
CloudHKA: A Cryptographic Approach for
Hierarchical Access Control in Cloud Computing�

Yi-Ruei Chen1, Cheng-Kang Chu2, Wen-Guey Tzeng3, and Jianying Zhou4

1,3Department of Computer Science, National Chiao Tung University, Taiwan
2,4Institute for Infocomm Research, Singapore

1yrchen.cs98g@nctu.edu.tw, 2ckchu@i2r.a-star.edu.sg,
3wgtzeng@cs.nctu.edu.tw, 4jyzhou@i2r.a-star.edu.sg

Abstract. Cloud services are blooming recently. They provide a convenient way for data
accessing, sharing, and processing. A key ingredient for successful cloud services is to control
data access while considering the specific features of cloud services. The specific features
include great quantity of outsourced data, large number of users, honest-but-curious cloud
servers, frequently changed user set, dynamic access control policies, and data accessing for
light-weight mobile devices. This paper addresses a cryptographic key assignment problem
for enforcing a hierarchical access control policy over cloud data.
We propose a new hierarchical key assignment scheme CloudHKA that observes the Bell-
LaPadula security model and efficiently deals with the user revocation issue practically. We
use CloudHKA to encrypt outsourced data so that the data are secure against honest-but-
curious cloud servers. CloudHKA possesses almost all advantages of the related schemes,
e.g., each user only needs to store one secret key, supporting dynamic user set and access
hierarchy, and provably-secure against collusive attacks. In particular, CloudHKA provides
the following distinct features that make it more suitable for controlling access of cloud data.
(1) A user only needs a constant computation time for each data accessing. (2) The encrypted
data are securely updatable so that the user revocation can prevent a revoked user from
decrypting newly and previously encrypted data. Notably, the updates can be outsourced
by using public information only. (3) CloudHKA is secure against the legal access attack.
The attack is launched by an authorized, but malicious, user who pre-downloads the needed
information for decrypting data ciphertexts in his authorization period. The user uses the
pre-downloaded information for future decryption even after he is revoked. Note that the
pre-downloaded information are often a small portion of encrypted data only, e.g. the header-
cipher in a hybrid encrypted data ciphertext. (4) Each user can be flexibly authorized the
access rights of Write or Read, or both.

Keywords. Access control, hierarchical key assignment, key management, Bell-
LaPadula security model, outsourced data, cloud computing, proxy re-encryption

1 Introduction

Outsourcing data to cloud server (CS) becomes popular in these years. A data
provider (DP) no longer stores a large quantity of data locally. A user can access
them from anywhere at any time. However, the outsourced data often contain sensi-
tive information and CS naturally becomes a target of attacks. Even worse, CS itself

� The research was supported in part by projects NSC-101-2221-E-009-074-MY3 (National Science Coun-
cil, Taiwan) and SecDC-112172014 (A*STAR, Singapore)

Yi-Ruei Chen
This paper was accepted by the
11th International Conference on Applied Cryptography and Network Security (ACNS'13)
(this is the full version)

Yi-Ruei Chen

Yi-Ruei Chen

Yi-Ruei Chen

Yi-Ruei Chen

could distribute DP’s data for illegal profit. Therefore, DP does not want to disclose
his data to CS. Furthermore, DP wants to control access to data of different sensitive
levels. Only the authorized users can access the data with certain security levels. We
want to enforce a designated access control policy for users over cloud data.

This work considers the hierarchical access control (HAC) policy. By the policy,
data are organized into security classes SC1, SC2, . . ., SCn, which are partially
ordered with a binary relation ≺. SCj ≺ SCi means that the security level of SCi

is higher than that of SCj. If a user is authorized to read data at SCi, he is also
entitled to read data at SCj for SCj ≺ SCi. The HAC policy is widely used in
various computer systems, e.g., military, government, secure database, and Pay-TV
systems.

Hierarchical key assignment (HKA) is a cryptographic method for enforcing HAC
policies [1]. An HKA scheme consists of a set of cryptographic keys SK1, SK2, . . .,
SKn such that if SKj ≺ SKi, SKj can be derived by using SKi. To enforce an HAC
policy P for hierarchical data, a datum at SCj is encrypted into ciphertext by using
SKj. A user who is authorized to read the data at SCi is assigned SKi. Thus, the
user can decrypt the data at SCj, which is lower than SCi, by using SKi to derive
SKj.

An important issue in designing an HKA scheme is to revoke an authorized user
u from his associated class, say SCi. DP needs to remove u’s access rights for the
following two kinds of data:

– Newly encrypted data at SCz for SCz � SCi: The encrypted data under new
encryption keys after revoking u.

– Previously encrypted data at SCz for SCz � SCi: The encrypted data under
previous encryption keys before revoking u.

To prevent u from decrypting newly encrypted data at SCz, DP can encrypt data
by new keys and distribute the new keys to the non-revoked users only. Nevertheless,
since non-revoked users needs to access previously encrypted data at SCz, they
should keep all old keys. The key management cost is high if revocation occurs
frequently.

To prevent u from decrypting previously encrypted data by using his old keys,
DP can decrypt previously encrypted data and encrypt them with new keys, which
are distributed to non-revoked users only. Thus, the revoked user u cannot use his old
keys to decrypt previously encrypted data. Simultaneously, a non-revoked user needs
to keep the newest key of his associated class only. However, since data are of a large
quantity, DP needs substantial time in processing them. A common solution is to use
the hybrid encryption technique for data encryption. DP randomly chooses a data
encryption key K for encrypting data into body-cipher and then encrypts K into
header-cipher under a cryptographic key SKi. In processing data, CS only needs
to update the header-cipher and the much larger body-ciphers are no need to be
changed. It saves computation time significantly. Nevertheless, the solution causes a

2

new issue, which we call it the legal access attack. An authorized, but malicious, user
may decrypt all decryptable header-ciphers to obtain K’s. The user can use these
K’s to decrypt body-ciphers in the future even after he is revoked. Furthermore, in
processing data, if decryption and encryption operations are done in the CS side,
CS gets to know the content of data. Face to the above issues, we want a solution
that updates encrypted data without disclosing the content to CS and entailing high
overhead for DP and CS. Simultaneously, we hope that the solution is secure against
the legal access attack.

We consider the Bell-LaPadula security model [5] for HAC policies. The model
consists of two security properties: (1) The simple security property requires that a
user cannot read the data at a higher security class. (2) The �(star)-property requires
that a user cannot write data at a lower security class. To observe the security model
in an HKA scheme, we separate SKi into a write- and read-key pair (WriteKi, ReadKi)
for encrypting and decrypting data at SCi, respectively. A user at SCi is authorized
to obtain ReadKi, which is used to read (decrypt) the data at SCz for SCz � SCi.
For data writing (encryption), the user is only authorized to obtain those WriteKz

of SCz for SCi � SCz. The separation provides flexibility in authorizing data access
right of Read or Write, or both.

Our Contribution. We provide a practical CloudHKA scheme for controlling
access for encrypted data in cloud computing. CloudHKA is a novel HKA scheme
that observes the Bell-LaPadula security model and efficiently deals with the above
issues in user revocation. The design of CloudHKA considers the specific features
of cloud services. The specific features include great quantity of outsourced data,
large number of users, honest-but-curious cloud servers, frequently changed user set,
dynamic access control policies, and data accessing for light-weight mobile devices.

In detail, CloudHKA has the following features.

(1) Optimal secret key size hold by each user. Each authorized user at SCi keeps one
secret distribution-key DistKi.

(2) Outsourceable computation in key derivation. An authorized user can securely
outsource computation for deriving a read-key to CS. He needs to do three de-
cryption operations only.

(3) Outsourceable data update in user revocation. To revoke a user u, DP can out-
source data update operations to CS. CS needs to update header-cipher and a
small portion (the size is the same as header-cipher) of body-cipher only. Af-
ter updating previously encrypted data, u cannot decrypt them with his old
distribution-keys and the non-revoked users can decrypt them with their newest
distribution-keys. In particular, only the distribution-key of u’s associated class
needs to be updated. It leads that the key re-distribution occurs in u’s associated
class only.

(4) Secure against the legal access attack. CloudHKA enforces that an authorized user
cannot pre-download the needed information for decrypting body-cipher by only

3

accessing a small portion of encrypted data. Therefore, the legal access attack
can be prevented by denying uncommon (large traffic) data access from a user.

(5) Flexible user access right authorization. Each user can be authorized the access
rights of Write or Read, or both.

(6) Provable-security. CloudHKA is formally shown to be message indistinguisha-
bility secure. Even if CS and a set of users collude, they cannot determine the
original datum (that is not entitled to be derived by them) from an encrypted
datum with non-negligible probability.

Figure 1 shows the system overview of CloudHKA. The detailed construction is
illustrated in Section 3. The system consists of CS, DP, and users. CS is operated
by cloud service providers. It is assumed to have bountiful storage space and com-
putation power. DP outsources his data to CS with a self-defined HAC policy P .
DP is free to add or delete data in CS and change the access control policy. DP can
execute his code over CS to manage his data. A user can be authorized to read or
write data in CS. Typically, a user is assumed to have limited storage space and
computing power. We assume that CS is always on-line, but DP and users are only
on-line when necessary.

Related works. Akl and Taylor [1] first addressed the problem of assigning
cryptographic keys in an access hierarchy. They proposed an HKA scheme to enforce
an HAC policy. After that, many researches proposed methods for improving per-
formance, supporting dynamic access control policies, or providing distinct features
[2, 3, 12, 16, 19, 20, 24, 26, 30]. Atallah et al. formalized the security requirement for
HKA schemes and provided an efficient and provably-secure HKA scheme against key
recovery attacks [3]. Recently, they proposed another scheme with security against
key-indistinguishability attacks [2]. They also addressed the problem of reducing key
derivation time for each user in a deep access hierarchy. The result is obtained by
maintaining extra public system information.

Sahai and Waters [23] proposed an attribute-based encryption (ABE) scheme
that provides fine-grained data access control. Most ABE schemes enforce monotone
access policies over encrypted data [6, 13, 15, 17, 22, 23, 29]. An ABE scheme allows
a user to encrypt data into ciphertexts according to a policy. Only the users with
a set of attributes that satisfy the policy can decrypt the ciphertexts. Nevertheless,
many ABE schemes do not address the issue of dynamic user set and dynamic access
policy. Boldyreva et al. [8] addressed the issue of revoking a user with time. They
periodically distribute the updated keys to non-revoked users for decrypting newly
encrypted data. Yu et al. [29] proposed a revocable ABE scheme for revoking a user
immediately. In contrast, Hur and Noh [17] proposed a revocable ABE scheme with
immediate attribute and user revocation capability. Sahai et al. [22] proposed the
revocable storage ABE scheme that deals with the issue of efficiently preventing
a revoked user from decrypting previously encrypted data. In addition to the user
revocation issue, decryption time of the existing ABE schemes grows with the depth
of access formula. Green et al. [15] proposed a method of uotsoucing the overhead for

4

!"#$%&'(&)$*&+' (&+,-".'*"!./-&0+'

!"#$%
&'('%%

)$*+,&#$%
-./0%

(1
-1
'1
((

$-$
"2

3(
&%
&-
$"
2'

1*
*&
++
'.
"%
$*
4'
*5
12
6&
'

/+
&0
'7"
$2
$2
63
%&
1)
$2
6'
0&
8/

&+
-'

/+
&0
9,
&4
'(
$+-
0$#

/-
$"
2'

12*!&%"#$+#$%-340%
'

!"#$%"&'$"()*+,-.
/+&0':;<'($+-=&49*$.5&0 '

'

%,/0$"()*+,-.
0&%1-$"2<'0&%1-$"29,&4 '

'

#$(%,!.!0$0.
(1-1':;<'/.%"1(&0':;<'*%1++<'5&1(&09*$.5&0' <'#"(49*$.5&0' '

'

011,##*+,-.
%1++<'>0$-&9,&4<'0&1(=&49$.5&0 '

'

011,##.2(/"1-.
?@A'."%$*4' .

1/0##*+,-.
*%1++<'>0$-&9,&4<'0&1(9,&4<'($+-0$#/-$"29,&4 '

'

011,##.2(/"1-.
?@A'."%$*4' .

'

''

' ''

'

B"-&C' '

Fig. 1. A system overview of our CloudHKA.

users in decryption. Additionally, the size of user secret key or ciphertext in existing
ABE schemes grows proportionally in the number of associated attributes. Designing
an ABE scheme with a constant size of a user secret key and a ciphertext is still an
open problem.

2 Preliminaries

2.1 HAC Policy with the Bell-LaPadula Security Model

An HAC policy P is a 5-tuple (SC,≺,U ,D,λ), where SC = {SCi : 1 ≤ i ≤ n} is a
set of security classes, ≺ is a binary relation over SC × SC, U is a set of users, D is
a set of data, and λ : U ∪ D → SC is a security function that associates each user
and datum with a security class. (SC,≺) forms a partial order set (poset), where
SCj ≺ SCi means that the security level of class SCi is higher than that of SCj. To
observe the Bell-LaPadula security model, P requires the following two properties.

5

1) Simple security property : A user U ∈ U cannot read a datum D ∈ D if λ(U) ≺
λ(D).

2) �-property : A user U ∈ U cannot write a datum D ∈ D if λ(D) ≺ λ(U).

The poset (SC,≺) is represented as a directed graph (access hierarchy) G. Each
class SCi is a node and the relation SCj ≺ SCi is represented by the directed edge
(SCi, SCj) in G. G can be simplified by eliminating the edges that are implied by
the transitive closure property. For example, Figure 1 has an access hierarchy G

with the nodes SC1, SC2, . . ., SC6 and edges (SC1, SC2), (SC1, SC3), (SC2, SC4),
(SC2, SC5), (SC3, SC5), and (SC3, SC6).

2.2 Proxy Re-Encryption (PRE) Scheme

A proxy re-encryption (PRE) scheme delegates a proxy to re-encrypt a ciphertext
under key ekA into another ciphertext under key ekB by using the re-encryption
key rkA→B without revealing the plaintext [4, 7, 9, 14, 18, 25, 27]. A PRE scheme Ψ
consists of the following six poly-time algorithms:

– Setup(τ) → (sp,MK). On input a security parameter κ, Setup outputs the public
system parameter sp (which is explicit used in other algorithms) and master secret
key set MK.

– KeyGen(MK, i) → (eki, dki). On input the master secret key set MK and an
index i, KeyGen outputs a pair of encryption and decryption keys (eki, dki).

– ReKeyGen((eki, dki), (ekj, dkj))1 → rki→j. On input two pairs of encryption and
decryption key (eki, dki) and (ekj, dkj), ReKeyGen outputs a re-encryption key
rki→j.

– Enc(eki,m) → ci. On input an encryption key eki and a plaintext m, Enc output
a ciphertext ci.

– ReEnc(rki→j, ci) → cj. On input a re-encryption key rki→j and ciphertext ci,
ReEnc output a ciphertext cj under ekj.

– Dec(dki, ci) → m. On input a decryption key dki and ciphertext ci, Dec outputs
a plaintext m.

These algorithms satisfy the following two requirements.

– For all (eki, dki) ← KeyGen(MK, i), Dec(dki, Enc(eki,m)) = m,
– For all rki→j ← ReKeyGen((eki, dki), (ekj, dkj)), Dec(dkj, ReEnc(rki→j, Enc(eki,

m))) = m.

Ψ is uni-directional if rkj→i cannot be derived from rki→j. It is multi-hop if a cipher-
text can be re-encrypted many times in a sequence.

1 For the construction of a PRE scheme, it is preferable to compute rki→j in a non-interactive way, that
is, without using the secret key dkj . While using PRE scheme as a building block in our scheme, an
interactive PRE scheme is also suitable.

6

For security, a uni-directional PRE scheme is IND-CPA secure2 if, for a given
ciphertext, a collusive set of malicious entities cannot determine which message, m0

or m1, is encrypted under an uncorrupted eki. A malicious entity is the proxy, a non-
user, or an authorized user with a partial set of decryption keys. The corresponding
security game between a challenger CPRE and an adversary APRE is described as
follows.

IND-CPA Security Game. In the beginning, CPRE runs Setup(τ) to generate (sp,MK)
and gives sp to APRE. APRE determines which message, m0 or m1, corresponds
to a challenged ciphertext ci∗ = Enc(eki∗ ,mb) for b ∈ {0, 1}, where eki∗ is the
encryption key of a target index i∗ chosen by CPRE and m0, m1 are two plaintexts
chosen by APRE. APRE is allowed to query the following oracles in an arbitrary
order. We say that a ciphertext ci is re-encryptable into another ciphertext cj

if all re-encryption keys on the path from index i to j are returned for queries.
A ciphertext ci is decryptable if the decryption key dki is corrupted or ci is re-
encryptable into a decryptable ciphertext.
– Ouc(i) → eki. For the query of an index i, the uncorrupted key extraction

oracle Ouc returns eki.
– Oc(i) → {(eki, dki),⊥}. For the query of an index i, the corrupted key ex-

traction oracle Oc returns the key pair (eki, dki) if i �= i∗ and ci∗ cannot be
re-encrypted into a ciphertext under eki. Otherwise, Oc returns nothing.

– Ork(i, j) → {rki→j,⊥}. For the query of an index pair (i, j), the re-encryption
extraction oracle Ork returns rki→j if ci∗ cannot be re-encrypted into a de-
cryptable ciphertext. Otherwise, Ork returns nothing.

We say that APRE wins the IND-CPA security game if he can determine which mb

for b ∈ {0, 1} is the original message of ci∗ under eki∗ . A PRE scheme is IND-CPA
secure if, for all poly-time APRE, the advantage of APRE for winning the IND-CPA
security game is negligible in τ .

2.3 All-Or-Nothing Transformation

All-or-nothing transformation (AONT) AONT is an unkeyed and randomized func-
tion with the property that it is hard to compute the whole message unless the entire
function output is known [21]. AONT maps an �-block message X = X1||X2|| · · · ||X�

and a random string r to an ��-block string Y = Y1||Y2|| · · · ||Y�� . AONT satisfies the
following properties:

– Given X and r, Y ← AONT(X, r) can be computed efficiently.
– Given Y , X ← AONT

−1(Y) can be computed efficiently.
– If any block of Y is lost, it is infeasible to recover X.

2 A stronger security notion of a PRE scheme is IND-CCA secure. The adversaries are given access to
a decryption oracle. Constructing an IND-CCA secure PRE scheme is considered harder. Our scheme
needs only an IND-CPA secure PRE scheme.

7

3 Our CloudHKA

3.1 Overview

The construction of CloudHKA is based on a uni-directional and multi-hop PRE
scheme Ψ . Assume that the given HAC policy is P , which is represented by a directed
graph G = (V,E). For each class SCi ∈ V , DP generates a pair of write- and read-key
(WriteKi, ReadKi). A message that is encrypted by using WriteKi can be decrypted
by using ReadKi. A user who obtains the write-key WriteKi is authorized the Write
right for SCi. A user who obtains the read-key ReadKi is authorized the Read right
for SCi and its lower classes. Although the pair of write- and read-key is like the pair
of public- and private-key of a public-key system, neither of them can be published
to a public domain in CloudHKA. A write-key WriteKz is given to a user at SCi

(through a secure channel) when he requests to write data into SCz for SCi � SCz.
In data outsourcing, a datum M at SCi is transformed into

M
� = M

�
1||M

�
2|| . . . ||M

�
�� ← AONT(M, r)

and then encrypted in the form

�data ID, uploader ID, class, header-cipher, body-cipher, �
= �ID, uID, SCi, Hdr

SCi

ID = {K}
Ψ
WriteKi

, Body
SCi

ID = {M
�
1}

AES
K || . . . ||{M

�
ρ−1}

AES
K ||

� ||{M
�
ρ}

Ψ
WriteKi

||{M
�
ρ+1}

AES
K || . . . ||{M

�
��}

AES
K �, (1)

where

– uID is a user who stores (uploads) his data into CS,
– {K}ΨWriteKi and {M �

ρ}
Ψ
WriteKi

are respectively the ciphertexts of a randomly chosen
AES encryption key K and ρ-th block of M � under WriteKi,

– ρ ∈ {1, 2, · · · , ��} only known by CS and DP,
– � is a special symbol for marking the start position of BodySCi

ID [ρ], and
– {M �

ω}
AES
K is the ciphertext of M �

ω for ω ∈ {1, 2, . . . , ��} \ {ρ} under K.

Before CS storing an encrypted datum into SCi, he should authenticate that the
associated class of a data uploader is no lower than SCi. It observes the �-property.

For each relation (SCj, SCi) ∈ E, DP generates a (public) relation-key RelatKi→j

that is used to re-encrypt a header-cipher and body-cipher (ρ-th block) of SCi into
that of SCj. Assume that a user who is authorized the Read right of SCj wants to
read (decrypt) datum ID encrypted as (1). CS re-encrypts {K}ΨWriteKi and {M �

ρ}
Ψ
WriteKi

into {K}ΨWriteKj and {M �
ρ}

Ψ
WriteKj

by using the relation-key RelatKi→j. The user then

decrypts {K}ΨWriteKj and {M �
ρ}

Ψ
WriteKj

to obtain K and M �
ρ by using ReadKj. By using

K to decrypt {M �
ω}

AES
K for ω ∈ {1, 2, . . . , ��}\{ρ}, the user obtains M �

ω and combines
it with M �

ρ to recover M ← AONT
−1(M �). The concept can be easily extended for

the case with d = dstG(SCj, SCi) > 1, where dstG(SCj, SCi) is the distance between
SCj and SCi in the access hierarchy G.

To revoke a user u at SCi, DP does the following procedures.

8

– Removing Write right: DP simply removes u from his SCi in P . Then, u’s
Write right of SCz for SCi � SCz is removed since he cannot pass CS’s au-
thentication in data writing.

– Removing Read right: This part can be separated into two cases.
(1) Preventing u from decrypting newly encrypted data at SCz for SCz � SCi:

DP re-generates SCz’s key pair and related relation-keys. Then, the new data
at SCz will be encrypted under the new write-key of SCz. The new read-key
of SCz is distributed to the non-revoked users only.

(2) Preventing u from decrypting previously encrypted data at SCz for SCz �
SCi: DP sends CS a (public) transform-key TranKz for transforming (re-
encrypting) SCz’s header-ciphers and body-ciphers under the old write-key
into the new one under the new write-key. Thus, only the non-revoked users
who obtain the new read-keys can decrypt the updated header-ciphers and
body-ciphers.

Remark. The data encryption form in (1) enforces a user accesses the whole
body-cipher for decryption. Assume that an authorized user u at SCi wants to access
a datum ID in (1). u needs to obtain K and M �

ρ by using ReadKi so that he can
recover M . To obtain M �

ρ, u needs to find the start position of {M �
ρ}

Ψ
WriteKi

. Since u

does not know ρ, he needs to find � by accessing whole BodySCi

ID (or the part before
meeting�.) This design effectively prevents the legal access attack. In the legal access
attack, u pre-downloads K and M �

ρ for each datum. However, u does not know the
position of � until the whole body-cipher is retrieved. In CloudHKA, a authorized,
but malicious, user needs to access a large portion of a data for pre-downloading the
needed information for decryption. A large collection of pre-downloaded information
will cause traffic in accessing. A traffic limitation mechanism (with a specified policy
according to the system) can easily deny the legal access attack. For example, in a
protected database, the amount of transmitted data for each user in a time period
is often limited.

3.2 The Construction

Let Ψ = (Ψ.Setup, Ψ.KeyGen, Ψ.ReKeyGen, Ψ.Enc, Ψ.ReEnc, Ψ.Dec) be a uni-directional
and multi-hop PRE scheme. Let AES be a symmetric key encryption scheme with
key generation, encryption, and decryption algorithms (AES.G, AES.E, AES.D). Let
PKE be an asymmetric key (or public-key) encryption scheme with key generation,
encryption, and decryption algorithms (PKE.G, PKE.E, PKE.D). Let AONT be an
all-or-nothing transformation function that maps an �-block message and a random
string to an ��-block string.

To simplify the description of our scheme, we assume that two system entities
of CS, DP, and users can authenticate the identity of each other. The integrity and
correctness of messages or data transmitted between two system entities can be
verified by each other.

9

System Setup. DP defines an initial HAC policy P = (SC,≺,U ,D,λ) with n

security classes SC1, SC2, . . ., SCn. Assume that P is represented as an access
hierarchy G = (V,E). Then, DP generates (sp,MK) ← Ψ.Setup(κ) with a given
security parameter κ and associates each SCi ∈ V with the following keys and
tokens.
– Write- and read-key pair (WriteKi, ReadKi) ← Ψ.KeyGen(MK, i).
– Distributed-key DistKi ← AES.G(κ).
– ReadKey-cipher {ReadKi}AESDistKi

← AES.E(DistKi, ReadKi).
DP associates each relation (SCj, SCi) ∈ E a relation-key

RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj, ReadKj)).

Finally, DP uploads P , �SCi, WriteKi, {ReadKi}AESDistKi
� for SCi ∈ V , and �(SCj, SCi),

RelatKi→j� for (SCj, SCi) ∈ E to CS. DP keeps P and �SCi, WriteKi, ReadKi,
DistKi� for SCi ∈ V locally. Each user u of the system generates his public- and
private-key pair (pku, sku).

Access Right Authorization. Assume that DP associates a user u with a class
SCi in P . To authorize u the Read right of SCz for SCz ≺ SCi, DP uses u’s
public-key pku to encrypt the distribution-key DistKi as a distKey-cipher

{DistKi}
PKE
u ← PKE.E(pku, DistKi)

and uploads �u, {DistKi}PKEu � to CS. CS forwards {DistKi}PKEu to u and u decrypts
it to obtain DistKi. To observe the �-property, CS gives the current WriteKz to
u when u requests to write data into SCz for SCi � SCz.

Data Writing. To write a datum M into SCi, an uploader uID computes M � ←
AONT(M, r), where r is a random string. uID then generates a data encryption
key K ← AES.G(κ), randomly chooses an index ρ ∈ {1, 2, . . . , ��}, and sends CS
the encrypted data in the form

�ρ, SCi, C1, C2� = �ρ, SCi, {K}
Ψ
WriteKi

, {M
�
1}

AES
K || . . . ||{M

�
ρ−1}

AES
K ||

� ||{M
�
ρ}

Ψ
WriteKi

||{M
�
ρ+1}

AES
K || . . . ||{M

�
��}

AES
K �.

After receiving the data, CS checks the validity of the writing request from uID.
If uID is associated with SCz for SCi � SCz, CS selects a unique data identity
ID and stores the data with the format

�data ID, uploader ID, class, header-cipher, body-cipher�
= �ID, uID, SCi, Hdr

SCi

ID = C1, Body
SCi

ID = C2�. (2)

CS keeps ρ as a secret. The value will be used when CS needs to update body-
ciphers.

10

Data Reading. Assume that an authorized user u at SCj wants to read a datum
encrypted as (2). If SCi � SCj, CS re-encrypts the header-cipher and body-cipher
as follows. Let d = dstG(SCj, SCi).
– Extract the relation-keys on the path from SCi to SCj as RelatKv1→v2 , RelatKv2→v3 ,

. . ., RelatKvd→vd+1
, where v1 = i and vd+1 = j.

– For each vz from v1 to vd, replace {K}ΨWriteKvz
and {M �

ρ}
Ψ
WriteKvz

as

{K}
Ψ
WriteKvz+1

← Ψ.ReEnc(RelatKvz→vz+1 , {K}
Ψ
WriteKvz

),

{M
�
ρ}

Ψ
WriteKvz+1

← Ψ.ReEnc(RelatKvz→vz+1 , {M
�
ρ}

Ψ
WriteKvz

).

CS returns �C0, C1, C2� = �{ReadKj}AESDistKj
, Hdr

SCj

ID , Body
SCj

ID � to u. After receiving
the ciphertexts, u decrypts C0 to obtain ReadKj by using his (newest) DistKj.
u finds � to extract {M �

ρ}
Ψ
WriteKj

from C2. Then, u decrypts C1 and {M �
ρ}

Ψ
WriteKj

to obtain K and M �
ρ by using ReadKj. u then decrypts the other blocks of C2 to

obtain M �
ω for ω ∈ {1, 2, . . . , ��} \ {ρ} by using K. Finally, u combines M �

ρ and
M �

ω’s as M
� and recovers M ← AONT

−1(M �).
Data Deletion. A datum can be deleted by its uploader only. To delete a datum
ID, its uploader with identity uID sends a deletion request of ID to CS. CS
deletes the datum ID and its associated information.

User Revocation with Outsourceable Data Update. Assume that DP wants
to revoke a user u from SCi.
– Removing u’s Write right: DP simply updates his HAC policy. Hereafter,

when u wants to write data into SCz for SCi � SCz, he cannot pass CS’s
validity check in data writing.

– Removing u’s Read right:
(1) To remove u’s Read right for newly encrypted data at SCz for SCz � SCi:

DP re-generates the key pair of SCz as (WriteK�z, ReadK
�
z) and affected

relation-keys. DP then updates the affected readKey-ciphers as follows.
• For SCz ≺ SCi, DP updates SCz’s readKey-cipher as {ReadK�z}

AES
DistKz .

• For SCi, DP updates SCi’s distribution-key as DistK
�
i and readKey-

cipher as {ReadK�i}
AES
DistK�

i

.
DP distributes the updated distribution-key DistK

�
i to the non-revoked

users at SCi. For each non-revoked user ū, DP updates �ū, {DistKi}PKEū �
as �ū, {DistK�i}PKEū �.

(2) To remove u’s Read right for previously encrypted data at SCz for SCz �
SCi: DP sends CS a transform-key

TranKz ← Ψ.ReKeyGen((WriteKz, ReadKz), (WriteK
�
z, ReadK

�
z)).

CS uses TranKz to update each SCz’s header-cipher and ρ-th block of
body-cipher as

{K}
Ψ
WriteK�z

← Ψ.ReEnc(TranKz, {K}
Ψ
WriteKz),

11

{M
�
ρ}

Ψ
WriteK�z

← Ψ.ReEnc(TranKz, {M
�
ρ}

Ψ
WriteKz).

Updates of Access Hierarchy. The update operations include relation insertion,
relation deletion, class insertion, and class deletion.
– Relation insertion. To insert a new relation (SCj, SCi), DP generates a new

RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj, ReadKj)) and uploads
the updated HAC policy and �(SCj, SCi), RelatKi→j� to CS.

– Relation deletion. To delete a relation (SCj, SCi), DP needs to prevent the
users at SCi from re-encrypting the header-ciphers and body-cipher of SCz

into that of SCj for SCz � SCi. The procedure is like to revoke a ”psuedo-
user” from SCi. The differences are that DP does not need to re-generate (1)
SCi’s distribution-key and readKey-cipher and (2) (SCj, SCi)’s relation-key.
There is no need to distribute the new distribution-key of SCi.

– Class insertion. To insert a class SCi, DP generates (WriteKi, ReadKi), DistKi,
and {ReadKi}

AES
DistKi

and uploads the updated HAC policy and �SCi, WriteKi,
{ReadKi}

AES
DistKi

� to CS. DP then runs the relation insertion procedure to insert
the incoming and outgoing relations of SCi.

– Class deletion. To delete a class SCi, DP deletes SCi’s associated parameters
in CS and runs the relation deletion procedure for every SCi’s incoming and
outgoing relations.

4 Analysis

4.1 Performance Analysis

This section illustrates the performance of CloudHKA. We compare CloudHKA with
the first HKA scheme [1] and recent two HKA schemes [2, 3] in Table 1. To our best
knowledge, the schemes in [2, 3] provide most features up to now and are provably-
secure.

Storage cost. In CloudHKA, each user at SCi stores the distribution-key DistKi.
In the other three schemes, the secret key size for each user is also one.

Key derivation cost. In CloudHKA, when a user u at SCj requests to read
a datum at SCi for SCi � SCj, CS runs d = dstG(SCj, SCi) times of Ψ.ReEnc to
re-encrypt the header-cipher under WriteKi into the header-cipher under WriteKj. u
then runs one AES.D to obtain ReadKj and two Ψ.Dec to obtain K and M �

ρ. The total
key derivation cost of the other three schemes are also linear in d. Nevertheless, only
CloudHKA can outsource most of the computation operations to CS so that a user
only needs constant computation time in key derivation. Note that in [1], although
the computation operation only contains a modular exponentiation, the size of the
used group equals to the size of the multiplication of d large co-prime numbers. The
computation time in key derivation is still linear to d.

User revocation cost. In CloudHKA, to revoke a user u at SCi, the rekey
operation for DP contains: (1) |Vi| times of Ψ.KeyGen, Ψ.ReKeyGen, and AES.E, (2)

12

Table 1. A comparison of our CloudHKA with previous HKA schemes

AT [1] AFB [3] ABFF [2] CloudHKA

Storage cost

#(user secret key) 1 1 1 1
Key derivation cost (for a user u at SCj to derive a key of SCi)

Full computation tExp d · (tH + tXOR) 2d · (tH + tAES.D) + tH 2d · tΨ.ReEnc + 2tΨ.Dec + tAES.D
Outsourceable - - - 2d · tΨ.ReEnc

computation
User revocation cost (revoking a user u from SCi)

Rekey - O(|Ei|+
�

SCz∈Vi
nz) O(|Vi|+ |Ei|+ ni) O(|Vi|+ |Ei|+ ni)

Full data update - #c(u) · (tAES.D + tAES.E) #c(u) · (tAES.D + tAES.E) |Vi| · tΨ.ReKeyGen + 2 ·#c(u) · tΨ.ReEnc

Outsourceable - - - 2 ·#c(u) · tΨ.ReEnc

data update
User access right authorization

Read-Write
√ √ √ √

Read-only - - -
√

Write-only - - -
√

Security

Security game - Key-Recovery Key-Indistinguishability Message-Indistinguishability
Building block - PRF family PRF family and AES Uni-directional PRE
† Exp: A modular exponentiation over a large group.
† H: A cryptographic hash function.
† tf : The computation time of function f .
† #c(u): The number of decryptable data ciphertexts of u.
† G = (V,E): An access hierarchy.
† d = dstG(SCj , SCi): The distance between SCj and SCi in the access hierarchy G.
† Vi: The set of SCi and its lower classes, i.e., Vi = {SCz : SCz � SCi}.
† Ei: The set of relations related to the classes in Vi, i.e., Ei = {(SCv , SCz) : SCz ∈ Vi}.
† ni: The number of users associated with SCi.

one AES.G, (3) |Ei| times of Ψ.ReKeyGen, (4) ni times of PKE.E, and (5) 2 · #c(u)
times of Ψ.ReEnc, where Vi = {SCz : SCz � SCi} is the set of SCi and its lower
classes, Ei = {(SCξ, SCz) : SCz ∈ Vi} is the set of relations related to the classes
in Vi, ni is the number of users (excluding u) at SCi, and #c(u) is the number of
decryptable data ciphertexts of u. The distribution-key update only occurs in the
class SCi, the distribution of the new distribution-key is needed for the non-revoked
users at SCi only. Note that the extended HKA scheme in [2] is the first HKA scheme
supporting this kind of local key re-distribution property. To let the non-revoked users
decrypt previously encrypted data, in CloudHKA, DP only needs to run |Vi| times of
Ψ.ReKeyGen to generate the needed transform-keys to CS. CS can update every u’s
decryptable header-cipher into the one under the new write-key by using Ψ.ReEnc.
In other three HKA schemes, to update all u’s decryptable ciphertexts, DP needs
to download them, decrypt them with old data encryption keys, encrypt them with
new data encryption keys, and then upload them to CS.

4.2 Bell-LaPadula Security Model Observation

Our CloudHKA observes the simple security property and �-property. The uni-
directional property of Ψ ensures that a relation-key RelatKj→i cannot be reversed.
Thus, it is not possible to compute the inverted header-cipher and body-cipher re-
encryptions from class SCi to its lower class SCj. Therefore, CloudHKA observes

13

the simple security property. The �-property is observed in CloudHKA since CS only
allows a user at SCi to write data into SCi and its higher classes. Note that giving all
write-keys to CS does not violate the �-property since CS does not have the Read
right of any class in the policy.

4.3 Security Analysis

In this section, we formally show that CloudHKA ensures data confidentiality based
on the security of PRE schemes. We also demonstrate that the user revocation mech-
anism in CloudHKA removes the access rights of a revoked user.

To simplify our security analysis, we assume that the encryption schemes AES

and PKE are IND-CPA secure. For example, AES with CBC mode and ElGamal suit
our need, respectively. The IND-CPA security of an encryption scheme ensures that
an unauthorized user cannot distinguish an encrypted distribution-key, read-key, or
datum from an encrypted random string. By the assumption, CloudHKA ensures
that only an authorized user can obtain legal distribution-keys and read-keys. Then,
the security of our CloudHKA only relies on the security of PRE scheme Ψ for pro-
tecting (K,M �

ρ).

4.3.1 User- and Read-Key Authorization

In CloudHKA, DP stores DistKi as {DistKi}PKEu under user u’s individual public-key
pku for a user u at SCi. Only u can decrypt {DistKi}PKEu to obtain DistKi. DP stores
ReadKi as {ReadKi}AESDistKi

. Only an authorized user who is assigned DistKi can obtain
ReadKi.

4.3.2 Data Confidentiality

Our goal is to show that even if CS and a set of malicious users collude, for a given
SCi∗ ’s header-cipher and ρ-th block body-cipher pair (HdrSCi∗

ID , Body
SCi∗
ID [ρ]) that en-

crypts either m0 = (K0,M
�
ρ,0) or m1 = (K1,M

�
ρ,1), it is hard for the collusive entities

to determine the original message of the ciphertext pair. The original messages m0

and m1 are chosen by the collusive entities. A malicious user can be a non-user, a
revoked user, or an authorized user. They are not authorized to read the data at SCz

for SCi∗ � SCz. The corresponding security game between a challenger CCloudHKA

and an adversary ACloudHKA is described as follows.

Message-Indistingushability (MI) Game of CloudHKA. In the beginning, CCloudHKA

sets up the system and gives the public information (as the information uploaded
to CS) to ACloudHKA. ACloudHKA determines which message, m0 = (K0,M

�
ρ,0) or

m1 = (K1,M
�
ρ,1), corresponds to a challenged ciphertext pair (HdrSCi∗

ID , Body
SCi∗
ID [ρ])

, where SCi∗ is a target class chosen by CCloudHKA and m0, m1 are chosen by
ACloudHKA. ACloudHKA is allowed to query a distribution-key corruption oracle

14

OdistKey(SCz) to obtain the distribution-key DistKz. Nevertheless, ACloudHKA is
not allowed to query OuserKey(SCz) for SCi∗ � SCz.

We say that ACloudHKA wins the MI game if he can determine which mb for b ∈ {0, 1}
is the original message pair of (HdrSCi∗

ID , Body
SCi∗
ID [ρ]). Our CloudHKA is message-

indistinguishable if, for all poly-time ACloudHKA, the advantage of ACloudHKA for win-
ning the CPA-security game is negligible in κ.

Without loss of generality, we consider a static adversary only since an adaptive
adversary is no more powerful than a static one in our case [2, 3]. A static adver-
sary A�

CloudHKA guesses a target class, say SCi∗ , which is the challenged class in the
original MI game of CloudHKA. Then A�

CloudHKA is directly given the challenged
ciphertext pair (HdrSCi∗

ID , Body
SCi∗
ID [ρ]) along with the maximum amount of corrupted

distribution-keys, i.e., the distribution-keys {DistKz : SCi∗ � SCz}. Since the guess
of SCi∗ is correct with 1/|V | probability, it only affects ACloudHKA’s winning advan-
tage by a factor of |V |. We describe the modified MI game between a challenger
C �
CloudHKA and an adversary A�

CloudHKA as follows.

Modified MI Game of CloudHKA. In the beginning,A�
CloudHKA chooses two messages

m0 = (K0,M
�
ρ,0) and m1 = (K1,M

�
ρ,1) to C �

CloudHKA. C
�
CloudHKA chooses a target

SCi∗ , sets up the system, and gives A� the public information and a challenged
ciphertext pair (HdrSCi∗

ID , Body
SCi∗
ID [ρ]) alongs with the corrupted distribution-keys

{DistKz : SCi∗ � SCz}. ACloudHKA determines which message, m0 or m1, corre-

sponds to (HdrSCi∗
ID , BodySCi∗

ID [ρ]).

The following theorwm shows that our CloudHKA is message-indistinguishable
based on the modified MI game of CloudHKA.

Theorem 1. Our CloudHKA is message-indistinguishable if the underlying PRE
scheme Ψ is IND-CPA secure.

Proof. The proof is a standard reduction argument. Assume that there exists a
poly-time adversary A�

CloudHKA who wins CloudHKA’s modified MI game with non-
negligible advantage �. We can employ A�

CloudHKA to construct a poly-time algorithm
B for breaking Ψ ’s IND-CPA security with advantage �. In the reduction, B is treated
as the challenger C �

CloudHKA in CloudHKA’s modified MI game and Ψ ’s adversary
APRE in PRE’s IND-CPA security game.

In the beginning, A�
CloudHKA chooses two messages m0 = (K0,M

�
ρ,0) and m1 =

(K1,M
�
ρ,1). B takes an HAC policy P with an access hierarchy G = (V,E), a target

class SCi∗ , a security parameter κ, and (m0,m1) as inputs. At the same time, B takes

A�
CloudHKA, CPRE, Ouc, Oc, Ork, AES.G, and AES.E as oracles. Let x

$←− X denote that
x is chosen from the set X randomly.

BA�
CloudHKA,CPRE,Ouc,Oc,Ork,AES.G,AES.E(P , SCi∗ ,κ, (m0,m1))
Step 1. For each SCi ∈ V :

15

– If SCi∗ � SCz: Set (WriteKi, ReadKi) ← (Ouc(i),λ), DistKi ← λ, and

{ReadKi}
AES
DistKi

$←− Range(AES.E), where λ is an empty string and Range(AES.E)
is the ciphertext space of AES.

– If SCi∗ � SCz: Set (WriteKi, ReadKi) ← Oc(i), DistKi ← AES.G(κ), and
{ReadKi}

AES
DistKi

← AES.E(DistKi, ReadKi).

For each (SCj, SCi) ∈ E: Set RelatKi→j ← Ork(i, j).
Step 2. Get ci∗ ← CPRE(�i∗, (m0,m1)�). Give A�

CloudHKA the public informa-
tion and a challenged (HdrSCi∗

ID , Body
SCi∗
ID [ρ]) ← ci∗ alongs with the corrupted

distribution-keys {DistKz : SCi∗ � SCz}. The public information contains P ,
�SCi, WriteKi, {ReadKi}AESDistKi

� and �(SCj, SCi), RelatKi→j� for SCi ∈ V and
(SCj, SCi) ∈ E.

Step 3. Return the output of A�
CloudHKA.

In B, the distribution of the transcripts for A�
CloudHKA is indistinguishable from

the distribution of the information for A�
CloudHKA in the modified MI game:

– Public information. Each WriteKi is generated by querying Ouc or Oc. Each
{ReadKi}

AES
DistKi

is generated by running AES.E(DistKi, ReadKi) or randomly choos-
ing from Range(AES.E).

– Challenged ciphertext pair. The index i∗ submitted to CPRE is valid since in CPRE’s
view. The queries Oc(i) and Ork(i, j) do not lead ci∗ to become a decryptable

ciphertext. CPRE returns the encrypted mb under WriteKi∗ for b
$←− {0, 1}. Thus,

(HdrSCi∗
ID , Body

SCi∗
ID [ρ]) is mb’s ciphertext under WriteKi∗ for b ∈ {0, 1}.

– Corrupted distribution-keys. The corrupted distribution-keys {DistKz : SCi∗ �
SCz} are valid keys that are generated by running AES.G(κ). The distribution-
keys DistKz for SCi∗ � SCz need not to be specified since they are not allowed
to be corrupted in CloudHKA’s modified MI game.

The above illustration shows that B successfully simulates the expected dis-
tribution in feeding the needed information for A�

CloudHKA. By our assumption of
A�

CloudHKA, B breaks Ψ ’s IND-CPA security game with non-negligible advantage �.
It leads to a contradiction. ��

4.3.3 Revocation of Access Rights

We illustrate that the user revocation mechanism in CloudHKA removes the Write
and Read rights of a revoked user.

– Preventing a revoked user from writing data. To revoke a user from SCi, DP
removes u from SCi in his HAC policy directly. Then, the request of writing
operations from u will not pass CS’s validity check. u is no longer allowed to
write data into SCz for SCi � SCz.

16

– Preventing a revoked user from reading newly encrypted data. The rekey operation
for revoking u ensures that u cannot decrypt newly encrypted data. We give an
illustration with the following three parts:
• u cannot obtain the updated ReadK

�
i. The readKey-cipher of SCi is updated as

{ReadK�i}
AES
DistK�

i

. Only the non-revoked users at SCi can update the distribution-

key as DistK�i for decrypting {ReadK�i}
AES
DistK�

i

to obtain ReadK
�
i.

• u no longer decrypts new ciphertext pair (Hdr�SCz

ID , Body
�SCz

ID [ρ]) for SCz �
SCi. Since u cannot obtain ReadK

�
i, u cannot decrypt (Hdr�SCz

ID , Body
�SCz

ID [ρ]).
The relation-keys RelatKz→ξ for SCz � SCi are re-generated by using the
updated key pairs. u cannot use the new (or old) relation-keys to re-encrypt
new (Hdr�SCz

ID , Body
�SCz

ID [ρ]) into the old one under WriteKz. Thus, u cannot
derive the original message in (Hdr�SCz

ID , Body
�SCz

ID [ρ]).
• u no longer decrypts new body-ciphers Body�SCz

ID for SCz � SCi. Since u cannot
decrypt the new (Hdr�SCz

ID , Body
�SCz

ID [ρ]) for SCz � SCi to obtain (K,M �
ρ), he

cannot recover M by computing AONT
−1(M �).

– Preventing a revoked user from reading previously encrypted data. In revoking a
user u from SCi, DP sends a transform-key TranKz for each SCz, SCz � SCi.
CS uses TranKz to update (re-encrypt) each old (HdrSCz

ID , Body
SCz

ID [ρ]) as a new
(Hdr�SCz

ID , Body
�SCz

ID [ρ]). Hereafter, when u requests to read old datum ID, CS re-
turns the new �{ReadK�z}AESDistK�z

, Hdr�SCz

ID , Body�SCz

ID �. Since u cannot obtain DistK
�
z,

he cannot obtain (K,M �
ρ) and recover M .

5 Discussion

This section introduces some existing desirable PRE schemes for CloudHKA. Then,
we demonstrate that CloudHKA can be slightly extended for dealing with some extra
issues in practical system.

5.1 Concrete PRE Schemes

A suitable PRE scheme Ψ for our CloudHKA scheme should be uni-directional, multi-
hop, and IND-CPA secure. The uni-directional property is required for realizing the
simple security property. The multi-hop property is required since the height of an
access hierarchy is usually larger than one. The IND-CPA security of Ψ is required
to show that our CloudHKA is message-indistinguishable. Additionally, for each key
pair in Ψ , the decryption key cannot derive its corresponding encryption key and vice
versa. It ensure that the access rights of Write and Read can be separated. To our
best knowledge, there are four desirable PRE schemes in the literature [14, 18, 25, 27].
These PRE schemes can be applied to our CloudHKA directly. In particular, when
the height of access hierarchies is large, we recommend to apply the one proposed
by Luo et al. [18]. It is the only PRE scheme without ciphertext size growth in
re-encrypting ciphertexts up to now. While applying a PRE scheme with growing

17

ciphertext to CloudHKA, the bandwidth cost for DP in responding a data reading
request and the computation cost for each user in key derivation are linear in the
number of re-encryption operations.

5.2 Preventing Dishonest or Unreliable Data Storage

The outsourced data stored in CS may be altered by unexpected bit flips from system
errors or accidentally deleted by CS. One solution is to apply a data integrity check
scheme for ensuring correctness of outsourced data. We can use the hash-then-sign
technique. Before storing data in CloudHKA, a data uploader hashes a data-cipher
into a short string and computes a signature of the string by his individual signing
key. After receiving an encrypted data with its signature, a user can check correctness
of its body-cipher by the uploader’s public verification key.

5.3 Preventing Invalid Ciphertext Re-Encryption or Transformation

The re-encryption operations in key derivation and ciphertext update may cause
some unexpected errors. One solution is to apply an IND-CCA secure PRE scheme
in CloudHKA. The IND-CCA security of a PRE scheme can prevent a proxy from
re-encrypting ciphertexts in an invalid way. After applying such PRE scheme to
CloudHKA, a user can verify the validity of re-encrypted header-ciphers and body-
ciphers (in key derivation or ciphertext update) returned by CS. The PRE schemes
proposed by Shoa et al. [25] and Wang et al. [27] achieve the IND-CCA security.

5.4 Scalable Rekey Mechanism for Large Number of Users

The rekey cost in computation and communication for distributing a new distribution-
key of SCi is linear in the number of users at SCi. The number of users is often
large in cloud-based services. One solution to deal with this issue is to apply a tree-
based group key management (GKM) scheme [10, 11, 28] to maintain the common
distribution-key among a dynamic set of users at each class. The GKM scheme re-
duces the computation and communication cost from O(ni) to O(lg ni), where ni

is the number of users in SCi. In particular, the GKM schemes in [10, 11] have an
efficient rekey mechanism for a user who may miss key update messages in his off-line
period. The methods are suitable in handing frequent rekey operations. While ap-
plying these two methods to CloudHKA, each user needs to store one extra personal
secret key only.

6 Conclusion

In this paper we propose a practical CloudHKA for controlling data access in cloud
computing. CloudHKA observes the Bell-Lapadula security model. We use cipher-
text re-encryption technique to minimize the computation cost for a user in key

18

derivation and for DP and CS in ciphertext update. CloudHKA deals with the user
revocation issue practically and provides flexible authorization of data access rights.
Simultaneously, CloudHKA is secure against the legal access attack. The proposed
CloudHKA is formally shown to be message-indistinguishable by assuming IND-CPA
security of the underlying PRE scheme.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer Systems, 1(3):239–248, 1983.

2. Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic and efficient key
management for access hierarchies. ACM Transactions on Information and System Security, 12(3),
2009.

3. Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic and efficient key management for
access hierarchies. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), pages 190–202, 2005.

4. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on Information and System
Security, 9(1):1–30, 2006.

5. David E. Bell and Leonard J. Lapadula. Secure computer systems: Unified exposition and multics
interpretation. In Technical Report MTR-2997, Mitre Corporation, Bedford, Massachusetts, 1976.

6. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
Proceedings of the IEEE Symposium on Security and Privacy (S & P), pages 321–334, 2007.

7. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Chosen-ciphertext secure proxy re-encryption. In
Proceedings of EUROCRYPT, pages 127–144, 1998.

8. Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In ACM Conference on Computer and Communications Security (CCS), pages 417–426,
2008.

9. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Proceedings of
ACM Conference on Computer and Communications Security (CCS), pages 185–194, 2007.

10. Yi-Ruei Chen, J. D. Tygar, and Wen-Guey Tzeng. Secure group key management using uni-directional
proxy re-encryption schemes. In Proceedings of the IEEE International Conference on Computer Com-
munications (INFOCOM), pages 1952–1960, 2011.

11. Kuei-Yi Chou, Yi-Ruei Chen, and Wen-Guey Tzeng. An efficient and secure group key management
scheme supporting frequent key updates on pay-tv systems. In Proceedings of the IEEE Asia-Pacific
Network Operations and Management Symposium (APNOMS), pages 1–8, 2011.

12. Jason Crampton, Keith M. Martin, and Peter R. Wild. On key assignment for hierarchical access
control. In Proceedings of the IEEE Computer Security Foundations Workshop (CSFW), pages 98–
111, 2006.

13. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 89–98, 2006.

14. Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Proceedings of Applied
Cryptography and Network Security (ACNS), pages 288–306, 2007.

15. Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryption of abe ciphertexts.
In Proceedings of the USENIX Security Symposium, 2011.

16. Lein Harn and Hung-Yu Lin. A cryptographic key generation scheme for multilevel data security.
Computers & Security, 9(6):539–546, 1990.

17. Junbeom Hur and Dong Kun Noh. Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Transactions on Parallel and Distributed Systems, 22(7):1214–1221, 2011.

18. Song Luo, Qingni Shen, and Zhong Chen. Fully secure unidirectional identity-based proxy re-
encryption. In Proceedings of International Conference on Information Security and Cryptology
(ICISC), pages 109–126, 2011.

19

19. Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim G. Akl. An optimal algorithm
for assigning cryptographic keys to control access in a hierarchy. IEEE Transactions on Computers,
34(9):797–802, 1985.

20. Indrakshi Ray, Indrajit Ray, and Natu Narasimhamurthi. A cryptographic solution to implement access
control in a hierarchy and more. In ACM Symposium on Access Control Models and Technologies
(SACMAT), pages 65–73, 2002.

21. Ronald L. Rivest. All-or-nothing encryption and the package transform. In Proceedings of the Inter-
national Workshop on Fast Software Encryption (FSE), pages 210–218, 1997.

22. Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Proceedings of CRYPTO, pages 199–217, 2012.

23. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceedings of EUROCRYPT,
pages 457–473, 2005.

24. Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Efficient provably-secure hierarchical key
assignment schemes. Theoretical Computer Science, 412(41):5684–5699, 2011.

25. Jun Shao, Peng Liu, Zhenfu Cao, and Guiyi Wei. Multi-use unidirectional proxy re-encryption. In
Proceedings of IEEE International Conference on Communications (ICC), pages 1–5, 2011.

26. Wen-Guey Tzeng. A time-bound cryptographic key assignment scheme for access control in a hierarchy.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(1):182–188, 2002.

27. Hongbing Wang, Zhenfu Cao, and Licheng Wang. Multi-use and unidirectional identity-based proxy
re-encryption schemes. Information Sciences, 180(20):4042–4059, 2010.

28. Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Network, 8(1):16–30, 2000.

29. Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scalable, and fine-grained data
access control in cloud computing. In Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), pages 534–542, 2010.

30. Sheng Zhong. A practical key management scheme for access control in a user hierarchy. Computers
& Security, 21(8):750–759, 2002.

20

