
A short version of this work appears at ACNS 2013. This is the full version.

Computing on Authenticated Data

for Adjustable Predicates

Björn Deiseroth Victoria Fehr Marc Fischlin Manuel Maasz
Nils Fabian Reimers Richard Stein

Darmstadt University of Technology, Germany

Abstract. The notion of P-homomorphic signatures, introduced by Ahn et al. (TCC 2012),
generalizes various approaches for public computations on authenticated data. For a given
predicate P anyone can derive a signature for a message m′ from the signatures of a set of
messages M , as long as P(M,m′) = 1. This definition hence comprises notions and constructions
for concrete predicates P such as homomorphic signatures and redactable signatures.

In our work we address the question of how to combine Pi-homomorphic schemes for different
predicates P1,P2, . . . to create a richer and more flexible class of supported predicates. One
approach is to statically combine schemes for predicates into new schemes for logical formulas
over the predicates, such as a scheme for AND (P1∧P2). The other approach for more flexibility
is to derive schemes which allow the signer to dynamically decide which predicate to use when
signing a message, instead of supporting only a single, fixed predicate.

We present two main results. One is to show that one can indeed devise solutions for the static
combination for AND, and for dynamically adjustable solutions for choosing the predicate on
the fly. Moreover, our constructions are practical and add only a negligible overhead. The other
main result is an impossibility result for static combinations. Namely, we prove that, in contrast
to the case of AND, many other formulas like the logical OR (P1 ∨ P2) and the NOT (¬P) do
not admit generic combinations through so-called canonical constructions. This implies that
one cannot rely on general constructions in these cases, but must use other methods instead,
like finding new predicate-specific solutions from scratch.

1 Introduction

The notion of P-homomorphic signatures has been put forward by Ahn et al. [ABC+12] as a
generalization of several concurrent approaches to compute on authenticated data. The predicate
P takes as input a set of messages M and determines the admissible messages m′ which can be
derived from M , and for which a signature can be publicly computed from the signatures for the
messages in M . Examples covered by such signatures include homomorphic signatures [Des93,
JMSW02, CJL09, BFKW09, GKKR10, JWL11, AL11, BF11b, BF11a, Fre12, CFW12] where m′ is
the sum of all messages in M , transitive signatures [MR02, BN02, SSM04, Yi07, WCZ+07, CH12]
where m′ describes a path in a graph given by M , and redactable signatures [JMSW02, SBZ01,
MSI+03, ACdMT05, HHH+08, CLX09, NTKK09, BBD+10] where m′ is a substring of the single
message M .

Ahn et al. [ABC+12] proposed two general security notions for P-homomorphic signatures.
The first one is unforgeability and says that one should not be able to forge signatures for fresh
messages which have not been signed before, and which are not publicly derivable. The other

1

notion is called context hiding and provides strong privacy. It says that a derived signature for an
admissible message m′ and freshly created signatures for m′ have statistically close distributions.
This guarantees for instance that the original message in case of redactable signatures remains
hidden. The context hiding notion has been subsequently refined in [ALP12].

P-Homomorphic Signatures with Adjustable Predicates. While the abstract notion of P-
homomorphic signatures is very handy for arguing about the security of solutions, any construction
so far, even the ones in [ABC+12, ALP12], are for a specific fixed predicate P, such as quoting
substrings of a message. What is currently unknown is how to adjust solutions for fixed predicates
in the following sense:

– One desirable option may be the possibility to combine a set of given homomorphic schemes
for predicates P1,P2, . . . into one for a new P-homomorphic signature scheme. Here, P may
be a simple combination such as P1∧P2 or P1∨P2, or describe even more complex functions.
An example are two redactable schemes, one allowing for redaction only at the front of the
message (P1), and the other one enabling redaction only at the end (P2). Then a P1 ∨ P2-
homomorphic scheme would be a scheme for quoting substrings, by first pruning at the front
and then truncating in another step at the end. Note that the problem here is to present a
general transformation which supports a rich set of combinations from, say, basic predicates
P1,P2, . . . , instead of having to build schemes for P from scratch.

– Another desirable feature, which is not offered by the previous ability to combine predicates,
is that signer can decide “on the fly” for each signature which predicate P the signature should
support. Here, the set of admissible predicates is only bound by the universe P of predicates
for which such signature schemes have been devised yet. This would allow to make the set of
admissible message derivates depend on the message itself, e.g., supporting selective redaction
for different messages.

We call general constructions with the first property statically adjustable because the combined
predicate P is fixed at the time of key generation. The latter schemes are called dynamically
adjustable. Both approaches have their merits and display their full power only in combination.
One can first derive (statically) adjustable schemes for a larger universe P, and then use this
universe for the dynamically adjustable scheme.

Constructing Schemes with Statically Adjustable Predicates. We first investigate
simple static combinations such as P1∧P2, P1∨P2, and ¬P. Having solutions for these cases would
immediately allow arbitrarily complex combinations of predicates. Our first result is to confirm for
the logical AND that the “componentwise” solution works: sign each message with the schemes for
predicates P1,P2 individually, and derive signatures by applying the corresponding algorithms for
each component.

Our main result is to show that the logical OR, P1 ∨ P2, in general does not admit canonical
constructions. Such canonical constructions can combine given signatures of the individual schemes
into one for the P1 ∨ P2 predicate, and can vice versa split any signature for the OR into parts
for the individual schemes. Our AND construction is of this type. Our negative result for the
OR holds for (almost) arbitrary predicates P1,P2, essentially only excluding trivial examples like
P1∨P1. Note that we cannot hope to show a similar result for non-canonical solutions, as for some
cases we know constructions from scratch for P1 ∨ P2 (e.g., for quotable substrings).

We actually present a more general result, saying that one cannot find canonical constructions
for any predicate combination f(P1,P2, . . .) if one is able to efficiently find a derivable message

2

m′ under f(P1,P2, . . .) and from a message set M , such that m′ is not derivable under one of the
predicates individually. This excludes the AND case, because any derivable message m′ in P1 ∧ P2

must be also valid according to both in P1 and P2. Yet, this notion includes the OR case if m′

can be derived under one predicate, and therefore the OR, but not under the other predicate. It
also covers the NOT case straightforwardly, because if m′ is derivable under f(P1) = ¬P1, then it
is clearly not derivable under P1. The impossibility result holds even if the canonical construction
depends on f and the predicates. Put differently, it seems that the only general and non-trivial
solutions for statically adjustable predicates are the ones for logical ANDs.

Constructing Schemes with Dynamically Adjustable Predicates. Does the negative
result for statically adjustable parameters also rule out solutions for the dynamic case? Not neces-
sarily, because in this case we assume that the signer adaptively chooses the predicate P from the
universe P for which constructions are already known. Indeed we show that the “certify-then-sign”
construction provides a solution in this case: use a regular signature scheme to certify a public key
for the P-homomorphic scheme for the chosen predicate P ∈ P and sign the message under the
secret key for P. Some care must be taken, though, because in order to preserve context hiding the
key pair for the P-homomorphic scheme must remain fixed throughout the life time.

2 Preliminaries

We recall the definition and security notions of P-homomorphic signatures, as given in [ABC+12,
ALP12], and adopt them slightly for our adjustable setting.

2.1 Adjustable P-homomorphic Signature Schemes

We assume a fixed but public universe P of predicates P1,P2, . . . , each predicate associated with
a publicly known Pi-homomorphic signature scheme. A predicate Pi : 2M ×M→ {0, 1} indicates
whether a set of messages M allows to derive another message m′ from the message space M
or not. We give the signer and the verifier the predicate P in question as additional input. In
case of a single fixed predicate P, as for the statically adjustable setting, where the universe P
is a singleton, this is an invariant for the scheme and could be ignored by both algorithms. In
fact, in this case the notion basically coincides with the definition of a P-homomorphic scheme,
the only difference being the predicate given to the signers and verifier as additional input. In
this sense the definition of schemes with statically adjustable predicates is a rehash of the notion
of P-homomorphic signatures. We stress that we do not suggest to change the terminology for
P-homomorphic schemes. The reader should bear in mind, however, that schemes with statically
adjustable predicates in this paper implicitly assume a construction from selected P-homomorphic
schemes underneath. In light of this it matches the dynamic counterpart where predicates are
chosen adaptively for each signature.

We simplify the notation below, and write Verify(pk,M,Σ,P) as shorthand for∧
m∈M Verify(pk,m, σm,P) with Σ = {σm}m∈M . Similarly, we sometimes write Σ← Sign(sk,M,P)

for Σ = {Sign(sk,m,P) |m ∈M }.

Definition 2.1 (Adjustable P-homomorphic Signature Scheme) A (statically or dy-
namically) adjustable P-homomorphic signature scheme is a tuple of PPT algorithms
(KeyGen,Sign,SignDer,Verify) such that:

– (sk, pk)← KeyGen(1λ) maps the security parameter λ ∈ N, given in unary, to a key pair.

3

– σ ← Sign(sk,m,P) on input the secret key sk, a message m ∈ M, and a predicate P ∈ P
returns a signature σ to m and P.

– σ′ ← SignDer(pk,M,Σ,m′,P) takes as input the public key pk, a set of messages M ⊆ M
along with signatures Σ = {σm}m∈M , a message m′ ∈ M, and the predicate P ∈ P to be
applied, and outputs a signature σ′ (or a special symbol ⊥ indicating failure).

– b ← Verify(pk,m, σ,P), given the public key pk, a signature σ, a message m ∈ M, and a
predicate P ∈ P, returns 1 if the signature is valid for the given message, and 0 if not.

We assume the usual correctness condition, namely, that for any λ ∈ N, any (sk, pk)← KeyGen(1λ),
any (m,M,m′) ∈M× 2M ×M and any P ∈ P we have:

– if σ ← Sign(sk,m,P), then Verify(pk,m, σ,P) = 1 with probability 1; and

– for any Σ = {σm}m∈M , if Verify(pk,M,Σ,P) = 1 and P(M,m′) = 1, then for any σ′ ←
SignDer(pk,M,Σ,m′,P) we have Verify(pk,m′, σ′,P) = 1 with probability 1.

2.2 Unforgeability

For any predicate P and set M of messages it is convenient to consider the set of messages which
can be derived (recursively) from M through P . Hence, similar to [ABC+12], we define P(M) =
{m′ ∈M | P(M,m′) = 1} for any M ⊆ M, as well as P0(M) = M and Pi(M) = P(Pi−1(M)) for
i > 0. Let P∗(M) =

⋃
i∈N0

Pi(M). We sometimes switch between the set P∗(M) and its predicate
analogue, with P∗(M,m′) = 1 iff m′ ∈ P∗(M). Unless mentioned differently, we assume that any
predicate can be evaluated efficiently.

We also presume, without further mentioning it, that predicates are monotone, that is, P(M ′) ⊆
P(M) if M ′ ⊆M . It follows inductively that P∗(M ′) ⊆ P∗(M) in this case as well. This is necessary
to ensure that, below in the unforgeability game, the set of messages for which a signature can be
trivially derived from known signatures for M , does not shrink by asking for more signatures.1 An
alternative is to consider below all subsets M ′ ⊆M and declare that any message which is in P(M ′)
to be a message for which a signature is trivial to derive from the signatures for messages in M ′.

We again consider both the static and the dynamic case simultaneously, with the understanding
that the predicate is fixed in the static case via P = {P}.

Definition 2.2 (Unforgeability) A (statically or dynamically) adjustable P-homomorphic sig-
nature scheme (KeyGen, Sign, SignDer,Verify) is called unforgeable, if any PPT adversary A has a
negligible advantage in the following game:

1. The challenger C generates the key pair (sk, pk)← KeyGen(1λ) and gives pk to the adversary
A. The challenger initializes two empty sets T and Q.

2. A interleaves adaptively the following queries:

– Signing queries: A chooses a message m ∈ M and a predicate P ∈ P, upon which C
returns a unique handle h to A, runs σ ← Sign(sk,m,P), and stores (h,m, σ,P) in T .

1Interestingly, this is not stipulated explicitly in previous works [ABC+12, ALP12]. Still, the predicates for the
constructions there satisfy this property. It is, nonetheless, generally required for a reasonable definition in order to
avoid trivial examples of schemes which are formally unforgeable, but intuitively insecure.

4

– Derivation queries: A chooses a set of handles h = {hi}i, a message m′ ∈ M and a
predicate P. The challenger C retrieves the tuples (hi,mi, σi,Pi) from T and returns ⊥
if one of these tuples does not exist, Pi 6= P for some i, or P(M,m′) = 0. Otherwise, the
challenger returns a unique handle h′ to A, runs σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P)
for M = {mi}i and stores (h′,m′, σ′,P) in T .

– Reveal queries: If A chooses a handle h then C returns ⊥ if there does not exist a tuple
of the form (h,m, σ,P) in T . Otherwise, it returns σ to A and adds (m,σ,P) to the set
Q.

3. A outputs a pair (m,σ,P) and wins if the following conditions hold:

– Verify(pk,m, σ,P) = 1, and

– m /∈ P∗(MP), where MP = {m ∈M | (m, ∗,P) ∈ Q}, the set of messages in the query
set Q for the same predicate P.

Note that the condition on m /∈ P∗(MP) can be relaxed by considering the set M of messages
which have been signed under some predicate (and not only those which have been signed under
the same predicate P as in the forgery attempt). In the static case both cases coincide, of course.

2.3 Context Hiding

The original definition of Ahn et al. [ABC+12] requires a strong privacy requirement, basically
saying that a derived signature (from previously signed messages M), and a fresh signature for
the new message m′ are statistically close. It follows that a derived signature does not leak any
information about the starting messages M , and thus implies other common privacy notions for,
say, redactable signature schemes [BBD+10]. Still, the notion has been strengthened in [ALP12]
to adaptive context hiding and complete context hiding, basically saying that derived signatures
(for messages with any valid signatures) and fresh signatures are close. The generalization to valid
signatures as input, instead of only signed messages, allows to cover previously excluded cases like
rerandomizable signatures.

While the notion of adaptive context hiding is game-based, the notion of complete context
hiding is defined through statistically close distributions of signatures. It is convenient for us here
to present the latter definition also through a game, but considering unbounded adversaries (as
opposed to efficient adversaries for adaptive context hiding). Otherwise the notions are identical.
Our game-based definition of complete context hiding can be seen easily to be equivalent to the
distributional approach in [ALP12].

Definition 2.3 ((Complete and Adaptive) Context Hiding) A (statically or dynamically)
adjustable P-homomorphic signature scheme (KeyGen,Sign,SignDer,Verify) is called completely
(resp. adaptively) context hiding, if any unbounded (resp. PPT) adversary A has a negligible ad-
vantage in the following game:

1. The challenger C generates the key pair (sk, pk) ← KeyGen(1λ) and gives (sk, pk) to the ad-
versary A.

2. The adversary selects a set M of messages, and set {σm}m∈M of signatures, a predi-
cate P ∈ P, and a message m′ and hands it to the challenger. If P(M,m′) = 0 or if
Verify(pk,M, {σm}m∈M ,P) = 0 then the challenger immediately returns ⊥. Else it picks a ran-
dom bit b← {0, 1} and computes a derived siganture σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P) if
b = 0, and a fresh signature σ′ ← Sign(sk,m′,P) in case b = 1. It returns σ′ to the adversary.

5

3. Eventually the adversary outputs a bit b∗ ∈ {0, 1} and wins if b∗ = b. The advantage of A is
defined to be Adv(A) =

∣∣Prob[b∗ = b]− 1
2

∣∣.
Some remarks are in place. First note that the adversary can ask the challenger only once. A
standard hybrid argument shows that this remains true for multiple (polynomially many) queries
for which the challenger re-uses the same bit b. For both cases, the static and the dynamic one,
the advantage grows by a factor proportional to the number of queries.

Secondly, note that in the dynamically adjustable case we do not aim to hide the predicate
P which has been used to compute the signature. In a stronger requirement one could demand
that the actual predicate remains hidden, either among all predicates from the universe, or among
the predicates for which the public derivation algorithm would succeed. The former would require
a super-polynomial set P (else the privacy attacker could probe the derivation algorithms for
all predicates). The latter would mean a trade-off between privacy, usability, and the signer’s
intention for restricting the class of admissible public operations: if the signature would hide the
corresponding predicate among multiple possibilities, then signatures for a different predicate than
the original choice may be derivable. This would imply that the signer loses some control about
the (in)ability to derive further signatures. Hence, we do not pursue such stronger requirements
here.

3 Statically Adjustable Computations

In this section we investigate statically adjustable constructions for the basic operations AND, OR,
and NOT. As explained in the introduction, we can give a general solution for AND, but cannot
hope to give (general) transformations for the other two cases.

Below we consider combinations for arbitrary functions f over a fixed2 number q of predicates
P1,P2, . . . ,Pq. We assume that such a function f(P1,P2, . . . ,Pq) over the predicates itself con-
stitutes a predicate and defines a set of derivable messages from M in a straightforward way, by
evaluating the predicates for (M,m′) and plugging the results into the formula. If viewed as sets, our
basic examples for OR, AND, and NOT can then be written as f∨(P1,P2)(M) = P1(M) ∪ P2(M),
and f∧(P1,P2)(M) = P1(M) ∩ P2(M), as well as f¬(P1)(M) =M\ P1(M).

Note that one could more generally also define f(P1,P2, . . . ,Pq) for divisible message sets M =
(M1,M2, . . . ,Mq) by evaluating f(M,m′) as a logical formula over P1(M1,m

′), . . . ,Pq(Mq,m
′), i.e.,

assigning only the i-th part Mi of M to the i-th predicate, instead of using the same set M for all
predicates. This can be captured in our notion with a single M by having the predicates Pi first
project M onto Mi and then evaluating the actual predicate on (Mi,m

′). For sake of readability
we use the simpler notion with identical M .

We also assume that the message spaces Mi of all schemes are identical. This can always be
achieved by setting M =

⋂q
i=1Mi. Note that, if message spaces are not identical this in principle

allows to distinguish, say, in case of OR which predicate can be used to create a signature for some
message. Since this would violate the idea of privacy immediately, we restrict ourselves to the case
of identical message spaces.

2Note that, in general, the number of combined predicates is specific for the scheme and must not depend on the
security parameter, i.e., the design of the scheme does not change with the security parameter. In this sense the
number q of predicates is constant in the security parameter.

6

3.1 Statically Adjustable Computations for AND

We first confirm that the solution to sign each message component-wise under a set of public keys
yields a secure solution for the AND. Instead of considering only two predicates we allow to combine
any fixed number q of predicates.

Construction 3.1 (AND-Construction) Let (KeyGeni, Signi,SignDeri,Verifyi) be Pi-
homomorphic signature schemes for predicates P1, . . . ,Pq. Then the following scheme
(KeyGen,Sign,SignDer,Verify) is a P-homomorphic signature scheme for P = P1 ∧ . . . ∧ Pq:

– KeyGen(1λ) runs (ski, pki) ← KeyGeni(1
λ) for all i = 1, 2, . . . , q, and outputs sk =

(sk1, . . . , skq) and pk = (pk1, . . . , pkq).

– Sign(sk,m,P) computes σi ← Signi(ski,m,Pi) for all i and returns σ = (σ1, . . . , σq).

– SignDer(pk,M,Σ,m′,P) first checks that Pi(M,m′) = 1 for all i, and then creates σ′i ←
SignDeri(pki,M,Σi,m

′,Pi) where Σi is the set of projections on the i-th component for each
signature tuple in Σ = {σm}m∈M . It returns σ′ = (σ′1, . . . , σ

′
q).

– Verify(pk,M,Σ,P) returns 1 if and only if Verifyi(pki,M,Σi,Pi) = 1 for all i (where again Σi

is the set of projections on the i-th component for each signature in Σ).

Correctness follows easily from the correctness of the underlying Pi-homomorphic schemes.

Proposition 3.2 For any constant q and any unforgeable and completely (resp. adaptively) context-
hiding Pi-homomorphic schemes, Construction 3.1 (AND-Construction) is unforgeable and com-
pletely (resp. adaptively) context-hiding.

For concrete parameters our proof shows that the advantage of breaking unforgeability resp. con-
text hiding for the AND scheme is bounded by the sum of the advantages for the corresponding
property over all Pi-homomorphic schemes.

Proof. We first show unforgeability, then context hiding.

Unforgeability. Assume that there exists a successful adversary A against unforgeability
(Definition 2.2) for the P-homomorphic signature scheme where P = P1 ∧ . . . ∧ Pq. For each
i ∈ {1, 2, . . . , q}, we first construct an adversary Ai against the unforgeability of the underlying
Pi-homomorphic signature schemes:

– Ai initially receives pki from the challenger Ci for the game against the Pi-homomorphic
signature schemes.

– Ai creates an initially empty table T ′ and runs (skj , pkj)← KeyGenj(1
λ) for all j = 1, 2, . . . , q,

j 6= i to create the other keys.

– Ai invokes adversary A against the AND-scheme on pk = (pk1, . . . , pkq).

– For every signing query (m,P) fromA, adversaryAi creates a signing query for message m and
the predicate Pi for its challenger and gets the handle h, then computes σj ← Signj(skj ,m,Pj)
for all j 6= i, and stores (j, h,m, σj ,Pj) in T ′.

7

– For every derivation query ({h},m′,P) of A, adversary Ai passes a derivation query
for the corresponding handles ({h},m′,Pi) to its challenger to receive a handle h′. If
h′ 6= ⊥ adversary Ai looks up all entries (j, h,m, σm,Pj) for j 6= i in T ′ for the queried
handles in {h} to form M = {m}, internally checks Pj(M,m′) = 1, and computes
σ′j ← SignDerj(pkj ,M, {σm}m∈M ,m′,Pj). If no error occurs it returns h′ to A and stores
(j, h′,m′, σ′j ,Pj) in T ′ for all j 6= i; else it returns ⊥.

– For every reveal request Ai runs a reveal request for the corresponding handle h, combines
the reply σi with the values σj from entries (j, h,m, σj ,Pj) in T ′ to σ and sends it to A; in
case of an error it simply returns ⊥.

– When A eventually outputs a tuple (m,σ,P), then Ai outputs the tuple (m,σi,Pi) for the
i-th component σi in σ.

Note that for each i adversary Ai perfectly simulates an attack of A on the P-homomorphic scheme
with the help of its challenger, such that A would output a successful forgery with the same
probability in the simulation as in the original attack. By construction, we also have that the
message set MP of queries (m, ∗,P) in A’s queries in the simulation is identical to the set MPi

for queries (m, ∗,Pi) of Ai to its challenger for each i. Hence, from m /∈ P∗(MP) it follows that
m /∈ P∗i (MPi

) for some i ∈ {1, 2 . . . , q}. Furthermore, since verification succeeds for all components,
it also holds that Verifyi(pki,m, σ,Pi) = 1 for this i.

In other words, any successful forgery yields a successful forgery against (at least) one of the
underlying schemes. It follows that the probability of breaking unforgeability for the AND scheme
is bounded from above by the sum of the probabilities to break each underlying scheme.

Context Hiding. Assume next that there exists a successful adversary A against context hiding
(Definition 2.3) for our P-homomorphic signature scheme with P = P1 ∧ . . . ∧ Pq. As in the case
of unforgeability we construct, for each i ∈ {1, 2, . . . , q}, an adversary Ai against context hiding of
the i-th scheme. The advantage of A will be bounded from above by the sum over all advantages
of the Ai’s via a standard hybrid argument. Furthermore, each Ai will be efficient if A is, such
that the claim remains true for adaptive context hiding.

Adversary Ai receives a pair (ski, pki) from its challenger and creates the other key pairs
(skj , pkj) for j 6= i by running KeyGenj(1

λ). It hands sk = (sk1, . . . , skq) and pk = (pk1, . . . , pkq) to
adversary A and waits for the adversary to create a challenge request M,Σ,m′. For each signature
σm in Σ adversary Ai extracts the i-th component and thereby forms the set Σi. It passes M,m′,
and Σi to its own challenger to receive a signature σ′i (or an error message). It creates the signa-
tures σ′j for j < i by running the signing algorithm on m′; for j > i it runs the signature derivation
algorithm on M,m′,Σj to create the remaining signatures σ′j . In all cases it checks the validity of
the predicates and signatures. If there is an error it returns ⊥ to the adversary A, and (σ′1, . . . , σ

′
q)

otherwise. If A eventually outputs a bit b∗ then Ai, too, outputs this bit and stops.
For the analysis note that A1, given that its challenger uses b = 0, describes the case that all

signatures are derived via SignDer. It follows that the probability of A correctly outputting 0 for
derived signatures in the attack (and thus in the perfect simulation through A1) is exactly the
probability that A1 returns 0, given b = 0 in its challenge. Analogously, given b = 1 adversary Aq
only creates fresh signatures via Sign in all components, hence given b = 1 the probability that Aq
returns 0 is exactly the same that A outputs 0 in the case that all signatures are fresh. A standard

8

hybrid argument now yields:

Prob[A = b]− 1
2 = 1

2 ·
(

Prob[A = 0 | b = 0]− Prob[A = 0 | b = 1]
)

= 1
2 ·
(

Prob[A1 = 0 | b = 0]− Prob[Aq = 0 | b = 1]
)

= 1
2 ·
(

Prob[A1 = 0 | b = 0]− Prob[Aq = 0 | b = 1]

+

q−1∑
i=1

(Prob[Ai = 0 | b = 1]− Prob[Ai = 0 | b = 1])
)

and observing that Prob[Ai = a | b = 1] = Prob[Ai+1 = a | b = 0], because in both cases exactly
the first i signatures are computed via Sign,

= 1
2 ·
(

Prob[A1 = 0 | b = 0]− Prob[Aq = 0 | b = 1]

+

q−1∑
i=1

(Prob[Ai+1 = 0 | b = 0]− Prob[Ai = 0 | b = 1])
)

=

q∑
i=1

1
2 · (Prob[Ai = 0 | b = 0]− Prob[Ai = 0 | b = 1])

=

q∑
i=1

Adv(Ai).

This proves context hiding. �

3.2 Statically Adjustable Computations for OR and NOT

Our impossibility result holds for canonical constructions which combine Pi-homomorphic schemes
in a general way, ruling out specific constructions which ignore the underlying schemes and builds
a new scheme from scratch. We require four algorithms, one for synthesizing public keys of the
individual schemes into one for the combined scheme (PKComb), one for splitting keys (PKSplit),
one for combining signatures (SigComb), and one to divide signatures for the combined scheme
into signatures for the individual schemes (SigSplit). The latter is usually necessary to reduce the
security to the security of the individual schemes.

For sake of readability we follow the statistical indistinguishability approach also used for (com-
plete) context hiding, and require that the distributions of the algorithms above for combining and
splitting keys and signatures have identical distributions as if running the actual algorithms of the
combined scheme directly. As our proof below shows our impossibility result can be extended to
cover computationally indistinguishable distributions.

Definition 3.3 (Canonical Construction) Let f be a functional predicate over predicates
P1, . . . ,Pq for a fixed number q of predicates. A statically adjustable f(P1, . . . ,Pq)-
homomorphic signature scheme (KeyGen, Sign, SignDer,Verify) is a canonical construction out of
Pi-homomorphic signature schemes (KeyGeni,Signi, SignDeri,Verifyi) if there exist PPT algorithms
(PKComb,PKSplit,SigComb,SigSplit) such that:

Identical distribution of combined keys: The following random variables are identically dis-
tributed:

– Let (pk, sk)← KeyGen(1λ) and output pk;

9

– Let (pki, ski)← KeyGeni(1
λ) for all i, pk← PKComb(pk1, . . . , pkq), output pk,

Identical distribution of split keys: The following random variables are identically distributed:

– Let (pk, sk)← KeyGen(1λ) and output (pk1, . . . , pkq)← PKSplit(pk);

– Let (pki, ski)← KeyGeni(1
λ) for all i, output (pk1, . . . , pkq),

Identical distribution of combined signatures: For any PPT algorithm F the following pairs
of random variables are identically distributed:

– Run M ← F(1λ). Compute (pk, sk) ← KeyGen(1λ) and output
Σ← Sign(sk,M, f(P1, . . . ,Pq));

– Run M ← F(1λ). For all i, compute (pki, ski) ← KeyGeni(1
λ) along with Σi ←

Signi(ski,M,Pi). Synthesize the public key via pk ← PKComb(pk1, . . . , pkq) and output
Σ← SigComb(pk, pk1, . . . , pkq,Σ1, . . . ,Σq,M).

Splitting Signatures: For any PPT algorithm F ′ we have that for (pki, ski) ←
KeyGeni(1

λ) for all i, pk ← PKComb(pk1, . . . , pkq), (M,m′) ← F ′(1λ) where
m′ ∈ f(P1, . . . ,Pq)(M), Σi ← Signi(ski,M,Pi), Σ ← SigComb(pk1, . . . , pkq,Σ1, . . . ,Σq,M),
σ′ ← SignDer(pk,M,Σ,m′, f(P1, . . . , Pq)), the probability that (σ′1, . . . , σ

′
q) ←

SigSplit(pk, pk1, . . . , pkq,m
′, σ′) does not contain some valid component and thus

Verifyi(pki,m
′, σ′i) = 0 for all i, is negligible.

In other words, SigSplit returns at least one valid signature for one of the underlying predi-
cates with sufficiently high probability. Our AND-construction is canonical in the above sense:
PKComb and SigComb both concatenate their inputs (and PKSplit divides the concatenated
keys again), and SigSplit simply returns the signature itself. Note that the definition allows
PKComb,PKSplit, SigComb, and SigSplit to depend on the given predicates Pi; the construction
only follows a canonical pattern.

In what follows, we need to exclude trivial examples like P1∨P2 = P1∨P1. Hence, for the OR we
assume below the existence of a message m′ which can be derived from a set of messages M under
one predicate, but not the other predicate. This clearly prevents P1 = P2. More generally, and
to include for instance also the NOT case, we assume that m′ can be derived under f(P1,P2, . . .)
but not under one of the predicates; the excluded predicate Pi can be arbitrary, but the output
distribution of m′ does not depend on this choice. The latter is necessary to ensure that m′ does
not contain any information about the predicate’s index i. Furthermore, we assume that such pairs
(M,m′) are efficiently computable. We discuss an illuminating example after the definition.

Definition 3.4 (Efficiently Distinguishable Predicates) Let f be a functional predicate over
predicates P1, . . . ,Pq. Consider a statically adjustable f(P1, . . . ,Pq)-homomorphic signature scheme
(KeyGen,Sign,SignDer,Verify). Then the predicates are called efficiently distinguishable with re-
spect to f , if there exists a PPT algorithm F such that for any i ∈ {1, 2, . . . , q} and for any
(M,m′) ← F(1λ, i), we have m′ ∈

(
f(P1, . . . ,Pq)(M) \ P∗i (M)

)
. Moreover, for any i, j ∈

{1, 2, . . . , q} the distribution of m′ (over the coin tosses of F) in the output of F(1λ, i) resp. F(1λ, j)
is identical.

Let us demonstrate the property for the introductory example of two redactable signature
schemes (with message space M = {0, 1}∗), one allowing to drop message bits only at the front
(predicate P1), and the other one only at the end (P2). Consider the OR predicate P1∨P2 describing
a scheme for quotable substrings. Then F can simply pick m′ = 0λ and for i = 1 output M = {0λ1},

10

and for i = 2 it returns M = {10λ} instead. Clearly, for i = 1 one can derive m′ from M via P2 and
therefore for the OR, but not via P1, because the ’1’ at the end cannot be redacted through P1.
The same argument holds vice versa for i = 2, and the (trivial) distributions on m′ are identical
for both i = 1 and i = 2. Hence, this examples has efficiently distinguishable predicates.

The case of NOT is even simpler. Algorithm F simply needs to find some M and some m′ which
lies in (¬P(M))\P∗(M) =M\P∗(M), i.e., if m′ is not derivable according to P∗(M). Finally note
that constructions based only on AND cannot be distinguishable, since (P1(M)∩P2(M))\P∗i (M) =
∅ for any i.

Theorem 3.5 Let f be a functional predicate over predicates P1, . . . ,Pq for a fixed number q of
predicates. Assume further that the predicates are efficiently distinguishable with respect to f .
Then there is no adaptively context-hiding, statically-adjustable f(P1, . . . ,Pq)-homomorphic sig-
nature scheme which is a canonical construction out of unforgeable Pi-homomorphic signature
schemes.

The proof idea is as follows. Essentially we show how to forge a signature for one of the
underlying schemes. For this we use the distinguishability of the predicates to create a set of
messages M and a message m′ which is derivable by f(P1, . . . ,Pq)(M) but does not lie in P∗i (M)
for some i. Then we ask for signatures for the messages in M , and derive a signature for m′ via the
public operation SignDer for the combined scheme and for f(P1, . . . ,Pq). Splitting up the signature
into its components via SigSplit we obtain (with sufficiently large probability) a valid signature for
m′ under the i-th scheme. But since m′ /∈ P∗i (M) we thus create a valid forgery, contradicting the
security of the underlying scheme. In the course of the proof we use the context hiding property to
show that the “skewed” choice of M,m′ (with m′ /∈ P∗i (M)) does not bias the success probability
of SigSplit for returning a valid signature component for the i-th scheme significantly.

Proof. Take an arbitrary canonical construction. By the efficient distinguishability of the pred-
icates there exists a PPT algorithm F which on input i returns (M,m′), such that m′ ∈
(f(P1, . . . ,Pq) \ P∗i)(M). Given this algorithm we next construct, for each i ∈ {1, 2, . . . , q}, an
adversary Ai trying to break the unforgeability game of the Pi-homomorphic signature scheme
(KeyGeni,Signi, SignDeri,Verifyi):

– The adversary Ai is given pki of (ski, pki) ← KeyGeni(1
λ). It generates the other keys

(pkj , skj) ← KeyGenj(1
λ) for j 6= i on its own. It also computes the combined public key

pk← PKComb(pk1, . . . , pkq).

– Ai runs F on (1λ, i) to find a suitable tuple (M,m′).

– It obtains signatures for the set M with the help of signing queries, namely Σi ←
Signi(ski,M,Pi). It computes the other signatures Σj ← Signj(skj ,M,Pj) with the secret
keys skj , and synthesizes them all via Σ← SigComb(pk, pk1, . . . , pkq,Σ1, . . . ,Σq,M).

– Adversary Ai obtains the forged signature by the derivative σ′ ←
SignDer(pk,M,Σ,m′, f(P1, . . . ,Pq)) and by running (σ′1, . . . , σ

′
q) ←

SigSplit(pk, pk1, . . . , pkq,m
′, σ′). It returns σ′i.

Obviously, adversary Ai runs in polynomial time because all steps can be executed efficiently and
the set M is of at most polynomial size and therefore the number of signature queries and creations.

It remains to argue that the adversary outputs a valid forgery with non-negligible probability.
To this end we need to show that the splitting algorithm returns with a valid signature for our

11

Pi-homomorphic scheme with sufficiently large probability. In particular, since M,m′ are such that
m′ ∈ (f(P1, . . . ,Pq) \ P∗i)(M) it may be that the signatures for M and the input m′ for SigSplit
convey some information about i, and SigSplit then “avoids” to output some valid signature for i,
but always uses a different index j. In fact, we need to make sure that SigSplit for our specific input
does not return a valid signature for the i-th scheme with negligible probability, despite succeeding
with non-negligible probability in general. We use the context hiding property to show that this
cannot happen.

By assumption, the canonical construction is adaptively context hiding. We claim that the
probability that SigSplit does not return a valid signature for the index i given to F is negligible.
To this end assume that SigSplit, instead of receiving the derived signature σ′, is run on a fresh
signature σ′ generated through Sig on m′ for a key sk which is generated according to the key
generation for the canonical construction, (sk, pk) ← KeyGen(1λ). We claim that this cannot
increase the probability of SigSplit returning a valid signature for the index i given to F by more
than a negligible amount. Otherwise it we can devise a successful (and efficient!) adversary Bi
against the context hiding property, as explained next.

The adversary Bi would receive a key pair (sk, pk)← KeyGen(1λ) of the canonical construction,
and mimic Ai’s behavior by running F on i to receive (M,m′). It creates all signatures Σ for the
messages in M with the secret key sk, and then calls its challenge oracle about Σ,M,m′ to obtain a
signature σ′, either derived via SignDer or via Sign. It then runs SigSplit on (pk, pk1, . . . , pkq,m

′, σ′)
to obtain signatures for the individual schemes, where it derives the keys pk1, . . . , pkq via the key
splitting algorithm PKSplit. It returns 0 if this yields a valid signature σ′i for the index i, which it
can decide by running the verification algorithm Verifyi on (pki,m

′, σ′i,Pi); else it returns 1.
Note that from SigSplit’s perspective the simulations through Ai and through Bi (given b = 0

and thus a derived signature via SignDer) are identical, because the distribution of combined keys
and signatures and genuine keys are identical. The same is true for Ai’s run if giving SigSplit a
fresh signature for m′ instead, and Bi’s simulation for b = 1. Hence, if the probability in Ai’s
simulation, when giving a fresh signature for m′ instead, to find a suitable signature for the i-
th scheme would increase from negligible to non-negligible, then this would also be true for the
two cases in Bi’s attack, contradicting the context hiding property. Hence, since m′ is distributed
independently of i according to the efficient distinguishability requirement on F , the index i is
information-theoretically hidden from algorithm SigSplit when receiving pk, pk1, . . . , pkq, σ

′,m′ for
a fresh signature σ′. In this case, the output by SigSplit does not depend on i, and by context
hiding this remains true up to a negligible error for the “skewed” parameters M,m′ and the derived
signature via SignDer as chosen by Ai (for any i).

Now we can complete the argument of SigSplit outputting a valid signature for some i sufficiently
often. Recall that, for infinitely many security parameters λ, algorithm SigSplit returns some valid
signature with a success probability exceeding a polynomial fraction in the sense of the definition of
a canonical construction. Hence, among the (constant number of) q predicates there must be a fixed
index i ∈ {1, 2, . . . , q} such that infinitely often the success probability exceeds a polynomial fraction
for this index i. With the argument above, up to a negligible error, this remains true when run by
Ai for the parameters M,m′ which depend on i now. Hence, this adversary still successfully forges
infinitely often with sufficiently high probability. This, however, would contradict unforgeability of
this scheme, concluding the proof. �

We stress that the impossibility result holds for the computational notion of adaptive con-
text hiding (with efficient distinguishers), which even strengthens our result. As mentioned
before, a slightly more involved argument allows to extend the result also to algorithms
PKComb,PKSplit, SigComb whose output is only computationally indistinguishable from the one

12

of the original algorithms (instead of being identical). This requires some additional steps to prove
that gradually replacing the algorithms does not change the behavior of SigSplit in the above proof
significantly.

4 Dynamically Adjustable Computations

In the dynamic case we assume a polynomial universe P of predicates such that there exists a
Pi-homomorphic scheme for each Pi ∈ P. We furthermore assume that given (a description of) Pi
one can efficiently recover the corresponding scheme, e.g., if the universe consists only of a fixed
number of predicates. Vice versa, we assume that Pi is identifiable from the scheme’s public key
pki. This in particular implies that the public keys for predicates must be unique. For simplicity
we assume an ordering on predicates in P and often identify the predicate Pi and the scheme with
its number i according to this order. We simply call sets P as above efficient.

In the construction we need to assume that for a given predicate identifier i there is a fixed
yet (pseudo)random key pair (ski, pki) ← KeyGeni(1

λ), generated according to the key generation
algorithm for the scheme for predicate Pi. This key pair remains identical for all signature requests
for Pi. For a polynomial universe P this can be in principle implemented by generating the keys
(ski, pki) when creating the scheme’s keys (sk, pk), and storing them in sk. In practice this may
indeed be admissible for a small number of predicates, a more applicable approach may be to
generate the keys on the fly via a pseudorandom function. Namely, store a key κ of a pseudorandom
function in sk, and to create the key pair for predicate Pi, recover the (pseudo)random output
ωi = PRF(κ,Pi) and re-run KeyGeni(1

λ;ωi) for ωi to derive the same pair (ski, pki) as before. For
unforgeability it can be formally shown via standard techniques that this solution is (quasi) as
secure as generating fresh key pairs and maintaining a table to look up previous keys; for context
hiding, however, one requires an additional assumption on the security of the underlying scheme
to preserve privacy, as discussed below.

Similarly, the public keys pki and their (fixed) certificates certi may be published at once, or
may be attached to each signature upon creation. Below we adopt the latter solution as it rather
complies with our notion of (stateless) P-homomorphic signatures. Hence, below we assume for
simplicity that the efficient universe P stores all pairs (ski, pki) with once-created certificates certi
at the beginning in sk. For certification we use a regular signature scheme which we can subsume as
a special case under P-homomorphic schemes, without considering a SignDer algorithm nor context
hiding. If we define P(M) = M for this scheme, unforgeability for this “homomorphic” scheme
corresponds to the common notion of unforgeability for regular schemes.

Construction 4.1 (Certify-Then-Sign Construction) Let P be an efficient set of predicates
P1,P2, . . . ,Pq. Let (KeyGen0, Sign0,Verify0) be a regular signature scheme. Define the following
dynamically adjustable P-homomorphic signature scheme (KeyGen,Sign,SignDer,Verify):

– KeyGen(1λ) generates (sk0, pk0)← KeyGen0(1
λ), generates key pairs (ski, pki)← KeyGeni(1

λ)
for all predicates Pi, and certificates certi ← Sign0(sk0, pki) for all i. It returns sk =
(sk0, {(ski, pki, certi)}i) and pk = pk0.

– Sign(sk,m,Pi) looks up (ski, pki, certi) for Pi in sk and computes σi ← Signi(sk,m) and returns
σ = (σi, pki, certi).

– SignDer(pk,M,Σ,m′,P′) checks that all signatures carry the same pki and certi for predicate
Pi, that P′ = Pi, that Pi(M,m′) = 1, that Verifyi(pki,M,Σ) = 1, and, if all checks succeed,
computes σ′i ← SignDeri(pki,M,Σ,m′) and returns σ′ = (σ′i, pki, certi).

13

– Verify(pk,m, σ,P) checks that P corresponds to the public key in (σi, pki, certi), that
Verify0(pk, pki, certi) = 1, and that Verifyi(pki,m, σi) = 1. Only if all checks succeed, it returns
1.

It is straightforward to verify that the above construction is correct in the sense that genuine
(fresh and derived) signatures are accepted by Verify. This follows from the correctness properties
of the regular scheme and of the Pi-homomorphic ones.

Proposition 4.2 Assume that the signature scheme (KeyGen0,Sign0,Verify0) and all Pi-
homomorphic schemes are unforgeable according to Definition 2.2. Then the Certify-then-Sign
Construction 4.1 is also unforgeable for the efficient universe P = {P1, . . . ,Pq} for the fixed num-
ber q of predicates.

In terms of concrete security, the success probability of any adversary against the construction
is (for similar running time) bounded from above by the probability of forging certificates, plus q
times the maximal advantage against any of the schemes from P.

Proof. Assume that there exists a successful forger A. Then this adversary is able to forge with
non-negligible probability a signature σ∗ = (σ, pk, cert) for a message m such that, in particular,
Verify0(pk0, pk, cert) = 1. Note that if the probability that A succeeds and that pk does not match
any of the keys pki created by the signer for the predicates Pi, was non-negligible, then this would
straightforwardly contradict the unforgeability of the certification scheme. Namely, construct an
algorithm A0 against the certification scheme which, on input pk0, creates the polynomial number
of key pairs (ski, pki) ← KeyGeni(1

n) and asks for signatures certi for all pki from the signing
oracle, and then emulates the attack of A with the help of the secret keys. If A eventually outputs
σ∗ = (σ, pk, cert), then A0 returns pk, cert as the forgery attempt.

If the probability that A would succeed for a fresh pk with non-negligible probability as defined
above, then our efficient algorithm A0, which perfectly simulates the actual attack, would then
successfully forge a signature cert for a new “message” pk with non-negligible probability. Since this
would contradict the unforgeability of the certification scheme, we can assume that this case happens
with negligible probability only. It follows that A must succeed with non-negligible probability for
a key pk = pki for some (unique) i, such that Verifyi(pki,m, σ,Pi) = 1, and the message is not
trivially derivable under the corresponding predicate Pi from the signing queries for Pi.

Note that the specific choice pki may depend on the adversary’s randomness. However, there
must exist at least one predicate Pi (among the q schemes) such that A succeeds for this key
fixed pki with non-negligible probability. We can now derive an adversary Ai successfully forging
signatures for this Pi-homomorphic scheme. Adversary Ai receives from the challenger the public
key pki and gets access to a Signi-oracle. It generates (sk0, pk0) and all other key pairs (skj , pkj)
and signs all of them, including pki. The adversary Ai then runs A on pk0, supplying all signatures
requests for Pj 6= Pi with the help of the secret keys, and using the external signing oracle for Pi.
If A finally returns m and (σ, pk, cert) then Ai returns m and σi.

Note that, if A has a non-negligible success probability for forging under the key pki, then
Ai has the same success probability. This follows as the signature verifies under pki, and if the
message m is not derivable from A’s queries for Pi, then this is also true for Ai. This, however,
would contradict the unforgeability assumption about the Pi-homomorphic scheme. �

Proposition 4.3 Assume that all Pi-homomorphic schemes are completely (resp. adaptively)
context-hiding according to Definition 2.3. Then the Certify-then-Sign Construction 4.1 is also
completely (resp. adaptively) context-hiding for an efficient universe P = {P1,P2, . . . ,Pq} of a fixed
number q of predicates.

14

Proof. Assume that there exists a successful adversary A with non-negligible advantage. We will
show that at least one predicate will not be completely (resp. adaptively) context-hiding. For any
i ∈ {1, . . . , q} construct an adversary Ai that plays against the predicate Pi. This adversary Ai
receives from the challenger the private key and the public key (ski, pki) for the i-th scheme. It then
generates (sk0, pk0)← KeyGen0(1

λ), the key pairs (skj , pkj) for all j 6= i, and creates the certificates
certi for all i according to our construction. The private key sk = (sk0, {(ski, pki, certi)}i) and the
public key pk = pk0 are then passed to adversary A.3 Adversary A then selects (M,Σ,m′,Pj). In
the case of i = j the adversary Ai forwards it to the challenger. The challenger then returns either
a derived signature, or a fresh signature σ′. The adversary Ai then returns the final output bit b∗

of A. For the case i 6= j, adversary Ai simply returns a random bit b∗ ← {0, 1}.
Note that, if A has a non-negligible advantage for the combined scheme, this means that it also

has a non-negligible advantage when conditioning on A choosing one of the fixed predicates Pi for
the challenge (involving Pj). More precisely, there must be some i such that the probability of A
predicting correctly the bit b (in the actual attack and in the perfectly indistinguishable simulation
through Ai) and picking j = i, is at least 1

q times the general prediction probability. Since the
number q of predicates is fixed this probability must be non-negligible as well. Fix such an i from
now on.

The advantage of Ai (against the underlying scheme) in terms of the advantage of A (against
the derived scheme) is then given by

Adv(Ai) = Prob[Ai = b]− 1
2

= Prob[A = b ∧ i = j] + Prob[b∗ = b ∧ i 6= j]− 1
2

≥ 1
q · Prob[A = b] + 1

2 · (1−
1
q)− 1

2

≥ 1
q ·Adv(A).

Hence, ifA breaks context hiding, i.e., has some non-negligible success probability, at least one of the
adversary Ai also breaks context hiding for Pi (losing a factor 1

q in the advantage compared to A).
This predicate would thus not be completely (resp. adaptively) context-hiding, which contradicts
our assumption. �

If we use a pseudorandom function with key κ to create ωi = PRF(κ,Pi), then to inherit the
context hiding property we need to assume that giving ωi (in addition to ski) to the distinguisher
does not violate context hiding of the underlying Pi-homomorphic scheme. If this is the case then we
can formally reduce security as in the proof above. For this assume that the pseudorandom function
has two keys, κ0, κ1, and its output for Pi is defined by PRF(κ0,Pi)⊕κ1. Then, receiving ski, ωi, pki
from the challenger we can forward the secret key sk = (sk0, (κ0, κ1)) for random κ0 and κ1 =
ωi⊕PRF(κ0,Pi) to the simulated adversary. This choice of (κ0, κ1) lets the pseudorandom function
map Pi to the desired value ωi and is identically distributed to a truly random key pair. Hence, if
we have an adversary against the certify-then-sign construction for the pseudorandom function, we
obtain an adversary against context hiding of one of the underlying schemes as above.

Acknowledgments

We thank the anonymous reviewers for comments. Marc Fischlin was supported by a Heisenberg
grant Fi 940/3-1 of the German Research Foundation (DFG).

3If we use a pseudorandom function to create the keys on the fly some care must be taken in this step, as discusses
after completion of the proof here.

15

References

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat,
and Brent Waters. Computing on authenticated data. In Ronald Cramer, editor,
TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in
Computer Science, pages 1–20, Taormina, Sicily, Italy, March 19–21, 2012. Springer,
Berlin, Germany. (Cited on pages 1, 2, 3, 4, and 5.)

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
signatures. In ESORICS, volume 3679 of Lecture Notes in Computer Science, pages
159–177. Springer, 2005. (Cited on page 1.)

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures
in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011: 14th International Workshop on Theory and Practice in
Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages
17–34, Taormina, Italy, March 6–9, 2011. Springer, Berlin, Germany. (Cited on page 1.)

[ALP12] Nuttapong Attrapadung, Benoit Libert, and Thomas Peters. Computing on authen-
ticated data: New privacy definitions and constructions. In Advances in Cryptology –
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 367–
385. Springer, Berlin, Germany, 2012. (Cited on pages 2, 3, 4, and 5.)

[BBD+10] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan
Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and
Dominique Schröder. Redactable signatures for tree-structured data: Definitions and
constructions. In Jianying Zhou and Moti Yung, editors, ACNS 10: 8th International
Conference on Applied Cryptography and Network Security, volume 6123 of Lecture
Notes in Computer Science, pages 87–104, Beijing, China, June 22–25, 2010. Springer,
Berlin, Germany. (Cited on pages 1 and 5.)

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polyno-
mial functions. In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 149–168,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany. (Cited on page 1.)

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over bi-
nary fields and new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Work-
shop on Theory and Practice in Public Key Cryptography, volume 6571 of Lecture
Notes in Computer Science, pages 1–16, Taormina, Italy, March 6–9, 2011. Springer,
Berlin, Germany. (Cited on page 1.)

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear
subspace: Signature schemes for network coding. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009: 12th International Conference on Theory and Practice of
Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages
68–87, Irvine, CA, USA, March 18–20, 2009. Springer, Berlin, Germany. (Cited on

page 1.)

16

[BN02] Mihir Bellare and Gregory Neven. Transitive signatures based on factoring and RSA.
In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501
of Lecture Notes in Computer Science, pages 397–414, Queenstown, New Zealand,
December 1–5, 2002. Springer, Berlin, Germany. (Cited on page 1.)

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding sig-
natures in the standard model. In Marc Fischlin, Johannes Buchmann, and Mark
Manulis, editors, PKC 2012: 15th International Workshop on Theory and Practice in
Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
680–696, Darmstadt, Germany, May 21–23, 2012. Springer, Berlin, Germany. (Cited

on page 1.)

[CH12] Philippe Camacho and Alejandro Hevia. Short transitive signatures for directed trees.
In Orr Dunkelman, editor, Topics in Cryptology – CT-RSA 2012, volume 7178 of
Lecture Notes in Computer Science, pages 35–50, San Francisco, CA, USA, Febru-
ary 27 – March 2, 2012. Springer, Berlin, Germany. (Cited on page 1.)

[CJL09] Denis Charles, Kamal Jain, and Kristin Lauter. Signatures for network coding. Int.
J. Inf. Coding Theory, 1(1):3–14, March 2009. (Cited on page 1.)

[CLX09] Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures using
random trees. In Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009, volume
5473 of Lecture Notes in Computer Science, pages 133–147, San Francisco, CA, USA,
April 20–24, 2009. Springer, Berlin, Germany. (Cited on page 1.)

[Des93] Yvo Desmedt. Computer security by redefining what a computer is. In Proceedings
on the 1992-1993 workshop on New security paradigms, NSPW ’92-93, pages 160–166.
ACM, 1993. (Cited on page 1.)

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, edi-
tors, PKC 2012: 15th International Workshop on Theory and Practice in Public Key
Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 697–714,
Darmstadt, Germany, May 21–23, 2012. Springer, Berlin, Germany. (Cited on page 1.)

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure net-
work coding over the integers. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010: 13th International Conference on Theory and Practice of Public Key Cryp-
tography, volume 6056 of Lecture Notes in Computer Science, pages 142–160, Paris,
France, May 26–28, 2010. Springer, Berlin, Germany. (Cited on page 1.)

[HHH+08] Stuart Haber, Yasuo Hatano, Yoshinori Honda, William Horne, Kunihiko Miyazaki,
Tomas Sander, Satoru Tezoku, and Danfeng Yao. Efficient signature schemes sup-
porting redaction, pseudonymization, and data deidentification. In Masayuki Abe
and Virgil Gligor, editors, ASIACCS 08: 3rd Conference on Computer and Commu-
nications Security, pages 353–362, Tokyo, Japan, March 18–20, 2008. ACM Press.
(Cited on page 1.)

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomor-
phic signature schemes. In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002,
volume 2271 of Lecture Notes in Computer Science, pages 244–262, San Jose, CA,
USA, February 18–22, 2002. Springer, Berlin, Germany. (Cited on page 1.)

17

[JWL11] Rob Johnson, Leif Walsh, and Michael Lamb. Homomorphic signatures for digital
photographs. In George Danezis, editor, FC 2011: 15th International Conference on
Financial Cryptography and Data Security, volume 7035 of Lecture Notes in Computer
Science, pages 141–157, Gros Islet, St. Lucia, February 28 – March 4, 2011. Springer,
Berlin, Germany. (Cited on page 1.)

[MR02] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Bart Preneel,
editor, Topics in Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes in Com-
puter Science, pages 236–243, San Jose, CA, USA, February 18–22, 2002. Springer,
Berlin, Germany. (Cited on page 1.)

[MSI+03] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura.
Digital documents sanitizing problem. In Technical Report ISEC2003-20. IEICE, 2003.
(Cited on page 1.)

[NTKK09] Ryo Nojima, Jin Tamura, Youki Kadobayashi, and Hiroaki Kikuchi. A storage efficient
redactable signature in the standard model. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, ISC 2009: 12th International Con-
ference on Information Security, volume 5735 of Lecture Notes in Computer Science,
pages 326–337, Pisa, Italy, September 7–9, 2009. Springer, Berlin, Germany. (Cited on

page 1.)

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In
ICISC, volume 2288 of Lecture Notes in Computer Science, pages 285–304. Springer,
2001. (Cited on page 1.)

[SSM04] Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri. A prov-
ably secure short transitive signature scheme from bilinear group pairs. In Carlo
Blundo and Stelvio Cimato, editors, SCN 04: 4th International Conference on Secu-
rity in Communication Networks, volume 3352 of Lecture Notes in Computer Science,
pages 60–76, Amalfi, Italy, September 8–10, 2004. Springer, Berlin, Germany. (Cited

on page 1.)

[WCZ+07] Licheng Wang, Zhenfu Cao, Shihui Zheng, Xiaofang Huang, and Yixian Yang. Transi-
tive signatures from braid groups. In K. Srinathan, C. Pandu Rangan, and Moti Yung,
editors, Progress in Cryptology - INDOCRYPT 2007: 8th International Conference in
Cryptology in India, volume 4859 of Lecture Notes in Computer Science, pages 183–
196, Chennai, India, December 9–13, 2007. Springer, Berlin, Germany. (Cited on page 1.)

[Yi07] Xun Yi. Directed transitive signature scheme. In Masayuki Abe, editor, Topics in
Cryptology – CT-RSA 2007, volume 4377 of Lecture Notes in Computer Science, pages
129–144, San Francisco, CA, USA, February 5–9, 2007. Springer, Berlin, Germany.
(Cited on page 1.)

18

	Introduction
	Preliminaries
	Adjustable P-homomorphic Signature Schemes
	Unforgeability
	Context Hiding

	Statically Adjustable Computations
	Statically Adjustable Computations for AND
	Statically Adjustable Computations for OR and NOT

	Dynamically Adjustable Computations

