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Abstract. JH and Grøstl hash functions are two of the five finalists
in NIST SHA-3 competition. JH-s and Grøstl-s are based on a 2n bit
compression function and the final output is truncated to s bits, where n
is 512 and s can be 224,256,384 and 512. Previous security proofs show
that JH-s and Grøstl-s are optimal collision resistance without length
padding to the last block.

In this paper we present collision and preimage attacks on JH-s and
Grøstl-s without length padding to the last block. For collision attack on
JH-s, after a 1

e
2s/4+n precomputing, the adversary needs 2s/4 queries to

the underlying compression function to find a new collision. For preimage
attack on JH-s, after a 1

e
2s/2+n precomputing, the adversary needs 2s/2

queries to the underlying compression function to find a new preimage.
If s = 224, the attacker only needs 257 and 2113 compression function
queries to mount a new collision attack and preimage attack respectively.
For Grøstl, the query complexity of our collision and preimage attack
are one half of birthday collision attack and exhaustive preimage attack
respectively.

We also discuss how our attack works when the length is padded
to the last message block. Our attacks exploit structure flaws in the
design of JH and Grøstl. It is easily applied to MJH and SMASH and
other generalizations since they have similar structure (we call it Evan-
Mansour structure). At the same time the provable security of chopMD
in the literature is challenged. Through our attack, it is easy to see that
the chopMD mode used in JH or Grøstl does not improve its security.

1 Introduction

Cryptographic hash function is one of the most important primitives in cryp-
tography [17]. A hash function maps from message of arbitrary length to a fixed
length. A hash function usually consists of iteration of a compression function.
One first designs a fixed domain compression function and then extends the
domain to an arbitrary domain by iterating that function.

Since some popular hash functions such as MD5 [20] and SHA-1 [8] have
been attacked [23,22], NIST has launched a competition for a new hash func-
tion standard SHA-3. JH and Grøstl are two of the five finalists in the SHA-3
competition [24,10]. As the sponge construction [2], JH’s compression function
uses a single large fixed 2n-bit permutation, then the chopMD [5] domain ex-
tension is applied to the compression function. Grøstl is similar as JH except



that its compression function uses two 2n-bit permutations and a final output
transformation is applied to the chain value to get the hash value.

The hash value is the last s bits of the output of the last block compression
function. In the design of JH and Grøstl, n is 512 and s can be 224,256,384
and 512. After JH, Lee and Stam proposed a variant MJH based on a an (n, n)
blockcipher [16]. The hash value of MJH is 2n bits. Before Grøstl, SMASH
is proposed by Knudsen in 2005 and uses one permutation [12]. After that,
Pramstaller et al. gave collision attacks and Lamerger et al. gave second preimage
attacks on it [19,13,14]. Knudsen suggested two tweaked versions of SMASH to
thwart the attack. Later Fouque et al. proposed attacks on the two tweaked
versions and proposed a generalization of SMASH using two permutations [9].

Previous security results for JH and MJH. In the provable security
literature, the underlying primitives are assume to be ideal, thus the fixed per-
mutation is assumed to be an ideal permutation. The first provable security
result for the mode of JH is its indifferentiability[4]. Bhattacharyya et al. proved
that JH-s is indifferentiable from a random oracle up to O(2n/3) queries to the
ideal permutation when s ≤ n.

In [15], Lee and Hong proved that JH-s without length padding to the
last block is collision resistance up to O(2s/2) queries and claimed that JH-s is
optimal collision resistance in the ideal permutation model when s ≤ n. The
proof does not require the length of the message is padded at the end of the
message.

In [18], Moody et al. improve the indifferentiability security bound for the
JH mode to O(2n/3) queries to the ideal permutation when s ≤ n.

In [16], the designers proved that MJH without length padding to the last
block is collision resistance up to O(2

2n
3 −log n) queries.

In [11], Hong and Kwon make a collision attack with time complexity 2124

on MJH for n = 128 and the preimage attack with time complexity 23n/2+2.

Previous security results for Grøstl and SMASH. The first provable
security result for the mode of Grøstl is its indifferentiability[1]. Andreeva et
al. proved that Grøstl-s is indifferentiable from a random oracle up to O(2s/2)
queries to the ideal permutations when s ≤ n and the chain value is 2n bits. The
proof does not require the message length is padded at the end of the message.

After the proposal of SMASH by Knudsen [12], Pramstaller et al. gave col-
lision attacks and Lamerger et al. gave second preimage attacks on it [19,13,14].
Knudsen suggested two tweaked versions of SMASH to thwart the attack. Later
Fouque et al. proposed attacks on the two tweaked versions and proposed a gen-
eralization of SMASH using two permutations [9]. This generalization is proved
secure against collision and preimage attack in the ideal permutation model in
Ω(2n/2) queries and Ω(2n/4) respectively, where the hash value is 2n bits. Fouque
et al. also proposed a non-trival collision attack in Ω(23n/8) queries.

Our contribution. In the compression function of JH, Grøstl and SMASH,
first a transformation is applied to the message block , later it is (xor) added
to both the input and output of the permutation to get the chain value. We



call it Evan-Mansour structure [7,6]. While in Sponge compression function,
the message block is only added to the input of the permutation. Our attacks
actually are based on this observation.

In this paper we present collision and preimage attacks on JH-s and Grøstl-
s. For collision attack on JH-s, after a 1

e2(s+l)/4+n precomputing, the adversary
needs 2(s+l)/4 queries to the underlying compression function to find a new
collision, where l denotes the encoded bit length of the message. For preimage
attack on JH-s, after a 1

e2(s+l)/2+n precomputing, the adversary needs 2(s+l)/2

queries to the underlying compression function to find a new preimage. If s =
224, the attacker only needs 256 and 2112 compression function queries to mount
a new collision attack and preimage attack on JH-224 without length padding
respectively. Table. 1 lists the attack complexity of our attack on JH variants.

The attack is easily extended to JH’s variant MJH. For the 2n-bit MJH,
after a precomputing, the adversary needs about 2n/2 queries to the blockcipher
to find a new collision and 2n queries to the blockcipher to find a new (2nd)
preimage.

In the structure of Grøstl-s hash function, two permutation F and Q are
used, see Fig. 6. For collision attack on Grøstl-s without length padding, we
needs about 2s/2 queries to F and 2s/2 queries to Q to find a collision with
probability 0.39. The best known collision attack requires 3 × 2s/2 queries to
F and 2s/2+1 queries to Q. For (second) preimage attack on Grøstl-s without
length padding, this attack requires about 2s queries to F and 2s queries to Q,
where the best known (second) preimage attack requires 3 × 2s queries to F
and 2s+1 queires to Q. Thus for Grøstl, the query complexity of our collision
and preimage attack are one half of birthday collision attack and exhaustive
preimage attack respectively.

Our attacks exploit structure flaws in the design of JH, Grøstl and SMASH.
The results show that these constructions are weaker than Sponge construction.
At the same time the provable security of chopMD in the literature is challenged.
Through our attack, it is easy to see that the chopMD mode used in JH or Grøstl
don’t improve its security.

2 Preliminaries

General Notation. For two bitsrings x and y, x ‖ y denotes the concatenation
of x and y. A blockcipher E with n-bit block and n-bit keysize is called an (n, n)
blockcipher.

Information Theoretic Model. In the information theoretic model, the ad-
versary is computationally unbounded but is given up to q queries to the un-
derlying ideal primitive. The advantage of the adversary is related to the query
times q. Almost every security proof in the hash function literature uses this
model.

The ChopMD Mode. The chopMD is an iteration mode same as the plain
Merkle-Damgärd mode except that the final output is truncated. The first formal



security proof of chopMD [5] is by Coron et al. This mode is adopted by SHA-3
winner Keccak [3] and the other two finalists JH and Grøstl.

Even-Mansour Structure. In [7], Even and Mansour proposed a scheme
for a block cipher which uses a fixed n-bit permutation F . The n-bit plaintext
is first xored with n-bit K1, then the result is the input of the permutation,
the output of the permutation is next xored with n-bit K2, and the result is
the ciphertext. In [6], Dunkelman and Shamir show that the original two-key
Even-Mansour structure is not minimal since it can be simplified into a single
key structure with K1 = K2 = K. The two-key and single-key Even-Mansour
structure are shown in Fig. 1.
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Fig. 1. Two-Key Even-Mansour Structure and Single-Key Even-Mansour Struc-
ture

3 The Even-Mansour structure Hash Functions

In this section we introduce the high level structure of JH, Grøstl and SMASH.
Actually they are based on the Even-Mansour structure where the message is
the key and the chain value is the plaintext/ciphertext of the Even-Mansour
structure.

Let F be a 2n bit permutation, L1, L2 be two transformation on 2n bits.
The high level compression function of JH, Grøstl and SMASH can be denoted
as

hi = F (hi−1 ⊕mi)⊕ L1(mi)⊕ L2(hi−1)

where hi−1, hi,mi ∈ {0, 1}2n. Let chops be the last s bits of a 2n-bit value and
h0 be a fixed initial value IV . We call this high level structure Even-Mansour
hash structure. The 2-block Even-Mansour hash structure with chopMD mode
of operation is depicted in Fig.2.

In the next we give attacks on Even-Mansour hash structure with chopMD
mode of operation. The attack can be easily applied to the JH, Grøstl, SMASH
and their variants MJH, SMASH et al.

3.1 Collision Attack on Even-Mansour chopMD Hash

We assume F be an ideal permutation and the adversary never makes repeat
queries. That is to say, the adversary never makes queries that she already knows
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Fig. 2. The 2-block Even-Mansour hash with chopMD mode.

the result. In the attack we use two blocks of message (m1,m2) and fix the initial
value as h0 = IV where IV is a 2n-bit constant. As shown in Fig.2, we let (x, y)
be the input-output queried pairs in the first block query and (u, v) be the
input-output queried pairs in the second block query. Thus we have

m1 = h0 ⊕ x

h1 = L1(m1)⊕ L2(h0)⊕ y

m2 = h1 ⊕ u

h2 = L1(m2)⊕ L2(h1)⊕ v.

The attack is described as follows:

1. Set h0 to be the constant IV .
2. Choose r random values of x and make queries to F , we thus get r random

values of (x, y). Since h1 = y ⊕ L1(m1)⊕ L2(h0), we get r random values of
h1.

3. Choose r random values of u and make queries to F , we thus get r random
values of (u, v).

4. For each value of (u, v), we can compute m2 = h1⊕u and h2 = v⊕L1(m2)⊕
L2(h1). Since there are r random values of h1, we can get r random values
of m2 and h2.

5. There are total r values of (u, v), thus we can get r2 random values of h2.
6. If the final hash value is truncated to s bits where s ≤ 2n. Let r be 2s/4,

thus we can get r2 = 2s/2 random values of h2 and chops. According to the
birthday paradox, there exists two pairs of (h1,m2) colliding at chops(h2)
with probability 0.39.

7. The adversary needs 2× 2s/4 = 2s/4+1 queries to the permutation F to find
a collision with probability 0.39.

8. If the message length is encoded into l bits and appended into the second
message block m2, there are r2/2l values of m2 have the same last l bits. Let
r2/2l = 2s/2, we have r = 2s/4+l/2. The adversary needs 2s/4+l/2+1 queries
to the underlying compression function to find a collision with probability
0.39.



3.2 Preimage and Second Preimage Attack

For preimage and second preimage attack, we need to find a preimage for a s-
bit value. It is easy to see that if we let r = 2s/2, at last we can get r2 = 2s

random values of chops, since chops is s bits, with high probability we can find
a (second) perimage. Thus the adversary needs 2× 2s/2 = 2s/2+1 queries to the
permutation F to find a preimage with high probability.

If the message length is encoded into l bits and appended into the second
message block m2, there are r2/2l values of m2 have the same last l bits. Let
r2/2l = 2s, we have r = 2(s+l)/2. The adversary needs 2(s+l)/2+1 queries to the
underlying compression function to find a preimage with probability close to 1.

4 The JH hash function

The compression function of JH is a special case of Even-Mansour hash where
the transformation L1(m ‖ 0n) = (0n ‖ m) and L2 is a zero transformation.

Let F be a 2n bit permutation, the compression function of JH depicted in
Fig. 3 is defined as:

f(hi−1, gi−1,mi) = F (hi−1 ⊕mi ‖ gi−1)⊕ (0n ‖ mi)

where hi−1, gi−1,mi ∈ {0, 1}n.
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Fig. 3. The compression function of JH.

JH uses the chopMD mode of operation. The initial value is fixed as (IV0, IV1)
and the message M is first padded into l message blocks, then the usual Merkle-
Damg̊ard iteration is applied to F to compute the last chain value (hl, gl). The
final output is is the last s bits of gl.



5 Attacks on JH and MJH Hash Functions

5.1 Attacks on 3-block JH

The 3-block JH-s hash function is shown in Fig.4. Let (h0, g0) be a fixed initial
value (IV0, IV1). From the figure, we have

(h1, g1) = F (h0 ⊕m1 ‖ g0)⊕ (0n ‖ m1)
(h2, g2) = F (h1 ⊕m2 ‖ g1)⊕ (0n ‖ m2)
(h3, g3) = F (h2 ⊕m3 ‖ g2)⊕ (0n ‖ m3).

As in the figure, the output of a query (x, g0) to the first block F is denoted
as (h1, y), and the output of a query (u, g2) to the third block F is denoted as
(h3, v). The final output of JH-s is the last s bits of g3 and denoted as chops.
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Fig. 4. The 3-block structure of JH-s. All wires carry n-bit values.

The collision and (2nd) preimage attack is described as follows:

– Collision attack:
1. h0 ‖ g0 is fixed to the initial value.
2. Precomputing : Choose many random values of m1 ‖ m2 and make queries

to F until a r-collision at g2 is found. At last we get r random values
(hi

2 ‖ g2), 1 ≤ i ≤ r.
3. Choose r random values ui, 1 ≤ i ≤ r, make queries (ui ‖ g2), 1 ≤ i ≤ r

to F , we thus get r random values hi
3 ‖ vi), 1 ≤ i ≤ r.

4. For each value of (ui ‖ g2, h
i
3 ‖ vi), 1 ≤ i ≤ r, we can compute m3 =

h2⊕ ui and g3 = vi ⊕m3. Since there are r random values of h2, we can
get r random values of m3 and g3.

5. There are total r values of (ui ‖ gi
2, h

i
3 ‖ vi), thus we can get r2 random

values of g3.
6. If the final hash value is truncated to s bits where s ≤ n. Let r be 2s/4,

thus we can get r2 = 2s/2 random values of h3 and chops. According
to the birthday paradox, there exists two pairs colliding at chops with
probability 0.39.



– Preimage attack: For preimage and second preimage attack, we need to find
a preimage for a s-bit value. It is easy to see that if we let r = 2s/2, we
can get r2 = 2s random values of chops, since chops(h2) is only s bits, with
probability close to 1 we can find a (second) perimage.

5.2 Attack Complexity.

Collision Attack Complexity Preimage Attack Complexity

Variants Precomputing Attack Best Known Precomputing Attack Best Known

JH-s 2s/4+n 2s/4 2s/2 2s/2+n 2s/2 2s

JH
′
-224 2568 2120 2112 2624 2176 2224

JH
′
-256 2576 2128 2128 2640 2192 2256

JH
′
-384 2608 2160 2192 2704 2256 2384

JH
′
-512 2640 2192 2256 2768 2320 2512

Table 1. The query complexity of collision attack and preimage attack on JH
variants. JH-s is the s-bit JH hash function without length padding to the last
block. JH

′
-s variants mean the length is appended to the message and padded

to the last block.

In the collision attack, the precomputing steps cost Tr−collision time to find
a r-collision. After that, the adversary needs 2s/4 queries to the permutation
F to find a collision with probability 0.39.
In [21], Suzuki et al. analyzed the concrete probability of a r-collision. They
showed that by querying (r!)1/r×2n(r−1)/r times, a r-collision is found with
probability approximately 0.5. By using Stirling’s approximation, we have

r! ≈ (r/e)r
√

2πr,

thus Tr−collision ≈ (r!)1/r×2n(r−1)/r ≈ r
e2n. If r = 2s/4, Tr−collision is about

2s/4+n/e.
If the message length is encoded into l bits and appended into the third
message block m2, there are r2/2l values of m2 have the same last l bits. Let
r2/2l = 2s/2, then r = 2s/4+l/2.
1. Thus for JH-512, l = 128, the adversary needs 2 × 2512/4+128/2 = 2192

queries to F to find a collision with probability 0.39.
2. For JH-384, the adversary needs 2× 2384/4+128/2+1 = 2160 queries to F

to find a collision with probability 0.39.



3. For JH-256, the adversary needs 2× 2256/4+128/2+1 = 2128 queries to F
to find a collision with probability 0.39.

4. For JH-224, the adversary needs 2× 2224/4+128/2+1 = 2120 queries to F
to find a collision with probability 0.39.

In the preimage attack, the precomputing steps cost Tr−collision time to find
a r-collision. After that, the adversary needs 2s/2 queries to the permutation F
to find a (2nd) preimage with probability close to 1.

If the message length is encoded into l bits and appended into the second
message block m2, there are r2/2l values of m2 have the same last l bits. Let
r2/2l = 2s, we have r = 2(s+l)/2. The adversary needs 2(s+l)/2 queries to the
underlying compression function to find a preimage with probability close to 1.

1. Thus for JH-512, l = 128, the adversary needs 2(512+128)/2 = 2320 queries to
F to find a preimage with probability close to 1.

2. For JH-384, the adversary needs 2(384+128)/2 = 2256 queries to F to find a
preimage with probability close to 1.

3. For JH-256, the adversary needs 2(256+128)/2 = 2192 queries to F to find a
preimage with probability close to 1.

4. For JH-224, the adversary needs 2(224+128)/2 = 2176 queries to F to find a
preimage with probability close to 1.

The attack complexity is shown in Table 1. Note that the original JH hash
function uses an extra message block loadding the message length, our attacks
use variants padding of JH where the length is appended to the message and
then padded to the third message block.

Our attack exploits weakness of JH hash function. To mount collision or
(second) preimage attacks, the adversary first find a multi-collision with pre-
computing, then he can find a new collision or preimage in very low complexity.

5.3 Attacks on JH’s variant MJH

MJH hash function is proposed by Lee and Stam [16]. It is a variant of JH hash
function. It uses two calls to a (n, n)-bit blockcipher E to implement the under-
lying primitive F , while F needn’t to be a permutation. Let σ be an involution
on {0, 1}n with no fixed point, and let θ 6= 0, 1 be a constant in F2n , the primitive
F is defined as

F [σ, θ] : {0, 1}2n −→ {0, 1}2n

(xL ‖ xR) −→ (yL ‖ yR)
yL = ExR

(xL)⊕ xL

yR = θ · (ExR
(σ(xL))⊕ σ(xL))⊕ xL.

By applying the JH transform, the compression function of MJH is the same as
in Fig. 3. Then MJH uses Merkle-Damg̊ard mode without length padding to the
last block to calculate the final 2n-bit hash value.
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Fig. 5. The F primitive in MJH, where (yL, yR) = F (xL, xR). All wires carry
n-bit values. E is an (n, n) blockcipher. σ is an involution and θ is a constant in
F2n \ F2.

Due to the involution property, the adversary can get a pair of (xL ‖ xR, yL ‖
yR) when she makes a query ExR

(xL) to the upper blockcipher and a query
ExR

(σ(xL)) to the lower blockcipher. That is to say, for each query xL ‖ xR to
the primitive F , the adversary can get two pairs of (xL ‖ xR, yL ‖ yR) by making
two blockcipher queries.

Since MJH outputs 2n bits as the hash value, thus the collision attack and
(2nd) preimage attack is a little different from the attack on JH. The attack is
similar as in Fig. 4 and described as follows.

– Collision attack:
1. h0 ‖ g0 is fixed to the initial value.
2. Precomputing : Choose many random values of m1 ‖ m2 and make queries

to F until a r-collision at g2 is found where r = 2n/2−1. At last we can
get 2r random values (hi

2 ‖ g2), 1 ≤ i ≤ r.
3. Choose 2r random values ui, 1 ≤ i ≤ 2r, make queries (ui ‖ g2), 1 ≤

i ≤ 2r to F , we thus get 4r random values hi
3 ‖ vi, 1 ≤ i ≤ 4r by

2r blockcipher queries. Due to birthday paradox, with probability 1 −
e−

(2n/2+1)2

2×2n ≈ 0.86 we can obtain a pair (ui ‖ g2, u
j ‖ g2), 1 ≤ i < j ≤ 2r

colliding at h3.
4. For the value ui ‖ g2, we can compute m3 = h2 ⊕ ui and g3 = vi ⊕m3.

Since there are 2n/2 random values of h2, we can get 2n/2 random values
of m3 and g3. For the value uj ‖ g2, we can also get 2n/2 random values
of m3 and g3. Thus with probability 1 − e−

1
2 ≈ 0.39 a match will be

found for these two sets.
5. The adversary needs 21.5n queries in pre-computing, then he needs 2n/2

queries to the blockcipher to find a collision with probability 0.86×0.39 ≈
0.34.



– Preimage attack: For preimage and second preimage attack, we need to find
a preimage for a 2n-bit value. It is easy to see that if we let r = 2n/2−1, after
find a hitting at h3, we can get 2n random values of g3. Since g3 is only n
bits, with probability close to 1 we can find a (second) perimage. Thus the
adversary needs 23n queries in pre-computing, then he needs 2n queries to
the blockcipher to find a (2nd) preimage with probability close to 1.

6 The Grøstl hash function

The compression function of Grøstl is a special case of Even-Mansour hash where
the transformation L1 is the Q permutation defined in [10] and L2 is an identity
transformation.

Let F and Q be a 2n bit permutation, the compression function of Grøstl
depicted in Fig. 6 is defined as:

f(hi−1,mi) = F (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1

where hi−1,mi ∈ {0, 1}2n.
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Fig. 6. The two-block of Grøstl.

Grøstl uses the chopMD mode of operation. The initial value is fixed as
IV and the message M is first padded into l message blocks, then the usual
Merkle-Damg̊ard iteration is applied to F to compute the last chain value hl.
At last a final transformation Ω(x) = F (x)⊕ x is applied to hl, the final output
is is the last s bits of Ω(hl).

6.1 Collision attack on Grøstl without length padding

We assume F and Q be two ideal permutations and the adversary never makes
repeat queries. That is to say, the adversary never makes queries that she already
knows the result. In the attack we use two blocks of message (m1,m2) and fix
the initial value as h0 = IV where IV is a 2n-bit constant. As shown in Fig.6,
we let (x, y) be the input-output queried pairs in the first block query and (u, v)



be the input-output queried pairs in the second block query. Thus we have

m1 = h0 ⊕ x

h1 = Q(m1)⊕ h0 ⊕ y

m2 = h1 ⊕ u

h2 = Q(m2)⊕ h1 ⊕ v.

The attack is described as follows:

1. Set h0 to be the constant IV .
2. Choose r random values of x and make queries to F , we thus get r random

values of (x, y). Since h1 = y ⊕Q(m1)⊕ h0, we get r random values of h1.
3. Choose r random values of u and make queries to F , we thus get r random

pairs of (u, v).
4. For each value of (u, v), we can compute m2 = h1⊕u and h2 = v⊕Q(m2)⊕h1.

Since there are r random values of h1, we can get r random values of m2

and h2.
5. There are total r values of (u, v), thus we can get r2 random values of h2.
6. If the final hash value is truncated to s bits where s ≤ n. Let r be 2s/4,

thus we can get r2 = 2s/2 random values of h2 and chops. According to the
birthday paradox, there exists two pairs of (h1,m2) colliding at chops(h2)
with probability 0.39.

7. The adversary needs 2×2s/4+2s/2 = 2s/4+1+2s/2 queries to the permutation
F and 2s/4+2s/2 queries to permutation Q to find a collision with probability
0.39. The best known collision attack requires 3×2s/2 queries to F and 2s/2+1

queries to Q.

6.2 (Second) preimage attack on Grøstl without length padding

For preimage and second preimage attack, we need to find a preimage for a s-
bit value. It is easy to see that if we let r = 2s/2, at last we can get r2 = 2s

random values of chops, since chops is s bits, with high probability we can find a
(second) perimage. This attack requires 2s/2+1 + 2s queries to F and 2s queries
to Q, where the best known (second) preimage attack requires 3× 2s queries to
F and 2s+1 queires to Q.

Our attacks exploit weakness of Grøstl construction. The design structure
of Grøstl requires more computation than SHA-3 winner Keccak, but has less
security against our attack.

7 The SMASH Hash Function and its variants

The SMASH hash function is proposed by Knudsen [12]. Its structure is the
same as Even-Mansour hash depicted in Fig. 2 except the L1 transformation is
defined as L1(x) = x · θ where · is the multiply operation in the Galois Field
GF(22n) and θ is an arbitrary field element in GF(22n) with restriction θ 6= 0, 1.



After the proposal, Pramstaller et al. gave collision attacks and Lamerger et
al. gave second preimage attacks on it [19,13,14]. Knudsen suggested two tweaked
versions of SMASH to thwart the attack. Later Fouque et al. proposed attacks
on the two tweaked versions and proposed a generalization of SMASH using
two permutations [9]. This generalization is proved secure against collision and
preimage attack in the ideal permutation model in Ω(2n) queries and Ω(2n/2)
respectively, where the hash value is 2n bits. Fouque et al. also proposed a non-
trival collision attack in Ω(23n/8) queries. There is no collision attack on this
generlization in Ω(2n/2) queries in the current literature. Note this generlization
is just the Even-Mansour structure where L1 and L2 are two permutations.

It is easy to see our attack is directly applied to SMASH and its general-
ization suggested by Fouque et al. The complexity is the same as the attack on
Even-Mansour hash, thus we omit the details here.

8 Conclusion

In this paper we have presented collision and preimage attacks on Even-Mansour
hash functions JH, MJH, Grøstl, SMASH and their variants. Our attacks exploit
structure flaws in the design of these hash functions. Our attacks invalidate some
previous security proofs for these hash functions.

Even-Mansour hash functions are weaker than Sponge since the message
block (with or without a transformation) is both added to the input and the
output of the underlying permutation.

Through our anlysis, the chopMD design philosophy is also challenged since
it does not improve the security for Even-Mansour hash functions. That is, if
there exists some special weakness in the compression function just like in the
analysis of JH, Grøstl and SMASH, after applying to chopMD mode, the security
of the hash function against collision and preimage attack is not improved.

We also realized our attack can also be applied to other popular blockcipher-
based hash functions, such as MD4-family hash functions, including MD4,MD5
and SHA-1. The following research focus on generic attacks on blockcipher-based
hash functions.
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