
Quantum algorithms to check Resiliency, Symmetry and
Linearity of a Boolean function

Kaushik Chakraborty · Anupam

Chattopadhyay · Subhamoy Maitra

Abstract In this paper, we present related quantum algorithms to check the order
of resiliency, symmetry and linearity of a Boolean function that is available as a
black-box (oracle). First we consider resiliency and show that the Deutsch-Jozsa
algorithm can be immediately used for this purpose. We also point out how the
quadratic improvement in query complexity can be obtained over the Deutsch-
Jozsa algorithm for this purpose using the Grover’s technique. While the worst
case quantum query complexity to check the resiliency order is exponential in the
number of input variables of the Boolean function, we require polynomially many
measurements only. We also describe a subset of n-variable Boolean functions
for which the algorithm works in polynomially many steps, i.e., we can achieve
an exponential speed-up over best known classical algorithms. A similar kind of
approach can be exploited to check whether a Boolean function is symmetric
(respectively linear) or not. Given a Boolean function as an oracle, it is important
to devise certain algorithms to test whether it has a specific property or it is ε-far
from having that property. The efficiency of the algorithm is judged by the number
of calls to the oracle so that one can decide, with high probability, between these
two alternatives. We show that this can be achieved in O(ε−

1
2) query complexity.

This is obtained by showing that the problem of checking symmetry or linearity
can be efficiently reduced to testing whether a Boolean function is constant.

This is a thoroughly revised and extended version of the paper “Quantum algorithms to check
Resiliency of a Boolean function” by Kaushik Chakraborty and Subhamoy Maitra that has been
presented in WCC 2013, April 15-19, 2013, Bergen, Norway. Sections 3, 4 contain additional
materials over the workshop version.

Kaushik Chakraborty
Indian Statistical Institute, Kolkata 700 108, India
E-mail: kaushik.chakraborty9@gmail.com

Anupam Chattopadhyay
UMIC Research Centre, RWTH Aachen University, Aachen, Germany
E-mail: anupam@umic.rwth-aachen.de

Subhamoy Maitra
Applied Statistics Unit, Indian Statistical Institute, Kolkata 700 108, India
E-mail: subho@isical.ac.in

2 Chakraborty, Chattopadhyay & Maitra

Keywords Boolean Functions, Deutsch-Jozsa Algorithm, Grover’s Algorithm,
Linearity, Measurement, Property Testing, Resiliency, Symmetry.

Mathematics Subject Classification (2000) 68Q12

1 Introduction

After the introduction of the Deutsch-Jozsa algorithm [7], several works have been
presented in the literature to describe strategies that can distinguish Boolean
functions of different weights (for example, see [5] and the references therein). Such
problems are actually related to studying the Walsh spectrum of Boolean functions.
From a cryptologic viewpoint, the concept of balancedness can be generalized to
resiliency and we will consider this problem first. We will study how efficiently,
in quantum paradigm, one can check whether a Boolean function is m-resilient or
not. In a similar direction we also analyse the problem of checking symmetry and
linearity of a Boolean function.

1.1 Basics of Boolean functions

A Boolean function on n variables may be viewed as a mapping from {0, 1}n into
{0, 1}. We will denote the set of n-variable Boolean functions as Bn. It is easy to
note that |Bn| = 22n .

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a mul-
tivariate polynomial over GF (2). This polynomial can be expressed as a GF (2)
sum of all distinct k-th order product terms (0 ≤ k ≤ n) of the variables. More
precisely, f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n
aixi ⊕

⊕
1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is called
the algebraic normal form (ANF) of f . The number of variables in the highest order
product term with nonzero coefficient is called the algebraic degree, or simply the
degree of f and denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-variable
affine functions is denoted by An. That is the set of affine functions contains all
the linear functions and their complements. By abuse of notation, we will use the
terms “linear” and “affine” interchangeably throughout this document. For several
of our reductions, we will use the constant functions (all zero and all one). Let us
denote the set of n-variable constant functions by Cn.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to {0, 1}n and the inner
product

x · ω = x1ω1 ⊕ · · · ⊕ xnωn.

A Boolean function l(x) is linear if it can be written as l(x) = ω · x for some fixed
ω. However, by extending the notation, we also consider the affine functions of the
form l(x) = ω0 ⊕ ω · x, where ω0 ∈ {0, 1} as linear functions.

An n-variable Boolean function f is called symmetric if

Quantum algorithms: Resiliency, Symmetry & Linearity 3

f(x) = f(y) for all x, y ∈ {0, 1}n such that wt(x) = wt(y).

We denote the set of n-variable symmetric Boolean functions as SBn.
Let f(x) be a Boolean function on n variables. Then the Walsh transform of

f(x) is an integer valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n
(−1)f(x)⊕x·ω.

The fastest known classical algorithm to calculate all the Walsh spectrum values
of f ∈ Bn, i.e., Wf (ω) at each of the 2n points ω, is of O(n2n) time complexity.
Calculation of the Walsh spectrum value at a specific point requires O(2n) time
in classical domain.

The non-linearity (or non-affinity) of an n-variable function f is

nl(f) = ming∈An(d(f, g)),

i.e., the distance from the set of all n-variable affine functions. In terms of Walsh
spectrum, the non-linearity of f is given by

nl(f) = 2n−1 − 1

2
max

ω∈{0,1}n
|Wf (ω)|.

For a binary string str, the number of 1’s in the string is called the (Hamming)
weight of str and denoted as wt(str). In truth table representation, a Boolean
function f ∈ Bn can be viewed as a binary string of length 2n, which is the output
column of the truth table. As we have already discussed, if wt(f) = 0 or 2n,
then it is called a constant Boolean function. If wt(f) = 2n−1, then f is called a
balanced function. In terms of the Walsh spectrum, f ∈ Bn is balanced if and only
if Wf (0, 0, . . . , 0) = 0. Following [9], a function f ∈ Bn is m-resilient if and only if
its Walsh transform satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m.

It is easy to note that a balanced function is actually a 0-resilient function. Thus,
informally speaking, the problems related to resiliency are a generalization of the
problems related to balancedness.

1.2 The algorithmic issues

Let us now briefly discuss certain algorithms in classical as well as quantum do-
main. We consider that the Boolean function f ∈ Bn is available as an (classical
or its quantum counterpart) oracle, i.e., the corresponding output can be obtained
efficiently (in constant time) given the input. This is termed as a “query”. Given
the promise that f is either constant or balanced, to check which one it is, we
have the Deutsch-Jozsa [7] algorithm to solve it in a single query. Though there is
no deterministic polynomial time algorithm to solve this problem in the classical
domain, probabilistic polynomial time algorithms are indeed available to solve this
problem efficiently. Given that Wf (ω) = 0 or ±2n, the question of “which one it is”
can be solved exactly in a similar manner, by considering the function f(x)⊕ω · x
instead of f(x).

4 Chakraborty, Chattopadhyay & Maitra

It is well known that checking resiliency of an n-variable Boolean function re-
quires exponential number of queries in n in the classical domain. In this paper
we try to analyse the solution of this problem in the quantum domain. We note
that the Deutsch-Jozsa [7] algorithm can be used for this purpose. Further, we
try to devise strategies with better efficiency than this using the Grover’s algo-
rithm [8]. The Grover’s algorithm has earlier been used in weight decision problems
for Boolean functions [5] and we note that a more involved application of this al-
gorithm can also be exploited in the resiliency checking problem. In our proposed
quantum algorithms1, though the worst case query complexity2 is exponential, we
need only polynomially many measurements in the computational basis3 for this
purpose. We also identify a sub-class of Boolean functions for which our quantum
algorithms work with polynomially many queries in n. The best known classical
algorithm for this sub-class requires exponentially many steps.

1.3 Property testing

We also interpret the results in terms of property testing of a Boolean function.
Consider that a Boolean function is implemented inside a black box and one can
obtain the output given an input in constant time. Each such operation may
be referred to as a query. One may like to test several properties of the Boolean
function by exploiting such queries. Naturally, it is important to test the properties
with as few queries as possible and with a good probability of success. Testing
whether a Boolean function (given as an oracle) is linear or not is an important
question in the field of computational complexity [3,2]. For further results in this
area of property testing, one may refer to [1,10,11].

Definition 1 Given two n-variable Boolean functions f and g, we define f, g as
ε-far if

|{x ∈ {0, 1}n : f(x) 6= g(x)}|
2n

=
d(f, g)

2n
≥ ε,

i.e., if the Hamming distance d(f, g) between the truth tables of f and g is at least
ε2n. Further, an n-variable Boolean function f will be called ε-far from a subset S
of n-variable Boolean functions if f is ε-far from all the functions g ∈ S.

The first property we are interested here is checking whether a Boolean function
is m-resilient or is ε-far (0 < ε ≤ 1) from having that property. However, since the
set of resilient Boolean functions are yet to be characterized and the definition
is related to Walsh spectrum rather than the truth table, it is not immediate
how to map it to the framework of property testing. On the other hand, for the
other properties, such as symmetry and linearity, the definition in the domain of
property testing works perfectly and we present improved results over those given
in [10]. The quantum algorithm [10] for testing whether a function is symmetric

1 Our analysis here does not require any specialized knowledge of the quantum paradigm.
Instead the work is mostly related to combinatorial properties of Boolean functions. We show
how such properties of Boolean functions can be exploited to achieve novel and improved
results in the field of quantum algorithms.

2 For quantum algorithms, we write “query complexity” instead of “time complexity” as we
need to query some oracles, e.g., Uf ,Og as described in Section 2.

3 For more details on query complexity and measurements, refer to [15].

Quantum algorithms: Resiliency, Symmetry & Linearity 5

(respectively linear) or ε-far (0 < ε < 1
2) from symmetric (respectively linear)

functions requires O(ε−
2
3) many calls, whereas our technique requires only O(ε−

1
2)

many queries.

The organization of the paper is as follows. In Section 2, we present the quan-
tum algorithm for resiliency checking and its analysis in detail. Next, in Section 3,
we discuss how a similar idea can be exploited to devise a quantum algorithm to
test whether a function is symmetric. We further use similar ideas in Section 4
towards linearity testing. Section 5 concludes the paper.

2 Algorithm to check Resiliency

Given f either constant or balanced, if the corresponding quantum implementation
Uf is available, Deutsch-Jozsa [7] provided a quantum algorithm that decides in a
constant number of queries which one it is. The overall idea of the algorithm can be
summarized by Figure 1 and the step by step description of the Deutsch-Jozsa [7]
algorithm can be written as in Algorithm 1.

|0〉

|1〉

��
n

H

H⊗n H⊗n M

y

x x

y ⊕ f(x)

Uf

↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 1 Quantum circuit to implement the Deutsch-Jozsa Algorithm

Let us now describe our interpretation of the Deutsch-Jozsa algorithm in terms
of Walsh spectrum values. We denote the operator for Deutsch-Jozsa algorithm
as Df = H⊗nUfH

⊗n, where the Boolean function f is available as an oracle
Uf . For brevity, we abuse the notation and do not write the auxiliary qubit, i.e.,
|0〉−|1〉√

2
and the corresponding output in this case4. Now one can observe that

Df |0〉⊗n =
∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)x·z⊕f(x)

2n |z〉 =
∑
z∈{0,1}n

Wf (z)
2n |z〉, i.e., the as-

sociated probability for the state |z〉 is
W 2
f (z)

22n . In this regard, we have the following
technical result as pointed out in [13].

Proposition 1 Given f ∈ Bn, Df |0〉⊗n produces a superposition of all states z ∈
{0, 1}n with the amplitude

Wf (z)
2n corresponding to each state |z〉.

4 We go for similar abuse of notation for the phase inversion oracle later.

6 Chakraborty, Chattopadhyay & Maitra

Input: A Boolean function f ∈ Bn, available in the form of the unitary
transformation Uf

Output: n-bit pattern

Take an (n+ 1) qubit state |ψ0〉 = |0〉⊗n|1〉;1

Apply Hadamard Transform H⊗(n+1) on |ψ0〉 to get2

|ψ1〉 =
∑

x∈{0,1}n

|x〉
√

2n

[
|0〉 − |1〉
√

2

]
;

Apply Uf on |ψ1〉 to get3

|ψ2〉 =
∑

x∈{0,1}n

(−1)f(x)|x〉
√

2n

[
|0〉 − |1〉
√

2

]
;

Apply Hadamard Transform on the first n qubits of |ψ2〉 to obtain4

|ψ3〉 =
∑

z∈{0,1}n

∑
x∈{0,1}n

(−1)x·z⊕f(x)|z〉
2n

[
|0〉 − |1〉
√

2

]
;

Measurement at M : measure the first n qubits of |ψ3〉;5

After measurement, the all zero state (n-bit all zero pattern) implies6

that the function is constant, else it is balanced;

Algorithm 1: The Deutsch-Jozsa algorithm [7].

Consider that we are interested to know whether f ∈ Bn is m-resilient. Let Sm =
{x ∈ {0, 1}n|wt(x) ≤ m} and Sm = {x ∈ {0, 1}n|wt(x) > m}. Consider the n-

qubit state |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉+

∑
s∈Sm

Wf (s)
2n |s〉. For brevity, let us represent

this as |Ψ〉 = a|X〉 + b|Y 〉, where |X〉 =
∑
s∈Sm

Wf (s)
a2n |s〉, |Y 〉 =

∑
s∈Sm

Wf (s)
b2n |s〉,

a2 =
∑

s∈Sm

W 2
f (s)

22n and b2 =
∑

s∈Sm

W 2
f (s)

22n .

Using the Deutsch-Jozsa algorithm, we obtain
∑
z∈{0,1}n

Wf (z)
2n |z〉 (before the

measurement). That is, some state s ∈ Sm will appear after the measurement
with probability a2. Hence, after O(1

a2) iterations, one can expect to observe some
s ∈ Sm after the measurement and output that f is not m-resilient. If f is indeed
m-resilient, then a2 = 0 and thus any state s ∈ Sm will never appear at the output.
One may note that the minimum absolute value of the Walsh spectrum is 2. Thus,
we can have a situation that f is not m-resilient, but a2 is O(1

22n). In such a case,
the algorithm will require exponentially many queries to provide the correct result.
Thus the resiliency checking algorithm is as in Algorithm 2.

Theorem 1 Algorithm 2 correctly answers NO, but answers YES with constant success

probability in O(1
a2) queries, where a2 =

∑
s∈Sm

W 2
f (s)

22n > 0.

Proof According to Algorithm 2, one can observe that for each iteration, the
success probability is a2. After i many queries, the success probability will be
1 − (1 − a2)i. When i is O(1

a2), there exists a positive constant c < 1 such that

1− (1− a2)i > c. ut

Quantum algorithms: Resiliency, Symmetry & Linearity 7

Input: A function f ∈ Bn, available in the form of the unitary transformation Uf ,
order of resiliency m and the number of iterations r

Output: YES/NO

Sm = {x ∈ {0, 1}n|wt(x) ≤ m};1

for r many times do2

Apply Deutsch-Jozsa algorithm and take the n-bit output u;3

if u ∈ Sm then4

Report that the function is not m-resilient (NO) and terminate;
end

end
Report that the function is m-resilient (YES);5

Algorithm 2: Resiliency checking using the Deutsch-Jozsa algorithm [7].

Remark 1 Algorithm 2 is written in such a manner that if a function is indeed m-
resilient, then a = 0 and thus the algorithm will say YES after executing r steps.
However, it is known that for nonzero Walsh spectrum values, the minimum is ±2
and thus, a2 ≥ 4

22n . Hence, after repeating the algorithm r, i.e., O(22n) times, if we
don’t observe any binary string u ∈ Sm after measurements, then we can conclude
that the Boolean function f is m-resilient with success probability greater than
some predefined constant c. This provides the worst case scenario.

2.1 Improvement using the Grover’s Algorithm

Grover’s algorithm [8] provides a quadratic speed-up compared to repeated use of
the Deutsch-Jozsa algorithm and that is what we try out here. Instead of equal
superposition |ψ〉 = H⊗n|0〉⊗n = 1

2
n
2

∑
x∈{0,1}n |x〉 in the Grover’s algorithm, we

will use a state of the form |Ψ〉 = Df (|0〉⊗n) =
∑
x∈{0,1}n

Wf (x)
2n |x〉.

Consider that any n-qubit state is represented in the computational basis. We
want to amplify the amplitude of the points in Sm. This we achieve in a similar
manner as in Grover’s algorithm.

Grover’s algorithm requires inversion of phase. Towards this, we will use g(x) ∈
Bn, different from f(x). The corresponding operator Og inverts the phase of the
states |x〉 where x ∈ Sm. That is, we need to change phase for the points having
weight less than or equal to m. This can be achieved by choosing the n-variable
Boolean function g(x) such that g(x) = 1, when wt(x) ≤ m, and g(x) = 0, other-
wise. Thus g is a symmetric function. A symmetric Boolean function can be effi-
ciently implemented, as described in [6]. The circuit complexity of an n-variable
symmetric Boolean function is 4.5n+o(n). It is known that given a classical circuit
g, a quantum circuit of comparable efficiency can be implemented, with some very
small number of extra garbage bits. Thus, we will consider that for a symmet-
ric function g, the quantum circuit Og can be efficiently implemented using O(n)
circuit complexity.

Now let us consider the operator Gt = [(2|Ψ〉〈Ψ | − I)Og]t acting on |Ψ〉 to get
|Ψt〉. The idea presented in the following result is easy to see as it follows the
amplitude amplification used in the Grover’s algorithm. However, we present the
proof for better understanding.

8 Chakraborty, Chattopadhyay & Maitra

Proposition 2 Let |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉+

∑
s∈Sm

Wf (s)
2n |s〉 = a|X〉+ b|Y 〉, where

a = sin θ, b = cos θ, |X〉 =
∑
s∈Sm

Wf (s)
a2n |s〉, |Y 〉 =

∑
s∈Sm

Wf (s)
b2n |s〉. The application

of the [(2|Ψ〉〈Ψ | − I)Og]t operator on |Ψ〉 produces |Ψt〉, in which the amplitude of |X〉
is sin(2t+ 1)θ.

Proof For t = 1, one can check that |Ψ1〉 = [(2|Ψ〉〈Ψ |−I)Og]|Ψ〉 = [(2|Ψ〉〈Ψ |)Og]|Ψ〉−
Og|Ψ〉. Now substituting the values of a, b we get that |Ψ1〉 = sin 3θ|X〉+ cos 3θ|Y 〉.

Now we will use induction. Let the application of [(2|Ψ〉〈Ψ |−I)Og]t operator on
|Ψ〉 update the amplitude of |X〉 as sin(2tθ+θ), for t = k. From the assumption we
have [(2|Ψ〉〈Ψ | − I)Og]k|Ψ〉 = sin(θ+ 2kθ)|X〉+ cos(θ+ 2kθ)|Y 〉. Now for t = k+ 1,
it can be checked that [(2|Ψ〉〈Ψ | − I)Og](k+1)|Ψ〉 = sin(θ+ 2(k+ 1)θ)|X〉+ cos(θ+
2(k + 1)θ)|Y 〉. Thus, the proof. ut

Input: A Boolean function f ∈ Bn, available in the form of the unitary transformation
Uf , order of resiliency m and the number of iterations r and a series of
positive integers ti, 1 ≤ i ≤ r related to the number of the Grover’s iterations

Output: YES/NO

Sm = {x ∈ {0, 1}n|wt(x) ≤ m};1

for i = 1 to r do2

Apply Deutsch-Jozsa algorithm till the step before measurement to obtain3

|Ψ〉 =
∑

s∈Sm
Wf (s)

2n
|s〉+

∑
s∈Sm

Wf (s)

2n
|s〉;

By applying the Grover’s iteration, obtain |Ψti 〉 = [(2|Ψ〉〈Ψ | − I)Og]ti |Ψ〉;4

Measure |Ψti 〉 in the computational basis to obtain n-bit string u;5

if u ∈ Sm then6

Report that the function is not m-resilient (NO) and terminate;
end

end
Report that the function is m-resilient (YES);7

Algorithm 3: Resiliency checking using the Grover’s algorithm [7].

After the Deutsch-Jozsa algorithm we obtain
∑
z∈{0,1}n

Wf (z)
2n |z〉 (before the mea-

surement) with a2 =
∑

s∈Sm

W 2
f (s)

22n and b2 =
∑

s∈Sm

W 2
f (s)

22n . Thus, we have sin θ = a. For

large n, one can approximate it as θ = a and hence we need t iterations of a Grover
like strategy such that (2t+ 1)θ ≥ sin−1 c, where c is a predefined constant. Thus,
here we need an expected O(1

a) iterations, compared to O(1
a2) iterations using the

Deutsch-Jozsa algorithm only. One important issue here is that any estimate of
a may not be known and thus, estimating tr could be challenging. Given that tr
can be estimated, after application of the Grover’s algorithm, we will obtain a
state

∑
s∈Sm

a′s|s〉+
∑

s∈Sm
b′s|s〉 = a′|X〉+ b′|Y 〉, where (a′)2 is very close to 1. Using

this (Grover’s algorithm followed by Deutsch-Jozsa algorithm), we get a quadratic
speed-up over just using Deutsch-Jozsa algorithm.

It is natural to use the Grover’s algorithm for amplitude amplification and thus
obtaining quadratic speed-up. However, in the known applications (e.g., search),
the number of target states, for which the amplitude is increased, is not large. That
guarantees the efficient implementation of the phase reversal circuit. In our case,

Quantum algorithms: Resiliency, Symmetry & Linearity 9

the situation is different as we need to amplify the amplitude at
∑m
i=0 (ni) points

of weight ≤ m and this could be exponential. Thus, it is an important question
whether the phase reversal can be implemented efficiently. In our case, this can be
achieved as the phase reversal can be implemented with symmetric functions, the
implementation of which is efficient [6].

2.2 Deciding the number of Grover’s iteration

One may refer to [4] to study the detailed analysis related to the number of Grover’s
iterations required to obtain a success probability close to 1. However, we like to
present our analysis in detail for a better understanding of how many iterations
we need and at the same time the number of measurements needed. Thus, let us
explicitly describe how one can decide the values of ti for 1 ≤ i ≤ r.

As given in Algorithm 3, we have |Ψ〉 =
∑
s∈Sm

Wf (s)
2n |s〉+

∑
s∈Sm

Wf (s)
2n |s〉 =

a|X〉 + b|Y 〉, where a = sin θ, b = cos θ. Our motivation is to observe some state

s ∈ Sm, if
∑
s∈Sm

Wf (s)
2n > 0, i.e., if a > 0. We will apply Grover’s algorithm

to obtain |Ψti〉 = [(2|Ψ〉〈Ψ | − I)Og]ti |Ψ〉 = sin θi|X〉 + cos θi|Y 〉 such that sin θi is
greater than or equal to some predefined constant, say sin θc = c. Thus, we require
that there should exist some ti such that θc ≤ (2ti + 1)θ ≤ π − θc.

We start with t1 = 0, i.e., we expect that θc ≤ (2t1 + 1)θ = θ ≤ π− θc. If this is
the case, we are done. That is, in this case, we do not apply the Grover’s algorithm
at all and the situation is similar to Algorithm 2 where only the Deutsch-Jozsa
algorithm is used.

We divide the angular region [0, π2] in r angular grids,

{[αr+1, αr], [αr, αr−1], . . . , [α2, α1]},

where 0 = αr+1 < αr < . . . < α2 < α1 = π
2 . We will now show how to select the

values of αr, . . . , α2, other than the boundary values αr+1, α1. There must exist
some i ∈ [1, r] such that αi+1 ≤ θ < αi. For that, we need the ti value such that
θc = (2ti + 1)αi+1 ≤ (2ti + 1)θ < (2ti + 1)αi = π − θc. Thus we must satisfy
θc = (2ti + 1)αi+1 < (2ti + 1)αi = π − θc for each i. For each of them, we need to
satisfy the following.

(2ti + 1)αi = π − θc, (1)

(2ti + 1)αi+1 = θc. (2)

Similarly, we have
(2ti−1 + 1)αi−1 = π − θc, (3)

(2ti−1 + 1)αi = θc. (4)

Thus, from (1), (4), we get,

2ti + 1

2ti−1 + 1
=
π − θc
θc

. (5)

Taking the initial condition t1 = 0 and by solving the above recurrence relation,
we get,

(2ti + 1) =

(
π − θc
θc

)i−1

(6)

10 Chakraborty, Chattopadhyay & Maitra

This provides us the values of ti’s and that in turn will decide how the angular
grids will be chosen. Now we need to decide the value of r and for that we have to
consider the worst case given the value of sin θ. Let sin θ = a. From Proposition 2
we know that to ensure sin θ is close to 1, the maximum value among the ti’s, i.e.,
tr according to our technique, should be taken as O(1

a). So, (2tr + 1) ≈ 1
a and we

can write r ≈ log π−θc
θc

(1
a), i.e., r is O(log 1

a). Thus, we have the following result.

Theorem 2 Algorithm 3 correctly answers NO, but answers YES with a constant

success probability in O(log 1
a) measurements (each measurement is as in step 5) and

the total number of execution of the Grover’s operator (as in step 4) is O(1
a) where

a2 =
∑

s∈Sm

W 2
f (s)

22n .

Proof How we estimate r is explained above. In Algorithm 3, at the i-th step we
apply the operator [(2|ψ〉〈ψ| − I)Og], ti times. Here i varies from 1 to r. So, the

total number of times the Grover’s operator is applied is T =
r∑
i=1

ti. From (6), we

can substitute the value of ti and get

T =
1

2

r∑
i=1

((
π − θc
θc

)i−1

− 1

)
.

By solving this equation and also substituting the value of r, we get

T ≈ 1

2

[
1/a− 1

(π − θc)/θc − 1
− 1

2

{
log π−θc

θc

(
1

a
)(log π−θc

θc

(
1

a
) + 1)

}]
. (7)

So, the number of times the Grover’s operator is executed is O(1
a). ut

Remark 2 Similar to Remark 1, for Algorithm 3 we need to consider the case when
the function is m-resilient, i.e., a = 0. In this case r will be O(log 2n), i.e., O(n)
and tr will be O(2n), that provides the worst case scenario.

Remark 3 We like to point out that the number of measurements in both Algo-
rithm 2 and Algorithm 3 are r. In case of Algorithm 2, r is O(1

a2) and can be
exponential in n worst case. However, for Algorithm 3, r is O(log 1

a), which is
polynomial in n in worst case. For Algorithm 2, the number of queries using the
Deutsch-Jozsa operator is r = O(1

a2) and for Algorithm 3, the number of queries
using the Grover’s operator is T = O(1

a) and both of them could be exponential
in the worst case. In summary,

– in terms of number of queries, Algorithm 3 provides quadratic improvement
over Algorithm 2, though both can be exponential in worst case;

– in terms of number of measurements, Algorithm 3 requires polynomially many
measurements in worst case, while Algorithm 2 requires exponentially many.

Let us now study the algorithm from two aspects. First we see some special
classes of Boolean functions for which the quantum algorithm requires query com-
plexity polynomial in the number of input variables. Next, we interpret our results
from a property testing point of view.

Quantum algorithms: Resiliency, Symmetry & Linearity 11

2.3 Checking m-resiliency among functions with three valued Walsh spectrum

From the analysis in the previous section, we note that the Deutsch-Jozsa al-
gorithm or the Deutsch-Jozsa algorithm (without measurement) followed by the
Grover’s algorithm can be used to check whether a Boolean function is m-resilient
or not. It is very clear that the second strategy provides a quadratic speed-up over
the first one. It is also evident that the quantum algorithms, in worst case, may
take exponentially many queries in n. Thus, it would be interesting to consider a
class of Boolean functions for which the problem can be solved in polynomially
many queries in n in the quantum paradigm.

In [16–18], several characterizations and constructions of resilient functions
have been presented. In particular, it has been pointed out in [16] that the Walsh
spectrum values of any m-resilient function will be divisible by 2m+2. In this
direction, we will concentrate on Boolean functions with Walsh spectrum values
that are multiples of 2m+2. Let us define

An = {f ∈ Bn|Wf (ω) ≡ 0 mod 2m+2}.

In this case, if the function is not m-resilient, then a ≥ 2m+2

2n and thus, the query
complexity of checking resiliency is O(2n−m−2) using Algorithm 3. In case, m ≥
n − O(poly(log n)), it is clear that the query complexity of checking resiliency is
O(poly(n)).

We do not know of any classical algorithm that can efficiently decide whether
a function f ∈ An is m-resilient. Thus, we get an exponential speed-up in this case
using a quantum algorithm over classical ones.

2.4 Property testing interpretation

As discussed earlier, given two n-variable Boolean functions f and g, the existing
literature [1,10,11] define f, g as ε-far if

|{x ∈ {0, 1}n : f(x) 6= g(x)}|
2n

=
d(f, g)

2n
≥ ε,

i.e., if the Hamming distance d(f, g) between the truth tables of f and g is at
least ε2n. Further, an n-variable Boolean function f will be called ε-far from a
subset S of n-variable Boolean functions if f is ε-far from any function g ∈ S. This
definition works perfectly for linearity testing, where S is the set of n-variable
linear functions, say.

Unfortunately, this kind of definition, to check whether a function is ε-far from
the set of n-variable, m-resilient Boolean functions, may not be easy to handle.
The main reasons for the limitation in using the distance between the truth tables
are as follows.

– The complete characterization of the n-variable m-resilient Boolean functions
is not yet known.

– The resiliency definition comes from the Walsh spectrum but not from the
truth table.

12 Chakraborty, Chattopadhyay & Maitra

Thus, for an n-variable function, we may abuse the definition for checking whether
it is ε-far (not a metric in this abused definition) from the set of m-resilient func-
tions. We define

ε =
∑
s∈Sm

W 2
f (s)

22n
, where Sm = {x ∈ {0, 1}n|wt(x) ≤ m}.

One can check that ε = 0, if the function is indeed m-resilient. The value of ε can
be at maximum 1. Looking at Proposition 2 and the discussion after that, it is
easy to note that ε = a2 and thus with O(1

ε
1
2

) query complexity, one can decide

whether a function is indeed n-variable m-resilient or ε-far from such functions.

3 Quantum algorithm for testing Symmetry

The probabilistic classical test for symmetry exploits the condition f(x) = f(y)
given wt(x) = wt(y). Thus the probabilistic classical algorithm for testing whether
an n-variable Boolean function f ∈ SBn (the set of n-variable symmetric Boolean
functions) or not works as in Algorithm 4.

Input: A Boolean function f on n variables and the number of iterations tw for each
weight w, 1 ≤ w ≤ n− 1

Output: YES/NO

For each weight 1 ≤ w ≤ n− 1 chose an n bit string aw1

for i = 1 to tw do2

Randomly choose distinct permutation of aw say π(aw);3

Check the condition f(aw) = f(π(aw));4

if The condition is not satisfied then5

Report that f is ε-far from SBn (NO) and terminate;
end

end
Report that f ∈ SBn (YES);6

Algorithm 4: Symmetry testing using a classical algorithm

It is well known that if the algorithm reports that f is not symmetric, then it
is non-symmetric with probability 1, but if it reports that f is symmetric, then
it succeeds with some probability depending on the number of iterations tw. It is
known [14] that if one needs to decide whether a function is ε-far from the set of
symmetric functions, then the query complexity is O(1

ε) to obtain the probability
of success greater than or equal to 2

3 (or any constant c, such that 1
2 < c ≤ 1).

Recently, it has been shown that [10] in the quantum paradigm, it can be reduced
to O(1

ε
2
3

) query complexity. Here we improve the quantum query complexity to

O(1

ε
1
2

).

We like to point out that a function f ∈ Bn can be ε-far from SBn for 0 < ε ≤ 1
2 .

This is because, if a function is symmetric then its complement is also symmetric.

Quantum algorithms: Resiliency, Symmetry & Linearity 13

3.1 Our proposal

We first take any n+ 1 strings X0, X1, X2, . . . , Xn ∈ {0, 1}n such that wt(Xi) = i.
Among them let there be l many points Xi1 , Xi2 , . . . , Xil , where the function f

evaluates to 1. Let I1 = {i1, i2, . . . , il} and I0 = [0, . . . , n] \ I1. Now, construct an
n-variable Boolean function h0 from f such that,

h0(x) = f(x) if wt(x) ∈ I0,
= 0 if wt(x) ∈ I1. (8)

Again we construct another Boolean function h1 from f such that,

h1(x) = f(x) if wt(x) ∈ I1,
= 1 if wt(x) ∈ I0. (9)

Let 0, 1 be the constant zero and constant one function respectively. It is easy to
note that f is symmetric if and only if h0 = 0 and h1 = 1. Let, for x ∈ {0, 1}n,

τ0i (f) = |{x : f(x) = 0, wt(x) = i}|, τ1i (f) = |{x : f(x) = 1, wt(x) = i}|.

It is immediate to see that τ0i (f) + τ1i (f) = (ni) and
∑n
i=0(τ0i (f) + τ1i (f)) = 2n.

Further, consider that h is the closest symmetric function to f . Then, one may note
that d(f, h) =

∑n
i=0 min{τ0i (f), τ1i (f)}. It is also immediate to see that d(h0,0) =∑

i∈I0 τ
1
i (f) and d(h1,1) =

∑
i∈I1 τ

0
i (f). Thus, we have the following technical

results.

Proposition 3 The n-variable function f ∈ SBn if and only if h0 = 0 and h1 = 1.

Further, d(h0,0) + d(h1,1) ≥ d(f, h).

Proof The first statement is easy to follow. Now we prove the second statement. We
have, d(h0,0) =

∑
i∈I0 τ

1
i (f) and d(h1,1) =

∑
i∈I1 τ

0
i (f). Thus, d(h0,0)+d(h1,1) =∑

i∈I0 τ
1
i (f) +

∑
i∈I1 τ

0
i (f) ≥

∑n
i=0 min{τ0i (f), τ1i (f)} = d(f, h). ut

This gives us the following important result for testing the symmetry of a Boolean
function.

Theorem 3 Let f be either symmetric or ε-far (for some given ε > 0) from SBn.

Given this, the function f is ε-far (ε > 0) from the set of symmetric Boolean functions,

if and only if h0 is ε
2 -far from 0 or h1 is ε

2 -far from 1.

Proof From the second statement of Proposition 3, d(h0,0)+d(h1,1) ≥ d(f, h) and
so if f is ε-far from h, the closest symmetric function, then h0 is ε

2 -far from 0 or
h1 is ε

2 -far from 1.
Now we prove the other direction. Let h0 be ε

2 -far from 0 or h1 be ε
2 -far from

1. From the first statement of Proposition 3, if h0 is not 0 or h1 is not 1 then f

is non symmetric. However it is given that, if f is not symmetric, then it is ε-far
from the set of symmetric functions. This gives the proof. ut

From the definition of h0 and h1 it is clear that they are almost the same as
symmetric Boolean functions, except for those points x where we have to put the
value of f(x) as an output. The symmetric Boolean functions can be efficiently

14 Chakraborty, Chattopadhyay & Maitra

Input: An n-variable Boolean function f
Output: YES/NO

Obtain h0 and h1 from f following (8), (9) respectively;1

Prepare the unitary transformations Uh0
and Uh1

from h0 and h1;2

Check in parallel whether h0 and h1 are constant or not, using the constant checking3

algorithm;
if at least one of h0 or h1 is not constant then4

Report that the function is ε-far from SBn (NO) and terminate;
else

Report that f ∈ SBn (YES);
end

Algorithm 5: Symmetry testing using a quantum algorithm

implemented, as described in [6]. Thus, we can conclude that the circuits of Boolean
functions h0 and h1 can be constructed from the circuit of f efficiently.

Hence we note that the algorithm for testing symmetry of f can be efficiently
reduced to an algorithm for testing whether h0 is 0 or h1 is 1. This we present
formally in Algorithm 5.

Next we need to have an algorithm for testing whether a Boolean function is
constant or not.

3.2 Quantum algorithm for testing whether a Boolean function is constant

The famous Deutsch-Jozsa [7] algorithm, in constant number of queries, can iden-
tify whether an n-variable Boolean function f is either constant or balanced. Note
that this requires the premise that the function will either be balanced or constant.
However, the situation here is different as we want to know whether a function is
constant or not. An n-variable Boolean function f ′ is constant if and only if its
Walsh spectrum value at the point 0 is ±2n. The algorithm for testing whether a
given Boolean function f ′ is constant or δ-far from constant is almost the same as
the algorithm for resiliency checking, described in Algorithm 3.

In this case, the function g is such that g(x1, x2, . . . , xn) = x1 ∨ x2 ∨ . . . ∨ xn.
That is, here we have to take the oracle operator Og as

Og|x〉 = |x〉 if x = (0, 0, . . . , 0),

= −|x〉 otherwise.

In this case, the unitary transformation Uf ′ is defined as,

Uf ′ |x〉 = −|x〉 if f ′(x) = 1,

= |x〉 otherwise.

Now, the algorithm for testing whether f ′ is constant or not is given in the following
algorithm which is similar to Algorithm 3. Note that a function f ′ ∈ Bn can be
δ-far from the constant function for 0 < δ ≤ 1

2 . This is because, if a function is
constant then its complement is also constant.

The value of ti’s are the same as defined in equation 6. Now let us discuss the
query complexity of Algorithm 6. If a function f ′ is δ-far from a constant function,
then Wf ′(0, 0, . . . , 0) ≤ 2n − 2 · 2n · δ = 2n(1 − 2δ). From Parseval’s theorem, we

Quantum algorithms: Resiliency, Symmetry & Linearity 15

Input: A Boolean function f ′ on n variables, available in the form of the unitary
transformation Uf ′ , the number of iterations r and a series of positive integers
ti, 1 ≤ i ≤ r related to the number of the Grover’s iterations

Output: YES/NO

for i = 1 to r do1

Apply the Deutsch-Jozsa algorithm using Uf ′ , till the step before measurement to2

obtain |Ψ〉 =
Wf (0)

2n
|0〉+

∑
s∈{0,1}n\{0}

Wf (s)

2n
|s〉;

By applying the Grover’s iteration ti many times, obtain3

|Ψti 〉 = [(2|Ψ〉〈Ψ | − I)Og]ti |Ψ〉;
Measure |Ψti 〉 in the computational basis to obtain n-bit string u;4

if u ∈ {0, 1}n \ {(0, 0, . . . , 0)} then5

Report that the function is δ-far from constant (NO) and terminate;
end

end
Report that the function is constant (YES);6

Algorithm 6: Quantum algorithm for checking whether a Boolean function
is constant

have
∑
ω∈{0,1}nW

2
f ′(ω) = 22n. Thus,

∑
s∈{0,1}n\{(0,0,...,0)}

W 2
f (s)

22n ≥ 4δ − 4δ2 ≥ 2δ, as

δ ≤ 1
2 . Now, we can analyse this in a similar way to Theorem 1 and show that the

query complexity of Algorithm 6 is O(1

(2δ)
1
2

). Thus, following Theorem 3, we can

argue that the query complexity of Algorithm 5 is O(1

ε
1
2

). This improves the work

of [10], that requires O(1

ε
2
3

) query complexity.

Remark 4 One important issue is how the complexity is related to n, the number of
input variables to the Boolean function in question. As we have discussed earlier,
while testing for whether a function is ε-far from the set of n-variable symmetric
functions SBn, we have 0 < ε ≤ 1

2 . If a function is at a constant Hamming distance

β from SBn, then ε = β
2n and thus the Algorithm 5 will require O(2

n
2) queries.

If β = 2n

ζ(n) , then the algorithm will require order of
√
ζ(n) queries. That is, if

ζ(n) is polynomial in n, then we have a probabilistic quantum algorithm with
polynomially many queries. The algorithm will require constant number of queries
for the functions which are far away from the set of symmetric functions, i.e.,
where β is O(2n), i.e., when ε is constant.

4 Quantum algorithm for testing Linearity

Let l be a linear n-variable Boolean function, i.e., l(x) = ω · x is available in the
form of an oracle. We would like to find ω. For a linear function l(x) = ω · x,
Wl(ω) = 2n and Wl(z) = 0, for z 6= ω. Thus the observed state of n bits will clearly

output ω itself (with probability
W 2
f (ω)

22n = 1). That is, the Deutsch-Jozsa algorithm
solves this problem in constant time. In the classical model, we need O(n) time to
find out the ω. This difference and related results have been pointed out in [2].

The probabilistic classical test for linearity is well known as the BLR test [3]
that exploits the condition l(x ⊕ y) = l(x) ⊕ l(y) for a linear function l, where
a0 = 0. However, if a0 = 1 for an affine function `, then we have the condition

16 Chakraborty, Chattopadhyay & Maitra

`(x ⊕ y) = 1 ⊕ `(x) ⊕ `(y). One may note that one can easily decide whether
a0 = 0 or 1 by checking the output of the function at the all-zero, i.e., (0, 0, . . . , 0)
input. Thus the probabilistic classical algorithm for testing whether an n-variable
Boolean function f is affine or not works as follows.

Input: A Boolean function f on n variables
Output: YES/NO

a0 = f(0, 0, . . . , 0);1

for t many times do2

Randomly choose distinct x, y ∈ {0, 1}n;3

Check the condition f(x⊕ y) = a0 ⊕ f(x)⊕ f(y);4

If the condition is not satisfied, report that f is not affine (NO) and terminate;5

end
Report that the function is affine (YES);6

Algorithm 7: Classical algorithm for checking whether a Boolean function
is affine.

It is well known that if the algorithm reports that f is non-affine, then it is
non-affine with probability 1, but if it reports that f is affine, then it succeeds
with some probability depending on the number of iterations t. A simple analysis
shows that if one needs to decide whether a function is ε-far from the set of affine
functions, then the probability of success is greater than or equal to 2

3 (or any
constant c, such that 1

2 < c < 1) where t is O(1
ε). However, the detailed analysis

of this probability of success is quite involved and one may refer to [1,11] in this
direction.

Consider that an n-variable function f is ε-far from An, the set of all n-variable
affine functions. That means, nl(f) ≥ ε2n. Using Parseval’s result, it is easy to
note that nl(f) ≤ 2n−1 − 2

n
2
−1. The upper bound can be achieved for functions

on even number of variables which are known as bent functions. However, the
problem is yet to be settled for the cases on odd number of variables. This tells us
that a function on n variables can be ε-far from the set of affine functions where
0 ≤ ε ≤ 1

2 −
1

2
n
2

+1
. For details of combinatorial, cryptographic and coding theoretic

results related to Boolean functions, one may see [12] and the references therein.
In general, as 1

2
n
2

+1
tends to 0 for large n, we will consider 0 < ε < 1

2 in this case.

4.1 Our proposal

For our purpose, we start with the following technical result.

Theorem 4 Let f ∈ Bn be either affine or ε-far (for some given ε > 0) from An.

Let ω be the n-bit pattern measured in step 5 of the Algorithm 1 (the Deutsch-Jozsa

algorithm) and let f ′(x) = f(x)⊕ ω · x. Given this, the function f is ε-far from An, if

and only if f ′(x) is ε-far from Cn.

Proof We first exploit the Deutsch-Jozsa algorithm (refer to step 5 of Algorithm 1)
to find a point ω ∈ {0, 1}n such that Wf (ω) is nonzero.

Quantum algorithms: Resiliency, Symmetry & Linearity 17

The function f is affine (of the form ω0 ⊕ ω · x, where ω0 ∈ {0, 1}) if and only
if Wf (ω) = ±2n and for any other ζ ∈ {0, 1}n, such that ζ 6= ω, Wf (ζ) = 0. Thus
f is affine if and only if f ′(x) is constant.

Now consider that f(x) /∈ An and f(x) is ε-far from An. Let `(x) = µ0 ⊕ µ · x
be the closest affine function from f(x), where µ0 ∈ {0, 1} and µ ∈ {0, 1}n. From
the definition, we get that d(f, `) ≥ ε2n. Without loss of generality, let us take
d(f, `) = ε2n (otherwise, we could have considered d(f, `) = ε12n, where ε1 ≥ ε and
proceed similarly). For the n-bit pattern ω (measured in step 5 of the Algorithm 1),
we have Wf (ω) 6= 0. In terms of the Walsh spectrum values, this implies that
|Wf (µ)| ≥ |Wf (ω)|, i.e., |Wf⊕µ·x(0)| ≥ |Wf⊕ω·x(0)| = |Wf ′(0)|. Thus, if f is ε-far
from An, f ′ will be ε-far from Cn.

In the other direction, if f ′ is ε-far from Cn for ε > 0, then f ′ is non-linear and
thus f is non-linear. Given that f is either affine or ε-far from An, this proves that
it is ε-far from An. ut

Then one may use Algorithm 6 for checking whether f ′(x) is constant or ε-far
from the constant functions 0, 1. Thus, given that a Boolean function f is either
affine or it is ε-far from the set of affine functions, the query complexity of our
algorithm is O(1

ε
1
2

). If the algorithm outputs that the function is not affine, then

it is certainly true. If it outputs that the function is affine, then it is true with
a constant probability. Thus, we improve the work of [10], that requires O(1

ε
2
3

)

query complexity.

Remark 5 We need to highlight a subtle difference between the testing the sym-
metry and linearity. We reduce both the cases in testing whether a function is
constant. In case of symmetry, the reduction of a symmetric function to a con-
stant function (as in Theorem 3 does not require any quantum framework and it
is done in classical domain only. However, in case of linearity, we require the ap-
plication of the Deutsch-Jozsa algorithm in Theorem 4 to find a point ω where the
Walsh spectrum is nonzero. This can be done in constant number of queries de-
terministically using the quantum algorithm, which would not have been possible
using any classical algorithm.

Similar to Remark 4, we can understand how the complexity is related to
n. While testing for whether a function is ε-far from the set of n-variable affine
functions An, we have 0 ≤ ε ≤ 1

2 −
1

2
n
2

+1
. If a function is at a constant Hamming

distance β from An, then ε = β
2n and thus the algorithm will require O(2

n
2) many

queries. If β = 2n

ζ(n) , then the algorithm will require O(
√
ζ(n)) queries. That is, if

ζ(n) is polynomial in n, then we need polynomially many queries. The algorithm
will require constant number of queries for highly non-linear functions where β is
O(2n), i.e., when ε is constant.

5 Conclusion

In this paper, we study the problem of checking resiliency of a Boolean function
in the quantum paradigm. The input to the algorithm is an n-variable Boolean
function and the algorithm should output YES if the function is m-resilient and NO
if it is not. Our algorithm provides the NO answer correctly, while the YES answer

18 Chakraborty, Chattopadhyay & Maitra

is provided with probability greater than some predefined constant. We use the well
known Deutsch-Jozsa and Grover’s algorithms for the purpose. Algorithm 3 shows
that it requires exponentially many queries but polynomially many measurements
in n in the worst case. We also identify a sub-class of Boolean functions for which
we require polynomially many queries as well as polynomially many measurements
in the worst case. For such a class no efficient classical algorithm is known.

Next we concentrate on symmetric and affine Boolean functions. We show that
the problem of checking whether a function is symmetric (respectively affine) can
be efficiently reduced to the problem of checking whether a function is constant.
Using a similar direction as in resiliency checking, we provide a quantum algo-
rithm in this direction, that improves the recent results explained in [10]. We also
interpret the results in property testing framework.

It is interesting to explore how this kind of technique using the Walsh spectrum
of Boolean functions, associated with the Deutsch-Jozsa and the Grover’s Algo-
rithms, can be exploited for testing some other properties of Boolean functions.

References

1. M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi and M. Sudan. Linearity testing over
characteristic two. IEEE Trans. Inform. Theory, 42, 1781 (1996).

2. E. Bernstein and U. Vazirani. Quantum complexity theory. Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, (ACM Press, New York, 1993), pp. 11–20.

3. M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Numer-
ical Problems. J. Comput. Syst. Sci. 47(3), 549 (1993).

4. M. Boyer, G. Brassard, P. Hoeyer and A. Tapp. Tight bounds on quantum searching.
Fortsch. Phys. 46:493-506, 1998 (arXiv:quant-ph/9605034).

5. S. L. Braunstein, B.-S. Choi, S. Ghosh and S. Maitra. Exact quantum algorithm to dis-
tinguish Boolean functions of different weights. Journal of Physics A: Mathematical and
Theoretical, Volume: 40, Pages 8441-8454, doi:10.1088/1751-8113/40/29/017, published: 3
July 2007.

6. E. Demenkov, A. Kojevnikov, A. Kulikov and G. Yaroslavtsev. New upper bounds on the
Boolean circuit complexity of symmetric functions. Information Processing Letters, 110:264–
267, 2010.

7. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proceedings
of Royal Society of London, A439:553–558 (1992).

8. L. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
28th Annual Symposium on the Theory of Computing (STOC), May 1996, pages 212–219.
Available at http://xxx.lanl.gov/abs/quant-ph/9605043.

9. X. Guo-Zhen and J. Massey. A spectral characterization of correlation immune combining
functions. IEEE Transactions on Information Theory, 34(3):569–571, May 1988.

10. M. Hillery and E. Andersson. Quantum tests for the linearity and permutation invariance
of Boolean functions. Physical Review A 84, 062329 (2011).

11. T. Kaufman, S. Litsyn and N. Xie. Breaking the ε-soundness bound of the linearity test
over GF (2). Siam J. Comput., 39(5), 1988 (2010).

12. S. Kavut, S. Maitra and M. D. Yucel. Search for Boolean Functions with Excellent Profiles
in the Rotation Symmetric Class. IEEE Trans. Inform. Theory, 53(5), 1743 (2007).

13. S. Maitra and P. Mukhopadhyay. Deutsch-Jozsa Algorithm Revisited in the Domain of
Cryptographically Significant Boolean Functions. In International Journal on Quantum
Information, Pages 359–370, Volume 3, Number 2, June 2005.

14. K. Majewski and N. Pippenger. Attribute estimation and testing quasi-symmetry. Infor-
mation Processing Letters 109:233-237, 2009

15. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2010.

16. P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean
functions. In Advances in Cryptology - CRYPTO 2000, number 1880 in Lecture Notes in
Computer Science, pages 515–532. Springer Verlag, 2000.

Quantum algorithms: Resiliency, Symmetry & Linearity 19

17. Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlinearity. In
Progress in Cryptology - INDOCRYPT 2000, number 1977 in Lecture Notes in Computer
Science, pages 19–30. Springer Verlag, 2000.

18. Y. Zheng and X. M. Zhang. Improved upper bound on the nonlinearity of high order
correlation immune functions. In Selected Areas in Cryptography - SAC 2000, number 2012
in Lecture Notes in Computer Science, pages 264–274. Springer Verlag, 2000.

