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Abstract. Bellare, Canetti and Krawczyk [BCK96] show that cascad-
ing an e-secure (fixed input length) PRF gives an O(eng)-secure (variable
input length) PRF when making at most ¢ prefix-free queries of length
n blocks. We observe that this translates to the same bound for NMAC
(which is the cascade without the prefix-free requirement but an addi-
tional application of the PRF at the end), and give a matching attack,
showing this bound is tight. This contradicts the O(en) bound claimed
by Koblitz and Menezes [KM12].

Definitions. For a keyed function F : {0,1}¢ x {0,1}* — {0,1}¢ we de-
note with casc” : {0,1}2¢x{0, 1}** — {0, 1}¢ (where {0, 1}* = |J,cn {0, 1}%)
the cascade (aka. Merkle-Damgard) construction build from F as

casch (k,mq||...||mn) = yn where yo = k and for i > 1 : y; = F(y;_1,m;)

nmacF is casck with an additional application of F at the end (using some

padding if b > ¢).
nmach ((k1, ko), M) = F(ko, casc™ (ky, M))

A variable input length function G : {0,1}2¢ x {0,1}** — {0,1}¢ is a
(e,t,q,n)-secure PRF (for fixed input length functions we omit the pa-
rameter n) if for any adversary A of size ¢, making ¢ queries, each of
length at most n (in b-bit blocks) and R denoting a uniformly random
function with the same domain

Pr [A9KD)] 1) — Pr[AR0) S 1] <«
k<«{0,1}¢ R

Upper Bound.

Theorem 1 ([BCK96] casch is a PRFY). If F is an (e,t,q)-secure
PRF then casct is an (¢/,t',q,n)-secure PRF with if queried on prefiz-
free messages

g’ = O(eqn) t'=t—O(qn)

! This is Theorem 3.1 in the full version of [BCK96]
http://charlotte.ucsd.edu/ mihir/papers/cascade.pdf



As any ¢-query distinguisher who can find a collision in casc™ with ad-
vantage 6 € O(eqn) can be turned into a distinguisher for casc™ with
advantage § — ¢%/2¢ (as the probability that a random function collides
on any ¢ queries is < ¢? /2°), we get

Corollary 1. Let F be as in the above theorem. Then for any q distinct
messages My, ..., M, of length at most n
Pr [Ji#j : casc”(k, M;) = casc’ (k, M;)] = O(eqn)
k<«{0,1}¢

Note that unlike in Theorem 1, in Corollary 1 we did not require the
messages to be prefix-free. The reason we can drop this requirement is
that we can make the M;’s prefix free by adding some block X € {0,1}°
(that does not appear in any of the M;’s) at the end of every message.
This will make the messages prefix-free, but will no decrease the collision
probability.?

Proposition 1 (nmac’ is a PRF). IfF is an (¢, t,q)-secure PRF then

nmacF is an (¢/,t', q,n)-secure PRF with

g’ = O(eqn) t'=t—O(qn)

Proof. Let nmac'_:Ir denote nmacF, but where the outer application of F(ks, .)
is replaced with a random function R(.). By the security of F, one cannot
distinguish nmac” from nmacfr but with advantage ¢ (by a reduction of
complexity O(qn)).

The output of nmac’, (.) = R(casc(ky,.)) is uniformly random, as long
as all the outputs of the inner casc(k1, .) function are distinct. This implies
that distinguishing nmacE_ from random is at most as hard as provoking
a collision on the inner function (by Theorem 1.(i) [Mau02]), and more-
over adaptive strategies do not help (by Theorem 2 from [Mau02]). By
Corollary 1 we can upper bound this advantage by O(egn). ad

Note that the reduction we just gave is non-uniform as Corollary 1 does
not specify how to actually find the messages M;. To get a uniform reduc-
tion we use the fact from any adversary A who can distinguish nmacfr from
random with advantage 0 one can actually extract messages Mq,..., M,
on which nmaci collides with expected probability at least ¢ by simply in-
voking A and collecting its queries, while answering them with uniformly
random values. We then can make these M;’s prefix-free (if they are not
already) by adding some block X to all of them, and now can use these
to distinguish casc from random with probability 6.

2 As for any X, casc™(k, M;) = casc’ (k, M;)] = casc’ (k, M;|| X) = casc (k, M;|| X)]



Lower Bound. We show that Proposition 1 is tight.

Proposition 2. If PRF's exist, there exists an (¢,t, q)-secure PRF'F where
nmact can be very efficiently (in time O(qn)) distinguished from random

with advantage £2(eqn).

Proof. We start with any (g/2,t,q)-secure PRF F’ from which we con-
struct a (e,t,q)-secure F by considering any set of “weak keys” K of size
2¢(e/2), say the keys where the first c—loge —1 bits are 0. We then define
F as
F(k,.) = F'(k0,.) if kK ¢ K and F(k,.) = 0° otherwise

So, F behaves as F', except for weak keys where it’s constantly 0¢ (we can
replace 0¢ with any other weak key). It’s not hard to show that F is a
(e,t,q)-secure PRF, i.e. compared to F’ we loose at most an /2 term in
distinguishing advantage by redefining it on an /2 fraction of the keys.

Assume we make two queries My, M7 to nmact (k = (k1, k2), .), which

are sampled by first sampling an n—1 block long query M = m1|| ... ||my—1 €
{0,111 at random and then setting My = M|z, My = M|z, for any
xTo 7 T1.

If one of the n — 1 intermediate values in the evaluation of the inner
function casc’(k1, M) is in K, then the output of casc™(ky, M||z) is 0.
As this happens with probability ~ (n — 1)e/2

kf’}l; [nmach ((ky, k2), Mo) = nmach ((k1, k), My) = F(ko, 0°)] = O(ne)

)

If we query nmact on ¢/2 such random and independently sampled mes-

sage pairs My, M1, the probability to observe a collision for at least one
such pair is ©(neq). As we expect to see a collision for such a pair when
querying a random function with probability only O(q/2¢) we get a dis-
tinguishing advantage of @(neq) as claimed.
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