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Abstract—Second (GSM), third (UMTS), and fourth-
generation (LTE) mobile telephony protocols are all in active use,
giving rise to a number of interoperation situations. Although the
standards address roaming by specifying switching and mapping
of established security context, there is not a comprehensive
specification of which are the possible interoperation cases.
Nor is there comprehensive specification of the procedures to
establish security context (authentication and short-term keys) in
the various interoperation scenarios. This paper systematically
enumerates the cases, classifying them as allowed, disallowed,
or uncertain with rationale based on detailed analysis of the
specifications. We identify the authentication and key agreement
procedure for each of the possible cases. We formally model these
scenarios and analyze their security, in the symbolic model, using
the tool ProVerif. We find two scenarios that inherit a known false
base station attack. We find an attack on the CMC message of
another scenario.

I. INTRODUCTION

Mobile telephony has become an integral part of our daily
activities, in part due to the tremendous success and market
penetration of smartphones and tablets. In many locations
around the world, mobile communication is already facilitated
through the fourth generation (4G) technology called Long
Term Evolution (LTE)—which evolved from the third genera-
tion (3G) technology, Universal Mobile Telecommunications
System (UMTS). Along with the opportunities created by
technology evolution there are challenges. One challenge is
the interoperation of different generations of technologies, i.e.,
communication involving mixed network components. Past
experience has shown that such interoperation may introduce
unexpected security vulnerabilities [[1], [2]].

The specifications promulgated by the 3GPP organization
for UMTS [3] and LTE [4] do address interoperation between
the different generations of technologies. The specification
for UMTS systematically studies all possible combinations
of interoperation between UMTS and second generation (2G)
GSM. The LTE specification details the mechanisms for secu-
rity context switching and mapping to facilitate interoperation
between LTE, UMTS, and GSM. However, this applies to
maintaining context during handover and idle mode mobility.
To the best of our knowledge, the specification for LTE does
not explicitly address establishing of an initial security context
for interoperation. In particular, to date there is no comprehen-
sive enumeration of all interoperation cases and their respective
procedures for authentication and key agreement (AKA). In
this paper we close this gap.

The first contribution of this paper is to systematically
enumerate of all possible interoperation cases between LTE,
UMTS, and GSM. We classify these cases as allowed, dis-
allowed, or uncertain, with explicit rationale making detailed

reference to the specifications. Of the 243 cases identified,
19 cases involve GSM and UMTS technologies only, and as
such are fully treated by the UMTS specification [3]. For
cases involving LTE components, 138 cases are clearly ruled
out somewhere in the specification and 38 cases are clearly
allowed. For the remaining 48 cases the specifications and
documentation based on the specifications do not provide a
clear indication whether these cases are allowed.

on what we call the AKA scenarios]'|i.e., the specific protocol
steps for authentication and key agreement, in each allowed or
uncertain case. For each uncertain case we identify conditions
under which the case could occur. For all of the 19+38+48
cases we identify the corresponding AKA scenario. It turns
out that there are only 10 distinct AKA scenarios, including
the pure GSM, pure UMTS, and pure LTE scenarios which
apply in some interoperation cases. Although the GSM/UMTS
scenarios are described in the specifications, that is not the
case for 86 roaming cases involving LTE. For three of those
scenarios we identify two variations which are both consistent
with the specifications and which have different authenticity
properties.

As a second contribution of thihpaper, we provide details

As a third contribution, we provide formal models for all
10 of the AKA scenarios, including variations, in the symbolic
(Dolev-Yao) model of cryptography and using the ProVerif tool
[S]. We provide a security analysis based on these models.
The models are composed in a modular fashion from the
basic protocol models for GSM, UMTS, and LTE. This will
facilitate adding or modifying scenarios, in case of changes to
the specifications or the conditions for the uncertain cases to
occur.

Our security analysis addresses authentication properties
and secrecy. We show that two of the LTE interoperation
scenarios inherit an attack, known from GSM and the interop-
eration between UMTS and GSM [6]], in which a false base
station can eavesdrop and modify data traffic. We show how
the attack can be prevented in one scenario. We also show that
one scenario is prone to an attack against the Cipher Mode
Command (CMC) message.

Outline: Sect. [lI] surveys related work and Sect. [ is
an overview of the GSM, UMTS, and LTE AKA protocols.
Sect. presents the first of our main contributions, the
systematic enumeration of possible cases and classification
of what is (dis)allowed or uncertain according to the 3GPP.
Sect. E presents our second contribution, the AKA scenarios
for each allowed or uncertain case, justified with reference to

! In some standards, AKA has more specific meaning and varying termi-
nology is used, e.g., depending on whether authentication is mutual.



the specifications. Sect. [V describes our ProVerif models for
GSM, UMTS, and LTE, and the specifications of desired se-
curity properties. Sect. presents our third contribution, the
ProVerif models for AKA scenarios involving interoperation
between technologies, and analysis results for those models.

For reasons of space, we cannot present the complete
classification of cases, scenarios, and analysis results; instead
we present excerpts and highlights. A long version online
includes full details [7].

II. RELATED WORK

Several attacks have been found against the GSM encryp-
tion algorithms [8]], [9], [10], [11], [12]. Ahmadian et al. [13]
show attacks which exploit weakness of one GSM cipher
to eavesdrop or impersonate a UMTS subscriber in a mixed
network. In this paper we focus on protocol flaws rather than
cryptographic weaknesses.

Fox [14] finds the false base station attack on the GSM
AKA due to the lack of authentication of the network. Meyer
and Wetzel [1], [2], [[15] show that a man-in-the-middle attack
can be performed on one of the cases of interoperation between
GSM and UMTS. In prior work [16], we use the ProVerif (PV)
tool to analyze GSM, UMTS, and roaming cases between GSM
and UMTS. The false base station attack [14] and the man-in-
the-middle attack [1] were confirmed by the PV models.

PV is an automatic protocol verifier that can verify authen-
tication, secrecy, and other properties, in the symbolic (Dolev-
Yao) model, considering an unbounded number of sessions
and unbounded message space. Quite a few protocols have
been analyzed using PV. For example, Chang and Shmatikov
[L7] use PV to analyze the Bluetooth device pairing protocols;
they rediscover an offline guessing attack [18]] as well as a
new attack. Blanchet and Chaudhuri [19] find an integrity
attack against a file sharing protocol. Chen and Ryan analyze
TPM authorization [20]. Kremer and Ryan use PV to verify
an electronic voting protocol [21]]. Arapinis et al. [22]] find two
attacks against anonymity in UMTS, using PV.

Han and Choi [23]] demonstrate a threat against the LTE
handover key management, involving a compromised base
station. This is concerned with maintaining security context,
whereas our work addresses establishing such context. Tsay
and Mjglsnes [24] find an attack on the UMTS and LTE AKA
protocols using CryptoVerif, an automated protocol analyzer
based on a computational model. In fact the attack lives at
the symbolic level. It depends on insecurity of the connection
between the serving network and the home network. In our
work we assume the connection between serving network and
home network is secure. (Although the standard specifies the
protocols, their implementations are operator-specific.)

Lee et al. [25] analyze the anonymity property of the
UMTS and LTE AKA and connection establishment protocols
using formal security (computational) models. The assumption
in this work is that the attacker is not capable of imperson-
ating any network devices and the underlying cryptographic
system is perfect. They manually prove the protocols meet the
anonymity requirement, under these assumptions.

Mobarhan et al. [26] evaluate the publically known attacks
on GSM and UMTS (and the related technology GPRS),

categorizing them in terms of secrecy, integrity, or authenticity
properties. Possible security improvements are also discussed.

III. OVERVIEW OF GSM, UMTS, AND LTE SECURITY
MECHANISMS

In GSM, UMTS, and LTE, the network architecture in-
cludes three main elements: the Mobile Station (MS), the
Serving Network (SN), and the Home Network (HN).

The MS is the combination of the Mobile Equipment (ME)
and an identity module. The ME is the user device that
contains the radio functionality and the encryption/integrity
mechanisms used to protect the traffic between the MS and the
network. A 4G ME also includes the functionality to derive an
LTE master secret key Kqsye. In GSM, the identity module of
the Subscriber Identity Module (SIM) contains the unique In-
ternational Mobile Subscriber Identity (IMS]), the subscriber’s
permanent secret key Ki, as well as the mechanisms used
for GSM AKA and GSM session key derivation. The UMTS
identity module (USIM) includes the IMSI, Ki, and the UMTS
AKA and session key derivation functionality. It furthermore
may contain the SIM functionality, i.e., the GSM AKA and
key derivation functionality. In contrast to a 3G USIM, an
LTE USIM (also refered to as enhanced USIM) provides for
additional functionality including enhanced capability for the
storing of a security context.

The SN typically consists of the Base Station (BS) and ei-
ther the Visitor Location Register/Serving GPRS Support Node
(VLR/SGSN) in GSM and UMTS, or the Mobile Management
Entity (MME) in LTE. The BS is the network access point
which manages the radio resources and establishes the connec-
tion to the MS. In GSM, the BS includes the Base Transceiver
Station (BTS) which connects to the Base Station Controller
(BSC). In GSM, encryption terminates at the BTS or at the
SGSN in GPRS. In UMTS, the BS includes the NodeB which
connects to the Radio Network Controller (RNC). Encryption
and integrity protection in UMTS terminates in the RNC. In
LTE, BS is the evolved NodeB (eNodeB). LTE distinguishes
the protection of the connection between the MS and the
eNodeB—the so-called Access Stratum (AS) and the connec-
tion between the MS and MME—the so-called Non-Access
Stratum (NAS). In LTE, the MME is the end-point for the
NAS and the respective protection mechanisms.

The HN includes the Home Location Register (HLR) and
the Authentication Center (AuC) in GSM and UMTS, respec-
tively the Home Subscriber Server (HSS) in LTE. The HN
stores all subscriber data including the IMSI and permanent
shared secret key Ki. It furthermore, holds its (own) algorithms
for deriving session keys as well as generating authentication
vectors. A 4G HN also includes the functionality for deriving
an LTE master secret key Kasyk-

Overview of GSM Security Mechanisms. Fig. [I] shows
the GSM AKA procedure. The goal of the GSM AKA is to
authenticate the MS and to establish an encryption key that
can then be used to protect the user data exchange between
the MS and BS. The GSM AKA procedure can be triggered
by the initial network attach request [27], the Routing Area
Update (RAU) request [28], or the service request [29]. The
service request happens after a dedicated channel has been
established between the MS and the SN [29], which means
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that the attach request must have been executed previously.
The identity and CAPabilities (CAP) in the attach request or
the RAU request are used in the AKA procedure. Therefore,
in GSM 1, the MS sends the identity and the CAP to the SN.
In GSM block II, the SN obtains authentication vectors from
the HN. In GSM III a typical challenge-response procedure is
carried out to authenticate the MS to SN. Then, in GSM 1V,
the VLR/SGSN provides the BS with the session key Kc. BS
selects the encryption algorithm based on MS’s capabilities
and informs MS.

GSM is prone to a false base station attack [14] as the
GSM AKA only authenticates the MS to the SN. Since a false
BS can intercept and modify the sending of MS’s capabilities,
a false BS may force the use of no encryption thus enabling the
false BS to control all traffic between the MS and the network.

Overview of UMTS Security Mechanisms. Similar to
GSM, the UMTS AKA procedure can be triggered by the
attach request or the RAU request. In UMTS I, the same
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messages are transmitted as in GSM I. In comparison to
GSM, UMTS includes mechanisms for integrity protection.
Specifically, as part of block UMTS II (see Fig. [2), the HN
derives session keys for both encryption and integrity protec-
tion based on MS’s long-term secret key Ki. Like in GSM, MS
authenticates to the VLR/SGSN through a challenge-response
protocol using the authentication vector that the VLR/SGSN
obtained from HN. The authentication of the network to MS
is achieved indirectly, as the BS integrity protects the sending
of CAP which it can only do if it has received key /K from
HN via VLR/SGSN. This prevents a false base station attack.

Overview of LTE Security Mechanisms. The LTE AKA
(Fig. 3) is built on the UMTS AKA. In contrast to UMTS
security, LTE introduces an enhanced key derivation hierarchy
that allows the distinguishing of protection mechanisms on
NAS and AS. Furthermore, inclusion of the id of SN as part of
the key derivation enables the MS to indirectly authenticate the
MME (through the successful use of derived keys). In addition,
LTE defines a comprehensive security context framework,
including native vs. mapped security contexts, full vs. partial
security contexts, and current vs. non-current contexts [4].
A security context typically consists of a set of security
parameters including cryptography keys and identifiers for
respective cryptographic mechanisms.



The LTE AKA can be triggered by the initial network
attach request, the Tracking Area Update (TAU) request or
the service request [28]. When a NAS signalling connection
exists, the network can initiate an authentication procedure at
any time [28]]. Before the service request or the NAS signalling
connection establishing, the attach request must have already
been executed [28]]. Therefore, the first block of the LTE AKA
can contain an attach request or a TAU request. If the AKA
starts with an attach request, the first block (LTE I) contains
the transmission of the identity and the security capabilities of
the MS. If the AKA starts with a TAU request, in the first block
(LTE I’), an additional nonce NONCE,,s is sent to the MME.
The nonce in the TAU request is only used when mapping
an UMTS to an EPS security context. However, since the MS
does not know when the mapping will happen, the nonce is
always included in the TAU request message[|[30]]. In LTE, the
master key Kasyg is derived and provided to MME together
with the respective authentication vector. Unlike in GSM and
UMTS, the id of the SN is an input to the key derivation,
i.e., the derived key is bound to a specific MME. In block
LTE IV, MME derives the keys which are used to protect NAS,
while in LTE V the BS derives the keys to protect AS as well
as user data. The MS does the corresponding key derivations
in LTE IV and LTE V. Furthermore, the proper use of keys
derived from Kaspyg indirectly authenticates the MME to MS.
Given that LTE distinguishes between the protection of NAS
and AS, MME selects the respective algorithms to protect NAS
(based on MS’s capabilities) and announces the choice to MS
in LTE IV as part of the NAS Security Mode Command (SMC).
Similarly, BS announces its choice of algorithms in LTE V as
part of the AS SMC.

IV. ESTABLISHING A NATIVE SECURITY CONTEXT IN
INTEROPERATION

As mentioned previously, LTE introduces a comprehensive
framework for handling security contexts [4]]. In particular,
this includes the mapping of security contexts in the case of
interoperation of LTE with GSM or UMTS. The specification
defines the use of existing native or mapped security contexts
and recommends the performing of an AKA procedure once a
mapped security context is used. However, to the best of our
knowledge, the specification to date does not include details on
what this AKA is to entail in case of interoperation of LTE,
UMTS, and GSM, i.e., if the network components are from
different generations of technologies.

In the following, we systematically enumerate all possible
interoperation cases and classify them as allowed, disallowed,
or uncertain based on various information in the 3GPP specifi-
cations for GSM, UMTS, and LTE. In Sect.[V]we then focus on
the allowed and uncertain cases only determining the specific
AKA scenarios for each one of these cases.

Enumeration of Interoperation Cases. As discussed in
Sect. there are five main system components: the identity
module, the ME, the BS, the VLR/SGSN/MME and the HN.
Each one of those components can be 2G, 3G, or 4G—thus
resulting in 3° = 243 possible combinations. Table [I| shows
the details for five cases. In order to improve readability of

2In LTE AKA, the nonce is never used. So the first block is always LTE L.
LTE I’ will be used in one interoperation scenario (S8).

TABLE 1. EXCERPT OF CLASSIFYING THE 243 INTEROPERATION
CASES (THE FULL TABLE IS IN [7])

D Components Condition Reasons for
Identity ME | BS VLR/SGSN HN to support Disal-
Module /MME Occurrence lowance

1 4G 4G 4G

2 3G 4G 4G Al

3 4G 4G 2G 4G 4G Al

4 4G 3G 4G RS

the table, we have adopted a color/font scheme: Rows in
normal font with no color indicate cases which are explicitly
allowed based on the 3GPP specifications (e.g., the case with
ID 1). Green color and bold font indicates uncertain cases
(e.g., cases 2 and 3). Grey color and italic font indicates cases
which are ruled out by the specifications (e.g., case 4). The
cases involving only 2G/3G components are marked with blue
color and in bold italic font (e.g., case 122). There are 19 such
cases which are not further detailed in this paper as they have
been analyzed previously [6], [16]. For the disallowed and
uncertain cases the table includes the details for the reasoning
to determine the respective classification.

Allowed Interoperation Cases. For cases involving a mix
of 4G, 3G, and 2G network components, we have identified 38
cases which are explicitly allowed by the 3GPP specifications.

For the identity module, the SIM supports 2G AKA only
[6]. A USIM supports both 2G and 3G AKA [6]. Similarly, a
4G USIM supports 2G, 3G, and 4G AKA [30]. Since a large
number of USIMs is in current use, a 4G ME with the USIM is
allowed to access the 4G network. Since the 4G ME is capable
of deriving LTE keys and storing security contexts [31], the
combination of a 4G ME with a USIM supports 4G AKA.

For the ME, it is possible to use a SIM or a USIM with
a 2G ME [6]. Since the 4G USIM is an enhanced version of
the USIM, this implies that it is possible to also use a 4G
USIM with a 2G ME. Similarly, since a SIM or USIM can
be used with a 3G ME, [6]], it is also possible to use a 4G
USIM with a 3G ME. A 4G ME can be used with a SIM
[30] or USIM [4] and certainly with a 4G USIM. A 2G ME
only supports GERAN [6]. A 3G ME supports GERAN and
UTRAN [6], and a 4G ME supports GERAN, UTRAN, and
E-UTRAN [30].

For the BS, a 2G BS is only capable of handling a GSM
session key Kc [6], which means a 2G BS only supports a 2G
ciphering mode setting [29]. Similarly, a 3G BS requires the
UMTS cipher key CK and the UMTS integrity key /K [6]—
supporting only the 3G security mode set-up and operation [3]].
A 4G BS requires K yp and only supports the 4G AS security
mode command procedure and operation [4].

For the VLR/SGSN/MME, a 2G VLR/SGSN can only
control a 2G BS and only supports 2G AKA [6]. A 3G
VLR/SGSN can control both a 2G BS and a 3G BS and can
support both 2G and 3G AKA [6]. An MME can control a 4G
BS and can support the 4G AKA [4].

For the HN, a 2G HN can maintain 2G and 3G subscrip-
tions [6]. A 3G HN can maintain 2G and 3G subscriptions [6].
A 4G HN can maintain 3G and 4G subscriptions [4].



Disallowed Interoperation Cases. We found that the
3GPP specifications rule out 138 cases which include some
4G components. Table [I| refers to the following reasons for
disallowing various cases:

R1 Use of SIMs to access the 4G network is not allowed [4].

R2 A 2G ME cannot interoperate with a 3G or 4G BS [6].

R3 A 3G ME does not support the 4G radio access interface
(6.

R4 A 2G VLR/SGSN cannot control a 3G or 4G BS [6].

R5 A 3G VLR/SGSN cannot control a 4G BS [6].

R6 An MME refuses to convert a GSM security context
to 4G security context. Consequently, this rules out all
interoperation cases which would require the deriving of
the master key Kqsyr from the GSM cipher key K, [4].

R7 A 3G ME with USIM attaching to a 3G BS shall only
participate in 3G AKA and shall not participate in 2G
AKA [3]. This rules out the case in which a USIM
subscribed to a 2G HN is used in a 3G ME that connects
to a 3G BS, as the 2G HN can only support 2G AKA.

Uncertain Interoperation Cases. The remaining 48 cases
involving 4G components are classified as uncertain. This is
due to the fact that the specifications do not provide clear
indication as to whether or not these cases are allowable. For
those cases, Table E]refers to these conditions under which they
could occur:

Al An MME can control a 3G BS or a 2G BS.

A2 A 3G HN or 2G HN can maintain 4G subscriptions.
A3 A 4G HN can maintain 2G subscriptions.

A4 An MME can support the 2G or 3G AKA.

V. AKA SCENARIOS

Focusing on the allowable and uncertain interoperation
cases determined in the previous section, we now detail the
respective AKA for each of these cases. Specifically, based on
the 3GPP specifications for GSM, UMTS, and LTE we have
determined which of the building blocks GSM I-IV, UMTS I-
IV, and LTE I-V need to be combined in what fashion to
comprise a suitable AKA for the respective interoperation case.
For each case we provide the rationale based on which the
building blocks are combined.

Overall, this approach allowed us to categorize all allow-
able and uncertain interoperation cases into 10 distinct scenar-
ios. For five of the scenarios, the respective AKA was already
specified by 3GPP in the context of enabling interoperation
between GSM and UMTS (including the two native 2G and
3G scenarios as outlined in Sect. [[l). One of the remaining
five scenarios is the native 4G AKA (see Sect. [I[TI). To the best
of our knowledge, the other four are new and are specified for
the first time in this paper.

Determining the Scenarios. In order to determine a
suitable AKA for a specific interoperation case, first we
consider which message might trigger the AKA to determine
the messages transmitted in the first block. Then, we consider
the authentication vector that is generated in the HN and
subsequently provided to the VLR/SGSN/MME. In particular,
the authentication vector determines what kind of challenge-
response procedure is carried out, i.e., whether GSM III,
UMTS III, or LTE III. How and what kind of authentication

TABLE III. EXCERPT OF DETERMINING AKA SCENARIOS AND
RESPECTIVE REASONING (FULL TABLE IN [7])

D Components Scenario Reason
Identity VLR/ Stated | Interpre-
Module ME BS SGSN/ HN in spec tation

MME
1 4G 4G 4G S3 AGKW
2 4G 4G 3G 4G 4G S10 BHV T
3 2G 4G 4G S9 BINV T
91 3G 4G 4G 4G HN S7,S8 GKWX QU

vector is generated by the HN depends on HN’s capabili-
ties, the type of VLR/SGSN/MME requesting/receiving the
authentication vector, the type of BS, and the type of the
identity module. Table [[I| provides the details for the eleven
distinct instances for obtaining an authentication vector. While
the first six (A, B, C, D, E, F) are based on methods
described in the 3GPP specifications (mostly w.r.t. security
context switching and mapping in LTE), the latter ones are
interpretations derived from specified methods. Second, we
consider the type of the BS, which determines the type of
the security mode setup procedure. Third, depending on the
type of BS it controls, the VLR/SGSN/MME might have to
convert the encryption/integrity keys.

Using this approach, we categorize the 105 allowable and
uncertain interoperation cases into 10 distinct scenarios:

SI GSM I-1V.

S2 UMTS I-1V.

S3 LTE I-V.

S4 GSM I-1V, conv(3G AV — 2G AV).

S5 GSM I-II || UMTS 1V, conv(Kc — CK IK, VLR/SGSN).

S6 UMTS I-II || GSM 1V, conv(CK IK — K¢, VLR/SGSN).

S7 LTE I || UMTS II-II || [optionally, LTE IV] || LTE V,
conv(CK IK — Kasye, MME).

S8 LTET || UMTS II-II || LTE IV-V, conv(CK IK nonces —
Kasue, MME).

S9 GSM I || LTE II-III || [optionally, LTE IV] || GSM 1V,
conv(CK IK — K¢, MME), AV = 4G AV + CK + IK.

S10 UMTS I || LTE II-I || [optionally, LTE IV] || UMTS 1V,
AV = 4G AV + CK + IK.

The blocks are as introduced in Figs. [T} [2] and [3] With notation
“a || b” we indicate that block b follows after block a. Scenarios
S7, S9, and S10 have blocks marked in brackets as optional.
It is consistent with the specifications to either include or omit
these blocks, so we analyze versions with and without the
block. The notation “conv(K1 — K2, C)” denotes that network
component C converts key K1 into K2. Furthermore, “AV =
4G AV + CK + IK” indicates that the 4G HN provides not only
the 4G authentication vector to the MME but also includes the
UMTS encryption key CK and integrity key IK.

Table [[II| shows an excerpt of determining and categorizing
the AKA for all of the 105 allowed and uncertain cases—
including the respective reasoning to obtain the categorization
(with reference to Table [II).

In the following we focus on detailing Scenarios S7-S10.
Scenarios S1-S3 are discussed in Sect. and Scenarios S4—
S6 coincide with scenarios described in the 3GPP specifica-
tions as well as prior work [11], [2]], [15]], [16].



TABLE II.

REASONS USED FOR DETERMINING AKA SCENARIOS

Upon request by an MME with network type equals E-UTRAN, the 4G HN generates and delivers the 4G AVs (separation bit = 1) [4].

| >

bit = 0) [4].

Upon request by an MME with network type equals UTRAN or GERAN, the 4G HN generates and delivers the 4G AVs, plus CK and IK (separation

Upon request by a 3G VLR/SGSN, the 3G HN generates and sends out 3G AVs [3]].

Upon request by a 2G VLR/SGSN with a 3G IMSI, the 3G HN generates 2G AVs from 3G AVs [6].

Type of AV 2G HN only supports to generate 2G AVs [6].

Upon request by a VLR/SGSN/MME with a 2G IMSI, the 3G HN always generates and delivers the 2G AVs [6].

Upon request by a 3G VLR/SGSN, the 4G HN generates 3G AVs [4] [or derived from D].

Upon request by a 2G VLR/SGSN with 3G/4G IMSI, the 4G HN generates 2G AVs from UMTS AVs [Derived from D].

Upon request by an MME, the 3G HN generates 3G AVs [Derived from E and [6]].

Upon request by a 2G VLR/SGSN with a 4G IMSI, the 3G HN generates 2G AVs from 3G AVs [Derived from D].

Upon request by a VLR/SGSN/MME with a 2G IMSI, the 4G HN always generates and delivers the 2G AVs [Derived from F].

4G BS only supports 4G SMC [4].

Type of BS 3G BS only supports 3G SMC [6].

2G BS only supports 2G SMC [6].

The 4G ME supports to derive Kasyr and store the security contexts. [31]

Type of ME XG ME supports XG SMC 4], [3]

3G ME supports 2G SMC [6].

4G ME supports 2G/3G SMC [Derived from L]

The 3G BS requires CK and IK, the VLR/SGSN/MME generates them from Kc by applying conversion function c3 [6].

Conversion

2G BS is not capable of handling of cipher and integrity keys. The VLR/SGSN/MME converts the CK and IK into Kc [6].

aZ| 2| = | A =] = = Q| »| =|o] v O T T O] O

BS [Derived from M or [4]].

Because the 4G BS requires K,yp, which is derived from the Kssye, the VLR/SGSN/MME generates Kysye from the CK, IK and sends it to the

Triggered by attach request or RAU request, the first block is GSM I or UMTS T [27], [28]

First Block

Triggered by LTE attach request or TAU request in which the nonce is never used, the first block is LTE I [4].

X = <

Triggered by TAU request and the nonce is used in latter blocks, the first block is LTE I’ [28], [30].

[4G ME with USIM]| [ 46Bs |

uMmfrs 1
UMTS Il
UMTS 111

Kasme = KDF(CK, IK) Kasme = KDF(CK, IK)

LTEV

Fig. 4. AKA scenario S7; in alternate version, LTE IV added before LTE V

S7. This scenario is characterized by a 4G ME, a 4G SN
(i.e., 4G BS and 4G MME) and a USIM or 4G USIM identity
module subscribed to a 3G HN. Two of the allowable/uncertain
cases fall into this category. The AKA is triggered by the attach
request. The identity request and response procedure is the
same as in LTE I (Fig.3). The 3G HN can generate 2G or 3G
authentication vectors, but cannot generate 4G authentication
vectors. Upon request by the MME, the 3G HN therefore
generates and delivers a 3G authentication vector which thus
is identical to UMTS II. Upon receiving the authentication
vector, the MME communicates with the MS as in UMTS III.
The 4G BS requires 4G AS keys, which are derived from the
intermediate key K,yp. Because the intermediate key K, yp is
derived from the local master key Kasyr, the MME applies a
key derivation function to generate the local master key Kasyg
from the UMTS encryption key CK and integrity key IK.
Including LTE IV is optional in this scenario. Later, we analyze
both variations and show that the AKA without LTE IV is
prone to an attack in which a false base station can both
eavesdrop and modify the messages between the MS and the
SN. Executing both LTE IV and V prevents this attack. LTE V
(Fig.|3) is executed which includes the deriving of K.yp. Fig.
shows this AKA scenario without LTE IV.

S8. This scenario is characterized by the same cases as in
S7. The difference to S7 is that this scenario is triggered by the
TAU request and the NONCEys in the TAU request is used
in LTE IV. The retrieving and generating of the authentication
vector and the challenge-response procedure are the same as in
S7. In LTE IV, the MME generates a nonce NONCEy g and

uses it with the CK, IK, and NONCE)s as input parameters
to derive the K4syr. The MME sends the integrity protected
SMC message containing the nonce NONCE)s received from
the MS and the nonce NONCEyg. Upon receiving the SMC
message, the MS checks whether the NONCEjys and the
capabilities match what it originally sent in LTE I'. If the
check successes, the MS uses the same key derivation function
as in the MME to derive the Ky and sends out the SMC
complete message. Subsequently, LTE V is executed.

S9. This scenario is characterized by a mixed SN including
a 2G BS and a 4G MME as well as an MS that is subscribed
to a 4G HN where either the identity module is a 4G USIM
or it is a 4G ME, i.e., the MS supports 4G AKA. Four of
the allowable/uncertain cases fall into this category. Because
the 2G BS covers routing areas, the initial message can be
the attach request or the RAU request. So the transmitting
of the identity and the capabilities is as in GSM I (Fig. [I).
When the MME requests the authentication vector from the
HN by sending the IMSI and the network type, because the
network type is GERAN (because of the 2G BS), the 4G HN
generates and delivers the 4G authentication vector with the
UMTS cipher key CK and integrity key /K. Because the NAS
signaling is transparent to the BS, the LTE challenge-response
procedure LTE IIT (Fig. [3) is executed between the MS and
the MME. In this interoperation scenario, we consider the two
variations with and without LTE IV (Fig.[3). The first variation
sticks to the LTE AKA as long as possible (i.e., until executing
LTE IV before setting up the cipher between the MS and the
BS). The other one goes to set the cipher between MS and
the BS as soon as finishing the challenge-response procedure
(without executing LTE IV). Later we show that the AKA
without LTE IV is prone to a false base station attack and
the AKA with LTE IV is prone to an attack against the CMC
message between the 2G BS and the MS. Because the 2G
BS requires the GSM session key Kc, the MME derives the
encryption key K, from the UMTS cipher key CK and integrity
key IK. Since only the 2G cipher mode setting is supported
by the 2G BS, the 2G cipher mode setting procedure GSM IV
(Fig. |1) is executed between the 2G BS and the MS—which



also includes the MME sending the GSM session key to the
2G BS.

S10. This scenario is characterized by a 4G HN, a mixed
SN consisting of a 3G BS and a 4G MME, as well as an
MS that is subscribed to a 4G HN where either the identity
module is a 4G USIM or it is a 4G ME with a 3G USIM, i.e.,
the MS supports 4G AKA. Three of the allowable/uncertain
cases fall into this category. The 3G BS covers routing areas,
so the initial message can be the attach request or a RAU
request. Thus, the transmitting of identity and capabilities is
as in UMTS I (Fig. ). In order to obtain an authentication
vector, the MME sends the authentication data request with
the IMSI and the network type to the 4G HN. Because the
access network is UTRAN, the 4G HN generates and delivers
the 4G authentication vector as well as the UMTS encryption
key CK and integrity key /K. Subsequently, the LTE challenge-
response procedure LTE III (Fig. [3) is executed between the
MS and the MME. As in scenarios S7 and S9, the LTE 1V is
optional. Later we show that the authentication properties hold
in both variations. The 3G BS obtains the UMTS encryption
key CK, the UMTS integrity key /K, as well as the capabilities
as part of UMTS IV (Fig. J)—which also includes the UMTS
security mode set-up procedure between the 3G BS and the
MS.

VI. MODELING AND ANALYZING THE PURE PROTOCOLS

IN PROVERIF

The ProVerif (PV) tool has been described well elsewhere,
and we use standard idioms in our modeling. We give here
a brief overview of our design decisions followed by a few
details concerning the LTE model. Details of the GSM and
UMTS models can be found in [16]. The roaming models are
discussed in Sect. together with our analysis results. The
complete models are available with the long version of the

paper [[7].

In PV, protocols are defined using process algebra. Prop-
erties are specified as correspondence assertions [32] that
refer to events. Events are instrumentation that mark impor-
tant points reached by the principals and have no effect on
protocol behavior. For example, the correspondence assertion
event(e1(M)) ~~event(e2(M)) says that if event el occurs, with
argument value M, then event e2 must have happened previ-
ously with the same argument M. In checking an assertion, PV
may terminate having successfully proved the property, with
respect to unbounded message space and number of sessions,
or having found a possible or definite attack.

Here are some design decisions that apply to all of our
models. Each message has a header to indicate the type of
the message content. The secure communications between SN
and HN are modeled as private channels. Registration of the
MS, i.e., pre-sharing of each long-term credential pair (IMSI,
Ki), is modeled using PV’s table construct. We do not model
details of algorithm capabilities/selection. The capability is a
nondeterministically chosen boolean value interpreted to mean
whether the MS has encryption capability. (Integrity protection
is mandatory in 3G/4G, and absent in 2G.) Because the value is
nondeterministically chosen, our analysis considers all cases.
Following authentication, a single data message is included,
which suffices to specify the secrecy of data traffic. In the
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Fig. 5.
model

Part of the 4G AKA scenario (Fig. [3) annotated in accord with our

long version of the paper we consider integrity of data traffic,
which is also specified using this message.

The 4G model in ProVerif. There are four main processes
in our PV model, representing the behavior of the MS, the
eNB, the MME and the HN respectively. Fig. [5] shows the
details of part of the model, specifically Blocks III and IV from
Fig. [3] Fig. [5] shows the events for correspondence assertions.
It also shows the name of the variables which are used in our
model, which facilitates checking that the models accurately
reflect the protocol diagrams.

In the LTE protocol, the MS already has the SN id before
starting the AKA shown in Fig. 3] In our model, we add the SN
id to the authentication challenge (message 7). In addition,our
model omits sequence numbering and the key AK, so they
do not appear in Fig. 5. Sequence numbers aid in preventing
re-use of authentication vectors. Instead of modeling sequence
numbers, our models simply do not re-use AVs.

Fig. [6] shows the code of the MS process. The registration
process of the MS device is in lines 22-24. Lines 28-29
model that the MS receives and checks the authentication
challenge message. The process awaits a message on the public
channel, with designated format and particular values: the
format must be (msgHdr, nonce, mac, ident) where msgHdr is the
literal CHALLENGE and the mac must equal f1(ki, rand_ms). In
lines 38-39, the MS receives the NAS SMC message and
verifies the integrity and the received capabilities. The MS then
sends out the SMC complete message which is ciphered if the
encryption is enabled and integrity protected (lines 43-51).
Lines 46 and 52 call a parameterized process which specifies
the AS SMC procedure in lines 3-11 and receives the data
message in lines 18—19. The other three processes representing
the BS, the MME, and the HN are similar to this (see [[7]]).

The secrecy and authentication properties are specified as
follows.

query attacker(payload).

query attacker(payload) ~» event(disableEnc).
query attacker(secret).

query x1: ident, x2: ident, x3: asmeKey;

event (endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).
query x1: ident, x2: ident, x3: asmeKey, x4: bool;
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let pMSAS(kasme_ms: asmeKey, imsi_ms: ident, cap_ms: bool) =
let kenb_ms: enbKey = kdf_enb (kasme_ms) in
let kasenc_ms: asEncKey kdf_as_enc(kenb_ms) in
let kasint_ms: aslntKey kdf_as_int (kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,
=finteg_as (bool2bitstring (enableEnc_as_ms), kasint_ms)));
event begENB(imsi_ms, kenb_ms);
out (pubChannel, (ASSMComplete, as_smcomplete_msg,
finteg_as (as_smcomplete_msg, kasint_ms)));
event endMS_ENB(imsi_ms, kenb_ms, cap_ms);
in (pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms)));
out (pubChannel, sencrypt_as(secret, kasenc_ms));
out (pubChannel, senc_int_as(secret, kasint_ms));
out (pubChannel, senc_up(secret, kupenc_ms));
if enableEnc_as_ms = true then

let msgcontent: bitstring = sdecrypt_as (datamsg,
kasenc_ms) in 0.
let processMS =
new imsi_ms: ident;

new ki: key;
insert keys(imsi_ms, ki);
let cap_ms: bool = encCapability () in

out (pubChannel, (CAP, cap_ms));
out(pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,

=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
let kasme_ms: asmeKey = kdf_asme(ck_ms,
event begSN(imsi_ms, snid_ms, kasme_ms);
out (pubChannel, (RES, res_ms));
let knasenc_ms = kdf_nas_enc(kasme_ms) in
let knasint_ms = kdf_nas_int(kasme_ms) in
in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,
=finteg_nas ((enableEnc_nas_ms, cap_ms), knasint_ms)));
event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms)

ik_ms, snid_ms) in

out (pubChannel, sencrypt_nas(secret, knasenc_ms));
out (pubChannel, senc_int_nas(secret, knasint_ms));
if enableEnc_nas_ms = false then

out(pubChannel, (NASSMComplete, nas_smcomplete_msg,

finteg_nas (nas_smcomplete_msg, knasint_ms)));
pMSAS (kasme_ms, imsi_ms, cap_ms)
else
out (pubChannel,
(NASSMComplete, sencrypt_nas (nas_smcomplete_msg,
knasenc_ms), finteg_nas (sencrypt_nas(
nas_smcomplete_msg, knasenc_ms), knasint_ms)));
pMSAS (kasme_ms, imsi_ms, cap_ms).

Fig. 6. MS process for LTE

event(endMS(x1, x2, x3, x4)) ~
event (begMS(x1, x2, x3, x4)).
query x1: ident, x2: enbKey, x3: bool;
event(endMS_ENB(x1, x2, x3)) ~
event (begMS_ENB(x1, x2, x3)).
query x1: ident, x2: enbKey; event(endENB(x1, x2)) ~-
event (begENB(x1, x2)).

The payload can be learned by the attacker when the MS is not
capable of encryption, and indeed PV finds violations of the
secrecy property in query line 1. Conditional secrecy, query
line 2, says that if the attacker obtains the secret payload then
the event disableEnc must have previously taken place —this is
proved by PV. To test the secrecy of the keys, the MS encrypts
a fresh secret (a private free name in the code, not shown in
Fig.[6) under each of the keys and sends the ciphertexts on the
public channel (lines 43—44 and 17-19), and query line 3 tests
the secrecy. PV proves conditional secrecy and key secrecy.

Authentication of the MS to the MME is specified in
query lines 4-5. This refers to event endSN placed following
message 10 (Fig. [5) so that it follows both verification of the
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challenge and successful use of the keys derived from Ksgy/-
Authentication of the MME to MS is specified in query lines
6-7; it includes authenticity of the security capabilities. The
authentication of the eNB to the MS is specified in query lines
8-9. The encryption capability is included in the parameters
of the events to specify that the events should agree on the
encryption option. These authentication properties are proved
successfully.

Because communication between eNB and MME is as-
sumed secure, it is authentication of MS to MME implies
authentication to eNB as well. However, as a sanity check
on the model, query line 10 says that if eNB believes that
it has established the K,yp associated with an MS using the
particular IMSI, then indeed there is an MS that reached that
stage of its protocol role, for that IMSI and K yp.

VII. MODELING AND ANALYZING INTEROPERATION IN

PROVERIF

In Sect. we annotate the protocol diagrams to mark
“blocks” of message exchanges, which are composed to form
the interoperation scenarios in Sect. E Where it is convenient,
we use sub-processes in our PV models to express this struc-
ture. To make the PV model for an interoperation scenario,
we can easily combine these sub-processes and other code
fragments that correspond to blocks, with minor modifications
(adding conversion functions that enable a BS to perform a
particular SMC procedure, and adding keys to the AV in S9
and S10).

For example, for the MS in LTE we factor out a process
processMS that models the first four blocks of LTE. This
process is reused in the models for scenarios S9 and S10. If
the assumptions that underly our scenarios for uncertain cases
turn out to be wrong, we expect to be able to easily model
the corrected scenarios as well. For security specifications, the
blocks already include events and the queries are easily adapted
from queries for the pure protocols.

Of the 10 AKA scenarios, 5 of them are the same scenarios
as in the roaming cases of GSM and UMTS, for which the
models and analysis appears in [16]. One of them is the pure
4G AKA, which is modeled and analyzed in Sect. In this
section, we discuss the models of the 4 new scenarios, and
then summarize results for all 10 scenarios.

Scenario S7: LTE I || UMTS II-III || [LTE IV] || LTE YV,
conv(CK IK — Kasyre, MME). Fig. [7| elaborates the scenario
in Fig. {f] with details of the PV model and shows the locations
of the events which are used to specify authentication and
conditional payload secrecy. Most of the code in this model
is inherited from the 4G model and the UMTS model. The
secrecy and authentication properties are specified similar to
the ones in the 4G model:
query attacker(payload) ~» event(disableEnc).
query attacker(secret).
query x1: ident, x2: cipherKey, x3: integKey;

event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).

query x1: ident, x2: enbKey, x3: bool;
event(endMS(x1, x2, x3)) ~» event(begMS(x1, x2, x3)).

As in pure 4G, plain secrecy of the message payload does not
hold because the attacker can always learn the payload if the
MS is not capable of encryption. Conditional secrecy (query
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Fig. 7. Authentication scenario S7, version without LTE IV, annotated in
accord with our model

line 1) does hold. Secrecy of keys (line 2) is also proved.
Authentication of the MS to the SN is specified in lines 3—4
and is proved. Authentication of the SN to the MS is specified
in lines 5-6. For the version without LTE IV, PV finds an
attack that violates the property. The attacker intercepts the
capability message sent by the MS and replaces the capabilities
with different ones. The event endMS is executed after the MS
receives the SMC message. Because the SMC message does
not contain the received MS’s capabilities, the MS has no way
to confirm whether the SN receives the correct capabilities.
PV detects the violation because, although there was a begMS
event, it has a different value for capabilities. For the version
with LTE IV, the property is proved.

Scenario S8: LTE I’ | UMTS II-III | LTE IV-V,
conv(CK IK nonces — Kaspyyp, MME). ProVerif proves all
the properties except the payload secrecy.

Scenario S9: GSM I | LTE II-III || [LTE IV] ||
GSM 1V, conv(CK IK — K¢, MME), AV = 4G AV +
CK + IK. In the models (with or without LTE IV) of
this scenario, the MME uses the key conversion function
fun c3(cipherKey, integKey): gsmKey to derive the GSM session
key from the UMTS cipher and integrity keys. Because the
BS is the GSM BS, the false base station attack on the AKA
without LTE IV is found when checking the authentication of
the BS to the MS. In the model with LTE IV, an attack is found
when checking the authentication of the BS to the MS. In the
attack, the attacker modifies the CMC message (which is not
integrity protected) to tell the MS to use no encryption. This
attack will be detected by the BS once the MS sends messages
to the BS. As in other scenarios, the payload secrecy could be

TABLE IV. ANALYSIS RESULTS

Auth. of Auth. of
Scenario Conditional Key MS to VLR/ Auth. of BS
secrecy secrecy VLR/ SGSN/MME to MS
SGSN/MME to MS
known false
S1 Proved Proved Proved N/A base station
attack
S2 Proved Proved Proved N/A Proved
S3 Proved Proved Proved Proved Proved
known false
S4 Proved Proved Proved N/A base station
attack
S5 Proved Proved Proved N/A Proved
known false
S6 Proved Proved Proved N/A base station
attack
S7 who false ‘base
Proved Proved Proved N/A station
LTE IV
attack
ST w/ Proved Proved Proved Proved Proved
LTE IV
S8 Proved Proved Proved Proved Proved
I?I?E\;/\// Proved Proved Proved Proved CMC attack
S9 wio known fqlse
Proved Proved Proved N/A base station
LTE IV
attack
E,;g r{; Proved Proved Proved Proved Proved
S10
w/o Proved Proved Proved N/A Proved
LTE IV

violated because the BS could choose to disable encryption
when communicating with the MS.

Scenario S10: UMTS I || LTE II-III | [LTE IV] ||
UMTS IV, AV = 4G AV + CK + IK. ProVerif proves all the
properties except the payload secrecy.

Analysis Results.  Table [IV| gives results for all the 10
scenarios. In the model of scenario S9 without LTE IV, we
find the known false base station attack [[1]] which has the same
attack scenario as in the native GSM AKA, i.e., in S1 and S4.
In this attack, the attacker intercepts the CAP message and
modifies the capabilities of the MS as no-encryption. When the
BS decides which algorithm to use, the BS has to choose not
to enable encryption. Because the subsequent traffic between
the MS and the 2G BS is not encrypted nor integrity protected,
the attacker can both eavesdrop and modify the messages.

The attack found in scenario S7 without LTE IV is similar.
The attacker intercepts and modifies the capabilities of MS
to no-encryption to force the 4G BS to choose not to use
encryption. Although integrity protection is mandatory for the
signaling traffic of 4G BS, there is no integrity protection on
the user plane traffic, so the attack can both eavesdrop and
modify the data traffic.

In the model of scenario S9 with LTE IV, we find an attack
in which the attacker simply modifies the CMC message to tell
the MS to use no encryption. This attack would be detected
once the MS sends unencrypted messages to the BS.

VIII. CONCLUSION

In this paper we study authentication and key agreement
(AKA) for interoperation among GSM, UMTS and LTE. To
determine the AKA procedures in each interoperation case,
we consider all combinations of the five relevant system



components. We classify some cases as allowed or disallowed,
based on information about component compatibility gleaned
from the standards documents. Some cases are classified as
uncertain, for lack of definite information in the standards.
For each possible (allowed or uncertain) interoperation case,
we identify and justify a particular AKA scenario built from
elements (“blocks”) of the pure GSM, UMTS, and LTE
protocols.

It turns out that 10 scenarios are needed to cover all the 105
possible interoperation cases. Of these scenarios, 5 involve just
GSM and UMTS and were identified previously (see Sect. [[I);
one is the pure LTE; the remaining 4 are new. In most cases,
the AKA scenario is completely determined by the components
involved. However, a few cases have two feasible versions of
the scenarios which differ by whether block LTE IV is included
or whether the nonce in TAU request is used.

We model and analyze pure LTE and the 4 new AKA
scenarios involving LTE components, using ProVerif, focusing
in this paper on authentication and secrecy properties. For the
scenarios involving LTE, we find three attacks. One is the false
base station attack which is inherited from the GSM system
and is also found in GSM-UMTS interoperation. Another
attack, on one version of scenario S7, is a similar false base
station attack but with a 4G BS. The attack is prevented by
including block LTE IV. In the third attack on the AKA of
scenario S9 with LTE IV, the CMC message is modified. Aside
from these attacks, the desired authentication and secrecy
properties are proved (in the symbolic model of perfect crypto,
with unbounded sessions) for all other cases.

For further work, we would like to analyze the handover
in GSM, UMTS, and LTE, as well as across the technologies.
We also are interested in exploring the interworking between
4G and non-3GPP networks.
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APPENDICES

Sect.[A] gives the complete table of cases and Sect. [B] gives
the complete table of scenarios. Sect. [C] presents the models
of the scenarios and Sect. D] gives the complete code.

APPENDIX A
TABLE OF CASES

Figures [8] — [I4] show the classification the 243 interoper-
ation cases. The table makes reference to the list of reasons

R1-R7 in Sect.[[V]and the list of conditions A1-A4 at the end Components Condition to
Reasons for
of Sect. [Vl ID support X
Identity Ocourrence Disallowance
As stated in the main body of the paper, rows in normal Module
font with no color indicate the allowed cases. Green color and | 41 A2
bold font indicates the uncertain cases. Grey color and italic | 42 A2
font indicates the disallowed cases. Blue color and bold italic % Ri’,f“'
font indicates the cases involving only 2G/3G components. 25 2
RE GE
. 47 Al, A2, A3, Ad
D Componen\:fme Clmon© | Reasons for a8 AL, A2, A3, A4
dentity | e | Bs | SN/ | HN Occurrence | Disallowance |49 R3, RS
Module MME 50 A2, A3
1] 4G | 4G | 4G | 51] A2, A3
| 2] Al, A4 | 52| R3, R4
|3 Al, Ad | 53] R4
|4 R5 | 54| A2, A3
|5 55 R2
| 6| | 58] R2
7 R4 | 57 Al A4
8 R4 | 58| R2, R5
9 59 R2
19 A2, Ad o0
11 Al, A2, A4 61 R2, R4
| 12| Al, A2, Ad | 62| R2, R4
13 RS 63
BZpSY A2 64 R2
| 15] A2 | 65 R2
| 16| R4 | 66| Al, A2, A4
| 17] R4 | 67| 4G R2, R5
| 18] A2 | 68/ USIM R2
19 R6 ) A2
| 20| Al, A2, A3, A4 70| R2, R4
|21 Al, A2, A3, A4 71 R2, R4
| 22| R5 | 72| A2
23 A2, A3 | 73] R2
| 24) A2, A3 | 74) R2
| 25 R4 | 75| Al, A2, A3, A4
26 R4 | 76| R2, R5
27| A2, A3 77| R2
28 R3 | 78] A2, A3
| 29 Al, A4 79| R2, R4
| 30| Al, A4 | 80) R2,R4
31 R3, R5
| 32|
33 Fig. 9. Table of cases, part 2
34 U‘;?M R3, R4
35 R4
36
|37 R3
| 38| Al, A2, A4
| 39 Al, A2, A4
| 40| R3, R5

Fig. 8. Table of cases, part 1 of 7




Fig. 10. Table of cases, part 3

D Components CosrLogtF;gr:tto Reasons for D Components Ct?sr:]c’l)lggr:tto Reasons for
Identity Ocourrence Disallowance Identity Ocourrence Disallowance
Module Module

81 A2, A3 121] R3, R5
82 122
| 83| AL, A4 123
|84 Al, A4 (124 R3, R4
| 85| R5 [125| R4
| 86| 126
| 87| [127| R3
| 88| R4 1128 USIM Al, Ad
| 89| R4 | 129| Al, A4
90 1130 R3, R5
a1 Al, A4 1131 R7
92| Al, A4 1132
| 93] Al, A4 133 R3, R4
| 94| R5 | 134) R4
| 95/USIM A2 | 135]
| 96| A2 136 R2
| 97| R4 137| R2
98 R4 '138| Al, A4
99 A2 139 R2, R
| 100| R6 | 140| R2
101 AL A4 141
102| Al, Ad 142 R2, R4
103] R5 143] R2, R4
104 A2 144
105 A2 145 R2
| 106| R4 | 146| R2
1107| R4 | 147| Al, A4
108 A2 148 USIM R2, R5
1109 R3 149 R2
110 AL, A4 150
111 Al, A4 151 R2, R4
1112 R3, R5 152 R2, R4
1113 153
114 154 R2
E USIM R3, R4 55| R2
| 116 R4 1156 Al, A4
1117] 157 R2, R5
1118 R3 158 R2
|119| Al, Ad 159
120 Al, A4 (160 R2, R4

Fig. 11. Table of cases, part 4
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Fig. 12. Table of cases, part 5

D Components CosrLogtF;gr:tto Reasons for
Identity Occurrence Disallowance
Module

161 R2, R4
60| USIM
163 R1
164 RL
165 R1
1166| R1, R5
1167

168

169 RL, R4
1170) RL, R4
17

172 R1
1173 RL
174 R1
1175 R1, R5
176| SIM

1177|

1178 RL, R4
1179 R4
180

181 R1
182 RL
183 R1
184 R1, R5
185

186

187 RL, R4
| 188| R4
189

| 190| R1, R3
191 R1
m R1
193 RL, R3, R5
1194

195 SIM

| 196| R1, R3, R4
1197 RL, R4
198

1199 R1, R3
200 R1

Components Conditionto | .o ot
ID support .
Lﬁiﬂﬂ% oc Cl?r?en ce Disallowance
201 R1
| 202| RL, R3, R5
203
1204
| 205 R1, R3, R4
| 206 R4
1 207|
208 R1, R3
09| SIM -
210 RL
1211 R1, R3, R5
212
[213|
214) RL, R3, R4
215 R4
216
217| R1, R2
| 218| R1, R2
1219 R1
220 R1, R2, R5
1221 R1, R2
222
223 R1, R2, R4
224 R1, R2, R4
225
| 226| R1, R2
| 227| R1, R2
228 R1
229 SM RL, R2, R5
230 R2
231
232| R1, R2, R4
|233] R2, R4
234
235 R1, R2
| 236| R1, R2
27 RL
| 238| R1, R5
239 R1, R2
240
Fig. 13. Table of cases, part 6
Components Conditionto | oo
Ib Identity O?cltjl?rrr)g;tce Disallowance
Module
241 R1, R2, R4
(242 sim R2, R4
[243]

Fig. 14. Table of cases, part 7
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APPENDIX C
MODELS OF THE SCENARIOS

This section presents scenarios S7 (without LTE 1V), S8,
S9+ (with LTE IV) and S10+ (with LTE IV) with some
explanation. The pure 4G model is discussed in Sect.
The other pure models and scenarios are presented in [16].
Appendix [D] gives the complete code files for all models.

S7. LTE I || UMTS II-IIl || LTE V, conv(CK IK — Kxsye,
MME)

Most of the code in this model is inherited from the 4G
model and the UMTS model. The key derivation function used
by the MME and the MS to generate the local master key
Kasye is declared as:

fun kdf_asme(cipherKey, integKey): asmeKey.

There are three main processes in our model representing the
behavior of the MS, the SN and the HN respectively.

(xMS non—deterministically choose

the capability of encryptionx)
let cap_ms: bool = encCapability ()
(xSend out cap_ms to SN x)

in

out (pubChannel, (CAP, cap_ms));
(+«Send out permanent ID x)
out (pubChannel, (ID, imsi_ms));

(= Input challenge message from SN x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce, mac_ms:
if f1(ki, rand_ms) = mac_ms then
(x Compute response and encryption keyx)
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms)
let ik_ms: integKey = f4(ki, rand_ms)
(«MS is authenticating itself to SNx)
event begSN(imsi_ms, ck_ms, ik_ms);
(xSend out response to SN x)
out (pubChannel, (RES, res_ms));
let kasme_ms = kdf_asme(ck_ms, ik_ms) in
let kenb_ms: enbKey = kdf_enb (kasme_ms) in
let kasenc_ms: asEncKey kdf_as_enc(kenb_ms) in
let kasint_ms: aslntKey kdf_as_int (kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in
(x Receive GSM cipher mode command x)
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,
=finteg_as (bool2bitstring (enableEnc_as_ms),
kasint_ms)));
out (pubChannel, (ASSMComplete, as_smcomplete_msg,
finteg_as (as_smcomplete_msg, kasint_ms)));
event endMS(imsi_ms, kenb_ms, cap_ms);
in (pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms)));

mac));

in
in

out (pubChannel, sencrypt(secret, ck_ms));
out(pubChannel, sencryptinteg(secret, ik_ms));
if enableEnc_as_ms = true then
let msgcontent: bitstring = sdecrypt_as(datamsg,
kasenc_ms) in 0.

let processSN =
(x Receive MS’s capability x)
in (pubChannel, (=CAP, cap_sn: bool));
(+ Receive permanent ID x)
in (pubChannel, (=ID, imsi_sn: ident));
(«Send out authentication vector request x)
out(secureChannel, (AV_REQ, imsi_sn));
(x Receive authentication vector x)
in (secureChannel, (=AV, =imsi_sn,
xres_sn: resp, ck_sn: cipherKey,
mac_sn: mac));
(«Send authentication challenge to MS x)
out (pubChannel, (CHALLENGE, rand_sn, mac_sn));
(x Receive response x)
in (pubChannel, (=RES, res_sn: resp));
(x Check whether received response equal to XRESx)
if res_sn = xres_sn then
(x At this point, SN authenticated MSx)
event endSN(imsi_sn, ck_sn, ik_sn);

rand_sn:
ik_sn:

nonce,
integKey ,

58
59
60
61
62
63
64
65
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69
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let kasme_sn = kdf_asme(ck_sn, ik_sn) in
let kenb_sn: enbKey = kdf_enb(kasme_sn) in
let kasenc_sn: asEncKey = kdf_as_enc(kenb_sn) in
let kasint_sn: aslIntKey = kdf_as_int(kenb_sn)
let kupenc_sn: upEncKey = kdf_up_enc(kenb_sn)
event begMS(imsi_sn, kenb_sn, cap_sn);
out (pubChannel, (ASSMC, cap_sn,
finteg_as (bool2bitstring (cap_sn),

in
in

kasint_sn)));

in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
=finteg_as (as_smcomplete_msg, kasint_sn)));
if cap_sn = false then
event disableEnc;
out (pubChannel, (MSG, payload,
finteg_as (payload, kasint_sn)))
else
out (pubChannel, (MSG, sencrypt_as(payload,

kasenc_sn),
kasenc_sn),

finteg_as (sencrypt_as(payload,
kasint_sn))).

let processHN =
(x Receive authentication vector request x)

in(secureChannel, (=AV_REQ, imsi_hn: ident));
(x Generate a fresh random numbersx)

new rand_hn: nonce;

(x Computes expected response and Kcx)

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
let ik_hn: integKey = f4(ki_hn, rand_hn) in
(xSend out authentication vector x)
out(secureChannel, (AV, imsi_hn, rand_hn,

xres_hn, ck_hn, ik_hn, mac_hn)).

The HN process is the same as the one in the UMTS model.
In line 19 and line 58, the MS and the SN derive the local
master key Kqsyr from the cipher key and the integrity key.

Security Property Specifications and Findings The
events used in the correspondence assertions to specify the
authentication properties are declared as:

event begSN(ident, cipherKey, integKey).
event endSN(ident, cipherKey, integKey).
event begMS(ident, enbKey, bool).
event endMS(ident, enbKey, bool).

The secrecy and authentication properties are specified as:

query attacker (payload).
query attacker(payload) ~» event(disableEnc).
query attacker(secret).
query x1: ident, x2: cipherKey, x3: integKey;
event (endSN(x1, x2, x3)) event (begSN(x1, x2, x3)).
query x1: ident, x2: enbKey, x3: bool;
event (endMS(x1, x2, x3)) ~» event(begMS(x1, x2, x3)).

s

The secrecy property of the message payload does not hold,
because the attacker can always learn the payload if the MS
is not capable of encryption. The conditional secrecy (line 2)
holds. That means if the encryption is enabled, the attacker can
never learn the message payload. The property specified in line
3 is used to test the secrecy of the keys. ProVerif proves the key
secrecy. The authentication of the MS to the SN is specified
in lines 4-5. ProVerif proves this authentication property. The
authentication of the SN to the MS is specified in lines 6-7.
Proverif finds a attack trace that violates the property:
new imsi_ms creating imsi_ms_5870 at {2} in copy a
new ki creating ki_5871 at {3} in copy a
insert keys(imsi_ms_5870,ki_5871) at {4} in copy a
out(pubChannel, (CAP,true)) at {6} in copy a
out(pubChannel, (ID,imsi_ms_5870)) at {7} in copy a
in(pubChannel, (CAP,a_5860)) at {31} in copy a_5861
in (pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5861
in (pubChannel, (CAP,as_smcomplete_msg)) at {31} in copy a_5862
in(pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5862



in(pubChannel, (CAP,a_5863)) at {31} in copy a_5864
in(pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5864

in (pubChannel, (CAP,as_smcomplete_msg)) at {31} in copy a_5865
in (pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5865
in(pubChannel, (CAP,a_5866)) at {31} in copy a_5867
in(pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5867
in(pubChannel, (CAP,a_5868)) at {31} in copy a_5869
in(pubChannel, (ID,imsi_ms_5870)) at {32} in copy a_5869
out(secureChannel, (AV_REQ,imsi_ms_5870)) at {33} in

copy a_5865 received at {55} in copy a_5859
new rand_hn creating rand_hn_5872 at {56} in copy a_5859
get keys(imsi_ms_5870,ki_5871) at {57} in copy a_5859
out(secureChannel, (AV,imsi_ms_5870,rand_hn_5872,
f2 (ki_5871 ,rand_hn_5872), f3(ki_5871,rand_hn_5872),
f4 (ki_5871 ,rand_hn_5872), f1(ki_5871,rand_hn_5872)))
at {62} in copy a_5859 received at {34} in copy a_5865
out(pubChannel, (CHALLENGE,rand_hn_5872,f1 (ki_5871,
rand_hn_5872))) at {35} in copy a_5865
in (pubChannel, (CHALLENGE,rand_hn_5872,f1 (ki_5871,
rand_hn_5872))) at {8} in copy a 1
event (begSN(imsi_ms_5870, f3 (ki_5871 ,rand_hn_5872), 2
f4 (ki_5871 ,rand_hn_5872))) at {13} in copy a 3
out (pubChannel, (RES,f2(ki_5871 ,rand_hn_5872))) 4
at {14} in copy a 5
in (pubChannel, (RES,f2(ki_5871,rand_hn_5872))) 6
at {86} in copy a_5865 7
event (endSN(imsi_ms_5870, f3 (ki_5871 ,rand_hn_5872), 8

f4 (ki_5871 ,rand_hn_5872))) at {38} in copy a_5865 9
event (begMS(imsi_ms_5870, kdf_enb (kdf_asme (f3 (ki_5871, 10
rand_hn_5872), f4 (ki_5871 ,rand_hn_5872))), 11
as_smcomplete_msg)) at {44} in copy a_5865 12
out (pubChannel, (ASSMC, as_smcomplete_msg, 13

finteg_as (as_smcomplete_msg, kdf_as_int(kdf_enb(kdf_asme( 14

f3 (ki_5871 ,rand_hn_5872),f4 (ki_5871, rand_hn_5872))))))) 15
at {46} in copy a_5865 16
in (pubChannel, (ASSMComplete,as_smcomplete_msg, 17

kdf_as_int (kdf_enb (kdf_asme( 18
rand_hn_5872))))))) 1®

finteg_as (as_smcomplete_msg,
3 (ki_5871 ,rand_hn_5872) , f4 (ki_5871,

at {47} in copy a_5865 20
out (pubChannel, (MSG, sencrypt_as(payload, 21
kdf_as_enc (kdf_enb (kdf_asme (f3 (ki_5871 ,rand_hn_5872), 22
f4 (ki_5871 ,rand_hn_5872))))) , finteg_as (sencrypt_as(payload,2
kdf_as_enc (kdf_enb (kdf_asme ({3 (ki_5871 ,rand_hn_5872), 24
f4 (ki_5871,rand_hn_5872))))) , 25
kdf_as_int (kdf_enb (kdf_asme (f3 (ki_5871 ,rand_hn_5872), 26
f4 (ki_5871 ,rand_hn_5872))))))) 27
at {53} in copy a_5865 28
in (pubChannel, (ASSMC, sencrypt_as(payload, 29
kdf_as_enc (kdf_enb (kdf_asme ({3 (ki_5871 ,rand_hn_5872), 30
f4 (ki_5871 ,rand_hn_5872))))) , finteg_as (sencrypt_as(payload ,3!
kdf_as_enc (kdf_enb (kdf_asme ({3 (ki_5871 ,rand_hn_5872), 32
f4 (ki_5871 ,rand_hn_5872))))) , 3
kdf_as_int (kdf_enb (kdf_asme (f3 (ki_5871 ,rand_hn_5872), 34
f4 (ki_5871 ,rand_hn_5872))))))) 35
at {20} in copy a 36
out (pubChannel, (ASSMComplete,as_smcomplete_msg, 37
finteg_as (as_smcomplete_msg, kdf_as_int( 38
kdf_enb (kdf_asme (f3 (ki_5871 ,rand_hn_5872), 39
f4 (ki_5871 ,rand_hn_5872))))))) at {22} in copy a 40
event (endMS(imsi_ms_5870, kdf_enb (kdf_asme (f3 (ki_5871, 41
rand_hn_5872),f4 (ki_5871 ,rand_hn_5872))) , true)) 42
at {23} in copy a 43
The event endMS(imsi_ms_5870, kdf_enb (kdf_asme (3 (ki_5871, 44
rand_hn_5872), f4 (ki_5871 ,rand_hn_5872))), true) 45
is executed. 46

In this trace, the attacker intercepts the capability message s
sent by the MS and replaces the capabilities with different s

ones. Since the event beginMS in process SN records the >

capabilities received by the SN, which are the replaced ones. Z:
The event endMS is executed after the MS receives the security *
mode command message. Because the security mode command :;
message does not contain the received MS’s capabilities, the s
MS has no way to confirm whether the SN receives the correct '
capabilities. The event endMS is executed with recording ¢,
the original capabilities of the MS. The two events do not &
agree the third parameter (the capabilities), which violates the ::
correspondence assertion. 66

52
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S8 LTE I’ | UMTS II-111 || LTE IV-V, conv(CK IK nonces —
Kasme, MME)

Figure (18| shows details of the ProVerif model and the lo-
cations of the events which are used to specify the conditional
payload secrecy and the authentication properties. Most of the
code in this model is inherited from the 4G model and the
UMTS model. The key derivation function used to derive the
Kasyue is defined as:

fun kdf_asme(cipherKey, integKey, nonce, nonce): asmeKey.

There are four main processes in our model representing the
behavior of the MS, the BS, the SN and the HN respectively.

(xAS SMC procedure in process MSx)
let pMSAS(kasme_ms: asmeKey, imsi_ms: ident, cap_ms: bool) =
let kenb_ms: enbKey = kdf_enb (kasme_ms) in

let kasenc_ms: asEncKey = kdf_as_enc(kenb_ms) in
let kasint_ms: aslntKey = kdf_as_int(kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,

=finteg_as(bool2bitstring (enableEnc_as_ms),
kasint_ms)));

out (pubChannel, (ASSMComplete, as_smcomplete_msg,
finteg_as (as_smcomplete_msg, kasint_ms)));

event endMS_ENB(imsi_ms, kenb_ms, cap_ms);

in (pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms)));

out (pubChannel, sencrypt_as(secret, kasenc_ms));

out (pubChannel, senc_int_as(secret, kasint_ms));
out (pubChannel, senc_up(secret, kupenc_ms));
if enableEnc_as_ms = true then

let msgcontent: bitstring =

sdecrypt_as (datamsg, kasenc_ms) in 0.

(xprocess respresenting MSx)
let processMS =
(«The identity of the MSx)
new imsi_ms: ident;
(x Pre—shared keyx)
new ki: key;
(x Insert id/pre—shared key pair into the private tablex)
insert keys(imsi_ms, ki);

(*MS non—deterministically choose the capability of encryptionx)

let cap_ms: bool = encCapability () in

out (pubChannel, (CAP, cap_ms));

out (pubChannel, (ID, imsi_ms));

new nonce_ms: nonce;

out (pubChannel, (NONCE_TAU, nonce_ms));

in(pubChannel, (=CHALLENGE, rand_ms: nonce, =f1(ki, rand_ms)));
let res_ms: resp = f2(ki, rand_ms) in

let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
event begSN(imsi_ms, ck_ms, ik_ms);
out (pubChannel, (RES, res_ms));
(*NAS SMC procedurex)
in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,
=nonce_ms, nonce_mme_ms: nonce, nas_mac: msgMac));
let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms,
nonce_ms, nonce_mme_ms) in
let knasenc_ms: nasEncKey = kdf_nas_enc(kasme_ms) in
let knasint_ms: naslintKey = kdf_nas_int(kasme_ms) in
if (nas_mac = finteg_nas ((enableEnc_nas_ms, cap_ms,
nonce_ms, nonce_mme_ms), knasint_ms)) then
event endMS(imsi_ms, ck_ms, ik_ms, cap_ms);
(«NAS key secrecyx)
out(pubChannel, sencrypt_nas(secret, knasenc_ms));
out (pubChannel, senc_int_nas(secret, knasint_ms));
if enableEnc_nas_ms = false then
out (pubChannel, (NASSMComplete, nas_smcomplete_msg,
finteg_nas (nas_smcomplete_msg, knasint_ms)));
pMSAS (kasme_ms, imsi_ms, cap_ms)
else
out (pubChannel, (NASSMComplete,
sencrypt_nas (nas_smcomplete_msg, knasenc_ms),
finteg_nas (sencrypt_nas (nas_smcomplete_msg,
knasenc_ms), knasint_ms)));
pMSAS (kasme_ms, imsi_ms, cap_ms).

(x process representing e—nodeBx)
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Fig. 18. Scenario S8 annotated in accord with our model

67 let processENB = 81 out (pubChannel, (MSG, payload,

68 in (sChannelSnBts, (kasme_enb: asmeKey, imsi_enb: ident, s finteg_as (payload, kasint_enb)))

69 cap_enb: bool)); 83 else

70 let kenb_enb: enbKey = kdf_enb(kasme_enb) in 84 out (pubChannel, (MSG, sencrypt_as(payload, kasenc_enb),
71 let kasenc_enb: asEncKey = kdf_as_enc(kenb_enb) in 85 finteg_as (sencrypt_as(payload, kasenc_enb),
72 let kasint_enb: asintKey = kdf_as_int(kenb_enb) in 86 kasint_enb))).

73 let kupenc_enb: upEncKey = kdf_up_enc(kenb_enb) in 87

74 event begMS_ENB(imsi_enb, kenb_enb, cap_enb); 88 (xprocess representing MVEx)

75 out (pubChannel, (ASSMC, cap_enb, 8o let processMME =

76 finteg_as (bool2bitstring (cap_enb), kasint_enb))); 90 in (pubChannel, (=CAP, cap_sn: bool));

77 in (pubChannel, (=ASSMComplete, =as_smcomplete_msg, 91 in (pubChannel, (=ID, imsi_sn: ident));

78 =finteg_as (as_smcomplete_msg, kasint_enb))); 92 in (pubChannel, (=NONCE_TAU, nonce_ms_sn:nonce));

79 if cap_enb = false then 93 out(secureChannel, (AV_REQ, imsi_sn));

80 event disableEnc; 9% in(secureChannel, (=AV, =imsi_sn, rand_sn: nonce,

17
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Xres_sn:
ik_sn:

resp, ck_sn: cipherKey,
integKey, mac_sn: mac));
out(pubChannel, (CHALLENGE, rand_sn, mac_sn));
in (pubChannel, (=RES, =xres_sn));
event endSN(imsi_sn, ck_sn, ik_sn);
new nonce_mme: nonce;
(xNAS SMC procedurex)
let kasme_sn: asmeKey = kdf_asme(ck_sn,
nonce_ms_sn, nonce_mme) in
let knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
let knasint_sn: naslIntKey = kdf_nas_int(kasme_sn) in
event begMS(imsi_sn, ck_sn, ik_sn, cap_sn);
out(pubChannel, (NASSMC, cap_sn, cap_sn, nonce_ms_sn,
nonce_mme, finteg_nas ((cap_sn, cap_sn,
nonce_ms_sn, nonce_mme), knasint_sn)));
in (pubChannel, (=NASSMComplete, msg_nas:bitstring ,
=finteg_nas (msg_nas, knasint_sn)));
if cap_sn = true then
if sdecrypt_nas(msg_nas, knasenc_sn)
= nas_smcomplete_msg then
out(sChannelSnBts, (kasme_sn,
imsi_sn, cap_sn))

ik_sn,

else 0
else

if cap_sn = false then

if msg_nas = nas_smcomplete_msg then
out(sChannelSnBts, (kasme_sn,
imsi_sn, cap_sn))

else 0

else 0.

(xprocess representing HNx)

let processHN =
(= Receive authentication vector request x)
in(secureChannel, (=AV_REQ, imsi_hn: ident));
(x Generate a fresh random numberx)
new rand_hn: nonce;
(x Computes expected response and Kcx)
get keys(=imsi_hn, ki_hn) in
let mac_hn: mac = f1(ki_hn, rand_hn) in
let xres_hn: resp = f2(ki_hn, rand_hn) in
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
let ik_hn: integKey = f4(ki_hn, rand_hn) in
(«Send out authentication vector x)
out(secureChannel, (AV, imsi_hn, rand_hn,

xres_hn, ck_hn, ik_hn, mac_hn)).

This scenario is triggered by the TAU request, in addition to the
IMST and capabilities, the MS generates a nonce and sends it to
the MME (lines 34-35). The authentication vector request and
response procedure is modeled in lines 93-96 and lines 129—
140. The MME generates a nonce (line 100) and derives
the Kssyr using the nonces and cipher and integrity keys
(lines 102—-103). The MME then sends the integrity protected
NAS SMC messages which includes the received capabilities
and both nonces in lines 107-109. Upon receiving the NAS
SMC messages, the MS derives the Kssyp using the nonces
and cipher and integrity keys as in MME (lines 45-46). The
MS then verifies the MAC of the messages and sends out the
NAS Complete messages to the MME. The AS SMC procedure
is the same as in 4G model.

Security Property Specifications and Findings The
events used to specify the authentication properties are speci-
fied as:

event begSN(ident, cipherKey, integKey).

event endSN(ident, cipherKey, integKey).

event begMS(ident, cipherKey, integKey, bool).
event endMS(ident, cipherKey, integKey, bool).
event begMS_ENB(ident, enbKey, bool).

event endMS_ENB(ident, enbKey, bool).

We specify the security properties as following:

e Key Secrecy

1 not attacker (new Ki).
2 query attacker(secret).

e Conditional Payload Secrecy

query attacker(payload)~-event(disableEnc).

e Mutual Authentication between the MS and the MME

query x1: ident, x2: cipherKey, x3:
event (endSN(x1, x2, x3))
event (begSN(x1, x2, x3)).

1 integKey ;
2

3

4 query x1: ident, x2: cipherKey, x3:
5

6

~

integKey, x4: bool;

event (endMS(x1, x2, x3, x4))
event (begMS(x1, x2, x3, x4)).

e Authentication of the BS to the MS

1 query x1: ident, x2: enbKey, x3: bool;
2 event (endMS_ENB(x1, x2, x3)) ~
3 event (begMS_ENB(x1, x2, x3)).

e Payload Secrecy
query attacker(payload).

The analysis results are the same as the ones in 4G
authentication (Section [VI). ProVerif proves all the properties
except the payload secrecy, because the BS could choose not
to enable encryption when communicating with the MS.

S9+. GSM I || LTE II-1V || GSM 1V, conv(CK IK — K¢, MME),
AV = 4G AV + CK + IK

Figure [I9] shows details of the ProVerif model and the
locations of the events which are used to specify the condi-
tional payload secrecy and the authentication properties. Most
of the code in this model is inherited from the 4G model and
the GSM model. The MME uses the conversion function c3
to derive the GSM session key from the UMTS cipher and
integrity keys:

fun c3(cipherKey, integKey): gsmKey.

There are four main processes in our model representing the
behavior of the MS, the BS, the SN and the HN respectively.

(xAS SMC procedure in process MSx)
let pMSAS(kc_ms:gsmKey, imsi_ms: ident, cap_ms: bool) =
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool));
event endMS_AS(imsi_ms, kc_ms, cap_ms);
out (pubChannel, CMComplete);
in(pubChannel, (=MSG, datamsg: bitstring));
out (pubChannel, sencrypt_as(secret, kc_ms));
if enableEnc_as_ms = true then
let msgcontent: bitstring =
in 0.

sdecrypt_as (datamsg, kc_ms)

(xprocess respresenting MSx)
let processMS =
(xThe identity of the MSx)
new imsi_ms: ident;
(* Pre—shared keyx)
new ki: key;
(x Insert id/pre—shared key pair into the private tablex)
insert keys(imsi_ms, ki);
(*MS non—deterministically choose
the capability of encryptionx)

let cap_ms: bool = encCapability () in
out (pubChannel, (CAP, cap_ms));
out (pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms) in

event begSN(imsi_ms, snid_ms, kasme_ms);
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Fig. 19. Scenario S9+ annotated in accord with our model

32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

out (pubChannel, (RES,
(+NAS SMC procedurex)

let knasenc_ms: nasEncKey =

let knasint_ms: nasint
in (pubChannel,

res_ms));

Key =

=finteg_nas ((enableEnc_nas_ms, cap_ms),

(«NAS key secrecyx)
out (pubChannel,

sencrypt_nas(secret, knasenc_ms)); 58

50
51

kdf_nas_enc (kasme_ms) in 52
kdf_nas_int (kasme_ms) in 53
(=NASSMC, enableEnc_nas_ms: bool, =cap_ms,s4
knasint_ms)))ss
event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms); 56

57

finteg_nas (sencrypt_nas(nas_smcomplete_msg,

knasenc_ms) ,

knasint_ms)));

pMSAS (kc_ms, imsi_ms, cap_ms).

imsi_bs:

(x process representing e—nodeBx)
let processBS =

in (sChannelSnBts, (kc_bs: gsmKey,
ident, cap_bs: bool));
event begMS_AS(imsi_bs, kc_bs, cap_bs);

out (pubChannel, senc_int_nas(secret, knasint_ms)); 50 out (pubChannel, (ASSMC, cap_bs));
let kc_ms:gsmKey = c3(ck_ms, ik_ms) in 60 in (pubChannel, =CMComplete);
if enableEnc_nas_ms = false then 61 if cap_bs = false then

out (pubChannel, (NASSMComplete, nas_smcomplete_msg, 62 event disableEnc;

finteg_nas (nas_smcomplete_msg, knasint_ms))); 63 out(pubChannel, (MSG, payload))
pMSAS(kc_ms, imsi_ms, cap_ms) 64 else
else 65 out(pubChannel, (MSG, sencrypt_as(payload, kc_bs))).
out (pubChannel, (NASSMComplete, 66
sencrypt_nas (nas_smcomplete_msg, knasenc_ms), 67 (xprocess representing MVEx)

19



68 let processSN = query x1: ident, x2: ident, x3: asmeKey;

1
69 in (pubChannel, (=CAP, cap_sn: bool)); 2 event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).
70 in (pubChannel, (=ID, imsi_sn: ident)); 3 query x1: ident, x2: ident, x3: asmeKey, x4: bool;
71 new snid_sn: ident; 4 event(endMS(x1, x2, x3, x4)) ~
72 out(secureChannel, (AV_REQ, imsi_sn, snid_sn)); event (begMS(x1, x2, x3, x4)).
73 in (secureChannel, (=AV, imsi_hn_sn: ident,
74 snid_hn_sn: ident, rand_sn: nonce, e Authentication of the BS to the MS
75 Xres_sn: resp, mac_sn: mac, kasme_sn: asmeKey,
76 ck_sn: cipherKey, ik_sn: integKey)); 1 query x1: ident, x2: gsmKey, x3: bool;
77 out(pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn)); 2 event(endMS_AS(x1, x2, x3)) ~
78 in (pubChannel, (=RES, =xres_sn)); event (begMS_AS(x1, x2, x3)).
79 event begMS(imsi_hn_sn, snid_hn_sn, kasme_sn, cap_sn);
80 (*NAS SMC procedure ) e Payload Secrecy
81 let knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
82 let knasint_sn: nasintKey = kdf_nas_int(kasme_sn) in query attacker(payload).
83 out(pubChannel, (NASSMC, cap_sn, cap_sn,
84 finteg_nas ((cap_sn, cap_sn), knasint_sn)));
85 in (pubChannel, (=NASSMComplete, msg_nas: bitstring , All the keys are proved to be remained secret. The conditional
e =finteg_nas (msg_nas, knasint_sn))); payload secrecy also holds, that means, if the encryption is
87 let kc_sn: gsmKey = c3(ck_sn, ik_sn) in
5 if cap_sn = true then enabled, the content of the encrypted data messages cannot be
89 if sdecrypt_nas(msg_nas, knasenc_sn) = learned by the attacker. The mutual authentication properties
90 nas_smcomplete_msg then bet the MS d the MME d H b
91 event endSN(imsi_hn_sn, snid_hn_sn, kasme_sn); € Ween. € an € are proved. Qwever, ecause
92 out(sChannelSnBts, (kc_sn, imsi_hn_sn, cap_sn)) the BS is the GSM BS, the CMC attack is found when
» elsee'se 0 checking the authentication of the BS to the MS. As in other
o if cap_sn = false then models, the payload secrecy could be violated because the BS
9 if msg_nas = nas_smcomplete_msg then could choose to disable encryption when communicating with
97 event endSN(imsi_hn_sn, snid_hn_sn, kasme_sn); the MS
98 out(sChannelSnBts, (kc_sn, imsi_hn_sn, cap_sn)) :
99 else 0
. else 0. S10+. UMTS I || LTE II-IV || UMTS IV, AV = 4G AV + CK
102 (xprocess representing HNx) + IK
103 let processHN =
104 i(n(GsecureChan;el . (=AV_REQ, imsi_)hn: ident, snid_hn: ident));  Figure shows details of the ProVerif model and the
105 + Generate athenication vectorsx . . . .
on new rand_hn: nonce: lpcatlons of the events which are .used to spgmfy the condi-
107 get keys(=imsi_hn, ki_hn) in tional payload secrecy, authentication properties. Most of the
108 let mac_hn: mac = f1(ki_hn, rand_hn) in code in this model is inherited from the 4G model and the
109 let xres_hn: resp = f2(ki_hn, rand_hn) in UMTS del. Th f . . del
1o let ck_hn: cipherKey = f3(ki_hn, rand_hn) in model. Lhere are Tour main processes in our mode
11 let ik_hn: integKey = f4(ki_hn, rand_hn) in representing the behavior of the MS, the BS, the SN and the
112 let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in :
113 out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn, HN respectlvely.
114 xres_hn, mac_hn, kasme_hn, ck_hn, ik_hn)).

(xAS SMC procedure in process MSx)
let pMSAS(ck_ms: cipherKey, ik_ms: integKey,
imsi_ms: ident, cap_ms: bool) =
in (pubChannel, (=ASSMC, =cap_ms, enableEnc_as_ms: bool,
=f9 ((cap_ms, enableEnc_as_ms), ik_ms)));
out (pubChannel, (ASSMComplete, as_smcomplete_msg,

1
2
. . . 3
The authentication vector request and response procedure is ,
5
6
7 f9 (as_smcomplete_msg, ik_ms)));
8
9
0
1
2

modeled in lines 72-76 and lines 104-114. The MME derives -
the GSM session key in line 87 and sends the key to the GSM
BS in line 92 or 98 through the private channel between the
MME and the GSM BS. The MS also computes the GSM
session key in line 42. The code of the GSM SMC procedure out (pubChannel, sencrypt_as (secret, ck_ms));

(lines 3-5 and lines 59-60) is inherited from the GSM model. : out(pubChannel, senc_int_as(secret, ik_ms));
13 if enableEnc_as_ms = true then

Security Property Specifications and Findings Since the '+ let mdsgconttent: cl;ittstring - o
GSM BS uses the GSM session key K., the events used to |, sdecrypt_as(datamsg, ck_ms) in 0.
specify the authentication of the BS to the MS use this key as 17 (xprocess respresenting MSx)

one of the parameters: s let processMS =

event endMS_AS(imsi_ms, ck_ms, ik_ms, cap_ms);
in (pubChannel, (=MSG, datamsg: bitstring,
=f9 (datamsg, ik_ms)));

19 («The identity of the MSx)
I event begMS_AS(ident, gsmKey, bool). 20 new imsi_ms: ident;
> event endMS_AS(ident, gsmKey, bool). 21 (x Pre—shared keyx)
2 new ki: key;
23 (x Insert id/pre—shared key pair into the private tablex)
The authentication properties between the MME and the MS 2 insert keys(imsi_ms, ki);
. . ip 25 (xMS non—deterministically choose
are spemﬁed the same as the ones in the 4G model. We specify ;. the capability of encryptions)
the security properties as following: 27 let cap_ms: bool = encCapability () in
28 out (pubChannel, (CAP, cap_ms));
29 out (pubChannel, (ID, imsi_ms));
* Key Secrecy . 3 in([()EbChannel, (=(CHALLENGE, r)a)nd_ms: nonce,,
1 not attacker(new ki). 31 =f1(ki, rand_ms), snid_ms: ident));
2 query attacker(secret). 2 let res_ms: resp = f2(ki, rand_ms) in
. 33 let ck_ms: cipherKey = f3(ki, rand_ms) in
e Conditional Payload Secrecy 34 let ik_ms: integKey = f4(ki, rand_ms) in
35 let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms) in
query attacker(payload)~-event(disableEnc). 36 event begSN(imsi_ms, snid_ms, kasme_ms);
37 out (pubChannel, (RES, res_ms));
e Mutual Authentication between the MS and the MME 38 (*NAS SMC procedure )
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

| 4G MS | | 3GBS | MME | 4G HN |
=k a 1|CAP
E 2./IMSI
wn_Y_
— 3. IMSI, SNid,
Network Type
= Generate RAND , MAC = f1(Ki, RAND)
= XRES = f2(Ki, RAND), CK = f3(Ki, RAND)
= IK = f4(Ki, RAND), AUTN=MAC
Kasme=KDF(CK, IK, SNid)
4. IMSI, SNid, CK, IK
RAND, AUTN, XRES, Kasve
K 5. RAND, AU[TN, SNid
5 XMAC = f1(Ki, RAND)
<3| MAC = XMAC, RES = f2(Ki, RAND)
= CK = f3(Ki, RAND), IK = f4(Ki, RAND)
Kasme = KDF(CK, IK, SNid)
6.[RES
| Verify RES = XRES I
Knasene = KDF (Kaswme,), Knasint = KDF(Kasme,)
Decide enableEnc?,
NAS-MAC = EIA((enableEnc, CAP), Kyasint)
T event begMS(Tmsi_sn, snid_sn, KasSme_sn, cap_sn) H
7. enableEnc, CAP, NAS-MAC
= 1 event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms] I
- | oz [T-=----=-=----=-=-=--9
T Knasenc = KDF (Kasme), Knasint = KDF (KasumE)
< XNAS-MAC = EIA((enableEnc, CAP), Knasint)
Verify XNAS-MAC = NAS-MAC
:_Ev'eﬁt' BegSN(Tmsi s, snid_ms, Kasme_ms) |
8. NAS SecuritylMode Complete
ifenableEnb cipherefl, integrity protected
otherwise intggrity protected
L evet endSNTST s, Siid 31, Rashie $h) 3
9. CAP, CK, IK
Decide enableEnc?,
AS-MAC = f9((enableEnc, CAP), IK)
levent begMS_AS(imsi_sn, ck_sn, ik_sn, cap_sn)}
E 10. enableEnc,
; CAP, AS-MAC
= XAS-MAC = f9((enableEnc, CAP), IK)
Verify XAS-MAC = AS-MAC
(e Tent end MO AS i, ck s, 1k s, cap_mis) |
11. AS SMC Complete
Integrity protected
12. payload, if no encryption|
{payload}_CK, otherwise
Decrypt message
if enableEnc_ms is true

Fig. 20. Scenario S10+ annotated in accor'd with our model

let knasenc_ms: nasEncKey kdf_nas_enc (kasme_ms) in 55
let knasint_ms: nasintKey kdf_nas_int (kasme_ms) in 56
in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,s’

=finteg_nas ((enableEnc_nas_ms, cap_ms), knasint_ms)))ss

event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms); 59
(«NAS key secrecyx) 60
out(pubChannel, sencrypt_nas(secret, knasenc_ms)); 61
out(pubChannel, senc_int_nas(secret, knasint_ms)); 62
if enableEnc_nas_ms = false then 63
out (pubChannel, (NASSMComplete, nas_smcomplete_msg, 64
finteg_nas (nas_smcomplete_msg, knasint_ms))); 65
pMSAS(ck_ms, ik_ms, imsi_ms, cap_ms) 66
else 67
out (pubChannel, (NASSMComplete, 68
sencrypt_nas (nas_smcomplete_msg, knasenc_ms), 69
finteg_nas (sencrypt_nas (nas_smcomplete_msg, 70
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knasenc_ms), knasint_ms))); (x[Msg 8]x)
pMSAS(ck_ms, ik_ms, imsi_ms, cap_ms).

(xprocess representing e—nodeBx)
let processBS =
in (sChannelSnBts, (ck_bs: cipherKey, ik_bs: integKey,
imsi_bs: ident, cap_bs: bool));
event begMS_AS(imsi_bs, ck_bs, ik_bs, cap_bs);
out (pubChannel, (ASSMC, cap_bs, cap_bs,
f9 ((cap_bs, cap_bs), ik_bs)));
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
=f9 (as_smcomplete_msg, ik_bs)));
if cap_bs = false then
event disableEnc;
out (pubChannel, (MSG, payload, f9(payload, ik_bs)))
else



108
109
110
111
112
113
114
115
116
117
118
119
120

out (pubChannel, (MSG, sencrypt_as(payload, ck_bs), e Conditional Payload Secrecy

f9 (sencrypt_as (payload, ck_bs), ik_bs .
( ypt_as(pay ) 2 query attacker(payload)~-event(disableEnc).

(xprocess representing MVEx) .
let processSN = e Mutual Authentication between the MS and the SN

in (pubChannel, (=CAP, cap_sn: bool));

in(pubChannel, (=ID, imsi_sn: ident));

new snid_sn: ident;

out(secureChannel, (AV_REQ, imsi_sn, snid_sn));

in (secureChannel, (=AV, =imsi_sn, snid_hn_sn: ident,
rand_sn: nonce, Xxres_sn: resp, mac_sn: mac,
kasme_sn: asmeKey, ck_sn: cipherKey, ik_sn: integKey)); .

out (pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn)); e Authentication of the BS to the MS

in (pubChannel, (=RES, =xres_sn));

1 query x1: ident, x2: ident, x3: asmeKey;
2 event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).
3 query x1: ident, x2: ident, x3: asmeKey, x4: bool;
4 event(endMS(x1, x2, x3, x4)) ~
event (begMS(x1, x2, x3, x4)).

1 query x1: ident, x2: cipherKey, x3: integKey, x4: bool;

event begMS(imsi_sn, snid_hn_sn, kasme_sn, cap_sn); 5 event (endMS_AS(x1. x2, x3, x4)) -
I(*NASSMCP’OC?"”’e*) . event (begMS_AS(x1, x2, x3, x4)).
et knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
let knasint_sn: nasintKey = kdf_nas_int(kasme_sn) in Pavload S
out(pubChannel, (NASSMC, cap_sn, cap_sn, ¢ Fayloa ecrecy
finteg_nas ((cap_sn, cap_sn), knasint_sn))); query attacker(payload).

in (pubChannel, (=NASSMComplete, msg_nas:bitstring,
=finteg_nas (msg_nas, knasint_sn)));

if cap_sn = true then The analysis results are the same as the ones in 4G
if sdecrypt_nas(msg_nas, knasenc_sn) .. R . .
= nas_smcomplete_msg then authentication (Section [VI). ProVerif proves all the properties
event endSN(imsi_sn, snid_hn_sn, kasme_sn); except the payload secrecy, because the BS could choose not
out(sChannelSnBts, (ck_sn, ik_sn, imsi_sn, cap_sn)) bl . gl .
else 0 to enable encryption when communicating with the MS.
else

if cap_sn = false then
if msg_nas = nas_smcomplete_msg then
event endSN(imsi_sn, snid_hn_sn, kasme_sn);
out(sChannelSnBts, (ck_sn, ik_sn,
imsi_sn, cap_sn))
else 0
else 0.

(xprocess representing HNx)
let processHN =

in (secureChannel, (=AV_REQ, imsi_hn: ident, snid_hn: ident));

(x Generate athenication vectorsx)

new rand_hn: nonce;

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in

let ck_hn: cipherKey = f3(ki_hn, rand_hn) in

let ik_hn: integKey = f4(ki_hn, rand_hn) in

let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in

out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn,
xres_hn, mac_hn, kasme_hn, ck_hn, ik_hn)).

The MME sends out the authentication vector request in
line 79. Upon receiving the authentication request (line 110),
the HN generates the 4G authentication vector based on the
UMTS authentication vector. The HN then sends the 4G
authentication vectors plus the CK and the /K to the MME
(line 119-120). And the MME receives the authentication
vectors in line 80-82. The NAS authentication procedure
(lines 39-55 and lines 87-92) is the same as in the 4G model.
In line 97 and line 103-104 , the MME sends the CK and the
IK to the UMTS BS on the private channel. The code of the
UMTS SMC procedure (lines 4—7 and lines 63—66) is inherited
from the UMTS model.

Security Property Specifications and Findings Since the

UMTS BS uses the CK and the IK instead of the keys derived
from K, yp, the events used to specify the authentication of the
BS to the MS use the CK and the IK as their parameters:

event begMS_AS(ident, cipherKey, integKey, bool).
event endMS_AS(ident, cipherKey, integKey, bool).

We specify the security properties as following:

1
2

e Key Secrecy

not attacker(new Kki).
query attacker(secret).
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APPENDIX D
COMPLETE CODE LISTINGS FOR ALL SCENARIOS

All models are checked by ProVerif version 1.86pl4.

SI.GSM I-1V

(x Public channel between the MS and the SN x)
free pubChannel: channel.

(x Secure channel between the SN and the HN x)
free secureChannel: channel [private].

out (pubChannel, (CAP, cap_ms));

(xSend out permanent ID [Msg 2]x)

out (pubChannel, (ID, imsi_ms));

(x Input challenge message from SN [Msg 5]x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce)
(x Compute response and encryption keyx)

let res_ms: resp = a3(rand_ms, ki) in

let kc_ms: sessKey = a8(rand_ms, ki) in
(xMS is authenticating itself to SNx)
event begSN(imsi_ms, kc_ms);

(xSend out response to SN [Msg 6]x)

out (pubChannel, (RES, res_ms));

(+ Receive GSM cipher mode command [Msg 7]x)
in (pubChannel, (=CMC, enableEnc_ms: bool));

)5

(x types x) event endMS(imsi_ms, kc_ms);

type key. (x Receive message from SN [Msg 8]x)

type ident. in (pubChannel, (=MSG, msg: bitstring));

type nonce. out (pubChannel, sencrypt(secretKc, kc_ms));

type msgHdr. if enableEnc_ms = true then

type resp. let msgcontent: bitstring = sdecrypt(msg, kc_ms) in
type sessKey. 0.

(x constant message headers x)

let processSN =

const CAP: msgHdr. (x Receive MS’s capability [Msg 1]x)

const ID: msgHdr. in (pubChannel, (=CAP, cap_sn: bool));

const AV_REQ: msgHdr. (x Receive permanent ID [Msg 2]x)

const AV: msgHdr. in (pubChannel, (=ID, imsi_sn: ident));

const CHALLENGE: msgHdr. (xSend out authentication vector request [Msg 3]x)

const RES: msgHdr. out(secureChannel, (AV_REQ, imsi_sn));

const CMC: msgHdr. (x Receive authentication vector [Msg 4]x)

const MSG: msgHdr. in (secureChannel, (=AV, imsi_hn_sn: ident, rand_sn: nonce,
xres_sn: resp, kc_sn: sessKey));

(+ Functions x) («Send authentication challenge to MS [Msg 5]x)

fun a3(nonce, key) resp.
fun a8(nonce, key): sessKey.

out (pubChannel, (CHALLENGE, rand_sn));
(x Receive response [Msg 6]x)

fun sencrypt(bitstring, sessKey): bitstring. in (pubChannel, (=RES, res_sn: resp));
(x Check whether received response equal to expected responsex)
reduc forall m: bitstring, k: sessKey; if res_sn = xres_sn then

sdecrypt(sencrypt(m, k), k) =m.

reduc encCapability () = true;
encCapability () = false.

(+ The key table consists of pairs
(ident, key) shared between the MS and the HN.

(x At this point, SN authenticated MSx)
event endSN(imsi_hn_sn, kc_sn);

(«SN decide whether to encrypt messages;
based on received capabilities of MSx)
(= let enableEnc_sn: bool = cap_sn in x)
event begMS(imsi_hn_sn, kc_sn);
(xSend out cipher mode command [Msg 7]x)

Table is not accessible by the attacker x) (x out(pubChannel, (CMC, enableEnc_sn)); x)

table keys(ident, key). out (pubChannel, (CMC, cap_sn));
out (pubChannel, sencrypt(secretKc, kc_sn));
free s: bitstring [private]. (= if enableEnc_sn = false then x)
query attacker(s). if cap_sn = false then
event disableEnc;
(+ The standard secrecy queries of ProVerif only x) out(pubChannel, (MSG, s))
(+ deal with the secrecy of private free namesx) else
(+ secretKc is secret if and only if all kcs are secretx) out (pubChannel, (MSG, sencrypt(s, kc_sn))).

free secretKc: bitstring [private].
query attacker(secretKc).
let processHN =

not attacker(new ki). (x Receive authentication vector request [Msg 3]x)

in(secureChannel, (=AV_REQ, imsi_hn: ident));
(x Authentication queries x) (x Generate a fresh random numberx)
event begSN(ident, sessKey). new rand_hn: nonce;
event endSN(ident, sessKey). (x Computes expected response and Kcx)
event begMS(ident, sessKey). get keys(=imsi_hn, ki_hn) in
event endMS(ident, sessKey). let xres_hn: resp = a3(rand_hn, ki_hn) in
let kc_hn: sessKey = a8(rand_hn, ki_hn) in

query x1: ident, x2: sessKey;

event(endSN(x1, x2)) ~» event(begSN(x1, x2)).
query x1: ident, x2: sessKey;

event(endMS(x1, x2)) ~» event(begMS(x1, x2)).

(+Send out authentication vector [Msg 4]x)
out(secureChannel, (AV, imsi_hn, rand_hn, xres_hn, kc_hn));
out (pubChannel, sencrypt(secretKc, kc_hn)).

process
event disableEnc. ((!processMS)
(«When the attacker knows s,
the event disableEnc has been executed. x)

query attacker(s) ~» event(disableEnc).

| processSN | processHN)

S2. UMTS I -1V

let processMS = (x Public channel between the MS and the SN x)
(+ The ident and pre—shared key of the MS x) free pubChannel: channel.
new imsi_ms: ident; (x Secure channel between the SN and the HN x)
new ki: key; free secureChannel: channel [private].

insert keys(imsi_ms, ki);

(xMS non—deterministically choose (x types x)
the capability of encryptionx) type key.
let cap_ms: bool = encCapability () in type ident.
(xSend out cap_ms to SN[Msg 1]x) type nonce.
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type msgHdr.
type resp.
type cipherKey.
type integKey.
type mac.

type msgMac.

out (pubChannel, (CAP, cap_ms));
(xSend out permanent ID [Msg 2]x)
out (pubChannel, (ID, imsi_ms));
(x Input challenge message from SN [Msg 5]x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce, mac_ms:
if f1(ki, rand_ms) = mac_ms then
(x Compute response and encryption keyx)
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
(*MS is authenticating itself to SNx)
event begSN(imsi_ms, ck_ms, ik_ms);
(+Send out response to SN [Msg 6]x)
out (pubChannel, (RES, res_ms));
(x Receive GSM cipher mode command [Msg 7]x)
in (pubChannel, (=SMC, enableEnc_ms: bool,
=cap_ms, fresh_ms: nonce,
=f9 ((enableEnc_ms, cap_ms, fresh_ms), ik_ms)));

mac) ) ;

(x constant message headers x)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.

const RES: msgHdr.

const SMC: msgHdr.

const MSG: msgHdr.

(+ Functions x)

fun f1(key, nonce): mac. event endMS(imsi_ms, ck_ms, ik_ms, cap_ms);
fun f2(key, nonce): resp. (= Receive message from SN [Msg 8]x)
fun f3(key, nonce): cipherKey. in(pubChannel, (=MSG, msg: bitstring, fresh_msg_ms: nonce,
fun f4 (key, nonce): integKey. =f9 ((msg, fresh_msg_ms), ik_ms)));
fun f9 (bitstring, integKey): msgMac. out (pubChannel, sencrypt(secretCk, ck_ms));

out (pubChannel, sencryptinteg(secretlk, ik_ms));
fun sencrypt(bitstring, cipherKey): bitstring. if enableEnc_ms = true then

let msgcontent: bitstring = sdecrypt(msg, ck_ms) in

reduc forall m: bitstring, k: cipherKey; 0.

sdecrypt(sencrypt(m, k), k) =m.
let processSN =
(x Receive MS’s capability [Msg 1]x)
in (pubChannel, (=CAP, cap_sn: bool));
(+ Receive permanent ID [Msg 2]x)
in(pubChannel, (=ID, imsi_sn: ident));
(xSend out authentication vector request [Msg 3]x)
out(secureChannel, (AV_REQ, imsi_sn));
(x Receive authentication vector [Msg 4]x)
in (secureChannel, (=AV, imsi_hn_sn: ident,
xres_sn: resp, ck_sn: cipherKey, ik_sn:
mac_sn: mac));
(xSend authentication challenge to MS [Msg 5]x)
out (pubChannel, (CHALLENGE, rand_sn, mac_sn));
(+ Receive response [Msg 6]x)
in(pubChannel, (=RES, res_sn: resp));
(x Check whether received response equal to expected responsex)
bitstring [private]. if res_sn = xres_sn then

reduc encCapability () = true;
encCapability () = false.

(+ To test secrecy of the integrity key, x)
(x use them as session keys to encrypt a free private name x)
fun sencryptinteg (bitstring, integKey): bitstring.
reduc forall m: bitstring, k: integKey;
sdecryptinteg (sencryptinteg(m, k), k) = m. rand_sn: nonce,
integKey ,
(x the table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attacker x)
table keys(ident, key).

free s:

query attacker(s).

(x The standard secrecy queries of ProVerif only x)

(+ deal with the secrecy of private free namesx)

(+ secretCk is secret if and only if all cks are secretx)
free secretCk: bitstring [private].

query attacker (secretCk).

(+ secretlk is secret if and only if all iks are secretx)
free secretlk: bitstring [private].

query attacker(secretlk).

not attacker(new ki).

(x Authentication queries x)

event begSN(ident, cipherKey, integKey). if cap_sn = false then
event endSN(ident, cipherKey, integKey). event disableEnc;
event begMS(ident, cipherKey, integKey, bool). out (pubChannel, (MSG, s, fresh_msg_sn,
event endMS(ident, cipherKey, integKey, bool). f9 ((s, fresh_msg_sn), ik_sn)))
else
query x1: ident, x2: cipherKey, x3: integKey; out (pubChannel, (MSG, sencrypt(s, ck_sn), fresh_msg_sn,

event(endSN(x1, x2, x3)) ~
query x1: ident, x2: cipherKey, x3: integKey, x4: bool;
event(endMS(x1, x2, x3, x4)) ~
event (begMS(x1, x2, x3, x4)).

event disableEnc.
query attacker(s) ~» event(disableEnc).
let processMS =
(+ The ident and pre—shared key of the MS x)
new imsi_ms: ident;
new ki: key;
insert keys(imsi_ms, ki);
(xMS non—deterministically
choose the capability of encryptionx)
let cap_ms: bool = encCapability () in
(xSend out cap_ms to SN[Msg 1]x)

event (begSN(x1, x2, x3)).

(x At this point, SN authenticated MSx)

event endSN(imsi_hn_sn, ck_sn, ik_sn);

new fresh_sn: nonce;

(«SN decide whether to encrypt messages x)

(«base on the received capabilities of MSx)

(+ let enableEnc_sn: bool = cap_sn in x)

event begMS(imsi_hn_sn, ck_sn, ik_sn, cap_sn);

(xSend out cipher mode command [Msg 7]x)

out (pubChannel, (SMC, cap_sn, cap_sn, fresh_sn,
f9 ((cap_sn, cap_sn, fresh_sn), ik_sn)));

out (pubChannel, sencrypt(secretCk, ck_sn));

out (pubChannel, sencryptinteg(secretlk, ik_sn));

new fresh_msg_sn: nonce;

(xSend out one message [Msg 8]x)

(+ if enableEnc_sn = false then x)

f9 ((sencrypt(s, ck_sn), fresh_msg_sn),

let processHN =

(x Receive authentication vector request [Msg 3]x)

in(secureChannel, (=AV_REQ, imsi_hn: ident));

(x Generate a fresh random numberx)

new rand_hn: nonce;

(x Computes expected response and Kcx)

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in

let ck_hn: cipherKey = f3(ki_hn, rand_hn) in

let ik_hn: integKey = f4(ki_hn, rand_hn) in

(+Send out authentication vector [Msg 4]x)

out(secureChannel, (AV, imsi_hn, rand_hn, xres_hn,
ck_hn, ik_hn, mac_hn));

out (pubChannel, sencrypt(secretCk, ck_hn));
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ik_sn))).



out (pubChannel, sencryptinteg(secretlk, ik_hn)).

process
((!processMS) | processSN | processHN )

S3.LTET-V

(x Public channel between the MS and the SNx)
free pubChannel: channel.

(= Secure channel between the SN and the HNx)
free secureChannel: channel [private].

(x Secure channel between MME and BSx)

free sChannelSnBts: channel [private].

(x typesx)

type key.

type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type mac.

type msgMac.
type asmeKey.
type nasEncKey.
type nasintKey.
type enbKey.
type asEncKey.
type asintKey.
type upEncKey.

(x constant message headersx)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.
const RES: msgHdr.

const NASSMC: msgHdr.

const NASSMComplete: msgHdr.
const ASSMC: msgHdr.

const ASSMComplete: msgHdr.
const MSG: msgHdr.

(* Functions x)

fun f1(key, nonce): mac.

fun f2(key, nonce): resp.

fun f3(key, nonce): cipherKey.

fun f4 (key, nonce): integKey.

fun kdf_asme(cipherKey, integKey, ident): asmeKey.
fun kdf_nas_enc(asmeKey) : nasEncKey.

fun kdf_nas_int(asmeKey): nasintKey.

fun finteg_nas (bitstring, nasintKey): msgMac.
fun kdf_enb (asmeKey): enbKey.

fun kdf_as_enc(enbKey): asEncKey.

fun kdf_as_int(enbKey): asintKey.

fun kdf_up_enc(enbKey): upEncKey.

fun finteg_as (bitstring, aslintKey): msgMac.

fun sencrypt_nas(bitstring , nasEncKey): bitstring.
reduc forall m: bitstring, k: nasEncKey;
sdecrypt_nas(sencrypt_nas(m, k), k) = m.

fun sencrypt_as(bitstring , asEncKey): bitstring.
reduc forall m: bitstring, k: asEncKey;
sdecrypt_as(sencrypt_as(m, k), k) = m.

(x Type Converterx)
fun bool2bitstring (bool): bitstring [data, typeConverter].

reduc encCapability ()
encCapability ()

true;
false.

(xthe table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attackerx)
table keys(ident, key).

(*SMC command msgx )

free nas_smcomplete_msg: bitstring.
free as_smcomplete_msg: bitstring.
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free payload: bitstring [private].

event disableEnc.

(«When the attacker knows s, the event
disableEnc has been executed. x)

query attacker(payload) ~» event(disableEnc).

query attacker(payload).

free secret: bitstring [private].

query attacker(secret).

fun senc_int_nas(bitstring, nasintKey): bitstring.

reduc forall m: bitstring, k: nasintKey;
sdec_in_nas(senc_int_nas(m, k), k) =

fun senc_int_as(bitstring, asintKey): bitstring.

reduc forall m: bitstring, k: asintKey;
sdec_in_as(senc_int_as(m, k), k) =m.

fun senc_up(bitstring , upEncKey): bitstring.

reduc forall m: bitstring, k: upEncKey;
sdec_up(senc_up(m, k), k) =m.

not attacker(new ki).

(x Authentication queriesx)

event begSN(ident, ident, asmeKey).

event endSN(ident, ident, asmeKey).

event begMS(ident, ident, asmeKey, bool).
event endMS(ident, ident, asmeKey, bool).
event begENB(ident, enbKey).

event endENB(ident, enbKey).

event begMS_ENB(ident, enbKey, bool).
event endMS_ENB(ident, enbKey, bool).

query x1: ident, x2: ident, x3: asmeKey;
event(endSN(x1, x2, x3)) ~» event(begSN(x1, x2, x3)).

query x1: ident, x2: ident, x3: asmeKey, x4: bool;
event(endMS(x1, x2, x3, x4)) ~

event (begMS(x1, x2, x3, x4)).

query x1: ident, x2: enbKey;
event (endENB(x1, x2)) ~» event(begENB(x1, x2)).

query x1: ident, x2: enbKey, x3: bool;
event(endMS_ENB(x1, x2, x3)) ~

event (begMS_ENB(x1, x2, x3)).

(*xAS SMC procedure in process MSx)
let pMSAS(kasme_ms: asmeKey, imsi_ms: ident, cap_ms: bool)
let kenb_ms: enbKey = kdf_enb (kasme_ms) in
let kasenc_ms: asEncKey = kdf_as_enc(kenb_ms) in
let kasint_ms: aslntKey = kdf_as_int(kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,

=finteg_as (bool2bitstring (enabIeEnc_as_ms) , kasint_ms)));

event begENB(imsi_ms, kenb_ms);
out (pubChannel, (ASSMComplete, as_smcomplete_msg,

finteg_as (as_smcomplete_msg, kasint_ms))); (x[Msg 11]x)

event endMS_ENB(imsi_ms, kenb_ms, cap_ms);

in (pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms))); (x[Msg 12]x)

out (pubChannel, sencrypt_as(secret, kasenc_ms));

out (pubChannel, senc_int_as(secret, kasint_ms));

out (pubChannel, senc_up(secret, kupenc_ms));

if enableEnc_as_ms = true then

let msgcontent: bitstring = sdecrypt_as(datamsg, kasenc_ms)

in 0.

(xprocess respresenting MSx)
let processMS =
(«The identity of the MSx)
new imsi_ms: ident;
(x Pre—shared keyx)
new ki: key;

(x Insert id/pre—shared key pair into the private tablex)

insert keys(imsi_ms, ki);

(*MS non—deterministically choose the capability of encryptionx)

let cap_ms: bool = encCapability () in

out (pubChannel, (CAP, cap_ms));

out (pubChannel, (ID, imsi_ms));

in(pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));

let res_ms: resp = f2(ki, rand_ms) in

let ck_ms: cipherKey = f3(ki, rand_ms) in



let ik_ms: integKey = f4(ki, rand_ms) in

let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms)

out (pubChannel, (RES, res_ms));

(«NAS SMC procedurex)

let knasenc_ms: nasEncKey = kdf_nas_enc(kasme_ms) in
let knasint_ms: nasintKey = kdf_nas_int(kasme_ms) in

in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,
=finteg_nas ((enableEnc_nas_ms, cap_ms), knasint_ms)));

event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms);
(«NAS key secrecyx)

out (pubChannel, sencrypt_nas(secret, knasenc_ms));
out (pubChannel, senc_int_nas(secret, knasint_ms));
event begSN(imsi_ms, snid_ms, kasme_ms);

if enableEnc_nas_ms = false then

out (pubChannel, (NASSMComplete, nas_smcomplete_msg,

finteg_nas (nas_smcomplete_msg, knasint_ms)));

pMSAS (kasme_ms, imsi_ms, cap_ms)

else

out (pubChannel, (NASSMComplete,
sencrypt_nas (nas_smcomplete_msg, knasenc_ms),
finteg_nas (sencrypt_nas (nas_smcomplete_msg,
knasenc_ms), knasint_ms)));

pMSAS (kasme_ms, imsi_ms, cap_ms).

(x process representing e—nodeBx)
let processENB =
in (sChannelSnBts, (kasme_enb: asmeKey,
imsi_enb: ident, cap_enb: bool));
let kenb_enb: enbKey = kdf_enb(kasme_enb) in
let kasenc_enb: asEncKey = kdf_as_enc(kenb_enb) in
let kasint_enb: asintKey = kdf_as_int(kenb_enb) in
let kupenc_enb: upEncKey = kdf_up_enc(kenb_enb) in
event begMS_ENB(imsi_enb, kenb_enb, cap_enb);
out (pubChannel, (ASSMC, cap_enb,
finteg_as (bool2bitstring (cap_enb), kasint_enb)));
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
=finteg_as (as_smcomplete_msg, kasint_enb)));
event endENB(imsi_enb, kenb_enb);
if cap_enb = false then
event disableEnc;
out (pubChannel, (MSG, payload,
finteg_as (payload, kasint_enb)))
else

out (pubChannel, (MSG, sencrypt_as(payload, kasenc_enb),

finteg_as (sencrypt_as(payload, kasenc_enb),
kasint_enb))).

(x process representing MVEx)
let processMME =
in(pubChannel, (=CAP, cap_sn: bool));
in (pubChannel, (=ID, imsi_sn: ident));
new snid_sn: ident;
out(secureChannel, (AV_REQ, imsi_sn, snid_sn));

in

in(secureChannel, (=AV, =imsi_sn, =snid_sn, rand_sn: nonce,

Xres_sn: resp, mac_sn: mac, kasme_sn: asmeKey));

out (pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn));

in (pubChannel, (=RES, =xres_sn));
event begMS(imsi_sn, snid_sn, kasme_sn, cap_sn);
(+NAS SMC procedurex)
let knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
let knasint_sn: naslIntKey = kdf_nas_int(kasme_sn) in
out (pubChannel, (NASSMC, cap_sn, cap_sn,

finteg_nas ((cap_sn, cap_sn), knasint_sn)));
in (pubChannel, (=NASSMComplete, msg_nas:bitstring,

=finteg_nas (msg_nas, knasint_sn)));
if cap_sn = true then

if sdecrypt_nas(msg_nas, knasenc_sn) =

nas_smcomplete_msg then
event endSN(imsi_sn, snid_sn, kasme_sn);

out(sChannelSnBts, (kasme_sn, imsi_sn, cap_sn))

else 0
else
if cap_sn = false then
if msg_nas = nas_smcomplete_msg then
event endSN(imsi_sn, snid_sn, kasme_sn);

out(sChannelSnBts, (kasme_sn, imsi_sn, cap_sn))

else 0
else 0.

(xprocess representing HNx)
let processHN =
in (secureChannel, (=AV_REQ, imsi_hn: ident,
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proc

snid_hn: ident));

(x Generate athenication vectorsx)

new rand_hn: nonce;
get keys(=imsi_hn, ki_hn
let mac_hn: mac = f1(ki_h
let xres_hn: resp = f

let ck_hn: cipherKey

in

)
ki_hn, rand_hn) in

2(ki_hn, rand_hn) in
= f3(ki_hn, rand_hn

f
let ik_hn: integKey = f4(ki_hn, rand_hn)
let kasme_hn: asmeKey = kdf_asme(ck_hn,
out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn,
xres_hn, mac_hn, kasme_hn)).

ess

) in
in
ik_hn, snid_hn) in

((!processMS) | processMME | processENB | processHN)

S4. GSM I — 1V, convert(3G AV — 2G AV)
(+ Public channel between the MS and the SN x)

free

pubChannel: channel.

(+ Secure channel between the SN and the HN x)
free secureChannel: channel [private].

(x types x)

type
type
type
type
type
type
type
type
type
type

key .
ident.
nonce.
msgHdr.
resp.
cipherKey .
integKey .
mac.
msgMac.
sessKey.

(+ constant message headers x)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.

const RES: msgHdr.

const CMC: msgHdr.

const MSG: msgHdr.

(+ Functions x)

fun
fun
fun
fun
fun
fun
fun
fun

redu

key, nonce
key, nonce

): mac.

): resp.
key, nonce): cipherKey.

):

bitstring , integKey): msgMac.

f1(
f2(
3 (
f4 (key, nonce integKey .
9 (
c2(

resp):resp.

c3(cipherKey, integKey): sessKey.

sencrypt (bitstring , sessKey):

bitstring .

c forall m: bitstring, k: sessKey;

sdecrypt(sencrypt(m, k), k) =

m.

(+ To test secrecy of the cipher key, x)
(x use them as session keys to encrypt a free private name x)

fun sencryptCipher (bitstring , cipherKey):

reduc forall m: bitstring, k: cipherKey;
sdecryptCipher(sencryptCipher(m, k), k)

reduc encCapability () = true;

encCapability () = false.

(+ the table ident/keys

The key table consists of pairs

bitstring.

= m.

(ident, key) shared between the MS and the HN.
Table is not accessible by the attacker x)

tabl

e keys(ident, key).

free s: bitstring [private].
query attacker(s).

(+ The standard secrecy queries of ProVerif only x)

(+ deal with the secrecy of private free namesx)

(x+ secretKc is secret if and only if all kcs is secretx)
free secretKc: bitstring [private].
query attacker(secretKc).



event begMS(imsi_hn_sn, kc_sn);

(x secretCk is secret if and only if all cks are secretx) (x Send out cipher mode command [Message 7]x)
free secretCk: bitstring [private]. (+ out(pubChannel, (CMC, enableEnc_sn)); x)
query attacker(secretCk). out (pubChannel, (CMC, cap_sn));

out (pubChannel, sencrypt(secretKc, kc_sn));
(+ If KC and CK are secret, then IK is secret x) (= if enableEnc_sn = false then x)

if cap_sn = false then
event disableEnc;

not attacker(new ki). out (pubChannel, (MSG, s))

else
(+ Authentication queries x) out (pubChannel, (MSG, sencrypt(s, kc_sn))).
event begSN(ident, sessKey).
event endSN(ident, sessKey).
event begMS(ident, sessKey). (x Process representing HNx)
event endMS(ident, sessKey). let processHN =

(x Receive authentication vector request [Message 3]x)

query x1: ident, x2: sessKey; event(endSN(x1, x2)) ~- in(secureChannel, (=AV_REQ, imsi_hn: ident));
event (begSN(x1, x2)). (x Generate a fresh random numbersx)
query x1: ident, x2: sessKey; event(endMS(x1, x2)) ~ new rand_hn: nonce;
event (begMS(x1, x2)). (x Computes expected response and Kcx)
get keys(=imsi_hn, ki_hn) in
event disableEnc. let mac_hn: mac = f1(ki_hn, rand_hn) in
(«When the attacker knows s, the event let xres_hn_u: resp = f2(ki_hn, rand_hn) in
disableEnc has been executed. x) let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
query attacker(s) ~ event(disableEnc). let ik_hn: integKey = f4(ki_hn, rand_hn) in
let xres_hn_g: resp = c2(xres_hn_u) in
(x Process respresenting MSx) let kc_hn: sessKey = c3(ck_hn, ik_hn) in
let processMS = («Send out authentication vector [Message 4]x)
(x The ident and pre—shared key of the MS x) out(secureChannel, (AV, imsi_hn, rand_hn, xres_hn_g, kc_hn));
new imsi_ms: ident; out (pubChannel, sencryptCipher(secretCk, ck_hn));
new ki: key; out (pubChannel, sencrypt(secretKc, kc_hn)).
insert keys(imsi_ms, ki);
(xMS non—deterministically choose process
the capability of encryptionx) ((!processMS) | processSN | processHN )
let cap_ms: bool = encCapability () in

(xSend out cap_ms to SN[Message 1]x)
out (pubChannel, (CAP, cap_ms));

(xSend out permanent ID [Message 2]x) S5. GSM I-III || UMTS 1V, conv(Kc — CK IK, VLR/SGSN)
out (pubChannel, (ID, imsi_ms));
(xInput challenge message from SN [Message 5]x) (xparam verboseClauses = explained.x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce));
(x Compute response and encryption keyx) (+ Public channel between the MS and the SN x)
let res_ms_u: resp = f2(ki, rand_ms) in free pubChannel: channel.
let ck_ms: cipherKey = f3(ki, rand_ms) in (= Secure channel between the SN and the HN x)
let ik_ms: integKey = f4(ki, rand_ms) in free secureChannel: channel [private].
let res_ms_g: resp = c2(res_ms_u) in
let kc_ms: sessKey = c3(ck_ms, ik_ms) in (x types x)
(*MS is authenticating itself to SNx) type key.
event begSN(imsi_ms, kc_ms); type ident.
(xSend out response to SN [Message 6]x) type nonce.
out (pubChannel, (RES, res_ms_g)); type msgHdr.
(x Receive GSM cipher mode command [Message 7]x) type resp.
in (pubChannel, (=CMC, enableEnc_ms: bool)); type sessKey.
event endMS(imsi_ms, kc_ms); type cipherKey.
(x Receive message from SN [Message 8]x) type integKey.
in (pubChannel, (=MSG, msg: bitstring)); type mac.
out(pubChannel, sencrypt(secretkKc, kc_ms)); type msgMac.
out (pubChannel, sencryptCipher(secretCk, ck_ms));
if enableEnc_ms = true then (x+ constant message headers x)
let msgcontent: bitstring = sdecrypt(msg, kc_ms) in const CAP: msgHdr.
0. const ID: msgHdr.
const AV_REQ: msgHdr.
(x Process respresenting SNx) const AV: msgHdr.
let processSN = const CHALLENGE: msgHdr.
(x Receive MS’s capability [Message 1]x) const RES: msgHdr.
in(pubChannel, (=CAP, cap_sn: bool)); const SMC: msgHdr.
(x Receive permanent ID [Message 2]x) const MSG: msgHdr.
in (pubChannel, (=ID, imsi_sn: ident));
(xSend out authentication vector request [Message 3]x) ( FL/"CU'OHS *)
out(secureChannel, (AV_REQ, imsi_sn)); fun a3(nonce, key) : resp.
(x Receive authentication vector [Message 4]x) fun a8(nonce, key) sessKey .
in (secureChannel, (=AV, imsi_hn_sn: ident, rand_sn: nonce, fun c4(sessKey): cipherKey.
xres_sn: resp, kc_sn: sessKey)); fun c5(sessKey): integKey.
(xSend authentication challenge to MS [Message 5]x) fun f9(bitstring , integKey): msgMac.
out (pubChannel, (CHALLENGE, rand_sn)); fun sencrypt(bitstring, cipherKey): bitstring.
(= Receive response [Message 6]x)
in (pubChannel, (=RES, res_sn: resp)); reduc forall m: bitstring, k: cipherKey;
(x Check whether received response matches expected responsex) sdecrypt(sencrypt(m, k), k) =
if res_sn = xres_sn then
(xAt this point, SN authenticated MSx) reduc  encCapability () = true;
event endSN(imsi_hn_sn, kc_sn); encCapability () = false.
(+ SN decide whether to encrypt messages x)
(+ base on the received capabilities of MSx) (x To test secrecy of the integrity key, =)
(+ let enableEnc_sn: bool = cap_sn in x) (x use them as session keys to encrypt a free private name x)

fun sencryptinteg (bitstring, integKey): bitstring.
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reduc forall m: bitstring, k: integKey;
sdecryptinteg (sencryptinteg(m, k), k)

m.
(+ the table ident/keys

The key table consists of pairs

(ident, key) shared between the MS and the HN.
Table is not accessible by the attacker x)
table keys(ident, key).

free s: bitstring [private].
query attacker(s).

(+ The standard secrecy queries of ProVerif only x)

(+ deal with the secrecy of private free namesx)

(+ secretCk is secret if and only if all cks are secretx)
free secretCk: bitstring [private].

query attacker (secretCk).

(+ secretlk is secret if and only if all iks are secretx)
free secretlk: bitstring [private].
query attacker(secretlk).

(+ If IK and CK are secret, then KC is secret. x)
(x Because CK and IK are computed from KC by public functions x)

not attacker(new Kki).

(+ Authentication queries x)

event begSN(ident, sessKey).
event endSN(ident, sessKey).
event begMS(ident, cipherKey, integKey, bool).
event endMS(ident, cipherKey, integKey, bool).

query x1: ident, x2: sessKey;
event(endSN(x1, x2)) ~» event(begSN(x1, x2)).
query x1: ident, x2: cipherKey, x3: integKey, x4: bool;

event(endMS(x1, x2, x3, x4)) ~
event (begMS(x1, x2, x3, x4)).

event disableEnc.

(«When the attacker knows s, the event
disableEnc has been executed. x)

query attacker(s) ~ event(disableEnc).

(= Process respresenting MSx)

let processMS =
(+ The ident and pre—shared key of the MS x)
new imsi_ms: ident;
new ki: key;
insert keys(imsi_ms, Kki);
(*MS non—deterministically choose the

capability of encryptionsx)

let cap_ms: bool encCapability ()
(xSend out cap_ms to SN[Msg 1]x)
out (pubChannel, (CAP, cap_ms));
(«Send out permanent ID [Msg 2]x)
out(pubChannel, (ID, imsi_ms));
(x Input challenge message from SN [Msg 5]x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce));

= in

(x Compute response and encryption keyx)
let res_ms: resp = a3(rand_ms, ki) in
let kc_ms: sessKey = a8(rand_ms, ki) in

(*MS is authenticating itself to SNx)
event begSN(imsi_ms, kc_ms);
(xSend out response to SN [Msg 6]x)
out (pubChannel, (RES, res_ms));
(x Convert Kc into UMTS keysx)
let ck_ms:cipherKey c4(kc_ms) in
let ik_ms:integKey c5(kec_ms) in
(x Receive GSM cipher mode command [Msg 7]x)
in(pubChannel, (=SMC, enableEnc_ms: bool,
=cap_ms, fresh_ms: nonce,
=f9 ((enableEnc_ms, cap_ms, fresh_ms), ik_ms)));
event endMS(imsi_ms, ck_ms, ik_ms, cap_ms);
(+ Receive message from SN [Msg 8]x)
in (pubChannel, (=MSG, msg: bitstring , fresh_msg_ms: nonce,
=f9 ((msg, fresh_msg_ms), ik_ms)));

out (pubChannel, sencrypt(secretCk, ck_ms));
out (pubChannel, sencryptinteg(secretlk, ik_ms));
if enableEnc_ms = true then
let msgcontent: bitstring = sdecrypt(msg, ck_ms) in

0.

(x Process respresenting SNx)
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let processSN
(x Receive MS’s capability [Msg 1]x)
in (pubChannel, (=CAP, cap_sn: bool));
(x Receive permanent ID [Msg 2]x)
in (pubChannel, (=ID, imsi_sn: ident));
(+Send out authentication vector request [Msg 3]x)
out(secureChannel, (AV_REQ, imsi_sn));

(x Receive authentication vector [Msg 4]x)
in (secureChannel, (=AV, imsi_hn_sn: ident,
xres_sn: resp, kc_sn: sessKey));
(xSend authentication challenge to MS [Msg 5]x)

out(pubChannel, (CHALLENGE, rand_sn));
(+ Receive response [Msg 6]x)
in(pubChannel, (=RES, res_sn: resp));
(x Check whether received response equal to expected responsex)
if res_sn xres_sn then
(x At this point, SN authenticated MSx)
event endSN(imsi_hn_sn, kc_sn);
(x Convert Kc into UMTS keysx)
let ck_sn:cipherKey c4(kc_sn) in
let ik_sn:integKey c5(kc_sn) in
(*SN decide whether to encrypt messages x)
(+ base on the received capabilities of MSx)
(= let enableEnc_sn: bool cap_sn in x)
new fresh_sn: nonce;
event begMS(imsi_hn_sn, ck_sn, ik_sn, cap_sn);
(+Send out cipher mode command [Msg 7]x)

rand_sn: nonce,

(x out(pubChannel, (SMC, enableEnc_sn, cap_sn, fresh_sn,
f9 ((enableEnc_sn, cap_sn, fresh_sn), ik_sn))); x)
out (pubChannel, (SMC, cap_sn, cap_sn, fresh_sn,
f9 ((cap_sn, cap_sn, fresh_sn), ik_sn)));
out (pubChannel, sencrypt(secretCk, ck_sn));
out(pubChannel, sencryptinteg(secretlk, ik_sn));

new fresh_msg_sn: nonce;
(+«Send out one message [Msg 8]x)

(+ if enableEnc_sn = false then x)
if cap_sn = false then
event disableEnc;
out (pubChannel, (MSG, s, fresh_msg_sn,
f9 ((s, fresh_msg_sn), ik_sn)))
else
out(pubChannel, (MSG, sencrypt(s, ck_sn), fresh_msg_sn,

f9 ((sencrypt(s, ck_sn), fresh_msg_sn), ik_sn))).

(x Process representing HNx)
let processHN
(x Receive authentication vector request [Msg 3]x)

in(secureChannel, (=AV_REQ, imsi_hn: ident));
(x Generate a fresh random numberx)

new rand_hn: nonce;

(x Computes expected response and Kcx)

get keys(=imsi_hn, ki_hn) in

let xres_hn: resp = a3(rand_hn, ki_hn) in
let kc_hn: sessKey = a8(rand_hn, ki_hn) in

(+Send out authentication vector [Msg 4]x)

out(secureChannel, (AV, imsi_hn, rand_hn, xres_hn, kc_hn)).
process
((!processMS) | processSN | processHN )

S6. UMTS I-1II || GSM 1V, conv(CK IK — K¢, VLR/SGSN)

(x Public channel between the MS and the SN x)
free pubChannel: channel.

(+ Secure channel between the MS and the HN x)
free secureChannel: channel [private].

(x types x)
type key.
type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type sessKey.
type mac.

type msgMac.

(x constant message headers x)
const CAP: msgHdr.



const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.

const RES: msgHdr.

const CMC: msgHdr.

const MSG: msgHdr.

(+ Functions x)

fun f1(key, nonce): mac.

fun f2(key, nonce): resp.

fun f3(key, nonce): cipherKey.

fun f4 (key, nonce): integKey.

fun f9 (bitstring, integKey): msgMac.

fun c3(cipherKey, integKey): sessKey.

fun sencrypt(bitstring, sessKey): bitstring.

reduc forall m: bitstring, k: sessKey;
sdecrypt(sencrypt(m, k), k) =m.

(x To test secrecy of the cipher key, x)

(+ use them as session keys to encrypt a free private name x)
fun sencryptCipher(bitstring , cipherKey): bitstring.

reduc forall m: bitstring, k: cipherKey;

sdecryptCipher(sencryptCipher(m, k), k) m.

reduc encCapability () true;
encCapability () false.

the table ident/keys

The key table consists of pairs

(ident, key) shared between the MS and the HN.
Table is not accessible by the attacker x)
table keys(ident, key).

(*

free s: bitstring [private].

query attacker(s).

(+ The standard secrecy queries of ProVerif only x)

(x deal with the secrecy of private free namesx)

(+ secretKc is secret if and only if all kcs is secretx)
free secretKc: bitstring [private].

query attacker(secretKc).

(+ secretCk is secret if and only if all cks are secretx)

free secretCk: bitstring [private].
query attacker (secretCk).

(*

not attacker(new ki).

If KC and CK are secret, then IK is secret x)

(+ Authentication queries x)

event begSN(ident, cipherKey, integKey).
event endSN(ident, cipherKey, integKey).
event begMS(ident, sessKey).
event endMS(ident, sessKey).

query x1: ident, x2: cipherKey, x3: integKey;
event(endSN(x1, x2, x3)) ~» event(begSN(x1, x2, x3)).
query x1: ident, x2: sessKey;
event(endMS(x1, x2)) ~ event(begMS(x1, x2)).

event disableEnc.

(«When the attacker knows s, the event
disableEnc has been executed. x)

query attacker(s) ~ event(disableEnc).

(= Process respresenting MSx)

let processMS =
(x The ident and pre—shared key of the mobile station x)
new imsi_ms: ident;
new ki: key;
insert keys(imsi_ms, Kki);
(*MS non—deterministically choose

the capability of encryptionx)

let cap_ms: bool encCapability ()
(xSend out cap_ms to SN[Msg 1]x)
out (pubChannel, (CAP, cap_ms));
(«Send out permanent ID [Msg 2]x)
out(pubChannel, (ID, imsi_ms));
(x Input challenge message from SN [Msg 5]x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce, mac_ms:
if f1(ki, rand_ms) mac_ms then

= in

mac));
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(x Compute response and encryption keyx)

let res_ms: resp f2 (ki, rand_ms) in

let ck_ms: cipherKey f3 (ki, rand_ms) in

let ik_ms: integKey f4 (ki, rand_ms) in

(*MS is authenticating itself to SNx)

event begSN(imsi_ms, ck_ms, ik_ms);

(xSend out response to SN [Msg 6]x)

out (pubChannel, (RES, res_ms));

let kc_ms: sessKey c3(ck_ms, ik_ms) in

(x Receive GSM cipher mode command [Msg 7]x)

in (pubChannel, (=CMC, enableEnc_ms: bool));

event endMS(imsi_ms, kc_ms);

(= Receive message from SN [Msg 8]x)

in(pubChannel, (=MSG, msg: bitstring));

out(pubChannel, sencrypt(secretKc, kc_ms));

out(pubChannel, sencryptCipher(secretCk, ck_ms));

if enableEnc_ms = true then

let msgcontent: bitstring
0.

sdecrypt(msg, kc_ms) in

(= Process respresenting SNx)
let processSN
(x Receive MS’s capability [Msg 1]x)
in (pubChannel, (=CAP, cap_sn: bool));
(x Receive permanent ID [Msg 2]x)
in(pubChannel, (=ID, imsi_sn: ident));
(xSend out authentication vector request [Msg 3]x)
out(secureChannel, (AV_REQ, imsi_sn));
(x Receive authentication vector [Msg 4]x)
in (secureChannel, (=AV, imsi_hn_sn: ident,
xres_sn: resp, ck_sn: cipherKey, ik_sn:
(+Send authentication challenge to MS [Msg 5]x)
out (pubChannel, (CHALLENGE, rand_sn, mac_sn));
(x Receive response [Msg 6]x)
in (pubChannel, (=RES, res_sn:

rand_sn: nonce,

resp));

(x Check whether received response equal to expected responsex)

if res_sn = xres_sn then
(x At this point, SN authenticated MSx)
event endSN(imsi_hn_sn, ck_sn, ik_sn);
let kc_sn: sessKey c3(ck_sn, ik_sn) in
(«SN decide whether to encrypt messages x)
(+ base on the received capabilities of MSx)
(= let enableEnc_sn: bool cap_sn in x)
event begMS(imsi_hn_sn, kc_sn);
(xSend out cipher mode command [Msg 7]x)
(x+ out(pubChannel, (CMC, enableEnc_sn)); x)
out (pubChannel, (CMC, cap_sn));
out(pubChannel, sencrypt(secretKc, kc_sn));
out (pubChannel, sencryptCipher(secretCk, ck_sn));
(= if enableEnc_sn false then x)
if cap_sn false then
event disableEnc;
out (pubChannel, (MSG, s))
else
out (pubChannel,

(x[Msg 8]x)

(MSG, sencrypt(s, kc_sn))).

(x Process representing HNx)
let processHN
(x Receive authentication vector request [Msg 3]x)

in (secureChannel, (=AV_REQ, imsi_hn: ident));
(x Generate a fresh random numbers)

new rand_hn: nonce;

(x Computes expected response and Kcx)

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
let ik_hn: integKey = f4(ki_hn, rand_hn) in

(x«Send out authentication vector [Msg 4]x)
out(secureChannel, (AV, imsi_hn, rand_hn, xres_hn,

ck_hn, ik_hn, mac_hn));
out (pubChannel, sencryptCipher(secretCk, ck_hn)).
process

((!processMS) | processSN | processHN )

S7. LTE I || UMTS II-III || LTE V, com(CK IK — Kasue,
MME)

(x Public channel between the MS and the SN x)
free pubChannel: channel.

integKey, mac_sn: mac));

(x [Msg 8]+)



(+ Secure channel between the SN and the HN x)
free secureChannel: channel [private].

(x types x)
type key.
type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type asmeKey.
type enbKey.
type asEncKey.
type asintKey.
type upEncKey.
type mac.
type msgMac.

(+ constant message headers x)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.

const RES: msgHdr.

const ASSMC: msgHdr.

const ASSMComplete: msgHdr.
const MSG: msgHdr.

(*

fun
fun
fun
fun
fun
fun
fun
fun
fun
fun

Functions x)

f1 (key, nonce):

f2 (key, nonce):

f3 (key, nonce): cipherKey.

f4 (key, nonce): integKey.

kdf_asme (cipherKey , integKey): asmeKey.
kdf_enb (asmeKey): enbKey.

kdf_as_enc (enbKey): asEncKey.
kdf_as_int(enbKey): aslintKey.
kdf_up_enc (enbKey): upEncKey.

finteg_as (bitstring , asintKey): msgMac.

mac.
resp.

fun sencrypt(bitstring , cipherKey): bitstring.
reduc forall m: bitstring, k: cipherKey;
sdecrypt(sencrypt(m, k), k) = m.

(+ To test secrecy of the integrity key, x)
(+ use them as session keys to encrypt a free private name x)
fun sencryptinteg (bitstring, integKey): bitstring.
reduc forall m: bitstring, k: integKey;
sdecryptinteg (sencryptinteg(m, k), k) =m.
fun sencrypt_as(bitstring , asEncKey): bitstring.
reduc forall m: bitstring, k: asEncKey;
sdecrypt_as(sencrypt_as(m, k), k) = m.
(x Type Converterx)
fun bool2bitstring (bool): bitstring [data, typeConverter].
reduc encCapability () = true;
encCapability () = false.
(x the table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attacker x)
table keys(ident, key).
free as_smcomplete_msg: bitstring.
free payload: bitstring
event disableEnc.
(«When the attacker knows s, the event
disableEnc has been executed. x)
query attacker(payload) ~» event(disableEnc).
query attacker(payload).

[private].

(+ The standard secrecy queries of ProVerif only x)
(+ deal with the secrecy of private free namesx)
free secret: bitstring [private].

query attacker(secret).

not attacker(new ki).

30

(+ Authentication queries x)

event begSN(ident, cipherKey, integKey).
event endSN(ident, cipherKey, integKey).
event begMS(ident, enbKey, bool).

event endMS(ident, enbKey, bool).

query x1: ident, x2: cipherKey, x3: integKey;

event(endSN(x1, x2, x3)) event (begSN(x1, x2, x3)).
query x1: ident, x2: enbKey, x3: bool;
event(endMS(x1, x2, x3)) ~~ event(begMS(x1, x2, x3)).

~

let processMS =

(+ The ident and pre—shared key of the mobile station x)

new imsi_ms: ident;

new Kki: key;

insert keys(imsi_ms, Kki);

(*MS non—deterministically choose
the capability of encryptionx)

let cap_ms: bool = encCapability ()

(xSend out cap_ms to SN x)

in

out (pubChannel, (CAP, cap_ms));
(xSend out permanent ID x)
out (pubChannel, (ID, imsi_ms));

(x Input challenge message from SN x)
in (pubChannel, (=CHALLENGE, rand_ms: nonce, mac_ms: mac));
if f1(ki, rand_ms) = mac_ms then
(x Compute response and encryption keyx)
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
(*MS is authenticating itself to SNx)
event begSN(imsi_ms, ck_ms, ik_ms);
(+«Send out response to SN x)
out (pubChannel, (RES, res_ms));
let kasme_ms = kdf_asme(ck_ms, ik_ms) in

let kenb_ms: enbKey = kdf_enb (kasme_ms) in

let kasenc_ms: asEncKey = kdf_as_enc(kenb_ms) in
let kasint_ms: aslIntKey = kdf_as_int(kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in

(x Receive GSM cipher mode command x)
in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,
=finteg_as (bool2bitstring (enableEnc_as_ms),
kasint_ms)));
out (pubChannel, (ASSMComplete, as_smcomplete_msg,
finteg_as (as_smcomplete_msg, kasint_ms)));
event endMS(imsi_ms, kenb_ms, cap_ms);
in(pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms)));
out (pubChannel, sencrypt(secret, ck_ms));
out(pubChannel, sencryptinteg(secret, ik_ms));
if enableEnc_as_ms = true then
let msgcontent: bitstring =
kasenc_ms) in 0.

sdecrypt_as (datamsg,

let processSN =
(x Receive MS’s capability x)
in (pubChannel, (=CAP, cap_sn: bool));
(x Receive permanent ID x)
in (pubChannel, (=ID, imsi_sn: ident));
(+Send out authentication vector request x)
out(secureChannel, (AV_REQ, imsi_sn));
(x Receive authentication vector x)
in (secureChannel, (=AV, =imsi_sn, rand_sn: nonce,
xres_sn: resp, ck_sn: cipherKey, ik_sn: integKey,
mac_sn: mac));
(+Send authentication challenge to MS x)
out (pubChannel, (CHALLENGE, rand_sn, mac_sn));
(x Receive response x)
in (pubChannel, (=RES, res_sn: resp));
(x Check whether received response equal to XRESx)
if res_sn = xres_sn then
(x At this point, SN authenticated MSx)
event endSN(imsi_sn, ck_sn, ik_sn);
let kasme_sn = kdf_asme(ck_sn, ik_sn) in
let kenb_sn: enbKey = kdf_enb(kasme_sn) in
let kasenc_sn: asEncKey = kdf_as_enc(kenb_sn) in
let kasint_sn: aslntKey = kdf_as_int(kenb_sn)
let kupenc_sn: upEncKey = kdf_up_enc(kenb_sn)
event begMS(imsi_sn, kenb_sn, cap_sn);
out(pubChannel, (ASSMC, cap_sn,
finteg_as (bool2bitstring (cap_sn), kasint_sn))
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg
=finteg_as (as_smcomplete_msg, kasint_sn)));
if cap_sn = false then

in
in

)



event disableEnc;
out (pubChannel, (MSG, payload,
finteg_as (payload, kasint_sn)))

else
out (pubChannel, (MSG, sencrypt_as(payload,
kasenc_sn), finteg_as(sencrypt_as(payload,
kasenc_sn), kasint_sn))).

let processHN =

(= Receive authentication vector request x)

in(secureChannel, (=AV_REQ, imsi_hn: ident));

(x Generate a fresh random numberx)

new rand_hn: nonce;

(x Computes expected response and Kcx)

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in

let ck_hn: cipherKey = f3(ki_hn, rand_hn)

let ik_hn: integKey = f4(ki_hn, rand_hn)

(xSend out authentication vector x)

out(secureChannel, (AV, imsi_hn, rand_hn,
xres_hn, ck_hn, ik_hn, mac_hn)).

in
in

process

((!processMS) | processSN | processHN)

S7+. LTE I | UMTS II-III || LTE IV-V, conv(CK IK — KysyE,
MME)

(x Public channel between the MS and the SNx)
free pubChannel: channel.

(x typesx)

type key.

type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type mac.

type msgMac.
type asmeKey.
type nasEncKey.
type nasintKey.
type enbKey.
type asEncKey.
type asintKey.
type upEncKey.

(x constant message headersx)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.
const RES: msgHdr.

const NASSMC: msgHdr.

const NASSMComplete: msgHdr.
const ASSMC: msgHdr.

const ASSMComplete: msgHdr.
const MSG: msgHdr.

(* Functionsx)

fun f1(key, nonce):
fun f2(key, nonce): resp.

fun f3(key, nonce): cipherKey.

fun f4 (key, nonce): integKey.

fun kdf_asme(cipherKey, integKey): asmeKey.
fun kdf_nas_enc(asmeKey) : nasEncKey.

fun kdf_nas_int(asmeKey): nasintKey.

fun finteg_nas (bitstring, nasintKey): msgMac.
fun kdf_enb (asmeKey): enbKey.

fun kdf_as_enc(enbKey): asEncKey.

fun kdf_as_int(enbKey): asintKey.

fun kdf_up_enc(enbKey): upEncKey.

fun finteg_as (bitstring, asintKey): msgMac.

mac.

fun sencrypt_nas(bitstring , nasEncKey):
reduc forall m: bitstring, k: nasEncKey;
sdecrypt_nas(sencrypt_nas(m, k), k) = m.

bitstring .

fun sencrypt_as(bitstring, asEncKey): bitstring.
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reduc forall m: bitstring, k: asEncKey;
sdecrypt_as(sencrypt_as(m, k), k) = m.

(x Type Converterx)
fun bool2bitstring (bool): bitstring [data, typeConverter].
reduc encCapability ()

encCapability ()

true;
false .

(xthe table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attackerx)
table keys(ident, key).

(*SMC command msgx)
free nas_smcomplete_msg: bitstring.
free as_smcomplete_msg: bitstring.

free payload: bitstring [private].

event disableEnc.

(+When the attacker knows s, the event
disableEnc has been executed. x)

query attacker(payload) ~» event(disableEnc).

query attacker(payload).

free secret: bitstring

query attacker(secret).

fun senc_int_nas(bitstring , nasintKey):

reduc forall m: bitstring, k: nasintKey;
sdec_in_nas(senc_int_nas(m, k), k) = m.

fun senc_int_as(bitstring , asintKey): bitstring.

reduc forall m: bitstring, k: asintKey;
sdec_in_as(senc_int_as(m, k), k) = m.

[private].

bitstring .

fun senc_up(bitstring, upEncKey): bitstring.

reduc forall m: bitstring, k: upEncKey;
sdec_up(senc_up(m, k), k) =m.

not attacker(new ki).

(x Authentication queriesx)

event begSN(ident, cipherKey, integKey).

event endSN(ident, cipherKey, integKey).

event begMS(ident, asmeKey, bool).

event endMS(ident, asmeKey, bool).

event begMS_ENB(ident, enbKey, bool).

event endMS_ENB(ident, enbKey, bool).

query x1: ident, x2:cipherKey, x3:

event(endSN(x1, x2, x3)) event (begSN(x1, x2, x3)).
query x1: ident, x2: asmeKey, x3: bool;

event (endMS(x1, x2, x3)) event (begMS(x1, x2, x3)).
query x1: ident, x2: enbKey, x3: bool;

event (endMS_ENB(x1, x2, x3))
event (begMS_ENB(x1, x2, x3)).

integKey;

~
>

~

(xAS SMC procedure in process MSx)
let pMSAS(kasme_ms: asmeKey, imsi_ms: ident, cap_ms:
let kenb_ms: enbKey = kdf_enb (kasme_ms) in

bool)

let kasenc_ms: asEncKey = kdf_as_enc(kenb_ms) in
let kasint_ms: aslIntKey = kdf_as_int(kenb_ms) in
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in

in (pubChannel, (=ASSMC, enableEnc_as_ms: bool,

=finteg_as (bool2bitstring (enableEnc_as_ms), kasint_ms)));

event endMS_ENB(imsi_ms, kenb_ms, cap_ms);

out (pubChannel, (ASSMComplete, as_smcomplete_msg,
finteg_as (as_smcomplete_msg, kasint_ms)));

in (pubChannel, (=MSG, datamsg: bitstring,
=finteg_as (datamsg, kasint_ms)));

out (pubChannel, sencrypt_as(secret, kasenc_ms));
out (pubChannel, senc_int_as(secret, kasint_ms));
out (pubChannel, senc_up(secret, kupenc_ms));
if enableEnc_as_ms = true then

let msgcontent: bitstring =

sdecrypt_as (datamsg, kasenc_ms) in 0.
(xprocess respresenting MSx)
let processMS =

(«The identity of the MSx)

new imsi_ms: ident;



(x Pre—shared keyx)
new Ki: key;

(x Insert id/pre—shared key pair into the private tablex)

insert keys(imsi_ms, Kki);

(*MS non—deterministically choose
the capability of encryptionx)
let cap_ms: bool = encCapability () in

out (pubChannel, (CAP, cap_ms));

event begMS(imsi_sn, kasme_sn, cap_sn);
out (pubChannel, (NASSMC, cap_sn, cap_sn,
finteg_nas ((cap_sn, cap_sn), knasint_sn)));
in (pubChannel, (=NASSMComplete, msg_nas:bitstring ,
=finteg_nas (msg_nas, knasint_sn)));
if cap_sn = true then
if sdecrypt_nas(msg_nas, knasenc_sn)
= nas_smcomplete_msg then

out(pubChannel, (ID, imsi_ms)); pENB(kasme_sn, imsi_sn, cap_sn)
in (pubChannel, (=CHALLENGE, rand_ms: nonce, else 0
=f1(ki, rand_ms))); else
(x Compute response and encryption keyx) if msg_nas = nas_smcomplete_msg then
let res_ms: resp = f2(ki, rand_ms) in pENB(kasme_sn, imsi_sn, cap_sn)
let ck_ms: cipherKey = f3(ki, rand_ms) in else 0.

let ik_ms: integKey = f4(ki, rand_ms) in

(«MS is authenticating itself to SNx)
event begSN(imsi_ms, ck_ms, ik_ms);

(+Send out response to SN x)

out (pubChannel, (RES, res_ms));

let kasme_ms:asmeKey = kdf_asme(ck_ms, ik_ms) in

proc

ess

((!processMS) | processMME)

S8 LTE I’ || UMTS II-11I || LTE IV-V, comv(CK IK nonces —
Kasme, MME)

(xNAS SMC procedurex)

let knasenc_ms: nasEncKey = kdf_nas_enc(kasme_ms) in

let knasint_ms: nasintKey =

kdf_nas_int (kasme_ms) in

in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool,
=cap_ms, =finteg_nas ((enableEnc_nas_ms, cap_ms),
knasint_ms)));
event endMS(imsi_ms, kasme_ms, cap_ms);
(xNAS key secrecyx)

(x Public channel between the MS and the SNx)
free pubChannel: channel.

(x Secure channel between the SN and the HNx)
free secureChannel: channel [private].

free sChannelSnBts: channel [private].

out (pubChannel, sencrypt_nas(secret, knasenc_ms));

out (pubChannel, senc_int_nas(secret, knasint_ms)); (x typesx)
if enableEnc_nas_ms = false then type key.
out (pubChannel, (NASSMComplete, nas_smcomplete_msg, type ident.
finteg_nas (nas_smcomplete_msg, knasint_ms))); type nonce.
pMSAS (kasme_ms, imsi_ms, cap_ms) type msgHdr.
else type resp.
out (pubChannel, (NASSMComplete, type cipherKey.
sencrypt_nas (nas_smcomplete_msg, knasenc_ms), type integKey.
finteg_nas (sencrypt_nas (nas_smcomplete_msg, type mac.
knasenc_ms), knasint_ms))); type msgMac.
PMSAS (kasme_ms, imsi_ms, cap_ms). type asmeKey.
type nasEncKey.
type nasintKey.
type enbKey.
(xprocess representing e—nodeBx) type asEncKey.
let pENB(kasme_enb: asmeKey, imsi_enb: ident, cap_enb: bool) = type asintKey.
let kenb_enb: enbKey = kdf_enb(kasme_enb) in type upEncKey.

let kasenc_enb: asEncKey

= kdf_as_enc(kenb_enb) in
let kasint_enb: asintKey =

kdf_as_int (kenb_enb) in (x constant message headersx)

let kupenc_enb: upEncKey = kdf_up_enc(kenb_enb) in const CAP: msgHdr.
event begMS_ENB(imsi_enb, kenb_enb, cap_enb); const ID: msgHdr.
out (pubChannel, (ASSMC, cap_enb, const AV_REQ: msgHdr.
finteg_as (bool2bitstring (cap_enb), kasint_enb))); const AV: msgHdr.
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg, const CHALLENGE: msgHdr.
=finteg_as (as_smcomplete_msg, kasint_enb))); const RES: msgHdr.
if cap_enb = false then const NASSMC: msgHdr.

const
const
const
const
const

NASSMComplete: msgHdr.
ASSMC: msgHdr.
ASSMComplete: msgHdr.
MSG: msgHdr.
NONCE_TAU: msgHdr.

event disableEnc;
out(pubChannel, (MSG, payload,
finteg_as (payload, kasint_enb)))
else
out (pubChannel, (MSG, sencrypt_as(payload,
kasenc_enb), finteg_as(sencrypt_as(payload,

kasenc_enb), kasint_enb))). (x Functionsx)

fun f1(key, nonce): mac.
(xprocess representing MVEx) fun f2(key, nonce): resp.
let processMME = fun f3 (key, nonce): cipherKey.
in (pubChannel, (=CAP, cap_sn: bool)); fun f4 (key, nonce): integKey.
in (pubChannel, (=ID, imsi_sn: ident)); fun kdf_asme(cipherKey, integKey, nonce, nonce): asmeKey.
fun kdf_nas_enc(asmeKey) : nasEncKey.
new rand_sn: nonce; fun kdf_nas_int(asmeKey): nasintKey.
(x Computes expected response and Kcx) fun finteg_nas (bitstring, nasintKey): msgMac.
get keys(=imsi_sn, ki_sn) in fun kdf_enb (asmeKey): enbKey.
let mac_sn: mac = f1(ki_sn, rand_sn) in fun kdf_as_enc(enbKey): asEncKey.
let xres_sn: resp = f2(ki_sn, rand_sn) in fun kdf_as_int(enbKey): asintKey.
let ck_sn: cipherKey = f3(ki_sn, rand_sn) in fun kdf_up_enc(enbKey): upEncKey.
let ik_sn: integKey = f4(ki_sn, rand_sn) in fun finteg_as (bitstring, asintKey): msgMac.
out(pubChannel, (CHALLENGE, rand_sn, mac_sn)); fun sencrypt_nas(bitstring , nasEncKey): bitstring.

reduc forall m: bitstring, k: nasEncKey;
sdecrypt_nas(sencrypt_nas(m, k), k) = m.

(= Receive response x)
in(pubChannel, (=RES, =xres_sn));
event endSN(imsi_sn, ck_sn, ik_sn);
let kasme_sn: asmeKey = kdf_asme(ck_sn,
(xNAS SMC procedurex)
let knasenc_sn: nasEncKey =
let knasint_sn: nasintKey =

fun sencrypt_as(bitstring , asEncKey): bitstring.
reduc forall m: bitstring, k: asEncKey;
sdecrypt_as(sencrypt_as(m, k), k) =m.

ik_sn) in
kdf_nas_enc(kasme_sn) in

kdf_nas_int (kasme_sn) in
(x Type Converterx)
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fun bool2bitstring (bool): bitstring [data, typeConverter]. out (pubChannel, (CAP, cap_ms));
out(pubChannel, (ID, imsi_ms));
reduc encCapability () = true; new nonce_ms: nonce;
encCapability () = false. out (pubChannel, (NONCE_TAU, nonce_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce, =f1(ki, rand_ms)));
(xthe table ident/keys let res_ms: resp = f2(ki, rand_ms) in
The key table consists of pairs let ck_ms: cipherKey = f3(ki, rand_ms) in
(ident, key) shared between MS and HN let ik_ms: integKey = f4(ki, rand_ms) in
Table is not accessible by the attackerx) event begSN(imsi_ms, ck_ms, ik_ms);
table keys(ident, key). out (pubChannel, (RES, res_ms));
(*NAS SMC procedurex)
(*SMC command msgx ) in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,
free nas_smcomplete_msg: bitstring. =nonce_ms, nonce_mme_ms: nonce, nas_mac: msgMac));
free as_smcomplete_msg: bitstring. let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms,
nonce_ms, nonce_mme_ms) in
free payload: bitstring [private]. let knasenc_ms: nasEncKey = kdf_nas_enc(kasme_ms) in
event disableEnc. let knasint_ms: nasintKey = kdf_nas_int(kasme_ms) in
(«When the attacker knows s, the event if (nas_mac = finteg_nas ((enableEnc_nas_ms, cap_ms,
disableEnc has been executed. x) nonce_ms, nonce_mme_ms), knasint_ms)) then
query attacker(payload) ~» event(disableEnc). event endMS(imsi_ms, ck_ms, ik_ms, cap_ms);
query attacker (payload). (xNAS key secrecyx)
out (pubChannel, sencrypt_nas(secret, knasenc_ms));
free secret: bitstring [private]. out(pubChannel, senc_int_nas(secret, knasint_ms));
query attacker(secret). if enableEnc_nas_ms = false then
fun senc_int_nas(bitstring, nasintKey): bitstring. out (pubChannel, (NASSMComplete, nas_smcomplete_msg,
reduc forall m: bitstring, k: nasintKey; finteg_nas (nas_smcomplete_msg, knasint_ms)));
sdec_in_nas(senc_int_nas(m, k), k) = m. pMSAS (kasme_ms, imsi_ms, cap_ms)
fun senc_int_as(bitstring , asintKey): bitstring. else
reduc forall m: bitstring, k: asintKey; out (pubChannel, (NASSMComplete,
sdec_in_as(senc_int_as(m, k), k) = m. sencrypt_nas (nas_smcomplete_msg, knasenc_ms),
fun senc_up(bitstring, upEncKey): bitstring. finteg_nas (sencrypt_nas (nas_smcomplete_msg,
reduc forall m: bitstring, k: upEncKey; knasenc_ms), knasint_ms)));
sdec_up(senc_up(m, k), k) =m. pMSAS (kasme_ms, imsi_ms, cap_ms).
not attacker(new ki). (x process representing e—nodeBx)
let processENB =
(+ Authentication queriesx) in (sChannelSnBts, (kasme_enb: asmeKey, imsi_enb: ident,
event begSN(ident, cipherKey, integKey). cap_enb: bool));
event endSN(ident, cipherKey, integKey). let kenb_enb: enbKey = kdf_enb(kasme_enb) in
event begMS(ident, cipherKey, integKey, bool). let kasenc_enb: asEncKey = kdf_as_enc(kenb_enb) in
event endMS(ident, cipherKey, integKey, bool). let kasint_enb: asintKey = kdf_as_int(kenb_enb) in
event begMS_ENB(ident, enbKey, bool). let kupenc_enb: upEncKey = kdf_up_enc(kenb_enb) in
event endMS_ENB(ident, enbKey, bool). event begMS_ENB(imsi_enb, kenb_enb, cap_enb);
out (pubChannel, (ASSMC, cap_enb,
query x1: ident, x2: cipherKey, x3: integKey; finteg_as (bool2bitstring (cap_enb), kasint_enb)));
event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)). in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
query x1: ident, x2: cipherKey, x3: integKey, x4: bool; =finteg_as (as_smcomplete_msg, kasint_enb)));
event(endMS(x1, x2, x3, x4)) ~ if cap_enb = false then
event (begMS(x1, x2, x3, x4)). event disableEnc;
query x1: ident, x2: enbKey, x3: bool; out (pubChannel, (MSG, payload,
event (endMS_ENB(x1, x2, x3)) ~ finteg_as (payload, kasint_enb)))
event (begMS_ENB(x1, x2, x3)). else
out (pubChannel, (MSG, sencrypt_as(payload, kasenc_enb),
(xAS SMC procedure in process MSx) finteg_as (sencrypt_as(payload, kasenc_enb),
let pMSAS(kasme_ms: asmeKey, imsi_ms: ident, cap_ms: bool) = kasint_enb))).

let kenb_ms: enbKey = kdf_enb (kasme_ms) in

let kasenc_ms: asEncKey = kdf_as_enc(kenb_ms) in (xprocess representing MVEx)
let kasint_ms: aslIntKey = kdf_as_int(kenb_ms) in let processMME =
let kupenc_ms: upEncKey = kdf_up_enc(kenb_ms) in in (pubChannel, (=CAP, cap_sn: bool));
in(pubChannel, (=ASSMC, enableEnc_as_ms: bool, in(pubChannel, (=ID, imsi_sn: ident));
=finteg_as (bool2bitstring (enableEnc_as_ms), in (pubChannel, (=NONCE_TAU, nonce_ms_sn:nonce));
kasint_ms))); out(secureChannel, (AV_REQ, imsi_sn));
out (pubChannel, (ASSMComplete, as_smcomplete_msg, in (secureChannel, (=AV, =imsi_sn, rand_sn: nonce,
finteg_as (as_smcomplete_msg, kasint_ms))); xres_sn: resp, ck_sn: cipherKey,
event endMS_ENB(imsi_ms, kenb_ms, cap_ms); ik_sn: integKey, mac_sn: mac));
in (pubChannel, (=MSG, datamsg: bitstring, out (pubChannel, (CHALLENGE, rand_sn, mac_sn));
=finteg_as (datamsg, kasint_ms))); in (pubChannel, (=RES, =xres_sn));
out (pubChannel, sencrypt_as(secret, kasenc_ms)); event endSN(imsi_sn, ck_sn, ik_sn);
out (pubChannel, senc_int_as(secret, kasint_ms)); new nonce_mme: nonce;
out (pubChannel, senc_up(secret, kupenc_ms)); (xNAS SMC procedurex)
if enableEnc_as_ms = true then let kasme_sn: asmeKey = kdf_asme(ck_sn, ik_sn,
let msgcontent: bitstring = nonce_ms_sn, nonce_mme) in
sdecrypt_as (datamsg, kasenc_ms) in 0. let knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
let knasint_sn: nasintKey = kdf_nas_int(kasme_sn) in
(x process respresenting MSx) event begMS(imsi_sn, ck_sn, ik_sn, cap_sn);
let processMS = out (pubChannel, (NASSMC, cap_sn, cap_sn, nonce_ms_sn,
(«The identity of the MSx) nonce_mme, finteg_nas ((cap_sn, cap_sn,
new imsi_ms: ident; nonce_ms_sn, nonce_mme), knasint_sn)));
(x Pre—shared keyx) in (pubChannel, (=NASSMComplete, msg_nas:bitstring ,
new Kki: key; =finteg_nas (msg_nas, knasint_sn)));
(xInsert id/pre—shared key pair into the private tablex) if cap_sn = true then
insert keys(imsi_ms, Kki); if sdecrypt_nas(msg_nas, knasenc_sn)
(*MS non—deterministically choose the capability of encryptionx) = nas_smcomplete_msg then
let cap_ms: bool = encCapability () in out(sChannelSnBts, (kasme_sn,
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imsi_sn, cap_sn))
else 0
else
if cap_sn = false then
if msg_nas = nas_smcomplete_msg then
out(sChannelSnBts, (kasme_sn,
imsi_sn, cap_sn))
else 0
else 0.

(x process representing HNx)
let processHN =
(x Receive authentication vector request x)

in(

secureChannel, (=AV_REQ, imsi_hn: ident));

(x Generate a fresh random numberx)
new rand_hn: nonce;
(x Computes expected response and Kcx)

get
let
let
let
let

keys(=imsi_hn, ki_hn) in

mac_hn: mac = f1(ki_hn, rand_hn) in
xres_hn: resp = f2(ki_hn, rand_hn) in
ck_hn: cipherKey = f3(ki_hn, rand_hn) in
ik_hn: integKey = f4(ki_hn, rand_hn) in

(xSend out authentication vector x)

out(secureChannel, (AV, imsi_hn, rand_hn,
xres_hn, ck_hn, ik_hn, mac_hn)).
process

((!processMS) | (processMME) | (processENB) |

$9. GSM I || LTE HL-III || GSM 1V, com(CK IK — K¢, MME),

AV = 4G AV + CK + IK

(x Public channel between the MS and the SNx)
free pubChannel: channel.

(x Secure channel between the SN and the HNx)
free secureChannel: channel [private].

(xtyp
type
type
type
type
type
type
type
type
type
type
type
type
type

esx)

key .
ident.
nonce.
msgHdr.
resp.
cipherKey .
integKey .
gsmKey .
mac.
msgMac.
asmeKey .
nasEncKey .
nasintKey.

(x constant message headersx)

const
const
const
const
const
const
const
const
const
const
const
const

CAP: msgHdr.

ID: msgHdr.

AV_REQ: msgHdr.

AV: msgHdr.
CHALLENGE: msgHdr.
RES: msgHdr.

NASSMC: msgHdr .
NASSMComplete: msgHdr.
ASSMC: msgHdr.
ASSMComplete: msgHdr.
MSG: msgHdr.
CMComplete: msgHdr.

(x Functions )

fun f1(key, nonce): mac.

fun f2(key, nonce): resp.

fun f3(key, nonce): cipherKey.

fun f4 (key, nonce): integKey.

fun f9 (bitstring, integKey): bitstring.

fun kdf_asme(cipherKey, integKey, ident): asmeKey.
fun kdf_nas_enc(asmeKey) : nasEncKey.

fun kdf_nas_int(asmeKey): nasintKey.

fun f
fun c

fun s
reduc
s

fun s

integ_nas (bitstring , naslintKey): msgMac.
3 (cipherKey, integKey): gsmKey.

encrypt_nas (bitstring , nasEncKey): bitstring.

forall m: bitstring, k: nasEncKey;
decrypt_nas(sencrypt_nas(m, k), k) = m.

encrypt_as(bitstring, gsmKey): bitstring.

(processHN))
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reduc forall m: bitstring, k: gsmKey;

sdecrypt_as(sencrypt_as(m, k), k) = m.

(x Type Converterx)
fun bool2bitstring (bool): bitstring [data, typeConverter].

reduc encCapability () = true;

encCapability () = false.

(xthe table ident/keys

The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attackerx)

table keys(ident, key).

(*SMC command msgx)
free nas_smcomplete_msg: bitstring.
free as_smcomplete_msg: bitstring.

free payload: bitstring [private].

event disableEnc.

(+When the attacker knows s, the event
disableEnc has been executed. x)

query attacker(payload) ~» event(disableEnc).

query attacker(payload).

free secret: bitstring [private].

query attacker(secret).

fun senc_int_nas(bitstring , nasintKey): bitstring.
reduc forall m: bitstring, k: nasintKey;

sdec_in_nas(senc_int_nas(m, k), k) =m.

fun senc_int_as(bitstring , integKey): bitstring.
reduc forall m: bitstring, k: integKey;

sdec_in_as(senc_int_as(m, k), k) = m.

not attacker(new ki).

(x Authentication queriesx)

event begSN(ident, cipherKey, integKey).
event endSN(ident, cipherKey, integKey).
event begMS_AS(ident, gsmKey, bool).
event endMS_AS(ident, gsmKey, bool).

query x1: ident, x2: cipherKey, x3: integKey;

event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).

query x1: ident, x2: gsmKey, x3: bool;
event (endMS_AS(x1, x2, x3)) ~
event (begMS_AS(x1, x2, x3)).

(x process respresenting MSx)
let processMS =
(«The identity of the MSx)
new imsi_ms: ident;
(x Pre—shared keyx)
new ki: key;

(x Insert id/pre—shared key pair into the private tablex)

insert keys(imsi_ms, Kki);
(*MS non—deterministically choose
the capability of encryptionx)
let cap_ms: bool = encCapability () in
out (pubChannel, (CAP, cap_ms));
out (pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in

let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms)

event begSN(imsi_ms, ck_ms, ik_ms);
out (pubChannel, (RES, res_ms));
let kc_ms:gsmKey = c3(ck_ms, ik_ms) in

in (pubChannel, (=ASSMC, enableEnc_as_ms: bool));

event endMS_AS(imsi_ms, kc_ms, cap_ms);
out (pubChannel, CMComplete);
in (pubChannel, (=MSG, datamsg: bitstring));
out (pubChannel, sencrypt_as(secret, kc_ms))
if enableEnc_as_ms = true then
let msgcontent: bitstring =
sdecrypt_as (datamsg, kc_ms) in 0.

in



fun f2(key, nonce): resp.
(x process representing MVEx) fun f3(key, nonce): cipherKey.
let processSN = fun f4 (key, nonce): integKey.
in(pubChannel, (=CAP, cap_sn: bool)); fun f9 (bitstring , integKey): bitstring.
in (pubChannel, (=ID, imsi_sn: ident)); fun kdf_asme(cipherKey, integKey, ident): asmeKey.
new snid_sn: ident; fun kdf_nas_enc(asmeKey) : nasEncKey.
out(secureChannel, (AV_REQ, imsi_sn, snid_sn)); fun kdf_nas_int(asmeKey): nasintKey.
in(secureChannel, (=AV, =imsi_sn, snid_hn_sn: ident, fun finteg_nas (bitstring, nasintKey): msgMac.
rand_sn: nonce, xres_sn: resp, mac_sn: mac, fun c3(cipherKey, integKey): gsmKey.
kasme_sn: asmeKey,
ck_sn: cipherKey, ik_sn: integKey)); fun sencrypt_nas(bitstring, nasEncKey): bitstring.
out (pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn)); reduc forall m: bitstring, k: nasEncKey;
in (pubChannel, (=RES, =xres_sn)); sdecrypt_nas(sencrypt_nas(m, k), k) = m.
event endSN(imsi_sn, ck_sn, ik_sn);
let kc_sn: gsmKey = c3(ck_sn, ik_sn) in fun sencrypt_as(bitstring, gsmKey): bitstring.
event begMS_AS(imsi_sn, kc_sn, cap_sn); reduc forall m: bitstring, k: gsmKey;
out (pubChannel, (ASSMC, cap_sn)); sdecrypt_as(sencrypt_as(m, k), k) = m.
in (pubChannel, =CMComplete);
if cap_sn = false then (x Type Converterx)
event disableEnc; fun bool2bitstring (bool): bitstring [data, typeConverter].
out (pubChannel, (MSG, payload))
else reduc encCapability () = true;
out(pubChannel, (MSG, sencrypt_as(payload, kc_sn))). encCapability () = false.
(xprocess representing HNx) (xthe table ident/keys
let processHN = The key table consists of pairs
in(secureChannel, (=AV_REQ, imsi_hn: ident, (ident, key) shared between MS and HN
snid_hn: ident)); Table is not accessible by the attackerx)
(x Generate athenication vectorsx) table keys(ident, key).
new rand_hn: nonce;
get keys(=imsi_hn, ki_hn) in (*SMC command msgx )
let mac_hn: mac = f1(ki_hn, rand_hn) in free nas_smcomplete_msg: bitstring.
let xres_hn: resp = f2(ki_hn, rand_hn) in free as_smcomplete_msg: bitstring.
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
let ik_hn: integKey = f4(ki_hn, rand_hn) in free payload: bitstring [private].
let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in event disableEnc.
out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn, (xWhen the attacker knows s, the event
xres_hn, mac_hn, kasme_hn, ck_hn, ik_hn)). disableEnc has been executed. x)

query attacker(payload) ~ event(disableEnc).
query attacker(payload).

process
((!processMS) | processSN | processHN) free secret: bitstring [private].

query attacker(secret).
fun senc_int_nas(bitstring, nasintKey): bitstring.
reduc forall m: bitstring, k: nasintKey;

S9+. GSM I || LTE 1II-1V || GSM 1V, conv(CK IK — K¢, MME), sdec_in_nas (senc_int_nas(m, k), k) = m.

AV = 4G AV + CK + IK fun senc_int_as(bitstring, integKey): bitstring.
reduc forall m: bitstring, k: integKey;

(x Public channel between the MS and the SNx) sdec_in_as(senc_int_as(m, k), k) = m.

free pubChannel: channel.
(x Secure channel between the SN and the HNx)
free secureChannel: channel [private]. not attacker(new ki).
free sChannelSnBts: channel [private].
(x Authentication queriesx)

(x typesx) event begSN(ident, ident, asmeKey).

type key. event endSN(ident, ident, asmeKey).

type ident. event begMS(ident, ident, asmeKey, bool).

type nonce. event endMS(ident, ident, asmeKey, bool).

type msgHdr. event begMS_AS(ident, gsmKey, bool).

type resp. event endMS_AS(ident, gsmKey, bool).

type cipherKey.

type integKey. query x1: ident, x2: ident, x3: asmeKey;

type gsmKey. event(endSN(x1, x2, x3)) ~» event(begSN(x1, x2, x3)).
type mac. query x1: ident, x2: ident, x3: asmeKey, x4: bool;
type msgMac. event (endMS(x1, x2, x3, x4)) ~

type asmeKey. event (begMS(x1, x2, x3, x4)).

type nasEncKey. query x1: ident, x2: gsmKey, x3: bool;

type nasintKey. event(endMS_AS(x1, x2, x3)) ~

event (begMS_AS(x1, x2, x3)).
(x constant message headersx)
const CAP: msgHdr.

const ID: msgHdr. (xAS SMC procedure in process MSx)

const AV_REQ: msgHdr. let pMSAS(kc_ms:gsmKey, imsi_ms: ident, cap_ms: bool) =

const AV: msgHdr. in (pubChannel, (=ASSMC, enableEnc_as_ms: bool));

const CHALLENGE: msgHdr. event endMS_AS(imsi_ms, kc_ms, cap_ms);

const RES: msgHdr. out (pubChannel, CMComplete);

const NASSMC: msgHdr. in (pubChannel, (=MSG, datamsg: bitstring));

const NASSMComplete: msgHdr. out (pubChannel, sencrypt_as(secret, kc_ms));

const ASSMC: msgHdr. if enableEnc_as_ms = true then

const ASSMComplete: msgHdr. let msgcontent: bitstring = sdecrypt_as(datamsg, kc_ms)
const MSG: msgHdr. in 0.

const CMComplete: msgHdr.
(xprocess respresenting MSx)

(x Functions x) let processMS =
fun f1(key, nonce): mac.
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(«The identity of the MSx)
new imsi_ms: ident;

(x Pre—shared keyx)

new Kki: key;

(x Insert id/pre—shared key pair into the private tablex)

insert keys(imsi_ms, Kki);

(xMS non—deterministically choose
the capability of encryptionx)

let cap_ms: bool = encCapability () in

out (pubChannel, (CAP, cap_ms));
out (pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms)

event begSN(imsi_ms, snid_ms, kasme_ms);
out(pubChannel, (RES, res_ms));

(xNAS SMC procedurex)

let knasenc_ms: nasEncKey
let knasint_ms: nasintKey
in (pubChannel,

kdf_nas_enc (kasme_ms) in
kdf_nas_int (kasme_ms) in

(=NASSMC, enableEnc_nas_ms: bool, =cap_ms,

in

=finteg_nas ((enableEnc_nas_ms, cap_ms), knasint_ms)));

event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms);
(xNAS key secrecyx*)
out (pubChannel, sencrypt_nas(secret, knasenc_ms));
out(pubChannel, senc_int_nas(secret, knasint_ms));
let kc_ms:gsmKey = c3(ck_ms, ik_ms) in
if enableEnc_nas_ms = false then
out (pubChannel, (NASSMComplete, nas_smcomplete_msg,
finteg_nas (nas_smcomplete_msg, knasint_ms)));
pMSAS (kc_ms, imsi_ms, cap_ms)
else
out (pubChannel, (NASSMComplete,
sencrypt_nas (nas_smcomplete_msg, knasenc_ms),
finteg_nas (sencrypt_nas (nas_smcomplete_msg,
knasenc_ms), knasint_ms)));
pMSAS (kc_ms, imsi_ms, cap_ms).

(x process representing e—nodeBx)
let processBS =
in (sChannelSnBts, (kc_bs: gsmKey,
imsi_bs: ident, cap_bs: bool));
event begMS_AS(imsi_bs, kc_bs, cap_bs);
out (pubChannel, (ASSMC, cap_bs));
in (pubChannel, =CMComplete);

if cap_bs = false then
event disableEnc;
out (pubChannel, (MSG, payload))
else
out(pubChannel, (MSG, sencrypt_as(payload, kc_bs))).

(xprocess representing MVEx)
let processSN =

in (pubChannel, (=CAP, cap_sn: bool));

in(pubChannel, (=ID, imsi_sn: ident));

new snid_sn: ident;

out(secureChannel, (AV_REQ, imsi_sn, snid_sn));

in (secureChannel, (=AV, imsi_hn_sn: ident,
snid_hn_sn: ident, rand_sn: nonce,
Xres_sn: resp, mac_sn: mac, kasme_sn: asmeKey,
ck_sn: cipherKey, ik_sn: integKey));

out (pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn));

in(pubChannel, (=RES, =xres_sn));
event begMS(imsi_hn_sn, snid_hn_sn, kasme_sn, cap_sn);
(xNAS SMC procedurex)
let knasenc_sn: nasEncKey = kdf_nas_enc(kasme_sn) in
let knasint_sn: nasintKey = kdf_nas_int(kasme_sn) in
out (pubChannel, (NASSMC, cap_sn, cap_sn,
finteg_nas ((cap_sn, cap_sn), knasint_sn)));
in (pubChannel, (=NASSMComplete, msg_nas:bitstring ,
=finteg_nas (msg_nas, knasint_sn)));
let kc_sn: gsmKey = c3(ck_sn, ik_sn) in
if cap_sn = true then
if sdecrypt_nas(msg_nas, knasenc_sn) =
nas_smcomplete_msg then
event endSN(imsi_hn_sn, snid_hn_sn, kasme_sn);

out(sChannelSnBts, (kc_sn, imsi_hn_sn, cap_sn))
else 0
else
if cap_sn = false then
if msg_nas = nas_smcomplete_msg then

event endSN(imsi_hn_sn, snid_hn_sn, kasme_sn);
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out(sChannelSnBts, (kc_sn, imsi_hn_sn, cap_sn))
else 0
else 0.
(x process representing HNx)
let processHN =
in(secureChannel, (=AV_REQ, imsi_hn: ident, snid_hn:

(+ Generate athenication vectorsx)
new rand_hn: nonce;

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in

let ck_hn: cipherKey = f3(ki_hn, rand_hn) in

let ik_hn: integKey = f4(ki_hn, rand_hn) in

let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in

out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn,
xres_hn, mac_hn, kasme_hn, ck_hn, ik_hn)).

process

((!processMS) | processSN | processBS | processHN)

S10. UMTS I || LTE II-III || UMTS IV, AV = 4G AV + CK +

IK

(+ Public channel between the MS and the SNx)
free pubChannel: channel.

(x Secure channel between the SN and the HNx)
free secureChannel: channel [private].

(x typesx)
type key.
type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type mac.

type msgMac.
type asmeKey.

(x constant message headersx)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.
const RES: msgHdr.

const ASSMC: msgHdr.

const ASSMComplete: msgHdr.
const MSG: msgHdr.

(x Functionsx)

fun f1(key, nonce): mac.
fun f2(key, nonce): resp.
fun f3(key, nonce): cipherKey.
fun f4 (key, nonce): integKey.
fun f9 (bitstring , integKey):
fun kdf_asme(cipherKey, integKey,

bitstring .
ident): asmeKey.
fun sencrypt_as(bitstring, cipherKey): bitstring.
reduc forall m: bitstring, k: cipherKey;
sdecrypt_as(sencrypt_as(m, k), k) = m.

(x Type Converterx)
fun bool2bitstring (bool): bitstring [data, typeConverter].
reduc encCapability () = true;

encCapability () = false.

(xthe table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attackerx)
table keys(ident, key).

(*SMC command msgx )
free as_smcomplete_msg: bitstring.

free payload: bitstring [private].
event disableEnc.
(«When the attacker knows s, x)



(x+ the event disableEnc has been executed. x)
query attacker(payload) ~+ event(disableEnc).
query attacker(payload).

free secret: bitstring [private].
query attacker(secret).

fun senc_int_as(bitstring , integKey): bitstring.
reduc forall m: bitstring, k: integKey;
sdec_in_as(senc_int_as(m, k), k) = m.

not attacker(new Kki).

(x Authentication queriesx)

event begSN(ident, cipherKey, integKey).

event endSN(ident, cipherKey, integKey).

event begMS(ident, cipherKey, integKey, bool).
event endMS(ident, cipherKey, integKey, bool).
query x1: ident, x2: cipherKey, x3: integKey;

event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).

query x1: ident, x2: cipherKey, x3: integKey, x4: bool;
event(endMS(x1, x2, x3, x4)) ~

event (begMS(x1, x2, x3, x4)).

(xprocess respresenting MSx)
let processMS =
(«The identity of the MSx)
new imsi_ms: ident;
(x Pre—shared keyx)
new Ki: key;
(x Insert id/pre—shared key pair into the private tablex)
insert keys(imsi_ms, Kki);
(*MS non—deterministically choose
the capability of encryptionsx)

let cap_ms: bool = encCapability () in
out(pubChannel, (CAP, cap_ms));
out(pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in
let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms) in

event begSN(imsi_ms, ck_ms, ik_ms);

out(pubChannel, (RES, res_ms));

in (pubChannel, (=ASSMC, =cap_ms, enableEnc_as_ms: bool,
fresh_ms:nonce, =f9 ((cap_ms, enableEnc_as_ms,
fresh_ms), ik_ms)));

out (pubChannel, (ASSMComplete, as_smcomplete_msg,
f9 (as_smcomplete_msg, ik_ms)));

event endMS(imsi_ms, ck_ms, ik_ms, cap_ms);

in (pubChannel, (=MSG, datamsg: bitstring,
=f9 (datamsg, ik_ms)));

out (pubChannel, sencrypt_as(secret, ck_ms));

out(pubChannel, senc_int_as(secret, ik_ms));
if enableEnc_as_ms = true then
let msgcontent: bitstring = sdecrypt_as(datamsg, ck_ms)

in 0.

(x process representing MVEx)
let processSN =
in (pubChannel, (=CAP, cap_sn: bool))

ident)’);

in(pubChannel, (=ID, imsi_sn:
new snid_sn: ident;
out(secureChannel, (AV_REQ, imsi_sn, snid_sn));

in (secureChannel, (=AV, =imsi_sn, =snid_sn,
rand_sn: nonce, xres_sn: resp, mac_sn: mac,
kasme_sn: asmeKey, ck_sn: cipherKey, ik_sn: integKey));
out(pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn));
in (pubChannel, (=RES, =xres_sn));
event endSN(imsi_sn, ck_sn, ik_sn);
new fresh_sn: nonce;
event begMS(imsi_sn, ck_sn, ik_sn, cap_sn);
out(pubChannel, (ASSMC, cap_sn, cap_sn, fresh_sn,
f9 ((cap_sn, cap_sn, fresh_sn), ik_sn)));
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
=f9 (as_smcomplete_msg, ik_sn)));
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if cap_sn = false then
event disableEnc;
out (pubChannel, (MSG, payload,
else
out (pubChannel,
f9 (sencrypt_as(payload, ck_sn),

f9 (payload, ik_sn)))
(MSG, sencrypt_as(payload, ck_sn),
ik_sn))).

(x process representing HNx)
let processHN =
in(secureChannel, (=AV_REQ, imsi_hn:
(x Generate athenication vectorsx)
new rand_hn: nonce;
get keys(=imsi_hn, ki_hn) in
let mac_hn: mac = f1(ki_hn, rand_hn) in
let xres_hn: resp = f2(ki_hn, rand_hn) in
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in
let ik_hn: integKey = f4(ki_hn, rand_hn) in
let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in
out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn, xres_hn,
mac_hn, kasme_hn, ck_hn, ik_hn)).

ident, snid_hn: ident));

process

((!processMS) | processSN | processHN)

S10+. UMTS I || LTE II-1V || UMTS 1V, AV = 4G AV + CK
+ IK

(x Public channel between the MS and the SNx)
free pubChannel: channel.

(x Secure channel between the SN and the HNx)
free secureChannel: channel [private].

free sChannelSnBts: channel [private].

(xtypesx)

type key.

type ident.
type nonce.
type msgHdr.
type resp.
type cipherKey.
type integKey.
type mac.

type msgMac.
type asmeKey.
type nasEncKey.
type nasintKey.

(x constant message headersx)
const CAP: msgHdr.

const ID: msgHdr.

const AV_REQ: msgHdr.

const AV: msgHdr.

const CHALLENGE: msgHdr.
const RES: msgHdr.

const NASSMC: msgHdr.

const NASSMComplete: msgHdr.
const ASSMC: msgHdr.

const ASSMComplete: msgHdr.
const MSG: msgHdr.

(x Functions )

fun f1(key, nonce): mac.

fun f2(key, nonce): resp.

fun f3(key, nonce): cipherKey.

fun f4 (key, nonce): integKey.

fun f9(bitstring, integKey): bitstring.

fun kdf_asme(cipherKey, integKey, ident): asmeKey.

fun kdf_nas_enc(asmeKey) : nasEncKey.

fun kdf_nas_int(asmeKey): nasintKey.

fun finteg_nas (bitstring, nasintKey): msgMac.

fun sencrypt_nas(bitstring, nasEncKey): bitstring.

reduc forall m: bitstring, k: nasEncKey;
sdecrypt_nas(sencrypt_nas(m, k), k) = m.

fun sencrypt_as(bitstring, cipherKey): bitstring.

reduc forall m: bitstring, k: cipherKey;
sdecrypt_as(sencrypt_as(m, k), k) = m.

(x Type Converterx)

fun bool2bitstring (bool): bitstring [data, typeConverter].

reduc encCapability () = true;



encCapability () = false.

(xthe table ident/keys
The key table consists of pairs
(ident, key) shared between MS and HN
Table is not accessible by the attackerx)
table keys(ident, key).

(xSMC command msgx )

free nas_smcomplete_msg: bitstring.
free as_smcomplete_msg: bitstring.
free payload: bitstring [private].

event disableEnc.

(«When the attacker knows s, x)

(+ the event disableEnc has been executed. x)
query attacker(payload) ~ event(disableEnc).
query attacker(payload).

free secret: bitstring [private].
query attacker(secret).

fun senc_int_nas(bitstring , nasintKey): bitstring.
reduc forall m: bitstring, k: nasintKey;
sdec_in_nas(senc_int_nas(m, k), k) =m.

fun senc_int_as(bitstring, integKey): bitstring.

reduc forall m: bitstring, k: integKey;
sdec_in_as(senc_int_as(m, k), k) =m.

not attacker(new ki).

(x Authentication queriesx)

event begSN(ident, ident, asmeKey).

event endSN(ident, ident, asmeKey).

event begMS(ident, ident, asmeKey, bool).

event endMS(ident, ident, asmeKey, bool).

event begMS_AS(ident, cipherKey, integKey, bool).
event endMS_AS(ident, cipherKey, integKey, bool).

query x1: ident, x2: ident, x3: asmeKey;
event(endSN(x1, x2, x3)) ~ event(begSN(x1, x2, x3)).

query x1: ident, x2: ident, x3: asmeKey, x4: bool;
event(endMS(x1, x2, x3, x4)) ~

event (begMS(x1, x2, x3, x4)).

query x1: ident, x2: cipherKey, x3: integKey, x4: bool;
event (endMS_AS(x1, x2, x3, x4)) ~

event (begMS_AS(x1, x2, x3, x4)).

(xAS SMC procedure in process MSx)
let pMSAS(ck_ms: cipherKey, ik_ms:
imsi_ms: ident, cap_ms: bool) =
in (pubChannel, (=ASSMC, =cap_ms, enableEnc_as_ms: bool,
=f9 ((cap_ms, enableEnc_as_ms), ik_ms)));
out (pubChannel, (ASSMComplete, as_smcomplete_msg,
f9 (as_smcomplete_msg, ik_ms)));
event endMS_AS(imsi_ms, ck_ms, ik_ms, cap_ms);
in(pubChannel, (=MSG, datamsg: bitstring,
=f9 (datamsg, ik_ms)));
out (pubChannel, sencrypt_as(secret, ck_ms));
out (pubChannel, senc_int_as(secret, ik_ms));
if enableEnc_as_ms = true then
let msgcontent: bitstring =
sdecrypt_as (datamsg, ck_ms) in 0.

integKey ,

(xprocess respresenting MSx)
let processMS =
(«The identity of the MSx)
new imsi_ms: ident;
(x Pre—shared keyx)
new Ki: key;
(x Insert id/pre—shared key pair into the private tablex)
insert keys(imsi_ms, Kki);
(*MS non—deterministically choose
the capability of encryptionx)
let cap_ms: bool = encCapability () in
out (pubChannel, (CAP, cap_ms));
out(pubChannel, (ID, imsi_ms));
in (pubChannel, (=CHALLENGE, rand_ms: nonce,
=f1(ki, rand_ms), snid_ms: ident));
let res_ms: resp = f2(ki, rand_ms) in
let ck_ms: cipherKey = f3(ki, rand_ms) in
let ik_ms: integKey = f4(ki, rand_ms) in

let kasme_ms: asmeKey = kdf_asme(ck_ms, ik_ms, snid_ms) i

event begSN(imsi_ms, snid_ms, kasme_ms);
out (pubChannel, (RES, res_ms));

n
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(*NAS SMC procedurex)
let knasenc_ms: nasEncKey = kdf_nas_enc(kasme_ms) in
let knasint_ms: naslntKey = kdf_nas_int(kasme_ms) in
in (pubChannel, (=NASSMC, enableEnc_nas_ms: bool, =cap_ms,
=finteg_nas ((enableEnc_nas_ms, cap_ms), knasint_ms)));
event endMS(imsi_ms, snid_ms, kasme_ms, cap_ms);
(«NAS key secrecyx)
out (pubChannel, sencrypt_nas(secret, knasenc_ms));
out (pubChannel, senc_int_nas(secret, knasint_ms));
if enableEnc_nas_ms = false then
out (pubChannel, (NASSMComplete, nas_smcomplete_msg,
finteg_nas (nas_smcomplete_msg, knasint_ms)));
pMSAS(ck_ms, ik_ms, imsi_ms, cap_ms)
else
out (pubChannel, (NASSMComplete,
sencrypt_nas (nas_smcomplete_msg, knasenc_ms),
finteg_nas (sencrypt_nas(nas_smcomplete_msg,
knasenc_ms), knasint_ms))); (x[Msg 8]x)
pMSAS(ck_ms, ik_ms, imsi_ms, cap_ms).

(x process representing e—nodeBx)
let processBS =

in (sChannelSnBts, (ck_bs: cipherKey,
imsi_bs: ident, cap_bs: bool));
event begMS_AS(imsi_bs, ck_bs, ik_bs, cap_bs);
out (pubChannel, (ASSMC, cap_bs, cap_bs,
f9 ((cap_bs, cap_bs), ik_bs)));
in (pubChannel, (=ASSMComplete, =as_smcomplete_msg,
=f9 (as_smcomplete_msg, ik_bs)));
if cap_bs = false then
event disableEnc;

ik_bs: integKey,

out(pubChannel, (MSG, payload, f9(payload, ik_bs)))
else
out(pubChannel, (MSG, sencrypt_as(payload, ck_bs),
f9 (sencrypt_as(payload, ck_bs), ik_bs))).
(xprocess representing MVEx)
let processSN =
in (pubChannel, (=CAP, cap_sn: bool));
in(pubChannel, (=ID, imsi_sn: ident));
new snid_sn: ident;
out(secureChannel, (AV_REQ, imsi_sn, snid_sn));

in(secureChannel, (=AV, =imsi_sn, snid_hn_sn: ident,
rand_sn: nonce, xres_sn: resp, mac_sn: mac,
kasme_sn: asmeKey, ck_sn: cipherKey, ik_sn: integKey));

out (pubChannel, (CHALLENGE, rand_sn, mac_sn, snid_sn));
in (pubChannel, (=RES, =xres_sn));
event begMS(imsi_sn, snid_hn_sn, kasme_sn, cap_sn);
(*NAS SMC procedurex)
let knasenc_sn: nasEncKey kdf_nas_enc (kasme_sn) in
let knasint_sn: naslIntKey = kdf_nas_int(kasme_sn) in
out (pubChannel, (NASSMC, cap_sn, cap_sn,
finteg_nas ((cap_sn, cap_sn), knasint_sn)));
in (pubChannel, (=NASSMComplete, msg_nas:bitstring ,
=finteg_nas (msg_nas, knasint_sn)));
if cap_sn = true then
if sdecrypt_nas(msg_nas, knasenc_sn)
= nas_smcomplete_msg then
event endSN(imsi_sn, snid_hn_sn, kasme_sn);
out(sChannelSnBts, (ck_sn, ik_sn, imsi_sn, cap_sn))
else 0
else
if cap_sn = false then
if msg_nas = nas_smcomplete_msg then
event endSN(imsi_sn, snid_hn_sn, kasme_sn);

out(sChannelSnBts, (ck_sn, ik_sn,
imsi_sn, cap_sn))
else 0
else 0.
(xprocess representing HNx)
let processHN =
in (secureChannel, (=AV_REQ, imsi_hn: ident, snid_hn: ident));

(x Generate athenication vectorsx)
new rand_hn: nonce;

get keys(=imsi_hn, ki_hn) in

let mac_hn: mac = f1(ki_hn, rand_hn) in

let xres_hn: resp = f2(ki_hn, rand_hn) in
let ck_hn: cipherKey = f3(ki_hn, rand_hn) in

f
let ik_hn: integKey = f4(ki_hn, rand_hn) in
let kasme_hn: asmeKey = kdf_asme(ck_hn, ik_hn, snid_hn) in
out(secureChannel, (AV, imsi_hn, snid_hn, rand_hn,
xres_hn, mac_hn, kasme_hn, ck_hn, ik_hn)).



process
((!processMS)

processSN | processBS | processHN)
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