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Abstract. Signcryption simultaneously offers authentication through unforgeability and confidential-
ity through indistinguishability against chosen ciphertext attacks by combining the functionality of
digital signatures and public-key encryption into a single operation. Libert and Quisquater (PKC 2004)
extended this set of basic requirements with the notions of ciphertext anonymity (or key privacy) and
key invisibility to protect the identities of signcryption users and were able to prove that key invisibility
implies ciphertext anonymity by imposing certain conditions on the underlying signcryption scheme.
This paper revisits the relationship amongst privacy notions for signcryption. We prove that key in-
visibility implies ciphertext anonymity without any additional restrictions. More surprisingly, we prove
that key invisibility also implies indistinguishability against chosen ciphertext attacks. This places key
invisibility on the top of privacy hierarchy for public-key signcryption schemes.
On the constructive side, we show that general “sign-then-encrypt” approach offers key invisibility if the
underlying encryption scheme satisfies two existing security notions, indistinguishable against adaptive
chosen ciphertext attacks and indistinguishability of keys against adaptive chosen ciphertext attacks.
By this method we obtain the first key invisible signcryption construction in the standard model.

1 Introduction

Signcryption methods. The concept of signcryption was introduced by Zheng in 1997 [26], with
the initial goal to achieve performance increase for simultaneous signing and public-key encryption.
His idea was to derive the combined functionality by optimizing computations at the algorithmic
level rather than considering joint execution of two different signing and encryption procedures.
This idea was reflected in various signcryption constructions, including those based on discrete
logarithms [4, 21, 25], factoring assumptions [18, 22], and hard problems in groups with bilinear
maps [15, 16]. Some of these designs were less successful, e.g. [4, 25] were cryptanalyzed in [21], a
problem in [15] was identified in [23] and repaired in [9].

A more general approach to signcryption was initiated by An, Dodis, and Rabin [1]. They consid-
ered different methods for obtaining the signcryption functionality through a black-box composition
of arbitrary signature and public-key encryption schemes, in particular showing that “encrypt-then-
sign” (EtS) and “sign-then-encrypt” (StE) lead to secure singcryption schemes (as opposed to the
symmetric-key setting [6]). They also introduced another approach, termed “commit-then-sign-and-
encrypt” (CtS&E) that admits parallelization of the signing and encryption operations, motivated
by the insecurity of the plain “sign-and-encrypt” (S&E) method. Dent et al. [10] recently proved
security of S&E in the setting of high-entropy messages, assuming the confidentiality property of
signatures. Alternative generic methods for (parallel) signcryption were introduced by Pieprzyk
and Pointcheval [19] based on secret sharing techniques, by Dodis et al. [11] using trapdoor per-
mutations and probabilistic padding schemes, and by Malone-Lee [17] from the hybrid KEM/DEM
framework.
? W. Susilo is supported by ARC Future Fellowship FT0991397.
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Privacy notions for signcryption. The first formal security model for signcryption in the
public-key setting was introduced by Baek et al. [3], encompassing the requirements of message
confidentiality (indistinguishability against adaptive chosen ciphertext attacks) and unforgeability
against chosen-message attacks in the multi-user setting. This model has been strengthened by An,
Dodis, and Rabin [1] towards the insider security setting that admits corruptions of senders and
receivers, as opposed to the outsider security guarantees from [3] in which all involved parties must
remain uncorrupted. The insider security setting became the de facto standard security setting for
modern public-key signcryption schemes.

Libert and Quisquater [15], inspired by Boyen’s work [7] on identity-based signcryption and the
earlier definition of key privacy for public-key encryption schemes by Bellare et al. [5], formalized
the notions of ciphertext anonymity (or key privacy) for public-key signcryption. This requirement,
modeled within the insider security framework, prevents the adversary that is not in possession
of the recipient’s decryption key from obtaining information about the sender and the recipient of
the signcrypted message. Libert and Quisquater also introduced the notion of key invisibility, for
which they could prove that it implies ciphertext anonymity as long as signcryption ciphertexts
have uniform distribution for random recipients’ public keys.

1.1 Our contribution

In this paper we focus on privacy notions for signcryption schemes and aim at closing gaps from
previous work.

Relations among privacy notions. Using public-key signcryption notions from [15], namely
key invisibility (SC-INVK-CCA), ciphertext anonymity (SC-INDK-CCA), and indistinguishability
against chosen ciphertext attacks (SC-IND-CCA), we investigate their relationships and come to
the following surprising results (cf. Figure 1): first, we show that key invisibility implies ciphertext
anonymity without requiring uniformity of ciphertexts for random public keys (as opposed to the
proof from [15]). Our proof of this implication involves a two-step approach: we first give a new
definition of ciphertext anonymity, which we term SC-ANON-CCA and for which we prove the
equivalence to SC-INDK-CCA from [15], before proving that SC-ANON-CCA is implied by SC-
INVK-CCA. Even more surprising, we prove that SC-INVK-CCA implies SC-IND-CCA, that is
key invisible signcryption schemes readily provide message confidentiality. Our analysis thus implies
that key invisibility is strictly stronger than ciphertext anonymity and message confidentiality.

SC-IND-CCA   SC-INDK-CCA   

SC-INVK-CCA   

L2 

L1 

Fig. 1. Relationships among privacy notions for signcryption. An arrow denotes an implication while a barred
arrow denotes a separation. T and L stand for Theorem and Lemma, respectively.
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Key invisibility of “Sign-then-Encrypt”. As observed in [15], parallel signcryption methods
(incl. S&E and CtS&E) do not satisfy ciphertext anonymity — the recipient needs to know who is
the sender in order to verify the signature. The key invisible signcryption scheme from [15], which
has been revised in [9] following the analysis in [23], is a concrete construction based on bilinear maps
and random oracles. As a second contribution we explore the key invisibility of the StE signcryption
method, showing that it achieves SC-INVK-CCA (and by this SC-INDK-CCA and SC-IND-CCA)
provided that the underlying public key encryption scheme satisfies two existing requirements,
which are named indistinguishability against adaptive chosen ciphertext attacks (IND-CCA) and
indistinguishability of keys against adaptive chosen ciphertext attacks (IK-CCA), respectively. It is
well-known that Cramer-Shoup encryption scheme [8] offers both IND-CCA and IK-CCA security.
In this way we readily obtain the first key invisible signcryption scheme in the standard model.

2 Preliminaries

2.1 Digital signatures

SYNTAX. A signature scheme S comprises four efficient algorithms: S = (Setup, KGen, Sig,Ver).
The setup algorithm Setup takes as input a security parameter 1k and outputs the public param-
eters λS . The key generation algorithm KGen takes as input λS and outputs a signing key sk and
a verification key vk. The signing algorithm Sig takes as input a signing key sk and a message
m from the associated message space M, and outputs a signature σ ← Sigsk(m). The verification
algorithm Ver takes a message m, a signature σ and a verification key pk and outputs either a valid
symbol > or an invalid symbol ⊥. We require that Vervk(m,Sigsk(m)) = >, for any m ∈M.

SECURITY. We consider a standard security notion for signatures: existential unforgeability under
adaptive chosen message attacks [13], denoted by UF-CMA. Intuitively, we require that an adversary
is not able to generate a signature on a new message on behalf of a target signer. We define the
adversary A’s advantage AdvUF-CMA

S,A (k) as

Pr

[
S.Vervk(m,σ) = >

∣∣∣∣λS ← Setup(1k), (sk, vk)← S.KGen(λS),

(m,σ)← AOSig(·)(vk), m 6∈ Query(A, OSig(·))

]
,

where A is allowed to make a sequence of queries to the signing oracle OSig(·), and Query(A, OSig(·))
is the set of queries made by A to oracle OSig(·). S is said to be UF-CMA-secure, if the advantage
function AdvUF-CMA

S,A (k) is negligible in k for any PPT adversary A.

2.2 Public-key encryption

SYNTAX. A public key encryption scheme E comprises four efficient algorithms: E = (Setup,
KGen,Enc,Dec). The setup algorithm Setup takes as input a security parameter 1k and outputs
the public parameters λE . The key generation algorithm KGen takes as input λE and outputs a
decryption key dk and an encryption key ek. The encryption algorithm Enc takes as input an en-
cryption key ek and a message m from the associated message space M, and outputs a ciphertext
c← Encek(m). The decryption algorithm Dec takes a decryption key dk and a ciphertext c to return
the corresponding message m; we write m← Decdk(c). We require that Decdk(Encek(m)) = m, for
any m ∈M.

SECURITY. We consider indistinguishability against adaptive chosen ciphertext attacks [20], de-
noted by IND-CCA, and indistinguishability of keys against adaptive chosen ciphertext attacks [5],
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denoted by IK-CCA. Intuitively, IND-CCA means that given a properly generated encryption key,
no adversary A can distinguish encryptions of any two-equal length messages m0, m1 under this
key. IND-CCA security captures strong message (data)-privacy property and guarantees that, given
a challenge ciphertext, no valid information about the underlying message (plaintext, or data) will
be leaked. On the other hand, IK-CCA captures strong key-privacy property. It means that given
two randomly selected encryption keys ek1 and ek2, no adversary A can distinguish encryptions of
a same message m under the two different keys. Given a challenge ciphertext, no valid information
about the underlying key will be leaked in an IK-CCA-secure encryption scheme. For b = 0, 1 and
an adversary A = (A1,A2), which runs in two stages of find and guess, consider the experiments

Experiment ExpIND-CCA,b
E,A (k) :

λE ← E .Setup(1k)

(dk, ek)← E .KGen(λE)

(m0,m1, ω)← ADdk(·)1 (λE , ek, find)

cb ← Encek(mb)

d← ADdk(·)2 (cb, ω, guess)

Experiment ExpIK-CCA,b
E,A (k) :

λE ← E .Setup(1k)

(dk0, ek0)← E .KGen(λE); (dk1, ek1)← E .KGen(λE)

(m,ω)← ADdk0 (·),Ddk1 (·)1 (λE , ek0, ek1, find)

cb ← Encekb(m)

d← ADdk0 (·),Ddk1 (·)2 (cb, ω, guess)

where |m0| = |m1|, ω is some state information and A is allowed to invoke the decryption oracle
Ddk(·) (or Ddk1(·) and Ddk2(·)) at any point with the only restriction that cb is not queried during
the guess stage. We define the advantages AdvIND-CCA

E,A (k) and AdvIK-CCAE,A (k), respectively, as follows:

AdvIND-CCA
E,A (k) =

∣∣Pr[ExpIND-CCA,0
E,A (k) = 1]− Pr[ExpIND-CCA,1

E,A (k) = 1]
∣∣

AdvIK-CCAE,A (k) =
∣∣Pr[ExpIK-CCA,0

E,A (k) = 1]− Pr[ExpIK-CCA,1
E,A (k) = 1]

∣∣.
E is said to be IND-CCA (resp. IK-CCA) secure, if the advantage function AdvIND-CCA

E,A (k) (resp.

AdvIK-CCAE,A (k)) is negligible in k for any PPT adversary A.

2.3 Signcryption syntax

We will review the signcryption syntax used in [14, 15, 24]. A signcryption scheme is formalized
by five PPT algorithms SC = (Setup, KeyGen, SignCrypt, UnSignCrypt, Verify). The setup algo-
rithm generates public parameters λsc ← Setup(1k). Taking as input the public parameters λsc,
the key-generation algorithm outputs a key pair (skU , pkU ) ← KGs(λsc). On input a message
m from the associated message space M, a private key skU , and a public key pkR, the sign-
cryption algorithm outputs a signcryption ciphertext C ← SC.SignCrypt(m, skU , pkR). On input
a private key skR and a signcryption ciphertext C, the unsigncryption algorithm UnSignCrypt
(skR, C) outputs either a tuple (m, s, pkU ) where m ∈ M, s is auxiliary non-repudiation informa-
tion (allowing to convince a third party of the origin of the message) and pkU is a public key, or
a special symbol ⊥ indicating failure. The verification algorithm Verify(m, s, pkU ) taking as input
a message m, additional information s, and a public key pkU , outputs either > if the additional
information s authenticates the message m for the sender pkU , or ⊥ otherwise. The correctness
requires that for any m ∈M, any correctly generated key pairs (skU , pkU ) and (skR, pkR), we have
(m, s, pkU )← UnSignCrypt(skR, SignCrypt(m, skU , pkR)) and Verify(m, s, pkU ) = >.

Remark 1. Note the slightly different syntax in comparison to [1]. The difference is that the unsign-
cryption algorithm takes as input sender’s public key pkS , receiver’s secret key skR, and signcryption
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ciphertext C, and outputs either message m or ⊥. In this paper, we will adopt the signcryption syn-
tax reviewed above since we intend to study various privacy notions in which the sender’s identity
may be unknown prior to the execution of the unsigncryption algorithm.

3 Security Notions for Signcryption Schemes

The existing security notions cover four aspects: existential unforgeability against chosen-message
attacks, indistinguishability against chosen ciphertext attacks, ciphertext anonymity and key invis-
ibility, which we recall in the following.

3.1 Unforgeability

A fundamental notion for signcryption schemes is existential unforgeability against chosen-message
attacks [1]. This property prevents the adversary from forging a signcryption ciphertext on a new
message or with respect to a new receiver on behalf of the target sender, and is formalized in the
following experiment

Experiment ExpUF-CMA
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU )← SC.KeyGen(λsc)

(C, skR, pkR)← ASC.SskU (·,·),SC.DskU (·)(λsc, pkU )

success of A := [(m, s, pkU )← SC.UnSignCrypt(skR, C)

∧ Verify(m, s, pkU ) = >
∧ (m, pkR) 6∈ Query(A, SC.SskU (·, ·))]

where the signcryption oracle SC.SskU (·, ·) takes as input (m′, pk′R) and outputs a signcryption ci-
phertext, the unsigncryption oracle SC.DskU (·) takes as input a signcryption ciphertext and outputs
either ⊥ or a tuple (m′, s′, pk′U ) such that Verify(m′, s′, pk′U ) = >, and Query(A,SC.SskU (·, ·)) is
the set of queries made by A to oracle SC.SskU (·, ·).

Definition 1. A signcryption scheme is existentially unforgeable against chosen-message attacks
(SC-UF-CMA), if for all PPT adversaries A the following advantage function is negligible in k:

AdvUF-CMA
SC,A (k) := Pr[A success].

We remark existence of a stronger notion named strong existentially unforgeability against
chosen-message attacks (SC-SUF-CMA), c.f. [14, 15, 24], which requires that the challenge sign-
cryption ciphertext C was not previously output by the signcryption oracle SC.SskU (·, ·) on input
(m, pkR). However, as pointed out in [1] and similar to the signature setting in [13], the conventional
(i.e. non-strong) unforgeability is sufficient for most scenarios in practice.

3.2 Confidentiality

The notion of indistinguishability against chosen ciphertext attacks [15] captures confidentiality of
messages. That is, given a signcryption ciphertext, no valid information about the message that was
signcrypted will be exposed to an adversary without the designated receiver’s private key. Formally,
for b = 0, 1 we consider the following experiments
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Experiment ExpIND-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU )← SC.KeyGen(λsc)

(m0,m1, skS , ω)← ASC.SskU (·,·),SC.DskU (·)
1 (λsc, pkU )

Cb ← SC.SignCrypt(mb, skS , pkU )

d← ASC.SskU (·,·),SC.DskU (·)
2 (Cb, ω)

where |m0| = |m1|, ω is some state information, and oracles SC.SskU (·, ·) and SC.DskU (·) are the
same as in the previous experiment ExpUF-CMA

SC,A (k) with the only limitation of A2 not querying the
challenge ciphertext Cb to the unsigncryption oracle SC.DskU (·).

Definition 2. A signcryption scheme is semantically secure against chosen ciphertext attacks (SC-
IND-CCA), if for all PPT adversaries A = (A1,A2) the following advantage function is negligible
in k:

AdvIND-CCA
SC,A (k) := |Pr[ExpIND-CCA,0

SC,A (k) = 1]− Pr[ExpIND-CCA,1
SC,A (k) = 1]|.

3.3 Ciphertext Anonymity

Intuitively, a signcryption scheme has ciphertext anonymity property [15] if signcryption ciphertexts
reveal no information about the identities of the sender and receiver. Formally, consider the following
experiment

Experiment ExpINDK-CCA
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0)← SC.KeyGen(λsc)

(skR,1, pkR,1)← SC.KeyGen(λsc)

(m, skS,0, skS,1, ω)← A
SC.SskR,0 (·,·),SC.SskR,1 (·,·),SC.DskR,0 (·),SC.DskR,1 (·)
1 (λsc, pkR,0, pkR,1)

(b, b′)← {0, 1}
C ← SC.SignCrypt(m, skS,b, pkR,b′)

(d, d′)← A
SC.SskR,0 (·,·),SC.SskR,1 (·,·),SC.DskR,0 (·),SC.DskR,1 (·)
2 (C,ω)

where ω is some state information and A can have access to the signcryption and unsigncryption
oracles at any point with the two limitations that A2 does not query C to the unsigncryption
oracles SC.DskR,0(·) and SC.DskR,1(·).

Definition 3. A signcryption scheme is said to satisfy ciphertext anonymity (SC-INDK-CCA), if
for all PPT adversaries A = (A1,A2) the following advantage function is negligible in k:

AdvINDK-CCA
SC,A (k) := |Pr[(d, d′) = (b, b′)]− 1

4
|.
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3.4 Key Invisibility

The notion of key invisibility for signcryption was formalized by Libert and Quisquater in [15]. It
can be viewed as an extension of the invisibility concept proposed by Galbraith and Mao [12] for
undeniable signatures. Intuitively, this notion captures that given a receiver, a specific signcryption
ciphertext generated with respect to a chosen message, a chosen sender and a given receiver is
indistinguishable to a random ciphertext uniformly chosen from the signcryption ciphertext space.
Formally, for b = 0, 1 we consider the following experiments

Experiment ExpINVK-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR, pkR)← SC.KeyGen(λsc)

(m, skS , ω)← ASC.SskR (·,·),SC.DskR (·)
1 (λsc, pkR)

C0 ← SC.SignCrypt(skS , pkR,m)

C1 ← C

d← ASC.SskR (·,·),SC.DskR (·)
2 (Cb, ω)

where ω is some state information, C is the signcryption ciphertext space, C1 is uniformly chosen
at random from C, and A can have access to the signcryption and unsigncryption oracles at any
point with the two limitations that A2 does not query Cb to the unsigncryption oracle SC.DskR(·).

Definition 4. A signcryption scheme is said to satisfy key invisibility (SC-INVK-CCA), if for all
PPT adversaries A = (A1,A2) the following advantage function is negligible in k:

AdvINVK-CCASC,A (k) := |Pr[ExpINVK-CCA,0
SC,A (k) = 1]− Pr[ExpINVK-CCA,1

SC,A (k) = 1]|.

4 Relations among Privacy Notions for Signcryption

We now define anonymity, an equivalent notion for ciphertext anonymity of signcryption schemes.
This notion is conceptually simpler in comparison to ciphertext anonimity from [15] in that the
adversary only needs to distinguish between two cases, depending on a single bit b = 0, 1, rather
than between four cases in [15]. Formally, we consider the following experiments

Experiment ExpANON-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0)← SC.KeyGen(λsc)

(skR,1, pkR,1)← SC.KeyGen(λsc)

(m, skS,0, skS,1, ω)← A
SC.SskR,0 (·,·),SC.SskR,1 (·,·),SC.DskR,0 (·),SC.DskR,1 (·)
1 (λsc, pkR,0, pkR,1)

Cb ← SC.SignCrypt(m, skS,b, pkR,b)

d← A
SC.SskR,0 (·,·),SC.SskR,1 (·,·),SC.DskR,0 (·),SC.DskR,1 (·)
2 (Cb, ω)

where ω is some state information and A can have access to the signcryption and unsigncryption
oracles at any point with the two limitations that A2 does not query Cb to the unsigncryption
oracles SC.DskR,0(·) and SC.DskR,1(·).
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Definition 5. A signcryption scheme is said to satisfy anonymity (SC-ANON-CCA), if for all
PPT adversaries A = (A1,A2), the advantage function is negligible in k:

AdvANON-CCA
SC,A (k) := |Pr[ExpANON-CCA,0

SC,A (k) = 1]− Pr[ExpANON-CCA,1
SC,A (k) = 1]|.

We now show that ciphertext anonymity and anonymity are equivalent.

Theorem 1 (SC-INDK-CCA ⇔ SC-ANON-CCA). For signcryption schemes, anonymity is
equivalent to ciphertext anonymity.

Proof of Theorem 1 is presented in Appendix A. 2

4.1 Separation between Ciphertext Anonymity and SC-IND-CCA

Intuitively, ciphertext anonymity captures identity privacy and indistinguishability against cho-
sen ciphertext attacks captures message privacy. The goals of ciphertext anonymity and indistin-
guishability against chosen ciphertext attacks are orthogonal. Formally, Lemmas 1 and 2 proven in
Appendix B, separate the two notions.

Lemma 1 (SC-IND-CCA ; SC-INDK-CCA). Let SC = (Setup,KeyGen, SignCrypt,UnSignCrypt)
be a signcryption scheme. If SC satisfies indistinguishability against chosen ciphertext attacks, then
it may not satisfy ciphertext anonymity.

Lemma 2 (SC-INDK-CCA ; SC-IND-CCA). Let SC = (Setup,KeyGen, SignCrypt,UnSignCrypt)
be a signcryption scheme. If SC satisfies ciphertext anonymity, then it may not satisfy indistin-
guishability against chosen ciphertext attacks.

4.2 Relationship between Key invisibility and Ciphertext Anonymity

Next, we investigate the relationship between key invisibility and ciphertext anonymity. We shall
use anonymity instead of ciphertext anonymity in our analysis, as these two are equivalent by
Theorem 1.

Theorem 2 (SC-INVK-CCA ⇒ SC-ANON-CCA). Let SC be a signcryption scheme. If SC
satisfies key invisibility, then it satisfies anonymity.

Proof of Theorem 2 is presented in Appendix C. 2

Note that Libert and Quisquater [15] were only able to prove implication of ciphertext anonymity
by key invisibility for a class of signcryption schemes satisfying a particular property, namely that
for a given message and a given sender’s private key, the output of the signcryption algorithm must
be uniformly distributed in the ciphertext space when the receiver’s public key is random. Our
results in Theorems 1 and 2 lift this restriction.

4.3 Relationship between Key Invisibility and SC-IND-CCA

Our next result shows that key invisibility, which originally was viewed as a notion for protecting
privacy of user identities [15], is in fact a much stronger notion that implies indistinguishability
against chosen ciphertext attacks.

Theorem 3 (SC-INVK-CCA ⇒ SC-IND-CCA). Let SC be a signcryption scheme. If SC
satisfies key invisibility, then it satisfies indistinguishability against chosen ciphertext attacks.



9

Proof of Theorem 3 is presented in Appendix D. 2

From Theorem 1, Lemma 1, Lemma 2, Theorem 2 and Theorem 3, we can safely conclude that
key invisibility is strictly stronger than both indistinguishability against chosen ciphertext attacks
and ciphertext anonymity.

5 Sign-then-Encrypt Generic Construction

In this section, we revisit the generic construction of signcryption schemes based on the sign-then-
encrypt method [1,2]. We show that the resulting signcryption schemes can achieve key invisibility
when appropriate encryption schemes are employed.

5.1 Scheme

Let S = (Setup,KGen,Sig,Ver) be a signature scheme and E = (Setup,KGen,Enc,Dec) be a pub-
lic key encryption scheme. Signcryption schemes based on the sign-then-encrypt method can be
constructed as follows:

– Setup(1k): On input a security parameter k, this algorithm runs λS ← S.Setup(1k) and λE ←
E .Setup(1k), respectively. The public parameters are set as λsc := (λS , λE).

– KeyGen(λsc): The user Ui runs S.KGen(λS) → (ski, vki) and E .KGen(λE) → (dki, eki), respec-
tively. The secret and public key pair is set as (skUi , pkUi) := ((ski, dki), (vki, eki)).

– SignCrypt(m, skUi , pkUj ): To signcrypt a message m for the receiver Uj , Ui first produces a
signature σ on m||pkUj , i.e., σ ← S.Sigski(m||pkUj ), and then encrypts m||σ||pkUi under receiver
Uj ’s encryption key, i.e. c← E .Encekj (m||σ||pkUi). The signcryption ciphertext is set as C := c.

– UnSignCrypt(skUj , C): On receiving a signcryption ciphertext C, receiver Uj firstly decrypts it
using its own decryption key dkj , i.e., m||σ||pkUi ← E .Decdkj (C), and then checks if S.Vervki
(m||pkUj , σ) = >. If so, it outputs (m, s, pkUi) where s = (pkUj , σ); otherwise, it returns ⊥.

– Verify(m, s, pkUi): This algorithm parses s and pkUi as (pkUj , σ) and (vki, eki), respectively, and
outputs S.Vervki(m||pkUj , σ).

5.2 Security of the Generic Construction

From the relations discussed in Section 4, we only need to show that the above generic construction
results in signcryption schemes that are existentially unforgeable against chosen-message attacks
and satisfy key invisibility. The former requirement has already been proven in [1], who stated the
following theorem:

Theorem 4 ([1]). Let SC be the above generic signcrypiton scheme. If the signature scheme S is
UF-CMA-secure, then SC is existentially unforgeable against chosen-message attacks.

We thus focus on key invisibility. Here we will adopt the very natural method for uniform sam-
pling, i.e., uniformly and independently choosing a message m ∈M , a sender’s secret skUi , and a re-
ceiver’s public key pkUj , and returning a signcryption ciphertext C ← SC.SignCrypt(m, skUi , pkUj ).

Theorem 5. Let S be a signature scheme, E be a public-key encryption scheme that is both
IND-CCA-secure and IK-CCA-secure. Then the above generic signcrypiton scheme SC satisfies key
invisibility.
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Proof. To show the security, we first define two games, and then show in Claims 1 and 2 that no
adversary A can break the key invisibility property of SC.

Game 0. This is the real experiment between the challenger and an adversary A. This means that
the challenger firstly correctly generates the target receiver’s key pairs (skR, pkR) := ((sk0, dk0),
(vk0, ek0)), forwards pkR to the adversary A, and then provides accesses to signcryption ora-
cle SC.SskR(·, ·) and unsigncryption oracle SC.DskR(·). In the challenge phase, after A submits
(m∗, skS = (sk1, dk1)), the challenger randomly flips a coin b ∈ {0, 1}. If b = 0, the challenger pro-
duces a signature σ0 on m∗||pkR under the signing key sk1, i.e., σ0 ← S.Sigsk1(m∗||pkR), encrypts
m∗||σ0||pkS under the receiver’s encryption key, i.e. C0 ← E .Encek0(m∗||σ0||pkS), and returns C0

to A. If b = 1, the challenger independently and uniformly chooses m′ ∈ M, a sender’s secret
key sk′S := (sk′1, dk

′
1) and a receiver’s public key pk′R := (vk′0, ek

′
0), produces a signature σ1 on

m′||pk′R, i.e., σ1 ← S.Sigsk′1(m′||pk′R), encrypts m′||σ1||pk′S under the receiver’s encryption key,
i.e. C1 ← E .Encek′0(m′||σ1||pk′S), and returns C1 to A. Besides, the challenger provides access to
signcryption oracle SC.SskR(·, ·) and unsigncryption oracle SC.DskR(·).

Game 1. This is the same as Game 0, with the exception that in the challenge phase, the challenger
computes C1 ← E .Encek0(m′||σ1||pk′S), and returns C1 to A when b = 1.

Next we link the probability that A wins in Game 0 and Game 1. Let S1 be the advantage
that A wins in Game 1. Thus Pr[S1] = |Pr[ExpGame 1,0

SC,A (k) = 1] − Pr[ExpGame 1,1
SC,A (k) = 1]|, where

ExpGame 1,b
SC,A (k) is the output of A in Game 1 when the challenge ciphertext is Cb.

Claim 1
|AdvINVK-CCASC,A (k)− Pr[S1]| = 2 · AdvIK-CCAE,B (k), (1)

where AdvIK-CCAE,B (k) is the advantage of an adversary B that breaks the IK-CCA security of the
encryption scheme E .

We show that any difference between AdvINVK-CCASC,A (k) and Pr[S1] can be parlayed into an al-
gorithm B = (B1,B2) that breaks the IK-CCA security of the encryption scheme E . Recall that
B1 gets (λE , ek, ek

′) as input and has access to decryption oracles Ddk(·) and Ddk′(·). B1 runs
λS ← S.Setup(1k), S.KGen(λS)→ (sk0, vk0) and sets λsc := (λS , λE) and pkR := (vk0, ek). B1 runs
A1 as a subroutine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU )) to SC.SskR(·, ·), B1 first produces
a signature σ on m||pkU under the signing key sk0, i.e., σ ← S.Sigsk0(m||pkU ), and then encrypts
m||σ||pkR under the encryption key ekU , i.e. c← E .EncekU (m||σ||pkR). The signcryption ciphertext
is set as C := c, and returned to A1 as the reply. When A1 makes a unsigncryption query C
to SC.DskR(·), B1 submits C to its own decryption oracle Ddk(·). If the reply is not of the form
m||σ||pkU where pkU is a public key, then B1 returns ⊥ to A1. Otherwise, B1 decomposes pkU as
(vkU , ekU ), and further checks whether S.VervkU (m||pkR, σ) = >. If so, B1 returns (m, (pkR, σ), pkU )
to A1, and otherwise ⊥ is returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). B1 randomly flips a coin b̃ ∈ {0, 1}. If b̃ = 0,
B first produces a signature σ0 on m∗||pkR under the signing key sk1, i.e., σ0 ← S.Sigsk1(m∗||pkR),
encrypts m∗||σ0||pkS under the receiver’s encryption key, i.e. C0 ← E .Encek(m

∗||σ0||pkS), and
returns C0 to A. If b̃ = 1, B independently and uniformly chooses m′ ∈ M, a sender’s secret key
sk′S := (sk′1, dk

′
1) and a public verification key vk′0, sets pk′R := (vk′0, ek

′), produces a signature σ1
on m′||pk′R using the signing key sk′1, i.e., σ1 ← S.Sigsk′1(m′||pk′R), and submits m′||σ1||pk′S where
pk′S is the corresponding public key of sk′S to its own challenger. Let C1 denote the reply of B’s
own challenger. B returns C1 to A. B2 simulates the oracles in the same way as B1 did.

Note that A2 never makes an unsigncryption query Cb where b ∈ {0, 1} to SC.DskR(·), thus
B2 does not make the query Cb to its decryption oracles Ddk(·) or Ddk′(·). Finally A2 outputs a
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bit d. B2 outputs d when b̃ = 1, and returns failure when b̃ = 0. When C1 is the encryption of
m′||σ1||pk′S under ek, the environment simulated by B is exactly the same as in Game 1. While C1

is the encryption of m′||σ1||pk′S under ek′, the environment simulated by B is exactly the same as
in Game 0. Thus we have

AdvIK-CCAE,B (k) =
∣∣Pr[ExpIK-CCA,0

E,B (k) = 1]− Pr[ExpIK-CCA,1
E,B (k) = 1]

∣∣
=

∣∣Pr[b̃ = 1] · Pr[ExpGame 1,1
SC,A (k) = 1]− Pr[b̃ = 1] · Pr[ExpINVK-CCA,1

SC,A (k) = 1]
∣∣

=
∣∣(1

2
· Pr[ExpGame 1,0

SC,A (k) = 1]− 1

2
· Pr[ExpGame 1,1

SC,A (k) = 1])

− (
1

2
· Pr[ExpINVK-CCA,0

SC,A (k) = 1]− 1

2
· Pr[ExpINVK-CCA,1

SC,A (k) = 1])
∣∣ (2)

=
1

2
·
∣∣Pr[S1]− AdvINVK-CCA

SC,A (k)
∣∣.

Equation (2) follows from the fact that Pr[ExpGame 1,0
SC,A (k) = 1] = Pr[ExpINVK-CCA,0

SC,A (k) = 1], as
the experiments are exactly the same.

Claim 2

Pr[S1] ≤ AdvIND-CCA
E,C (k), (3)

where AdvIK-CCAE,C (k) is the advantage of an adversary C that breaks the IND-CCA security of the
encryption scheme E .

To show this, we build an algorithm C that employs the adversary A in Game 1 to break
the IND-CCA security of the encryption scheme E . Recall that C gets (λE , ek) as input and has
access to a decryption oracle Ddk(·). C runs λS ← S.Setup(1k), S.KGen(λS) → (sk0, vk0) and sets
λsc := (λS , λE) and pkR := (vk0, ek). C runs A1 as a subroutine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU )) to SC.SskR(·, ·), C first produces
a signature σ on m||pkU , i.e., σ ← S.Sigsk0(m||pkU ), and then encrypts m||σ||pkR under the en-
cryption key ekU , i.e. c ← E .EncekU (m||σ||pkR). The signcryption ciphertext is set as C := c, and
returned to A1 as the reply. When A1 makes a unsigncryption query C to SC.DskR(·), C submits
C to its own decryption oracle Ddk(·). If the reply is not of the form m||σ||pkU where pkU is a
public key, then C returns ⊥ to A1. Otherwise, C decomposes pkU as (vkU , ekU ), and further checks
whether S.VervkU (m||pkR, σ) = >. If so, C returns (m, (pkR, σ), pkU ) to A1, and otherwise ⊥ is
returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). C first produces a signature σ0 on m∗||pkR
under the signing key sk1, i.e., σ0 ← S.Sigsk1(m∗||pkR). Then C independently and uniformly
chooses m′ ∈ M, a sender’s secret key sk′S := (sk′1, dk

′
1) and a receiver’s public pk′R, produces

a signature σ1 on m′||pk′R under the signing key sk′1, i.e., σ1 ← S.Sigsk′1(m′||pk′R). C sets m̄0 :=
m∗||σ0||pkS , m̄1 := m′||σ1||pk′S where pkS and pk′S are the corresponding public keys of skS and
sk′S respectively, and submits m̄0 and m̄1 to its own challenger. Let Cb denote the reply of C’s own
challenger. C returns Cb to A. C then simulates the oracles in the same way as it did before.

Note that A2 never makes an unsigncryption query Cb to SC.DskR(·), thus B2 does not make the
query Cb to its decryption oracle Ddk(·). Finally A2 outputs a bit d. C outputs d. The environment
simulated by C is exactly the same as in Game 1. Thus we have AdvIND-CCA

E,C (k) = Pr[S1].

As a sequence of equations (1), (3) gained above, we have AdvINVK-CCASC,A (k) ≤ 2 · AdvIK-CCAE,B (k) +

AdvIND-CCA
E,C (k) . This concludes the proof. 2
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6 Conclusion

In this paper, we first revisited the existing privacy notions of signcryptions, namely indistin-
guishability against chosen ciphertext attacks, ciphertext anonymity and key invisibility. We demon-
strated the separation between indistinguishability against chosen ciphertext attacks and ciphertext
anonymity, and showed that both notions are implied by key invisibility. Finally we proposed the
first generic construction for key invisible signcryption schemes in the standard model.
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A Proof of Theorem 1

Theorem 1 follows from Lemma 3 and Lemma 4. 2

Lemma 3. Let SC be a signcryption scheme. If SC satisfies anonymity, then it satisfies ciphertext
anonymity.

Proof. Suppose an adversary A = (A1,A2) breaks the ciphertext anonymity property with non-
negligible advantage. We show how to construct an algorithm B = (B1,B2) that breaks the
anonymity property with non-negligible advantage. Recall that A1 gets (λsc, pkR,0, pkR,1) as in-
put and has access to signcryption oracles SC.SskR,0(·, ·), SC.SskR,1(·, ·) and unsigncryption ora-
cles SC.DskR,0(·), SC.DskR,1(·), and at some time submits (m, skS,0, skS,1) to its challenger. Let
Pr[(d, d′)|(b, b′)], where d, d′, b, b′ ∈ {0, 1}, be the probability that A2 outputs (d, d′) when given the
challenge signcryption ciphertext C∗ generated with respect to skS,b, pkR,b′ . Then we have

AdvINDK-CCA
SC,A (k) =

∣∣Pr[(d, d′) = (b, b′)]− 1

4

∣∣
=

∣∣1
4
· (Pr[(0, 0)|(0, 0)] + Pr[(0, 1)|(0, 1)] + Pr[(1, 0)|(1, 0)] + Pr[(1, 1)|(1, 1)])− 1

4

∣∣
=

∣∣1
4
· (Pr[(0, 0)|(0, 0)] + Pr[(0, 1)|(0, 1)] + Pr[(1, 0)|(1, 0)] + Pr[(1, 1)|(1, 1)])

− 1

4
· (Pr[(0, 0)|(0, 0)] + Pr[(0, 1)|(0, 0)] + Pr[(1, 0)|(0, 0)] + Pr[(1, 1)|(0, 0)])

∣∣
=

∣∣1
4
· (Pr[(0, 1)|(0, 1)] + Pr[(1, 0)|(1, 0)] + Pr[(1, 1)|(1, 1)])

− 1

4
· (Pr[(0, 1)|(0, 0)] + Pr[(1, 0)|(0, 0)] + Pr[(1, 1)|(0, 0)])

∣∣.
Recall that B1 gets (λ′sc, pk

′
R,0, pk

′
R,1) as input and has access to signcryption oracles SC.Ssk′R,0(·, ·),

SC.Ssk′R,1(·, ·) and unsigncryption oracles SC.Dsk′R,0
(·), SC.Dsk′R,1

(·). B1 flips two coins i, j ∈ {0, 1}
independently. If i = 1 and j = 1, B1 sets λsc := λ′sc, pkR,0 := pk′R,1, pkR,1 := pk′R,0. Other-
wise, B1 sets λsc := λ′sc, pkR,0 := pk′R,0, pkR,1 := pk′R,1. B1 runs A1 as a subroutine with input
(λsc, pkR,0, pkR,1).

When A1 makes a query (m, pkR) to SC.SskR,c(·, ·) where c ∈ {0, 1}, B1 forwards (m, pkR) to its
own signcryption oracle SC.Ssk′

R,c′
(·, ·) where c′ = 1 − c when i = j = 1 and c′ = c otherwise, and

returns the output to A1 as the reply. When A1 makes a query C to SC.DskR,c(·) where c ∈ {0, 1},
B1 forwards C to its own unsigncryption oracle SC.Dsk′

R,c′
(·) and returns the output to A1 as the

reply.

At some time, A1 submits (m∗, skS,0, skS,1). B1 sets sk′S,0 := skS,0 and sk′S,1 := skS,j (i.e., if the
previously flipped coin j = 0, sk′S,1 := skS,0. If j = 1, sk′S,1 := skS,1). B1 submits (m∗, sk′S,0, sk

′
S,1) to
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its own challenger, who returns a challenger signcryption ciphertext C∗. B2 runs A2 as a subroutine
by forwarding C∗, and simulates the oracles in the same way as B1 did.

Note that A2 never makes a unsigncryption query C∗ to SC.DskR,c(·) where c ∈ {0, 1}, thus B2
does not make a unsigncryption query C∗ to SC.Dsk′R,c

(·). The simulation of the environment for

A is perfect. Finally A2 outputs (d, d′).

– When i = 0, j = 0. B2 outputs 1 if (d, d′) = (0, 1); otherwise B2 aborts and returns failure.

– When i = 0, j = 1. B2 outputs 1 if (d, d′) = (1, 1); otherwise B2 aborts and returns failure.

– When i = 1, j = 0. B2 outputs 1 if (d, d′) = (1, 0); otherwise B2 aborts and returns failure.

– When i = 1, j = 1. B2 outputs 1 if (d, d′) = (1, 0); otherwise B2 aborts and returns failure.

We show that the advantage of B is negligible. Indeed, we have

AdvANON-CCA
SC,B (k) := |Pr[ExpANON-CCA,0

SC,B (k) = 1]− Pr[ExpANON-CCA,1
SC,B (k) = 1]|

=
∣∣1
4
· (Pr[(0, 1)|(0, 0)] + Pr[(1, 1)|(0, 0)] + Pr[(1, 0)|(0, 0)] + Pr[(1, 0)|(0, 1)])

− 1

4
· (Pr[(0, 1)|(0, 1)] + Pr[(1, 1)|(1, 1)] + Pr[(1, 0)|(0, 1)] + Pr[(1, 0)|(1, 0)])

∣∣
=

∣∣1
4
· (Pr[(0, 1)|(0, 0)] + Pr[(1, 1)|(0, 0)] + Pr[(1, 0)|(0, 0)])

− 1

4
· (Pr[(0, 1)|(0, 1)] + Pr[(1, 1)|(1, 1)] + Pr[(1, 0)|(1, 0)])

∣∣
= AdvINDK-CCA

SC,A (k). 2

Lemma 4. Let SC be a signcryption scheme. If SC satisfies ciphertext anonymity, then it satisfies
anonymity.

Proof. Suppose an adversary A = (A1,A2) breaks the anonymity property with non-negligible ad-
vantage. We show how to construct an algorithm B = (B1,B2) that breaks the ciphertext anonymity
property with non-negligible advantage. Recall that A1 gets (λsc, pkR,0, pkR,1) as input and has ac-
cess to signcryption oracles SC.SskR,0(·, ·), SC.SskR,1(·, ·) and unsigncryption oracles SC.DskR,0(·),
SC.DskR,1(·).
B1 gets (λ′sc, pk

′
R,0, pk

′
R,1) as input and has access to signcryption oracles SC.Ssk′R,0(·, ·), SC.Ssk′R,1(·, ·)

and unsigncryption oracles SC.Dsk′R,0
(·), SC.Dsk′R,1

(·). B1 sets λsc := λ′sc, pkR,0 := pk′R,0, pkR,1 :=

pk′R,1. B1 runs A1 as a subroutine with input (λsc, pkR,0, pkR,1).

When A1 makes a query (m, pkR) to SC.SskR,c(·, ·) where c ∈ {0, 1}, B1 forwards (m, pkR) to
its own signcryption oracle SC.Ssk′R,c(·, ·) and returns the output to A1 as the reply. When A1

makes a query C to SC.DskR,c(·) where c ∈ {0, 1}, B1 forwards C to its own unsigncryption oracle
SC.Dsk′R,c

(·) and returns the output to A1 as the reply.

At some time, A1 submits (m∗, skS,0, skS,1). B1 sets sk′S,0 := skS,0 and sk′S,1 := skS,1, and
submits (m∗, sk′S,0, sk

′
S,1) to its own challenger, who returns a challenger signcryption ciphertext

C∗. B2 runs A2 as a subroutine by forwarding C∗, and simulates the oracles in the same way as B1
did.

Note that A2 never makes a unsigncryption query C∗ to SC.DskR,c(·) where c ∈ {0, 1}, thus B2
does not make a unsigncryption query C∗ to SC.Dsk′R,c

(·). Finally A2 outputs a bit d (in the case

A2 returns failure, we can safely assume that a random bit d is outputted). B2 outputs (d, d).

We show that the advantage of B is negligible. Indeed, we have
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AdvINDK-CCA
SC,B (k) =

∣∣Pr[(d, d′) = (b, b′)]− 1

4

∣∣
=

∣∣1
4
· (Pr[(0, 0)|(0, 0)] + Pr[(0, 1)|(0, 1)] + Pr[(1, 0)|(1, 0)] + Pr[(1, 1)|(1, 1)])− 1

4

∣∣
=

∣∣1
4
· (Pr[(0, 0)|(0, 0)] + Pr[(1, 1)|(1, 1)])− 1

4

∣∣
=

∣∣1
4
· (Pr[ExpANON-CCA,0

SC,A (k) = 0] + Pr[ExpANON-CCA,1
SC,A (k) = 1])− 1

4

∣∣
=

∣∣1
4
· (1− Pr[ExpANON-CCA,0

SC,A (k) = 1] + Pr[ExpANON-CCA,1
SC,A (k) = 1])− 1

4

∣∣
=

1

4
·
∣∣AdvANON-CCA

SC,A (k)
∣∣. 2

B Proof of Lemmas 1 and 2 (Separating SC-IND-CCA and SC-INDK-CCA)

Proof of Lemma 1: We prove this by giving a counterexample. Let SC′ = (Setup,KeyGen,
SignCrypt,UnSignCrypt,Verify) be an arbitrary signcryption scheme that is semantically secure
against chosen ciphertext attacks. We construct signcryption scheme SC from SC′ as follows.

– Setup(1k): Output λsc ← SC′.Setup(1k).

– KeyGen(λsc): Output (skU , pkU )← SC′.KeyGen(λsc).

– Signcrypt(m, skU , pkR): Let C ′ ← SC′.SignCrypt(m, skU , pkR). Output C = C ′||pkU .

– UnSignCrypt(skR, C): Parse C as C ′||pk′U . If (m, s, pkU ) ← SC′.SignCrypt(skR, C
′) and pkU =

pk′U , output (m, s, pkU ). Otherwise output ⊥.

– Verify(m, s, pkU ): Output SC′.Verify(m, s, pkU ).

Since public keys can readily be extracted from signcryption ciphertext C, the obtained scheme
SC does not satisfy ciphertext anonymity. However, we show that SC is semantically secure against
chosen ciphertext attacks.

Suppose an adversary A = (A1,A2) breaks the indistinguishability against chosen ciphertext
attacks of SC with non-negligible advantage. We show how to construct an algorithm B = (B1,B2)
that breaks the indistinguishability against chosen ciphertext attacks of SC′ with non-negligible
advantage. Recall that B1 gets (λsc, pkR) as input and has access to signcryption oracle SC.SskR(·, ·)
and unsigncryption oracle SC.DskR(·). B1 runs A1 as a subroutine by forwarding (λsc, pkR).

When A1 makes a signcryption query on (m, pkU ), B1 submits (m, pkU ) to its own signcryption
oracle SC.SskR(·, ·), who returns a reply denoted as C ′. B1 forwards C ′||pkR to A1. When A1 makes a
unsigncryption query on C, B1 parses C as C ′||pk′U and submits C ′ to its own unsigncryption oracle
SC.DskR(·). If the output is (m, s, pkU ) and pkU = pk′U , B1 forwards (m, s, pkU ) to A1. Otherwise,
B1 forwards ⊥ to A1.

At some time, A1 submits (m0,m1, skS). B1 submits (m0,m1, skS) to its own challenger, who
returns a challenge signcryption ciphertext C∗ = C̃||pkS where pkS is the corresponding public key
of skS . B2 runs A2 as a subroutine by forwarding C̃, and simulates the oracles in the same way as
B1 did, with the exception that B2 always returns ⊥ to A2 when a unsigncryption query is made
on C ′ where C ′ is of the form C̃||pkU .

Note that A is not allowed to ask a decryption query on the challenge ciphertext C∗ = C̃||pkS .
In the real attack environment for A2, when C̃||pkU where pkU 6= pkS is query, ⊥ will also be
returned as ⊥, due to the fact that SC′.UnSignCrypt(skR, C̃) always outputs a tuple (mb, s, pkS)
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where b ∈ {0, 1} and pkS is the target sender’s public key. The simulation is perfect. Finally A2

outputs a bit d. B2 outputs d.

We show that the advantage of B is non-negligible.

AdvIND-CCA
SC,B (k) =

∣∣Pr[ExpIND-CCA,0
SC,B (k) = 1]− Pr[ExpIND-CCA,1

E,B (k) = 1]
∣∣

=
∣∣Pr[ExpIND-CCA,0

SC′,A (k) = 1]− Pr[ExpIND-CCA,1
SC′,A (k) = 1]

∣∣
= AdvIND-CCA

SC′,A (k).

Since AdvINVK-CCA
SC,A (k) is non-negligible, so does AdvINV-CCAE,B (k).

Since there exist signcryption schemes that are semantically secure against chosen ciphertext
attacks, the scheme SC served as an an counterexample described above exists. 2

Before proving Lemma 2, we first review some notions that will be used in the proof.

(Strong One-Time Signature): A one-time signature scheme is a signature scheme with the
limitation that each key pair is used only once for signature generation. A one-time signature scheme
OTS = (Setup,KGen, Sig,Ver) is said to be strongly one-time unforgeable if no PPT adversary A
wins the following game against the challenger C with non-negligible probability.

1. C generates the public parameter λOTS ← OTS(1κ), produces a one-time signature key pair
(otsk, otvk) and forwards otvk to A.

2. A may select one message m of any length, and request for a signature on it. C runs the signing
algorithm Sigotsk(m)→ σ and returns σ to A.

3. A outputs a message signature forgery (m∗, σ∗), and wins the game if

– Verotvk(m
∗, σ∗) = >,

– (m∗, σ∗) 6= (m,σ) (if A has ever made a signature query).

(Collision-Resistant Hash Functions): A hash function H is collision-resistant if it is compu-
tationally hard to find two inputs that hash to the same output; that is, two inputs a and b such
that H(a) = H(b), and a 6= b.

(bilinear pairing): Let G, GT be two cyclic groups such that |G| = |GT | = p. We say that e is a
bilinear map if e : G×G→ GT possesses the following properties.

– For all elements of g, h ∈ G, x, y ∈ ZZp, it holds that e(gx, hy) = e(g, h)xy.

– There exists g, h ∈ G such that e(g, h) is not the identity element of GT .

– There is an efficient algorithm to compute e(g, h) for any g, h ∈ G.

(Decisional Bilinear Diffie-Hellman Assumption): The DBDH assumption states that, for
a given generator g ∈ G, randomly and independently chosen x, y, z ∈ ZZp and T ∈ GT , no PPT
adversary A has non-negligible advantage in distinguishing e(g, g)xyz from T . That is, there exists
a negligible ε such that

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, T ) = 1]| ≤ ε.

Proof of Lemma 2: We prove Lemma 2 by giving an counterexample. Let S = (Setup,KGen, Sig,Ver)
be a signature scheme that is existentially unforgeable under adaptive chosen message attacks,
OTS = (Setup,KGen, Sig,Ver) be a strong one-time signature scheme, e : G×G→ GT be a bilinear
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pairing with g, h being two generators of G, and H : {0, 1}∗ → ZZp be a collision-resistant hash
function. We construct a signcryption scheme SC = (Setup,KeyGen, SignCrypt,UnSignCrypt,Verify)
that satisfies ciphertext anonymity as follows.

– Setup(1k): On input a security parameter k, this algorithm runs λS ← S.Setup(1k) and λOTS ←
E .Setup(1k), respectively. The public parameters are set as λsc := (λS , λOTS, e, g, h,X,H) where
X = gx and x is randomly chosen from ZZp.

– KeyGen(λsc): The user Ui runs S.KGen(λS) → (ski, vki), and randomly chooses yi ∈ ZZp. The
secret and public key pair is set as (skUi , pkUi) := ((ski, dkj), (vki, ekj)) where (dkj , ekj) =
(Xyj , gyj ).

– SignCrypt(m, skUi , pkUj ): To signcrypt a message m for the receiver Uj , Ui

1. produces a signature σ on m||pkUj , i.e., σ ← S.Sigski(m||pkUj ).
2. runs OTS.KGen(λOTS)→ (otsk, otvk), and sets c0 := otvk.
3. Denote F(u) = Xuh for u ∈ ZZp. Ui decomposes pkUj as (vkj , ekj), randomly chooses z ∈ ZZp,

and sets
c1 := (C0, C1, C2) = (gz, F(H(otvk))z, e(X, ekj)

z ·m||σ||pkUi).

Here we implicitly assume an encoding is employed to encode m||σ||pkUi as an element of
group GT .

4. Ui runs OTS.Sigotsk(C0||C1||C2||m)→ c2.
5. The signcryption ciphertext is set as C := (c0, c1, c2,m).

– UnSignCrypt(skUj , C): On receiving a signcryption ciphertext C = (c0, c1, c2,m) where c0 = otvk
and c1 = (C0, C1, C2), the receiver Uj
1. verifies whether OTS.Verotvk(C0||C1||C2||m, c2) = >. If not, Uj continues, and otherwise ⊥

is returned.
2. randomly chooses r ∈ ZZp and computes

(D0, D1) := (dkj · F(H(otvk))r, gr).

3. computes C2 · e(C1, D1)/e(C0, D0) = M .
4. decomposes M as m′||σ||pkUi , and parses pkUi as (vki, eki).
5. outputs (m, (pkUj , σ), pkUi) if m′ = m and S.Vervki(m||pkUj , σ) = >. Otherwise, ⊥ is re-

turned.
– Verify(m, (pkUj , σ), pkUi): Parse pkUi as (vki, eki). Outputs S.Vervki(m||pkUj , σ).

Due to the correctness of a signature scheme and that of a one-time signature scheme and that

C2
e(C1, D1)

e(C0, D0)
=
C2 · e(F(H(otvk))z, gr)

e(gz, gxyjF(H(otvk))r)
=

C2 · e(F(H(otvk)), g)rz

e(g, g)xyjze(F(H(otvk)), g)rz
=

C2

e(X, ekj)z
,

it is easy to verify that the correctness of the proposed signcryption scheme holds.
Next we show that the proposed signcryption scheme satisfies ciphertext anonymity. We shall

use anonymity instead of ciphertext anonymity in our analysis, as these two are equivalent by
Theorem 1.

Suppose an adversary A = (A1,A2) breaks the ciphertext anonymity of SC with non-negligible
advantage. We show how to construct an algorithm B = (B1,B2) that breaks the DBDH assumption.
Recall that B1 gets (e, g, g1 = gx, g2 = gy, g3 = gz, T ) as input where e is a bilinear pairing and T
is either a random element in group GT or e(g, g)xyz.
B1 runs λS ← S.Setup(1k), λOTS ← OTS.Setup(1k), S.KGen(λS) → (sk0, vk0), S.KGen(λS) →

(sk1, vk1) and OTS.KGen(λOTS)→ (otsk∗, otvk∗) respectively. B1 randomly chooses v, a ∈ ZZp and
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a collision-resistant hash function H, and sets u∗ := H(otvk∗), X := g1, h := X−u
∗
gv, ek0 :=

g2, ek1 := g2g
a, pkR,0 := (vk0, ek0), pkR,1 := (vk1, ek1).

B1 further sets λsc := (λS , λOTS, e, g, h,X,H), and runs A1 as a subroutine by forwarding
(λsc, pkR,0, pkR,1).

When A1 makes a signcryption query on (m, pkU ) to its signcryption oracle SC.SskR,c(·, ·) where
c ∈ {0, 1}, B1 runs SignCrypt(m, skR,c, pkU ) → C and forwards C to A1 as the reply. The reason
that B1 can do so is that only the signature signing key is used in the generation of a signcryption
ciphertext.

When A1 makes a unsigncryption query C = (c0, c1, c2,m) to SC.DskR,c(·) where c0 = otvk 6=
otvk∗, c1 = (C0, C1, C2) and c ∈ {0, 1}, B1

– verifies whether OTS.Verotvk(C0||C1||C2||m, c2) = >. If not, Uj continues, and otherwise ⊥ is
returned.

– sets u = H(otvk) and ∆ = u − u∗. Note that ∆ ∈ ZZ∗p when otvk 6= otvk∗ due to the collision
resistant property of H.

– randomly selects t ∈ ZZp and computes

D0 := (g2(g
a)c)−

v
∆F(u)t, D1 := (g2(g

a)c)−
1
∆ gt.

– computes C2 · e(C1, D1)/e(C0, D0) = M .
– decomposes M as m′||σ||pkUi , and parses pkUi as (vki, eki).
– outputs (m, (pkR,c, σ), pkUi) if m′ = m and S.Vervki(m||pkR,c, σ) = >. Otherwise, ⊥ is returned.

Denote r = −y+ac
∆ + t. Note that F(u) = Xuh = gx(u−u

∗)+v = gx∆+v. Then it is clear that

D0 = (g2(g
a)c)−

v
∆F(u)t = Xy+acg−

y+ac
∆

(x∆+v)F(u)t = Xy+abF(u)−
y+ab
∆ F(u)t = Xy+acF(u)r,

D1 = g−
y+ac
∆

+t = gr.

This matches what a real challenger would do in answering the unsigncryption queires.

In the challenge phase, A1 submits (m∗, skS,0, skS,1). B2

– parses skS,0 and skS,1 as (sk′0, dk
′
0) and (sk′1, dk

′
1) respectively.

– randomly chooses a bit b ∈ {0, 1} and produces a signature σ∗ on m∗||pkR,b using the signing
key sk′b, i.e., σ∗ ← S.Sigsk′b(m

∗||pkR,b).
– computes c∗1 = (C∗0 , C

∗
1 , C

∗
2 ) = (g3, g

v
3 , T · e(g1, g3)ab ·m∗||σ∗||pkS,b) where pkS,b is the corre-

sponding public key of skS,b.
– sets c∗0 = otvk∗ and runs OTS.Sigotsk∗(C

∗
0 ||C∗1 ||C∗2 ||m∗)→ c2.

– The challenge signcryption ciphertext is set as C∗ := (c∗0, c
∗
1, c
∗
2,m

∗).

Note that if T is a random element in group GT , then C∗ is independent of b in the adversary
A’s view. Whereas if T = e(g, g)xyz, then C∗1 = gv3 = gzv = gz(x·0+v) = F(H(otvk∗))z and C∗3 =
T · e(X, g3)ab ·M∗ = e(g, g)x(y+ab)z ·M∗ = e(X, ekb)

z ·M∗ where M∗ := m∗||σ∗||pkS,b are correctly
generated, and C∗ is a valid challenge signcryption ciphertext that a real challenger may output.
B2 then simulates the signcryption and unsigncryption oracles in the same way as B1 did. We

argue that A2 is not able to ask a unsigncryption query on C = (c0, c1, c2,m) where c0 = otvk∗

and c1 = (C0, C1, C2).
Remember that A is not allowed to ask a decryption query on the challenge ciphertext C∗. When

an unsigncryption query on C 6= C∗ with c0 = c∗0 = otvk∗ is made, it means that (C1||C2||C3||m, c2) 6=
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(C∗1 ||C∗2 ||C∗3 ||m∗, c∗2). The probability that this case happens is negligible, guaranteed by the strong
one-time unforgeability of OTS.

Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game by outputting a
guess as follows. If b = b′ then B output 1 meaning T = e(g, g)xyz. Otherwise, it outputs 0 meaning
T is a random element in group GT .

When T = e(g, g)xyz, then A’s view is indistinguishable to its view in a real attack game. On
the other hand, when T is random, Pr[b′ = b] = 1/2. Thus we have

∣∣Pr[B(g, gx, gy, gz, e(g, g)xyz) = 1]− Pr[B(g, ga, gb, gc, T ) = 1]
∣∣

=
∣∣1
2
· (Pr[ExpANON-CCA,0

SC,A (k) = 0] + Pr[ExpANON-CCA,1
SC,A (k) = 1])− 1

2
· (1

2
+

1

2
)
∣∣

=
∣∣1
2
· (Pr[ExpANON-CCA,0

SC,A (k) = 1]− Pr[ExpANON-CCA,1
SC,A (k) = 1])

∣∣
=

1

2
· AdvINVK-CCASC,A (k).

Therefore, we can safely arrive to the conclusion that the proposed scheme SC satisfies ciphertext
anonymity under the DBDH assumpiton. However, since the message can readily be extracted from
a signcryption ciphertext C, SC is not semantically secure against chosen ciphertext attacks. This
completes the proof. 2

C Proof of Theorem 2

Suppose an adversary A = (A1,A2) breaks anonymity with non-negligible advantage. We show how
to construct an algorithm B = (B1,B2) that breaks key invisibility with non-negligible advantage.
Recall that B1 gets (λsc, pkR) as input and has access to signcryption oracle SC.SskR(·, ·) and
unsigncryption oracle SC.DskR(·). B1 firstly generates randomly (sk′R, pk

′
R)← SC.KeyGen(λsc), flips

a coin b̃ ∈ {0, 1} and sets pkR,b̃ := pkR, pkR,1−b̃ := pk′R. B1 runs A1 as a subroutine by forwarding
(λsc, pkR,0, pkR,1).

When A1 makes a query (m, pkU ) to SC.SskR,c(·, ·) where c ∈ {0, 1}, if skR,c = sk′R, B1 runs
SC.SignCrypt (m, sk′R, pkU ) and forwards the output to A1 as the reply. Otherwise, B1 forwards
(m, pkU ) to its own signcryption oracle SC.SskR(·, ·) and returns the output to A1 as the reply.
When A1 makes a query C to SC.DskR,c(·) where c ∈ {0, 1}, if skR,c = sk′R, B1 runs SC.UnSignCrypt
(sk′R, C) and forwards the output to A1 as the reply. Otherwise, B1 submits C to its own unsign-
cryption oracle SC.DskR(·) and returns the output of its own oracle to A1 as the reply.

At some time, A1 submits (m∗, skS,0, skS,1). B1 sets skS := skS,b̃ and submits (m∗, skS) to its
own challenger, who returns a challenge signcryption ciphertext C∗. B2 runs A2 as a subroutine by
forwarding C∗, and simulates the oracles in the same way as B1 did.

Note that A2 never makes a unsigncryption query C∗ to SC.DskR,c(·) where c ∈ {0, 1}, thus B2
does not make a unsigncryption query C∗ to SC.DskR(·). Finally A2 outputs a bit d (in the case
A2 returns failure, we can safely assume that a random bit d is returned). B2 outputs d if b̃ = 0;
otherwise it outputs 1− d.

Let Exp∗SC,A(k) be the experiment that is the same as ExpANON-CCA,b
SC,A (k) where b ∈ {0, 1} with

the exception that the challenge signcryption ciphertext C∗ is randomly and uniformly chosen from
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the signcryption ciphertext space C. We show that the advantage of B is non-negligible.

AdvINVK-CCA
SC,B (k) =

∣∣Pr[ExpINVK-CCA,0
SC,B (k) = 1]− Pr[ExpINVK-CCA,1

SC,B (k) = 1]
∣∣

=
∣∣Pr[ExpINVK-CCA,0

SC,B (k) = 1|b̃ = 0] Pr[b̃ = 0] + Pr[ExpINVK-CCA,0
SC,B (k) = 1|b̃ = 1] Pr[b̃ = 1]

− Pr[ExpINVK-CCA,1
SC,B (k) = 1|b̃ = 0] Pr[b̃ = 0]− Pr[ExpINVK-CCA,1

SC,B (k) = 1|b̃ = 1] Pr[b̃ = 1]
∣∣

=
∣∣1
2
· Pr[ExpANON-CCA,0

SC,A (k) = 1] +
1

2
· Pr[ExpANON-CCA,1

SC,A (k) = 0]

− 1

2
· Pr[Exp∗SC,A(k) = 1]− 1

2
· Pr[Exp∗SC,A(k) = 0]

∣∣
=

∣∣1
2
· Pr[ExpANON-CCA,0

SC,A (k) = 1] +
1

2
· (1− Pr[ExpANON-CCA,1

SC,A (k) = 1])

− 1

2
· (Pr[Exp∗SC,A(k) = 1] + Pr[Exp∗SC,A(k) = 0])

∣∣
=

∣∣1
2
· (Pr[ExpANON-CCA,0

SC,A (k) = 1]− Pr[ExpANON-CCA,1
SC,A (k) = 1])

∣∣ (4)

=
1

2
· AdvANON-CCA

SC,A (k).

Equation (4) follows from the fact that A outputs either 0 or 1 and thus Pr[Exp∗SC,A(k) =

1] + Pr[Exp∗SC,A(k) = 0] = 1. Since AdvANON-CCA
SC,A (k) is non-negligible, so does AdvINVK-CCASC,B (k). This

completes the proof. 2

D Proof of Theorem 3

Suppose an adversary A = (A1,A2) breaks indistinguishability against chosen ciphertext attacks
with non-negligible advantage. We show how to construct an algorithm B = (B1,B2) that breaks
key invisibility with non-negligible advantage. Recall that A1 gets (λsc, pkR) as input and has access
to signcryption oracle SC.SskR(·, ·) and unsigncryption oracle SC.DskR(·).
B1 gets (λ′sc, pk

′
R) as input and has access to signcryption oracle SC.Ssk′R(·, ·) and unsigncryption

oracle SC.Dsk′R
(·). B1 sets λsc := λ′sc, pkR := pk′R and runs A1 as a subroutine with input (λsc, pkR).

When A1 makes a signcryption query (m, pkU ) to SC.SskR(·, ·), B1 forwards (m, pkU ) to its
own signcryption oracle SC.Ssk′R(·, ·) and returns the output to A1 as the reply. When A1 makes a
unsigncryption query C to SC.DskR(·), B1 submits C to its own unsigncryption oracle SC.Dsk′R

(·)
and returns the output to A1 as the reply.

At some time, A1 submits (m0,m1, skS). B1 flips a coin b̃ ∈ {0, 1}, and submits (mb̃, skS) to its
own challenger, who returns a challenge signcryption ciphertext C∗. B2 runs A2 as a subroutine by
forwarding C∗, and simulates the oracles in the same way as B1 did.

Note that A2 never makes a unsigncryption query C∗ to SC.DskR(·), thus B2 does not make a
unsigncryption query C∗ to SC.Dsk′R

(·). Finally A2 outputs a bit d (in the case A2 returns failure,

we can safely assume that a random bit d is returned). B2 outputs d if b̃ = 0; otherwise it outputs
1− d.

Let Exp∗SC,A(k) be the experiment that is the same as ExpIND-CCA,b
SC,A (k) where b ∈ {0, 1} with the

exception that the challenge signcryption ciphertext C∗ is randomly and uniformly chosen from
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the signcryption ciphertext space C. We show that the advantage of B is non-negligible.

AdvINVK-CCA
SC,B (k) =

∣∣Pr[ExpINVK-CCA,0
SC,B (k) = 1]− Pr[ExpINVK-CCA,1

SC,B (k) = 1]
∣∣

=
∣∣Pr[ExpINVK-CCA,0

SC,B (k) = 1|b̃ = 0] Pr[b̃ = 0] + Pr[ExpINVK-CCA,0
SC,B (k) = 1|b̃ = 1] Pr[b̃ = 1]

− Pr[ExpINVK-CCA,1
SC,B (k) = 1|b̃ = 0] Pr[b̃ = 0]− Pr[ExpINVK-CCA,1

SC,B (k) = 1|b̃ = 1] Pr[b̃ = 1]
∣∣

=
∣∣1
2
· Pr[ExpIND-CCA,0

SC,A (k) = 1] +
1

2
· Pr[ExpIND-CCA,1

SC,A (k) = 0]

− 1

2
· Pr[Exp∗SC,A(k) = 1]− 1

2
· Pr[Exp∗SC,A(k) = 0]

∣∣
=

∣∣1
2
· Pr[ExpIND-CCA,0

SC,A (k) = 1] +
1

2
· (1− Pr[ExpIND-CCA,1

SC,A (k) = 1])

− 1

2
· (Pr[Exp∗SC,A(k) = 1] + Pr[Exp∗SC,A(k) = 0])

∣∣
=

∣∣1
2
· (Pr[ExpIND-CCA,0

SC,A (k) = 1]− Pr[ExpIND-CCA,1
SC,A (k) = 1])

∣∣ (5)

=
1

2
· AdvIND-CCA

SC,A (k).

Equation (5) follows from the fact that A outputs either 0 or 1 and thus Pr[Exp∗SC,A(k) = 1] +

Pr[Exp∗SC,A(k) = 0] = 1. Since AdvIND-CCA
SC,A (k) is non-negligible, so does AdvINVK-CCASC,B (k). The proof

is done. 2


