

3. Enc((M,ρ),m). Taking an LSSS access structure (M,ρ) (M is an l×n matrix, and the function ρ
associates rows of M to attributes) and a message m ∈ {0, 1}k as input, the encryption algorithm
works as follows.
(a) Choose β ∈R {0, 1}k, set s = H1(m,β) and a random vector v = (s, y2, ..., yn), where y2, ..., yn ∈R

Z∗p.
(b) For i = 1 to l, set λi = v ·Mi, where Mi is the vector corresponding to the ith row of M .
(c) Choose r1, ..., rl ∈R Z∗p, set

A1 = (m||β)⊕H2(e(g, g)α·s), A2 = gs, A3 = gs1, B1 = (ga)λ1 ·H3(ρ(1))−r1 , C1 = gr1 , ...,

Bl = (ga)λl ·H3(ρ(l))−rl , Cl = grl , D = H4(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ))s,

and output the original ciphertext C(M,ρ) = ((M,ρ), A1, A2, A3, (B1, C1), ..., (Bl, Cl), D).
Note that {ρ(i)|1 ≤ i ≤ l} are the attributes used in the access structure (M,ρ). Like [26], we
allow an attribute to be associated with multiple rows of matrix M , i.e. the function ρ is not
injective.

4. ReKeyGen(skS , S, (M
′, ρ′)). Given a private key skS = (K,L,Kx) and the corresponding attribute

set S, and an LSSS access structure (M ′, ρ′), the re-encryption key is generated as follows, where
x ∈ S, M ′ is an l′ × n′ matrix, and the function ρ′ associates rows of M ′ to attributes.

– The delegator does the following encryption:
(a) Choose β′, δ ∈R {0, 1}k, set s′ = H1(δ, β

′) and a random vector v′ = (s′, y′2, ..., y
′
n′), where

y′2, ..., y
′
n′ ∈R Z∗p.

12

(b) For i = 1 to l′, set λ′i = v′ ·M ′i , where M ′i is the vector corresponding to the ith row of M ′.
(c) Choose r′1, ..., r

′
l′ ∈R Z∗p, compute A′1 = (δ||β′) ⊕ H2(e(g, g)α·s

′
), A′2 = gs

′
, B′1 = (ga)λ

′
1 ·

H3(ρ
′(1))−r

′
1 , C ′1 = gr

′
1 , ..., B′l′ = (ga)λ

′
l′ ·H3(ρ

′(l′))−r
′
l′ , C ′l′ = gr

′
l′ , D′ = H6(A

′
1, A

′
2, (B

′
1, C

′
1),

..., (B′l′ , C
′
l′), S, (M

′, ρ′))s
′
, and output the ciphertext C(M ′,ρ′) = ((M ′, ρ′), A′1, A

′
2, (B′1, C

′
1),

..., (B′l′ , C
′
l′), D

′).

– The delegator chooses θ ∈R Z∗p, and sets rk1 = KH5(δ) ·gθ1, rk2 = gθ, rk3 = LH5(δ), ∀x ∈ S Rx =

K
H5(δ)
x , rk4 = C(M ′,ρ′), and outputs the re-encryption key rkS→(M ′,ρ′) = (S, rk1, rk2, rk3, rk4, Rx).

5. ReEnc(rkS→(M ′,ρ′), C(M,ρ)). Parse the original ciphertext C(M,ρ) as ((M,ρ), A1, A2, A3, (B1, C1),
..., (Bl, Cl), D), and the re-encryption key rkS→(M ′,ρ′) as (S, rk1, rk2, rk3, rk4, Rx). Recall that M
is an l × n matrix. Let I ⊂ {1, ..., l} be defined as I = {i : ρ(i) ∈ S}, {wi ∈ Z∗p}i∈I be a set of
constants such that

∑
i∈I wi · λi = s if {λi} are valid shares of any secret s according to M and

S |= (M,ρ)10.
(a) The proxy is able to verify whether the re-encryption key rkS→(M ′,ρ′) contains valid S and

(M ′, ρ′) or not by checking

e(A′2, H6(A
′
1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′)))
?
= e(g,D′).

(b) Verify the validity of the original ciphertext

e(A2, g1)
?
= e(g,A3), e(A3, H4(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ)))

?
= e(g1, D), S

?

|= (M,ρ),

e(
∏
i∈I

Bwi
i , g)

?
= e(A2, g

a) ·
∏
i∈I

(e(C−1i , H3(ρ(i))wi)).

(1)

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(c) Compute A4 = e(A2,rk1)/e(A3,rk2)
(
∏
i∈I(e(Bi,rk3)·e(Ci,Rρ(i)))wi)

, and output the re-encrypted ciphertext CR(M ′,ρ′) =

(S, (M,ρ), A1, A3, (B1, C1), ..., (Bl, Cl), D, A4, rk4).
6. Dec(S, skS , C(M,ρ)). Parse the original ciphertext C(M,ρ) as ((M,ρ), A1, A2, A3, (B1, C1), ...,

(Bl, Cl), D), and the private key skS (for an attribute set S) as (K,L,Kx) (x ∈ S). Note that
let I ⊂ {1, ..., l} be defined as I = {i : ρ(i) ∈ S}, {wi ∈ Z∗p}i∈I be a set of constants such that∑

i∈I wi · λi = s.
(1) Verify Eq. (1). If Eq. (1) does not hold, output ⊥. Otherwise, proceed.
(2) Compute Z = e(A2,K)/(

∏
i∈I(e(Bi, L) · e(Ci,Kρ(i)))

wi) and m||β = H2(Z)⊕A1, output m if

A3 = g
H1(m,β)
1 , and output ⊥ otherwise.

7. DecR(S′, skS′ , C
R
(M ′,ρ′)). Parse the re-encrypted ciphertext CR(M ′,ρ′) as (S, (M,ρ), A1, A3, (B1, C1),

..., (Bl, Cl), D, A4, rk4), and the private key skS′ (for an attribute set S′) as (K ′, L′,K ′x) (x ∈ S′).
(a) Recover δ||β′ as follows. Let I ′ ⊂ {1, ..., l′} be defined as I ′ = {i : ρ′(i) ∈ S′}, {w′i ∈ Z∗p}i∈I′ be

a set of constants such that
∑

i∈I′ w
′
i · λ′i = s′ if {λ′i} are valid shares of any secret s′ according

to M ′ and S′ |= (M ′, ρ′).

i. Verify

e(A′2, H6(A
′
1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′)))
?
= e(g,D′), S′

?

|= (M ′, ρ′). (2)

If Eq. (2) does not hold, output ⊥. Otherwise, proceed.
ii. Compute Z ′ = e(A′2,K

′)/(
∏
i∈I′(e(B

′
i, L
′)·e(C ′i,K ′ρ′(i)))

w′i) and δ||β′ = H2(Z
′)⊕A′1, proceed

if A′2 = gH1(δ,β′), and output ⊥ otherwise.

10 As stated in [4,26], with knowledge of M and I one can find the values wi satisfying
∑
i∈I wi · λi = s.

13

(b) Compute m||β = H2(A
1

H5(δ)

4) ⊕ A1, output m if A3 = g
H1(m,β)
1 , D = H4(A1, A3, (B1, C1), ...,

(Bl, Cl), (M,ρ))H1(m,β) and S |= (M,ρ), and output ⊥ otherwise.

– Correctness for Original Ciphertext.

Z = e(A2,K)/(
∏
i∈I

(e(Bi, L) · e(Ci,Kρ(i)))
wi)

=
e(gs, ga·t · gα)

(
∏
i∈I(e(g

a·λi ·H3(ρ(i))−ri , gt) · e(gri , H3(ρ(i))t))wi)

=
e(gs, ga·t · gα)

e(g, ga·t)
∑
i∈I λi·wi

= e(gs, gα),

Hence, we have H2(Z)⊕A1 = H2(e(g
s, gα))⊕ (m||β)⊕H2(e(g, g)α·s) = m||β.

– Correctness for Re-Encrypted Ciphertext.

A4 =
e(A2, rk1)/e(A3, rk2)

(
∏
i∈I(e(Bi, rk3) · e(Ci, Rρ(i)))wi)

=
e(gs, (ga·t · gα)H5(δ) · gθ1)/e(gs1, g

θ)∏
i∈I(e((g

a)λi ·H3(ρ(i))−ri , (gt)H5(δ)) · e(gri , H3(ρ(i))t·H5(δ)))wi

=
e(gs, gα·H5(δ)) · e(gs, ga·t·H5(δ))

e(g, ga·t·H5(δ))
∑
i∈I λi·wi

= e(gs, gα·H5(δ)),

Thus we have H2(A
1

H5(δ)

4)⊕A1 = H2(e(g, g)α·s·H5(δ))
1

H5(δ) ⊕ (m||β)⊕H2(e(g, g)α·s) = m||β.

Before giving the formal security analysis, we first give some intuition as to why the scheme above
is secure against CCA. For the security of original ciphertext, let C∗(M∗,ρ∗) = ((M∗, ρ∗), A∗1, A

∗
2, A

∗
3,

(B∗1 , C
∗
1), ..., (B∗l , C

∗
l), D∗) be the challenge ciphertext of mb. Suppose an adversary A who follows the

constraints defined in Definition 4 will try to get extra advantage in guessing the value of the bit b by
using Ore and Od2. Specifically, A might mutate the challenge ciphertext, and submit the resulting
ciphertext to Ore and Od2. From Eq. (1), such a change is noticeable with non-negligible probability.
This is so because A∗1, A

∗
3, (B∗1 , C

∗
1), ..., (B∗l , C

∗
l) are bound by D as well as the description of (M∗, ρ∗).

Note that D can be viewed as a signature for such components. Besides, the integrity of A∗2 is bound
by A∗3. If the ciphertext is mutated, Eq. (1) will not hold. Therefore, no extra advantage in guessing
b leaks to A.

For the security of re-encrypted ciphertext, let CR∗(M∗,ρ∗) = (S, (M,ρ), A∗1, A
∗
3, (B∗1 , C

∗
1), ..., (B∗l , C

∗
l),

D∗, A∗4, rk
∗
4) be the re-encrypted ciphertext of mb. Following Definition 5, A will try to gain extra

advantage in winning the game with the help of Od1. Before proceeding, we show that the re-encrypted
ciphertext cannot be re-encrypted, i.e. given Ore A cannot achieve extra advantage. Clearly, rk∗4 =
C(M∗,ρ∗) cannot be re-encrypted without A′3 (i.e. gs

′
1) which is a necessary component for re-encryption.

Furthermore, A∗2 that is needed in re-encryption and the verification in Eq. (1) is excluded in the re-
encrypted ciphertext. Accordingly, the re-encryption query for the re-encrypted ciphertext will be
rejected.

Given CR∗(M∗,ρ∗) A cannot mutate the ciphertext and issue the resulting ciphertext to Od1 such
that the oracle outputs a valid decryption value without any rejection. The reason is that A∗1, A

∗
3,

(B∗1 , C
∗
1), ..., (B∗l , C

∗
l) are still bound by D∗ as well as the description of (M,ρ); meanwhile, S and

the description of (M∗, ρ∗) are bound by rk∗4. Note that rk∗4 is secure against CCA11. Here the only

11 It is not difficult to see that D′ can be regarded as a signature for all the components contained in rk∗4 (except D′

itself) and S, and A′2 can be seen as the verification key.

14

consideration left is the integrity of A∗4. We state that if A∗4 is mutated by A, the challenger can tell the
change with non-negligible probability. Please refer to the proof for details. Hence A cannot acquire
extra advantage by using Od1.

Therefore we have the following theorems.

Theorem 2. Suppose the decisional q-parallel BDHE assumption holds in (G,GT), and H1, H2, H3,
H4, H5, H6 are the TCR hash functions, our CP-ABPRE scheme is IND-sAS-CCA-Or secure in the
random oracle model.

Please refer to Appendix B.1 for the proof of Theorem 2.

Theorem 3. Suppose the decisional q-parallel BDHE assumption holds in (G,GT), and H1, H2, H3,
H4, H5, H6 are the TCR hash functions, our CP-ABPRE scheme is IND-sAS-CCA-Re secure in the
random oracle model.

Please refer to Appendix B.2 for the proof of Theorem 3.

5 Concluding Remarks

In this paper, we proposed a new single-hop unidirectional CP-ABPRE scheme, which supports
attribute-based re-encryption with any monotonic access structure, to tackle the open problem left
by the existing CP-ABPRE schemes. We also showed that our scheme can be proved IND-sAS-CCA
secure in the random oracle model assuming the decisional q-parallel BDHE assumption holds.

Removing the ROM. The technique introduced in [19,27] might be a possible approach to
remove random oracles. We leave this as our future work.

This paper also motivates some interesting open problems, for example, how to construct a CCA
secure CP-ABPRE scheme in the adaptive access structure model, i.e. achieving IND-aAS-CCA secu-
rity.

References

1. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. In NDSS. The Internet Society, 2005.

2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

3. Nuttapong Attrapadung, Javier Herranz, Fabien Laguillaumie, Benôıt Libert, Elie de Panafieu, and Carla Rafols.
Attribute-based encryption schemes with constant-size ciphertexts. Theoretical Computer Science, 422(0):15–38,
2012.

4. Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology,
Technion, Haifa, Israel, 1996.

5. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In IEEE Symposium
on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

6. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography. In Kaisa
Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages 127–144. Springer, 1998.

7. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 207–222. Springer, 2004.

8. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Peng Ning, Sabrina De Cap-
itani di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and Communications Security,
pages 185–194. ACM, 2007.

9. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer, 2003.

10. Ling Cheung and Calvin C. Newport. Provably secure ciphertext policy ABE. In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and Communications Security, pages
456–465. ACM, 2007.

15

11. Cheng-Kang Chu and Wen-Guey Tzeng. Identity-based proxy re-encryption without random oracles. In Juan A.
Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta, editors, ISC, volume 4779 of Lecture Notes in Com-
puter Science, pages 189–202. Springer, 2007.

12. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, January 2004.

13. Keita Emura, Atsuko Miyaji, and Kazumasa Omote. A timed-release proxy re-encryption scheme. IEICE Transac-
tions, 94-A(8):1682–1695, 2011.

14. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. J.
Cryptology, 26(1):80–101, 2013.

15. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
Conference on Computer and Communications Security, pages 89–98. ACM, 2006.

16. Goichiro Hanaoka, Yutaka Kawai, Noboru Kunihiro, Takahiro Matsuda, Jian Weng, Rui Zhang, and Yunlei Zhao.
Generic construction of chosen ciphertext secure proxy re-encryption. In Orr Dunkelman, editor, Topics in Cryptology
- CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science, pages 349–364. Springer Berlin Heidelberg, 2012.

17. Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In NDSS. The Internet Society, 2003.
18. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure func-

tional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 62–91. Springer, 2010.

19. Kaitai Liang, Zhen Liu, Xiao Tan, Duncan S. Wong, and Chunming Tang. A cca-secure identity-based conditional
proxy re-encryption without random oracles. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors,
ICISC, volume 7839 of Lecture Notes in Computer Science, pages 231–246. Springer, 2012.

20. Xiaohui Liang, Zhenfu Cao, Huang Lin, and Jun Shao. Attribute based proxy re-encryption with delegating capabil-
ities. In Wanqing Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay Varadharajan, editors,
ASIACCS, pages 276–286. ACM, 2009.

21. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. In Ronald Cramer,
editor, Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science, pages 360–379. Springer, 2008.

22. Song Luo, Jian bin Hu, and Zhong Chen. Ciphertext policy attribute-based proxy re-encryption. In Miguel Soriano,
Sihan Qing, and Javier López, editors, ICICS, volume 6476 of Lecture Notes in Computer Science, pages 401–415.
Springer, 2010.

23. Masahiro Mambo and Eiji Okamoto. Proxy cryptosystems: Delegation of the power to decrypt ciphertexts. IEICE
Transactions, E80-A(1):54–63, 1997.

24. Takeo Mizuno and Hiroshi Doi. Hybrid proxy re-encryption scheme for attribute-based encryption. In Feng Bao,
Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Information Security and Cryptology, volume 6151 of Lecture Notes
in Computer Science, pages 288–302. Springer Berlin Heidelberg, 2011.

25. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, Advances in Cryptology
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer Berlin Heidelberg,
2005.

26. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization.
In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, Public Key Cryptography, volume
6571 of Lecture Notes in Computer Science, pages 53–70. Springer, 2011.

27. Jian Weng, Minrong Chen, Yanjiang Yang, Robert H. Deng, Kefei Chen, and Feng Bao. CCA-secure unidirectional
proxy re-encryption in the adaptive corruption model without random oracles. Science China Information Sciences,
53(3):593–606, 2010.

A Proof of Theorem 1

Proof. In the IND-sAS-CCA-Or game, A can achieve the following re-encryption keys from Ork:
rkS→(M ′,ρ′) and rkS′→(M ′′,ρ′′), where S |= (M∗, ρ∗) and S′ |= (M ′, ρ′). Following the restrictions
defined in the game, A cannot query the private key skS′ for any S′ |= (M ′, ρ′)12 but the private key
skS′′ for any S′′ |= (M ′′, ρ′′).

Suppose an IND-sAS-CCA-Or secure CP-ABPRE scheme is not selective collusion resistant. Then
A is able to compromise the private key skS′ from rkS′→(M ′′,ρ′′) and skS′′ . Using rkS→(M ′,ρ′), A can

re-encrypt the challenge ciphertext C∗(M∗,ρ∗) to CR(M ′,ρ′). A then decrypts the re-encrypted ciphertext
with skS′ so as to output the value of the bit b. This contradicts the IND-sAS-CCA-Or security.

This completes the proof of Theorem 1. 2

12 A is forbidden to query any private key skS for any S |= (M∗, ρ∗) as well.

16

B Security Analysis of CP-ABPRE

B.1 Proof of Theorem 2

Proof. Suppose there exists an adversary A who can break the IND-sAS-CCA-Or security of our
scheme. We then construct a reduction algorithm C to decide whether T = e(g, g)a

q+1·s or T ∈R GT .
C plays the IND-sAS-CCA-Or game with A as follows.

C takes in (p, g,G,GT , e)← BSetup(1k) and a q-parallel BDHE instance y and T ∈ GT , where T
is either equal to e(g, g)a

q+1·s or to T ′ ∈R GT .

1. Initialization. A outputs the challenge access structure (M∗, ρ∗) to C, where M∗ is an l∗ × n∗
matrix, l∗, n∗ ≤ q.

2. Setup. C chooses α′, γ ∈R Z∗p and sets g1 = gγ , e(g, g)α = e(ga, ga
q
)·e(g, gα′)13. Then C chooses the

TCR hash functions as in the real scheme, and sends the public parameters param = (p, g, G, GT ,
e, g1, g

a, e(g, g)α, H1, H2, H3, H4, H5, H6) to A. From the point of view of A, the public parameters
are identical to those of the real scheme. At any time, A can adaptively query the random oracles
Hj (j ∈ {1, ..., 6}) which are controlled by C. C maintains the lists HList

j (j ∈ {1, ..., 6}) which are
initially empty and answers the queries to the random oracles as follows.

(a) H1: on receipt of an H1 query on (m,β), if there is a tuple (m,β, s) in HList
1 , C forwards the

predefined value s to A, where s ∈ Z∗p. Otherwise, C sets H1(m,β) = s, responds s to A and

adds the tuple (m,β, s) to HList
1 , where s ∈R Z∗p.

(b) H2: on receipt of an H2 query on R ∈ GT , if there is a tuple (R, δ1) in HList
2 , C forwards the

predefined value δ1 to A, where δ1 ∈ {0, 1}2k. Otherwise, C sets H2(R) = δ1, responds δ1 to A
and adds the tuple (R, δ1) to HList

2 , where δ1 ∈R {0, 1}2k.
(c) H3: on receipt of an H3 query on x ∈ U , if there is a tuple (x, zx, δ2,x) in HList

3 , C forwards the
predefined value δ2,x to A, where zx ∈ Z∗p, δ2,x ∈ G. Otherwise, C constructs δ2,x as follows.
Let X denote the set of indices i such that ρ∗(i) = x, where 1 ≤ i ≤ l∗. Namely, X contains
the indices of rows of matrix M∗ that corresponds to the same attribute x. C chooses zx ∈R Z∗p
and sets

δ2,x = gzx ·
∏
i∈X

g
a·M∗i,1/bi+a2·M∗i,2/bi+···+an

∗ ·M∗
i,n∗/bi .

If X = ∅, C sets δ2,x = gzx . C responds δ2,x to A and adds the tuple (x, zx, δ2,x) to HList
3 .

(d) H4: on receipt of an H4 query on (A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ)), if there is a tuple
(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ), ξ1, δ3) in HList

4 , C forwards the predefined value δ3 to
A, where ξ1 ∈ Z∗p, δ3 ∈ G. Otherwise, C sets δ3 = gξ1 , responds δ3 to A and adds the tuple (A1,

A3, (B1, C1), ..., (Bl, Cl), (M,ρ), ξ1, δ3) to HList
4 , where ξ1 ∈R Z∗p.

(e) H5: on receipt of an H5 query on δ ∈ {0, 1}k, if there is a tuple (δ, ξ2) in HList
5 , C forwards the

predefined value ξ2 to A, where ξ2 ∈ Z∗p. Otherwise, C sets H5(δ) = ξ2, responds ξ2 to A and

adds the tuple (δ, ξ2) to HList
5 , where ξ2 ∈R Z∗p.

(f) H6: on receipt of an H6 query on (A′1, A
′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′)), if there is a tuple
(A′1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′), ξ3, δ4) in HList
6 , C forwards the predefined value δ4 to

A, where ξ3 ∈ Z∗p, δ4 ∈ G. Otherwise, C sets δ4 = gξ3 , responds δ4 to A and adds the tuple

(A′1, A
′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′), ξ3, δ4) to HList
6 , where ξ3 ∈R Z∗p.

In addition, C also maintains the following lists which are initially empty.

(a) SKList: records the tuples (S, skS), which are the results of the queries to Osk(S).

(b) RKList: records the tuples (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), tag1, tag2, tag3), which are the results
of the queries to Ork(S, (M ′, ρ′)), where tag1, tag2, tag3 denote that the re-encryption key is
randomly chosen, generated in Ore or in Ork, respectively.

13 It can be seen that α = α′ + aq+1 (which cannot be computed by C).

17

(c) REList: records the tuples (S, (M ′, ρ′), CR(M ′,ρ′), tag1, tag2, tag3), which are the results of the

queries toOre(S, (M ′, ρ′), C(M,ρ)), where tag1, tag2, tag3 denote that the re-encrypted ciphertext
is generated under a valid re-encryption key, under a randomly chosen re-encryption key or
generated without any re-encryption key.

3. Query Phase I. A issues a series of queries to which C responds as follows.

(a) Private key extraction oracle Osk(S): C constructs the private key skS for an attribute set S as
follows. If S |= (M∗, ρ∗), then C outputs a random bit in {0, 1} and aborts the simulation (due to
the restrictions defined in Definition 4). Otherwise, that is S 2 (M∗, ρ∗), C chooses r ∈R Z∗p, w =

(w1, ..., wn∗) ∈ Z∗n∗p such that w1 = −1 and ∀i, ρ∗(i) ∈ S we have that w ·M∗i = 014. C then sets

L = gr ·
∏
i=1,...,n∗ g

aq+1−i·wi = gt. Here t is implicitly defined as t = r+w1 ·aq+· · ·+wn∗ ·aq−n
∗+1.

C further constructs K as K = gα
′ · ga·r ·

∏
i=2,...,n∗ g

aq+2−i·wi . One can verify that K is valid

K = gα
′ · ga·r ·

∏
i=2,...,n∗

ga
q+2−i·wi = gα

′ · gaq+1 · g−aq+1 · ga·r ·
∏

i=2,...,n∗

ga
q+2−i·wi

= gα · (gr ·
∏

i=1,...,n∗

ga
q+1−i·wi)a = gα · La = gα · ga·t.

If x ∈ S but ρ∗(i) 6= x for any i ∈ {1, ..., l∗}, then C sets Kx = Lzx . It is easily to see
that Kx = Lzx = (gt)zx = δt2,x = H3(x)t. Otherwise, C constructs Kx as Kx = Lzx ·∏
i∈X

∏
j=1,...,n∗(g

(aj/bi)·r ·
∏
k=1,...,n∗,k 6=j(g

aq+1+j−k/bi)wk)M
∗
i,j . It can be seen that Kx is valid

Kx = Lzx ·
∏
i∈X

∏
j=1,...,n∗

(g(a
j/bi)·r ·

∏
k=1,...,n∗,k 6=j

(ga
q+1+j−k/bi)wk)M

∗
i,j

= Lzx ·
∏
i∈X

∏
j=1,...,n∗

(g(a
j/bi)·r ·

∏
k=1,...,n∗,k 6=j

(ga
q+1+j−k/bi)wk)M

∗
i,j ·

∏
i∈X

∏
j=1,...,n∗

(ga
q+1/bi)wj ·M

∗
i,j

= (gr ·
∏

i=1,...,n∗

ga
q+1−i·wi)zx ·

∏
i∈X

∏
j=1,...,n∗

(g(a
j/bi)·r ·

∏
k=1,...,n∗

(ga
q+1+j−k/bi)wk)M

∗
i,j

= (gzx ·
∏
i∈X

g
a·M∗i,1/bi+a2·M∗i,2/bi+···+an

∗ ·M∗
i,n∗/bi)(r+w1·aq+···+wn∗ ·aq−n

∗+1)

= δ
(r+w1·aq+···+wn∗ ·aq−n

∗+1)
2,x = δt2,x = H3(x)t,

where X is the set of all i such that ρ∗(i) = x. Recall that if S 2 (M∗, ρ∗), we then have

w ·M∗i = 0. Thus we have
∏
i∈X

∏
j=1,...,n∗(g

aq+1/bi)wj ·M
∗
i,j = ga

q+1·(
∑
i∈X

∑
j=1,...,n∗ wj ·M∗i,j/bi) =

g0 = 1. Finally, C adds the tuple (S, skS) to SKList and returns skS to A.

(b) Re-encryption key extraction oracle Ork(S, (M ′, ρ′)): if (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), ∗, 0,

1) ∈ RKList, C returns rkS→(M ′,ρ′) to A. Otherwise, C works as follows.

– If S |= (M∗, ρ∗) ∧ (S′, skS′) ∈ SKList (for any S′ |= (M ′, ρ′)), C outputs a random bit in
{0, 1} and aborts the simulation (due to the restrictions defined in Definition 4).

– If S |= (M∗, ρ∗)∧ (S′, skS′) /∈ SKList (for any S′ |= (M ′, ρ′)), C checks whether (S, (M ′, ρ′),
δ, β′, rkS→(M ′,ρ′), 1, 1, 0) ∈ RKList. If yes, C returns rkS→(M ′,ρ′) to A and resets tag2 =

0, tag3 = 1. Otherwise, C first chooses θ, σ ∈R Z∗p, β′, δ ∈R {0, 1}k, K̄ ∈R G. C then

sets rk1 = K̄ · gθ1, rk2 = gθ, rk3 = gσ, Rx = δσ2,x, and constructs rk4 as in the real
scheme, where δ2,x is the output of issuing x to H3, x ∈ S. Finally, C returns rkS→(M ′,ρ′) =

(S, rk1, rk2, rk3, rk4, Rx) to A, and adds (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), 1, 0, 1) to RKList.

14 Such a vector w must exist by the convention of an LSSS. Please refer to the discussion in [26].

18

– Otherwise, if (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), 0, 1, 0) ∈ RKList, C returns rkS→(M ′,ρ′) to
A, and resets tag2 = 0, tag3 = 1. Otherwise, C first constructs the private key skS for the
attribute set S as step (a). C further generates rkS→(M ′,ρ′) as in the real scheme, returns

the re-encryption key to A and adds (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), 0, 0, 1) to RKList.

(c) Re-encryption oracle Ore(S, (M ′, ρ′), C(M,ρ)): C verifies whether Eq. (1) holds. If not (i.e. in-
dicating either the ciphertext C(M,ρ) is invalid or S 2 (M,ρ)), C outputs ⊥. Otherwise, C
proceeds.
– If S |= (M∗, ρ∗) ∧ (S′, skS′) ∈ SKList (for any S′ |= (M ′, ρ′)) does not hold,

i. If S |= (M∗, ρ∗) ∧ (S′, skS′) /∈ SKList, C first constructs the re-encryption key as the
second case of step (b), further re-encrypts C(M,ρ) to A, and finally adds (S, (M ′, ρ′),

δ, β′, rkS→(M ′,ρ′), 1, 1, 0), (S, (M ′, ρ′), CR(M ′,ρ′), 0, 1, 0) to RKList, REList, respectively.

ii. Otherwise, C first constructs the re-encryption key as the third case of step (b), further
re-encrypts C(M,ρ) to A, and finally adds (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), 0, 1, 0), (S,

(M ′, ρ′), CR(M ′,ρ′), 1, 0, 0) to RKList, REList, respectively.

– Otherwise, C checks whether (m,β, s) ∈ HList
1 such that A3 = gs1. If no such tuple exists,

C outputs ⊥. Otherwise, C checks whether (S, (M ′, ρ′), δ, β′, ⊥, ⊥, 1, ⊥) ∈ RKList, where
S |= (M∗, ρ∗). If no, C chooses β′, δ ∈R {0, 1}k, generates rk4 = C(M ′,ρ′) (to hide δ and

β′) as in the real scheme, and constructs A4 = (e(ga, ga
q
) · e(g, gα′))s·ξ2 , where ξ2 = H5(δ).

Finally, C returns CR(M ′,ρ′) = (S, (M,ρ), A1, A3, (B1, C1), ..., (Bl, Cl), D, A4, rk4) to A,

and adds (S, (M ′, ρ′), δ, β′, ⊥, ⊥, 1, ⊥), (S, (M ′, ρ′), CR(M ′,ρ′), 0, 0, 1) to RKList, REList,
respectively.

(d) Original ciphertext decryption oracle Od2(S,C(M,ρ)): C verifies whether Eq. (1) holds. If not
(i.e. indicating either the ciphertext is invalid or S 2 (M,ρ)), C outputs ⊥. Otherwise, C
proceeds.
– If (S, skS) ∈ SKList (for any S |= (M,ρ)), C recovers m as in the real scheme using skS .
– Otherwise, C checks whether (m,β, s) ∈ HList

1 and (R, δ1) ∈ HList
2 such that A3 = gs1,

A1 = (m||β) ⊕ δ1 and R = e(g, g)α·s. C outputs ⊥ if no such tuples exist, and outputs m
otherwise.

(e) Re-encrypted ciphertext decryption oracle Od1(S′, CR(M ′,ρ′)): C first checks whether there are

tuples (δ, β′, s′) and (m,β, s) in HList
1 such that A′2 = gs

′
and A3 = gs1. If not, C outputs

⊥. Otherwise, C verifies whether Eq. (2) holds. If not (i.e. indicating either rk4 is invalid or
S′ 2 (M ′, ρ′)), C outputs ⊥. Otherwise, C proceeds.
– If (S, (M ′, ρ′), δ, β′, rkS→(M ′,ρ′), 1, 0, 1) ∈ RKList∨ (S, (M ′, ρ′), CR(M ′,ρ′), 0, 1, 0) ∈ REList,
C checks

e(
∏
i∈I′

B
′w′i
i , g)

?
= e(A′2, g

a) ·
∏
i∈I′

(e(C ′−1i , H3(ρ
′(i))w

′
i)), (3)

where with knowledge of M ′ and I ′ (I ′ ⊂ {1, ..., l′} and I ′ = {i : ρ′(i) ∈ S′}), C can find a
vector w′ = {w′i ∈ Z∗p}i∈I′ such that

∑
i∈I′ w

′
i · λ′i = s′. If Eq. (3) does not hold, C outputs

⊥. Otherwise, C reconstructs A2 = gs with knowledge of s and then verifies Eq. (1). If
the equation does not hold, C outputs ⊥. Otherwise, C recovers the random re-encryption
key rkS→(M ′,ρ′) = (S, rk1, rk2, rk3, rk4, Rx) from RKList, and checks the validity of A4 as

A4
?
= e(A2,rk1)/e(A3,rk2)

(
∏
i∈I(e(Bi,rk3)·e(Ci,Rρ(i)))wi)

, where I and wi are defined in ReEnc on page 5. If the

above equation does not hold, C outputs ⊥. Otherwise, C checks whether (R, δ1) ∈ HList
2

such that A1 = (m||β) ⊕ δ1 and R = e(g, g)α·s. If no such tuple exists, C outputs ⊥.
Otherwise, C returns m to A. Note that C can tell the derivatives of the challenge ciphertext
via the above manner.

– Otherwise,

19

i. If (S′, skS′) ∈ SKList, C recovers m as in the real scheme using skS′ .
ii. Otherwise, C checks whether Eq. (2) and Eq. (3) hold. If not, C outputs ⊥. Otherwise,
C checks whether (R, δ1) ∈ HList

2 such that A1 = (m||β) ⊕ δ1, R = e(g, g)α·s, and
verifies whether A4 = e(g, g)α·s·ξ2 and D = H4(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ))s

hold, where ξ2 = H5(δ). If no such tuple exists and the equations do not hold, C outputs
⊥. Otherwise, C returns m to A.

4. Challenge. A outputs m0,m1 to C. C chooses b ∈R {0, 1} and responds as follows.

(a) For each row i of M∗, set x∗ = ρ∗(i), and issue an H3 query on x∗ to obtain the tuple (x∗, zx∗ ,
δ2,x∗). Like [26] (the challenger is able to choose the secret splitting), choose y′2, ..., y

′
n∗ and

share the seccret using the vector v = (s, s · a+ y′2, s · a2 + y′3, ..., s · an−1 + y′n∗) ∈ Zn∗p . Choose
r′1, ..., r

′
l∗ ∈R Z∗p, for all i ∈ {1, ..., l∗}, denote Ri as the set of all i 6= k such that ρ∗(i) = ρ∗(k).

Set

B∗i = δ
−r′i
2,x∗ · (

∏
j=2,...,n∗

ga·M
∗
i,j ·y′j) · gbi·s·(−zx∗) · (

∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1, C∗i = gr

′
i+s·bi .

(b) Choose β∗ ∈R {0, 1}k, A∗1 ∈R {0, 1}2k, implicitly define H2(T · e(gs, gα
′
)) = A∗1 ⊕ (mb||β∗), and

set A∗2 = gs, A∗3 = (gs)γ .
(c) Issue an H4 query on (A∗1, A

∗
3, (B∗1 , C

∗
1), ..., (B∗l∗ , C

∗
l∗), (M∗, ρ∗)) to obtain the tuple (A∗1, A

∗
3,

(B∗1 , C∗1), ..., (B∗l∗ , C
∗
l∗), (M∗, ρ∗), ξ∗1 , δ∗3), and define D∗ = (gs)ξ

∗
1 .

(d) Output the challenge ciphertext C∗(M∗,ρ∗) = ((M∗, ρ∗), A∗1, A
∗
2, A

∗
3, (B

∗
1 , C

∗
1), ..., (B∗l∗ , C

∗
l∗), D

∗) to
A.

If T = e(g, g)a
q+1·s, C∗(M∗,ρ∗) is a valid ciphertext. Implicitly lettingH1(mb, β

∗) = s and ri = r′i+s·bi,
one can verify that

A∗1 = A∗1 ⊕ (mb||β∗)⊕ (mb||β∗) = H2(T · e(gs, gα
′
))⊕ (mb||β∗) = H2(e(g, g)α·s)⊕ (mb||β∗),

A∗2 = gs, A∗3 = (gs)γ = (gγ)s = gs1, D
∗ = (gs)ξ

∗
1 = (gξ

∗
1)s = H4(A

∗
1, A

∗
3, (B

∗
1 , C

∗
1), ..., (B∗l∗ , C

∗
l∗), (M

∗, ρ∗))s,

B∗i = δ
−r′i
2,x∗(

∏
j=2,...,n∗

(ga)M
∗
i,j ·y′j)(gbi·s)−zx∗ (

∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1

= δ
−r′i
2,x∗(

∏
j=2,...,n∗

(ga)M
∗
i,j ·y′j)(

∏
j=1,...,n∗

ga
j ·s·M∗i,j)(

∏
j=1,...,n∗

ga
j ·s·M∗i,j)−1(gbi·s)−zx∗ (

∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1

= δ
−r′i
2,x∗g

aλi(
∏

j=1,...,n∗

ga
j ·s·M∗i,j)−1(gbi·s)−zx∗ (

∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1

= gaλigzx∗ ·(−r
′
i)gbi·s·(−zx∗)(

∏
i∈X

g
a·M∗i,1/bi+a2·M∗i,2/bi+···+an

∗ ·M∗
i,n∗/bi)−r

′
i(

∏
j=1,...,n∗

ga
j ·s·M∗i,j)−1

· (
∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1

= gaλiδ
−r′i−s·bi
2,x∗ = gaλiδ−ri2,x∗ = gaλiH3(x

∗)−ri = gaλiH3(ρ
∗(i))−ri , C∗i = gr

′
i+s·bi = gri .

However, if T ∈R GT , the challenge ciphertext is independent of the bit b in the view of A.
5. Query Phase II. Same as Query Phase I but with the constraints defined in Definition 4.
6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, C outputs 1 (i.e. deciding T = e(g, g)a

q+1·s);
otherwise, C outputs 0 (i.e. deciding T ∈R GT).

We first analyze the simulations of the random oracles. Clearly, the simulations of the oracles are
perfect except H1 and H2. Let H∗1 and H∗2 be the events that A has queried (mb, β

∗) to H1 and
R∗ = e(g, g)α·s to H2 before the challenge phase, respectively, where β∗, b ∈ {0, 1} are chosen by C in
the challenge phase. Except for the cases above, the simulations of H1 and H2 are perfect. We denote

20

by AdvTCRH∗1 ,A
the probability of A in successfully querying (mb, β

∗) from H1 before the challenge phase.

Similarly, we have AdvTCRH∗2 ,A
.

In the simulation of the private key generation, the responses to A are perfect. As to the simulation
of the re-encryption key queries, the responses to A are also perfect except for the case where the re-
encryption key is randomly generated. It can be seen that rk1, rk2, rk3 and Rx (which are generated
by C) can take the form of the corresponding components of the valid re-encryption key, respectively.
Hence, the indistinguishability between the random re-encryption key and the valid one depends on
the indistinguishability between the encryption generated by C and the one constructed in the real
scheme. If A can distinguish the encryptions above, then C can break the decisional q-parallel BDHE
problem using A. As for the simulation given in the challenge phase, it is perfect as well.

In the simulation of the re-encryption queries, the responses to A are perfect with the exception
that A submits a valid original ciphertext which is generated without issuing the query to H1. We
denote by Pr[ReEncErr] the probability of the above exception. Then, we have Pr[ReEncErr] ≤ qre

p ,
where qre is the total number of re-encryption queries.

In the simulation of decryption queries, it might be possible that C cannot provide a decryption
for a valid ciphertext. Suppose A can generate a valid ciphertext without querying e(g, g)α·s to H2,
where s = H1(m,β). Let valid be the event that the original ciphertext or the re-encrypted ciphertext
is valid, QueryH1 be the event that A has queried (m,β) to H1 and QueryH2 be the event that A
has queried e(g, g)α·s to H2. From the simulation, we have

Pr[valid|¬QueryH2] ≤ Pr[QueryH1|¬QueryH2] + Pr[valid|¬QueryH1 ∧ ¬QueryH2] ≤
qH1

22k
+

1

p

and Pr[valid|¬QueryH1] ≤
qH2

22k
+ 1

p , where qH1 and qH2 are the maximum number of random or-
acle queries to H1 and H2. Let Pr[DecErr] be the probability that the event valid|(¬QueryH1 ∨
¬QueryH2) occurs, then we have Pr[DecErr] ≤ (

qH1
+qH2

22k
+ 2

p) · (qd1 + qd2), where qd2 and qd1 denote
the total numbers of original ciphertext decryption queries and re-encrypted ciphertexts decryption
queries.

Let Bad denote the event that (H∗1 |¬H∗2) ∨H∗2 ∨ReEncErr ∨DecErr. Then we have

ε1 = |Pr[b′ = b]− 1

2
| ≤ 1

2
Pr[Bad] =

1

2
Pr[(H∗1 |¬H∗2) ∨H∗2 ∨ReEncErr ∨DecErr]

≤ 1

2
(AdvTCRH∗2 ,A

+
qH1 + (qH1 + qH2) · (qd1 + qd2)

22k
+

2(qd1 + qd2) + qre
p

).

Therefore,AdvD−q−parallelBDHEA ≥ 1
qH2

(AdvTCRH∗2 ,A
) ≥ 1

qH2
(2ε1−

qH1
+(qH1

+qH2
)·(qd1+qd2)

22k
−2(qd1+qd2)+qre

p).

From the simulation, the running time of C is bound by

t′ ≤ t+O(1)(qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qsk + qrk + qre + qd2 + qd1)

+ te(qskO(n∗2) + (qrk + qre)O(f) + (qd2 + qd1)O(l) + qH1(qre + qd2 + qd1)O(1))

+ tp((qre + qd2 + qd1)O(l)),

where qHi denotes the total number of random oracle queries to Hi (i ∈ {1, 2, 3, 4, 5, 6}), qsk and qrk
denote the total numbers of private key extraction queries and re-encryption key extraction queries,
te denotes the running time of an exponentiation in group G, tp denotes the running time of a pairing
in group GT , t is the running time of A, l is the number of rows of matrix.

This completes the proof of Theorem 2. 2

B.2 Proof of Theorem 3

Proof. Suppose there exists an adversary A who can break the IND-sAS-CCA-Re security of our
scheme. We then construct a reduction algorithm C to plays the decisional q-parallel BDHE problem.

21

C takes in (p, g,G,GT , e)← BSetup(1k) and a q-parallel BDHE instance y and T ∈ GT , where T
is either equal to e(g, g)a

q+1·s or to T ′ ∈R GT .

1. Initialization. Same as the proof of Theorem 2.
2. Setup. Same as the proof of Theorem 2.
3. Query Phase I. Same as the proof of Theorem 2 but with constraints defined in Definition 5.
4. Challenge. A outputs (M,ρ), m0 and m1 to C. C chooses b ∈R {0, 1} and responds as follows.

(a) Run C(M,ρ) ← Enc((M,ρ),mb) as in the real scheme, and output ((M,ρ), A1, A3, (B1, C1), ...,
(Bl, Cl), D). Here the component A2 is unnecessarily output. Note that M is an l × n matrix.

(b) Find an attribute set S such that S |= (M,ρ)15, and choose β′∗, δ∗ ∈R {0, 1}k. Issue an H5

query on δ∗ to obtain ξ∗2 . Note that in step (a) the query (mb, β) must be issued to H1 such
that the tuple (mb, β, s′) is already stored in HList

1 , where β ∈ {0, 1}k, s′ ∈ Z∗p. Then recover

(mb, β, s′) from HList
1 , and set A∗4 = (e(ga, ga

q
) · e(g, gα′))s′·ξ∗2 .

(c) For each row i of M∗ (an l∗ × n∗ matrix), set x∗ = ρ∗(i), issue an H3 query on x∗ to obtain
the tuple (x∗, zx∗ , δ2,x∗). Choose y′2, ..., y

′
n∗ , r

′
1, ..., r

′
l∗ ∈R Z∗p, for all i ∈ {1, ..., l∗}, denote Ri

as the set of all i 6= k such that ρ∗(i) = ρ∗(k). Set

B′∗i = δ
−r′i
2,x∗ · (

∏
j=2,...,n∗

ga·M
∗
i,j ·y′j) · gbi·s·(−zx∗) · (

∏
k∈Ri

∏
j=1,...,n∗

(ga
j ·s·(bi/bk))M

∗
k,j)−1, C ′∗i = gr

′
i+s·bi .

(d) Choose A′∗1 ∈R {0, 1}2k, implicitly define H2(T · e(gs, gα
′
)) = A′∗1 ⊕ (δ∗||β′∗), and set A′∗2 = gs.

(e) Issue an H6 query on (A′∗1 , A′∗2 , (B′∗1 , C ′∗1), ..., (B′∗l∗ , C
′∗
l∗), S, (M∗, ρ∗)) to obtain the tuple (A′∗1 ,

A′∗2 , (B′∗1 , C ′∗1), ..., (B′∗l∗ , C
′∗
l∗), S, (M∗, ρ∗), ξ∗3 , δ∗4), and define D′∗ = (gs)ξ

∗
3 .

(f) Output the challenge ciphertext CR∗(M∗,ρ∗) = (S, (M,ρ), (M∗, ρ∗), A1, A3, (B1, C1), ..., (Bl, Cl),

D, A∗4, A
′∗
1 , A′∗2 , (B′∗1 , C

′∗
1), ..., (B′∗l∗ , C

′∗
l∗), D

′∗) to A.

If T = e(g, g)a
q+1·s, CR∗(M∗,ρ∗) is a valid ciphertext. Clearly, the components corresponding to C(M,ρ)

are valid. Since C(M,ρ) is re-encrypted to CR∗(M∗,ρ∗) under a valid re-encryption key rkS→(M∗,ρ∗)

(S |= (M,ρ)), the re-encryption must be valid, i.e. the construction of A∗4 is valid. With the
same analysis technique given in the proof of Theorem 2, it is not difficult to see that the rest of
components are valid as well. If T ∈R GT , the challenge ciphertext is independent of the bit b in
the view of A.

5. Query Phase II. Same as Query Phase I but with the constraints defined in Definition 5.
6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, C outputs 1 (i.e. deciding T = e(g, g)a

q+1·s);
otherwise, C outputs 0 (i.e. deciding T ∈R GT).

The probability analysis is almost the same as the one given in Appendix B.1 except that we should
take the even H∗5 into account when analyzing the event Bad, where H∗5 denotes the event that A has

queried δ∗ to H5 before the challenge phase. From the simulation we have AdvD−q−parallelBDHEA ≥
1
qH2

(AdvTCRH∗2 ,A
) ≥ 1

qH2
(2ε2 −

qH1
+(qH1

+qH2
)·(qd1+qd2)

22k
− qH5

2k
− 2(qd1+qd2)+qre

p). The running time of C is

identical to that given in Appendix B.1. We hence omit the details.
This completes the proof of Theorem 3. 2

15 Note that it is possible that S can be found in SKList.

	A Ciphertext-Policy Attribute-Based Proxy Re-Encryption with Chosen-Ciphertext Security

