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Abstract. We are witnessing the rapid expansion of smart devices in our daily life. The need for
individual privacy protection calls for anonymous entity authentication techniques with affordable effi-
ciency upon the resource-constrained smart devices. Towards this objective, in this paper we propose
self-blindable credential, a lightweight anonymous entity authentication primitive. We provide a formula-
tion of the primitive and present two concrete instantiations. The first scheme implements verifier-local
revocation and the second scheme enhances the former with forward security. Our analytical perfor-
mance results show that our schemes outperform relevant existing schemes.

1 Introduction

The recent advances of hardware technology such as mobile phones, embedded devices, and sensors,
coupled with modern networking technology, set off an explosive growth of applications using digital
credentials for authentication purposes. For instance, vehicles can be embedded with smart sensors
carrying an electronic plate number issued from the DMV, such that, they can communicate with
road-side devices for the road condition or traffic alerts. A mobile phone can carry its owner’s
personal credential, e.g., an electronic driver license or an e-identity, such that the owner can use
the mobile phone to prove his identity or certain attribute, e.g., above 18 years.

Two security related issues emerge from the adoption of digital credentials. One is personal
privacy protection. Users today are more concerned than ever about their personal information
leakage. Unlike a physical credential such as a plastic driver license card which is presented by the
user herself, digital credentials are often automatically applied in many applications, without the
user’s notice or explicit approval. This difference implies that digital credentials residing on smart
devices may backfire on the user’s personal privacy, despite its easiness of use.

The other issue is credential revocation. Different from their physical counterparts, digital cre-
dentials can be easily duplicated/stored by the users. This makes it a challenge for the authority to
revoke a credential since it is the verifier’s burden (not the credential holder’s) to check the revo-
cation status. This becomes even harder if the credentials are used in a privacy-preserving manner
(to address the above privacy concern) where the verifier cannot link credentials with identities.

Moreover, these two issues are aggravated by the limited computation and communication ca-
pabilities of smart devices. The resource constraints of smart devices dictate that the solution for
privacy preservation and revocation support should have lightweight computation and communica-
tion in order to minimize the time delay and energy consumption.

Among a myriad of privacy protection techniques in the literature, anonymous credentials [6,
7,14,16-19] address user privacy in entity authentication where credentials are used anonymously
such that two authentication transactions using the same credential cannot be linked by the verifier
and the public. Nonetheless, existing anonymous credential schemes are not suitable for smart
devices due to high communication or computation overhead. The RSA-based schemes (e.g., [17,18])
normally involve costly zero-knowledge range proofs, which entail tens of kilobits in communication
and tens of modular exponentiation operations in an RSA group. Although the IDEMIX anonymous
credential and the Direct Anonymous Attestation (both are RSA-based) have been implemented on
JAVA card, e.g., [5,9,16,29], the implementations either are not practically efficient enough or do
not well address credential revocation. The state-of-the-art bilinear map-based schemes such as [7,
8,19] rely on bilinear pairing operations or computations over large bilinear groups. The resulting



heavy computation and bulky data to communicate have a undesirable toll on performance and
would drain the device battery power significantly.

The self-blindable certificate scheme in [31] is another primitive that can be used for anonymous
entity authentication. The notion of self-blindable certificate considers a privacy-preserving variant
of the conventional public key certificate: the certificate holder can blind the public key in the
certificate by herself, such that multiple uses of the same certificate cannot be linked, while the
validity of the CA signature is preserved. The scheme in [31] achieves this by adapting a digital
signature scheme with certain homomorphic property. When used for entity authentication, a self-
blindable certificate essentially functions as an anonymous credential, but with lighter computation.
The high efficiency of the self-blindable certificate comes from the fact that the certificate holder
only needs to perform computation in the compact base group of bilinear map. Nonetheless, despite
of its high performance for smart devices [11], it does not provide a satisfactory credential revocation
mechanism (see Section 2 for more details).

Contributions. Towards achieving anonymous entity authentication upon resource-constrained
devices, we propose a new primitive called self-blindable credential. It follows the same working
mechanism of self-blindable certificate, i.e., the computation at the user side works entirely in GG of
an asymmetric bilinear map e : G; X Gy — G, and the resulting authentication data only consist
of group elements of GG1. As (G1 is much more compact than Go and Gr, and the computation in
(G1 is orders of magnitude faster than in G, G and pairing operation, the new primitive achieves
better performance than existing anonymous credential schemes. In particular, our contributions
consist of the following.

1. We formulate the notion of self-blindable credential, and the associated security requirements.

2. We present two concrete constructions: one is self-blindable credential with verifier-local revoca-
tion, and the other is forward secure self-blindable credential. The latter strengthens the former
to achieve forward unlinkability, while the former has better performance.

3. We analyze the performance of our schemes, by comparing with the relevant existing schemes.
The analytical performance results show that our constructions outperform relevant schemes,
e.g., our second scheme saves 70% computation overhead and 50% communication overhead,
over [3].

Organization. In Section 2, we review the related work. Formulation of self-blindable creden-
tial is presented in Section 3. Section 4 introduces preliminary knowledge. The two constructions
together with security analysis are presented in Section 5 and 6, respectively. Section 7 provides
analytical performance results.

2 Related Work

Anonymous credentials [6,14,16,17,19] are a cryptographic primitive allowing for entity authen-
tication to proceed in an anonymous manner where unlinkability of credential uses is achieved.
For some of the schemes in [6,17], a credential can only be used once, and any reuse would be
linkable. These one-use anonymous credentials have good performance, but the credential holders
have to acquire new credentials from the credential issuer repetitively. k-TAA (k-Times Anonymous
Authentication) [3,30] improves one-use anonymous credential such that a credential can be used
unlinkably for up to k£ times.

Group signatures, e.g., [1,4, 8,12, 15, 20], are a primitive akin to anonymous credentials, allowing
signatures to be generated in an unlinkable fashion. The difference between the two is that in group
signatures, a designated authority can nullify the anonymity of the signatures and trace the actual
signers. Ring signatures such as [28] are another primitive generating unlinkable signatures whose
unlinkability is protected among a set of dynamically chosen users.

The self-blindable certificate scheme [31] can be viewed as lightweight anonymous credential
by nature, and the light-weightiness comes from its distinctive working mechanisms introduced
earlier. Despite its efficiency advantage, it lacks satisfactory credential revocation support. Two



revocation solutions are proposed in [31]. One is to enforce short-term certificates by embedding
with each certificate an expiry date. However, there are several drawbacks with this approach: (1) it
downgrades privacy protection, e.g., a unique expiry date identifies its bearer. In the general case,
an expiry date links all certificates with the same expiry date, thus narrowing the space for linking a
certificate; (2) it does not allow for immediate revocation, and a certificate can only be invalidated
upon the expiry date, even if it needs to be revoked instantly. In addition, it has the problem
of determining a proper life span for a certificate. The other revocation approach resembles On-
line Certificate Status Protocol (OCSP), where the certificate holder has to encrypt the blinding
factors used in generating a blinded certificate to a trusted third party (TTP). The TTP helps
the verifier determine the revocation status of the blinded certificate by de-blinding the blinded
certificate. However, it is widely known that establishing an online trusted server implies a myriad
of difficulties and drawbacks. Worse yet, it seems difficult to integrate more satisfactory revocation
mechanisms with the scheme to achieve revocable self-blindable certificate. This somehow could be
seen from the fact that the follow-up proposals such as [22, 25] are not secure (see Section 5.1). Our
schemes presented in this work solve this problem®.

Recently, structure preserving anonymous credentials (e.g., [2, 10]) have been proposed, making
use of the non-interactive zero-knowledge proof systems [24]. An anonymous credential scheme is
structure preserving if all of its public keys, messages, credentials, and authentication data (gener-
ated when showing a credential) are group elements of G; and G9. Structure preserving anonymous
credentials are intended to show credentials non-interactively while avoid the usual practice of
the Fiat-Shamir heuristics [23]. In comparison, the authentication data generated from showing a
self-blindable credential include only group elements of GG1, more promising from the efficiency per-
spective. The objective of our proposal of self-blindable credential is an anonymous authentication
primitive efficient enough for resource-constrained devices, rather than strengthened security. Thus
we still recur to the Fiat-Shamir heuristics to achieve no-interactive self-blindable credentials, and
we believe that this is not an issue in practice if care is taken in implementing the corresponding
cryptographic hash function.

3 Revocable Self-blindable Credential: Concept and Security Notions

Problem Statement. We consider a credential system that enables smart devices to authenticate
themselves to a device reader anonymously, such that repeated uses of a credential cannot be
linked by the reader. The primary issue to be addressed is that smart devices and the reader are
asymmetric in terms of resources: smart devices are restraint with limited computation capability
and energy resources, while the reader is relatively powerful and has no resource constraints. For
the credential system to work under such a scenario, it should inflict upon the smart devices as
less overhead as possible, and push heavy computations to the reader side. Ideally, a smart device
performs lightweight computation and generate short authentication data, while the reader executes
relatively heavy computation for verification. In the rest, we do not differentiate human users and
their smart devices; “user” and “device” are used interchangeably, both referring to the client side
of the authentication scheme.

Self-blindable Credential and Security Notions. We propose the concept of self-blindable cre-
dential as the solution to the asymmetric scenario stated above. A self-blindable credential system
comprises a set of users, each obtaining a special credential called self-blindable credential from a
credential issuer. These credentials are used for anonymous authentication to the verifiers, e.g., ser-
vice providers, who trust the credential issuer. To use her self-blindable credential, a user generates
a blinded credential by blinding it with random factors. The verifier checks the blinded credential to
determine its validity. It is mandated that blinded credentials produced from the same self-blindable
credential cannot be linked by the verifier or a third party. Our system supports credential revoca-

LA self-blindable credential can certainly be used as a self-blindable certificate: for each use, select a random
public/private key pair, and then generate “zero-knowledge proof of credential” upon the public key in a non-
interactive fashion by employing the Fiat-Shamir heuristics [23].



tion, such that the blinded credentials resulting from a revoked credential cannot be accepted by
the verifier. Formally, a revocable self-blindable credential scheme is defined below.

Definition 1. [Revocable Self-Blindable Credential] Let C denote the domain of the self-blindable
credentials, and BC denote the collection of all blinded credentials. A revocable self-blindable cre-
dential scheme is composed of five algorithms {Setup, Credlssue, Blind, CredVerify, Revoke} as
follows.

Setup(1®) — (params,msk): The setup algorithm takes as input a security parameter 1%, and
outputs a set of public system parameters params, and a master secret key msk. Below we
assume that params is implicitly included as input to the rest four algorithms.

CredlIssue(msk,u) — c: The credential issuance algorithm takes as input msk and user identity
u, and outputs a self-blindable credential ¢ € C for .

Blind(c) — be: The blinding algorithm takes as input a self-blindable credential ¢ € C produced by
CredIssue(), and outputs a blinded credential be € BC. This is normally an interactive algorithm
between a user and a verifier (who inputs a challenge message). Its non-interactive version can
be derived by using the standard Fiat-Shamir Heuristics [23]. For the sake of generality, we omit
the verifier’s challenge which should be clear from the context.

Revoke([msk|,c) — CRL U {c}: The credential revocation algorithm takes as input a self-blindable
credential ¢ € C and optionally master secret key msk, and outputs the updated Credential Re-
vocation List (CRL), which is initially empty.

CredVerify(bc, CRL) — {0,1}: The credential verification algorithm takes as input a blinded cre-
dential bc and CRL, and outputs either 1 (accept) or 0 (reject).

Correctness. For all ¢ « Credlssue(msk,u), where (params,msk) <« Setup(1¥), it holds that
CredVerify(Blind(c), CRL) = 1 on the condition that ¢ ¢ CRL.

Security Notions. We impose the following security requirements upon the revocable self-blindable
credential scheme. Due to the length limit, the requirements are described informally below and
the formulation is in Appendix A.

— Unforgeability. Credential unforgeability is a fundamental requirement for any credential sys-
tem. For the self-blindable credential scheme, it mandates that an adversary cannot forge either
self-blindable credentials or blinded credentials.

— Unlinkability. For privacy protection, blinded credentials must be unlinkable. In other words,
it is not possible for the adversary (including the verifier) to determine whether two blinded
credentials are produced from the same self-blindable credential.

— Revocability. The ability to revoke user credentials is crucial for practical credential systems.
For example, if an employee resigns from a company, her previous privileges within the company
must be revoked. For self-blindable credentials, revocability mandates that once a self-blindable
credential is revoked, any resulting blinded credential must be rejected by the verifier.

In addition, possession of a credential represents the holder’s access rights. Thus, sharing of
a credential with other users who do not have the access rights should be disallowed. Ideally, a
self-blindable credential scheme should deter a credential holder from sharing her credential with
others. We call this property as non-shareability.

4 Preliminaries

Notations. Throughout the paper, we use s€gr S to denote that an element s is randomly chosen
from a set S. We will also use the following notations.

Bilinear map. Let G1, G2, G be multiplicative cyclic groups of prime order ¢. A bilinear map
e : G1 X G2 — Gr has the following properties.

- Bilinear: Vu € G1,v € G and z,y €r Z,, e(u”,vY) = e(u,v)™ = e(u¥,v").



- Non-degenerate: let g be a generator of G1, and h be a generator of Ga, e(g,h) # 1.

Proof of Knowledge. A Proof of Knowledge (PoK) protocol is a zero-knowledge two-party three-
round protocol, whereby a prover proves to a verifier about the knowledge of a secret without
disclosing any information on the secret. The three-round is “commit-challenge-response”, which
has been well studied in the literature. For simplicity, we use PoK{(x) : y = ¢g*} to denote the
zero-knowledge protocol that proves the knowledge of z satisfying y = ¢*. In fact, more complex
relations can be proved, e.g., PoK{(z1,22,...,2¢) 1 y = g1 95%...9;* }, and PoK{(z) : y1 = 9] Ny2 =
95}. A zero-knowledge proof of knowledge protocol can be made non-interactive by means of the
Fiat-Shamir Heuristics [23], whereby the prover herself generates the challenge by applying the
commitment to a collision-free hash function.

Review of ASM Signatures. Our constructions of self-blindable credential will be based on the
ASM signature scheme [3]2. A brief review of the ASM signature scheme is as follows. A signer’s
public key is (Z = h*,h € G2,a,b,d € G1) and the private key is z € Z;. An ASM signature upon

message m is defined as (M, k,s) where k,s €r Z;, and M = (ambsd)k%z € Gy. The resulting
signature can be verified by testing whether

e(M, Z - h*) = e(A, h)

where A = a™b*d.

The signature verification can also be conducted in a zero-knowledge proof of knowledge pro-
tocol that enables the holder of the signature to prove the possession of (M, k, s, m) to a verifier,
without revealing any information on the signature. The protocol is denoted as PoK{(M,k,s,m) :
e(M,Z - h*) = e(a, h)™e(b, h)®e(d, h)} for brevity. More details can be found in [3]. Note that the
computation of this protocol works mostly in G which is a much larger group than Gj.

5 Self-blindable credential with verifier-local revocation

In this section, we first explain the rationale of our design, and then present a self-blindable cre-
dential scheme with verifier-local revocation.

5.1 Design Rationale

The basic approach of our design is to use the ASM signature scheme as the self-blindable creden-
tial issuance algorithm. In other words, a self-blindable credential ¢ is an ASM signature on the
credential holder’s attribute. We then design a blinding algorithm, such that the credential holder
can randomize her ASM signature into a blinded credential be. To convince the verifier that her be
is valid, the credential holder proves that bc is well formed in the sense that it is derived from a
valid ¢. Our key innovation centers around designing a highly efficient blinding algorithm, replacing
the original costly protocol PoK {(M,k,s,m) : e(M,Z - h*) = e(a, h)™e(b, h)*e(d, h)} in [3].

Given an ASM signature o = (M, k, s) on message m, we observe that it can be blinded as
follows. Select a blinding factor f € Z,; and compute M’ = M f. Namely, M’ = (a™/ -5/ - df )k%z
Thus, M’ and A’ = (a™b%d)! can be verified by

e(M',Z - h*) = e(A', ) (1)
To fully hide the original signature o, we need to hide k as well. From (1), we get

e(M',Z - h*) = e(A’,h)
s e(M', Z)e(M'hF) = e(A', h) (2)
s e(M', Z)e(M™ h) =e(A, h)

2 In [3], the authors call their scheme BBS+- signature, as the scheme is developed from the well accepted BBS short
group signature scheme in [8].



Let M" = M'* = M/* then k is blinded by f. As such, we get a blinded credential bc =
(M', M"  A"). To show its validity, a proof of knowledge protocol is needed to attest that M’ M”
and A’ are in correct forms. To this point, an important notice is that such a protocol works
exclusively in G, accounting for higher efficiency. We leave the details to Section 5.2.

CAVEAT. One may argue that k can be blinded in a different way as follows. From Equation (1)
we get

e(M', 2" Ye(M', WF T = e(AT' | h)

where f' €p Z, is another random factor. Consequently, (M’ = M/, 7' = ZI' H' = h1' A =
(a™b*d)/f") constitute a blinded credential, and can be validated by checking e(M’, Z")e(M', H') =
e(A’, h). However, this method does not maintain unlinkability. Consider two blinded credentials
(M7, Z1, H{, AY), (X5, Z5, HY), AL). If they are generated from the same credential, then it is easy
to verify that e(My - M4, Z{ - Z)e(My - M}, H - H}) = e(A] - A}, h); otherwise, this equation does
not hold with an overwhelming probability. This is exactly the reason why the schemes in [22, 25]
are not secure, although they do not use the ASM signature scheme.

5.2 Construction Details

We proceed to present the details of our construction of a self-blindable credential scheme with
verifier-local revocation, whereby the verifier checks the revocation status of blinded credentials
against the revoked items in the C RL. The verifier-local revocation approach has been widely used
in the literature, e.g., [12, 16].

Setup(17): Given a system parameter 17, determine a bilinear map e : G; x G — Grp. Select
a,b,d € G1, h € Go. Compute Z = h*, where z €r Z. Note that (a,b,d, h, Z) are the parame-
ters of the ASM signature scheme. Set the public parameters params = (e, a,b,d, Z, CRL = ()
and master secret key msk = (z).

CredIssue(msk = (z),u): The credential issuer computes an ASM signature (M, k, s) on a user’s
identity u, where M = (a”bsd)k%z € Gi, and k,s €r Z,. Set ¢ = (M, k, s,u).

Blind(c = (M, k,s,u)): User u computes a blinded credential as follows.

1. Select f €r Z,, and compute M' = MJ, M" = M'* A’ = (a® - b* - d)/.
2. Construct the following proof of knowledge protocol, denoted as PoK.
PoK{(k,p,s, f): M" = M N A" = a* - b5 - dl}
where py=u-f,¢ =s-f.
3. Set be = (M', M" A, PoK).

Revoke([msk|,c = (M, k,s,u)): To revoke credential ¢, the credential issuer updates CRL with
k such that CRL = CRLU{k}. Similar to a CRL in the traditional PKI, CRL is signed by the
credential issuer.

CredVerify(bc, CRL): Given the CRL and a blinded credential bc = (M',M", A’, PoK), the
verifier outputs 1 if all of the following are True; otherwise outputs 0.

M’ #1eGy

PoK is valid

e(M', Z)e(M", h) = e(A’, h)
Vk € CRL : M" #+ M'*

Remark. The reason why M’ is not allowed to be the unity in Gy is the following: if M’ is the
unity, then f =0 (mod ¢) and any value of k would trivially satisfy the proof PoK. The check
actually provides a guarantee that f # 0 (mod q).

Correctness. Correctness of the construction is straightforward. If bc is well-formed based on a valid
¢, then e(M', Z)e(M",h) = e(M7, Z)e(MS*, h), which is exactly e(A4’, h).



5.3 Security Analysis

Next, we present the security analysis based on the requirements set out in Section 3.
Unforgeability. For unforgeability as defined in Appendix A, we have the following theorem.

Theorem 1. The proposed construction achieves unforgeability, given that the ASM signature
scheme [3] is existentially unforgeable.

Proof. We show that there is a direct reduction from the ASM signature scheme to our scheme. Intu-
itively, the proof of knowledge in a blinded credential bc guarantees the existence of (k,u’, s, f # 0)

such that e(M’, Z)e(M', h¥) = e(a™, h)e(b*, h)e(d!, h). Therefor, the tuple (M/%,k:, 57/, “7/) consti-
tutes a valid ASM signature. If bc is a forgery, then the tuple is a forgery for the ASM signature
scheme. More formally, given an adversary A for our scheme, the forger Fags for the ASM sig-
nature scheme is constructed as follow. F4gps invokes A, and answers the latter’s Credlssue oracle

using its own signature signing oracle. Upon the output of A, Fagsy executes the knowledge ex-

1 o
tractor of the proof of knowledge protocol to get (k,u/,s’, f), and outputs (M'7, k, 57, “7) as the
forgery for the ASM signature.

Unlinkability. Unlinkability as defined in Appendix A requires the DDH assumption to hold in
G1. Let g1, g2 € G1. The DDH assumption states that it is computationally infeasible to distinguish
between (g1, g2, 97, 93) and (g1, g2, 97, C), where x € Z, and C €r G;. In the context of bilinear
map, the DDH assumption is commonly referred to as XDH (external Diffie-Hellman) assumption.
It is widely accepted that the XDH assumption holds in certain subgroups of MNT curves.

Theorem 2. If the XDH assumption holds, then the proposed construction achieves unlinkability?.

Proof. To prove the theorem, it suffices to show how to construct the simulator function (i.e.,
Simulate(-)) for a blinded credential (M’, M", A’ PoK). Select M* €r Gy and A* €r G1, and
invoke the knowledge extractor for PoK{(k*) : e(M*, Z)e(M*,h)*" = e(A*,h)} to extract k*.
Then set M** = M**". Next, invoke the zero-knowledge proof simulator to produce PoK* =
PoK{(k*,p*,¢*, f*) : M** = M** A A* = o - b - d/"}. The simulated blinded credential is
(M*, M**, A*, PoK*). Due to the XDH assumption, (M, a“b*d, M*, A*) is indistinguishable from
(M, a“b3d, M', A’); in addition, (M*, M', M**, M") also constitutes a DDH tuple. Thus, (M*, M**  A*
PoK™) by the simulator function is computationally indistinguishable from the real blinded cre-
dential (M', M", A’ PoK).

Rewvocability. As shown from our construction, revocability is attained by using the CRL. A
valid (M’, M") pair in a blinded credential bc must satisfy M” = M'*. Therefore, the verifier can
check the revocation status of a blinded credential by examining it against all k-values in the CRL.

Non-shareability. The above scheme does not provide non-shareability. A typical method to
achieve non-shareability in the anonymous credential literature is the all-or-nothing approach: an
important secret (e.g., a user’s long term signing key) is encoded in the credential, such that sharing
of the credential leads to sharing of that important secret. It is easy to modify the above scheme
to implement this all-or-nothing approach.

Suppose that user u’s long term signing key is an ElGamal-type key pair (m,y = ¢"), where y
is the public key certified by a CA and m is the private key. To get a credential from the credential
issuer, the user submits ™ and PoK{(m) : A = a™ Ay = ¢"}. Then, the credential issuer computes
an ASM signature on m (instead of on user identity u). Our scheme ensures that the user must
know m in order to construct the proof of knowledge for A’ = ™ 7b*fdf in running the Blind
algorithm. As a result, user u is enforced to share her private key m in order to share her credential
with another user.

3 We actually cannot achieve unlinkability as defined in Definition 3 where the adversary/distinguisher is allowed to
know an entire self-blindable credential. Here we assume that the adversary does not learn k, which in fact makes
the achieved unlinkability weaker than defined in Definition 3.



6 Self-blindable Credential With Forward Unlinkability and Scalable
Revocation

The above construction suffers from two weaknesses due to the verifier-local revocation mechanism.
Firstly, it lacks forward unlinkability. Specifically, once a credential is revoked and the corresponding
k is published in the C'RL, those blinded credentials generated prior to revocation become linkable.
This may be undesirable for some applications where the revocation is only applied to subsequent
credential usage. Secondly, the verifier’'s computation is linear to the total number of revoked
credentials, which grows over the time. Even though the verifier does not have resource constraints,
the unscalable revocation cost may hinder the practical deployment of the scheme. In this section,
we propose another construction to address these two issues.

6.1 Forward Unlinkable Self-blindable Credential

We continue to use the ASM signature scheme for credential issuance. To achieve forward unlink-
ability, we cannot simply use M” = M7* to hide k since k can be exposed in the CRL. We can
further blind k as M"” = M7* . 1" together with h” € G (which is used to cancel out the ran-
domness t" in credential verification), where t €r G1,r €r Z,. However, this requires A" to be an
element in G2 which imposes heavy computation on the user end because computation in Gy is
even more expensive than in Gp (let alone G1). The challenge is to make the user computation
work entirely over G.

We get over this problem by introducing two pairs of public parameters (¢1,77 = tj,) and
(t2, T = t3) into the ASM signature setting, where t1,t2 € Gj. Specifically, the new public key
of the credential system becomes (Z = h*, h,a,b,d, t1,t2,T1,T5) and the private key remains as
z € Z;. The signature generation and verification algorithm remain the same. The newly introduced
(t1,T1,ta,To) are used for blinding purposes only.

Specifically, a blinded credential is generated from (M, k, s, m) as follows, where f, 71,72 €g Zy:

M =M 17 e Gy

M"=MI"*. T2 € Gy

A = (a™b¥d) € &4 (3)
T, =T' € Gy

Ty =t3? € Gy.

together with PoK{(k,p,s, f,v,71,72) : M" = M™ 7132 N A’ = a#bsd! AT = T ATy = 52},
where v = k-r1,u = m- f,¢ = s- f. The blinded credential (M’, M"  A', T{, T}, PoK) can be verified
by checking:

A #£1eGy

PoK is valid

e(M', Z)e(M" h) = e(A", h)e(T!, h)e(T}, Z)

As in the previous construction, the proof of knowledge PoK ensures that these blinded elements
are well formed.

Security. We analyze unforgeability and unlinkability of this scheme, and in particular, the
introduction of (t1,t2,T1,T%) does not affect unforgeability of credentials. We have the following
theorems with their proofs left in Appendix B.1 and B.2, respectively.

Theorem 3. If the original ASM signature [3] is existentially unforgeable, then the above forward
unlinkable self-blindable credential scheme achieves unforgeability.

Theorem 4. If the XDH assumption holds, then the above forward unlinkable self-blindable cre-
dential scheme achieves unlinkability.



6.2 Scalable Revocation

To avoid the linear computation at the verifier side, we take advantage of the dynamic accumulator
in [27], a revocation technique widely used in anonymous credentials and group signatures.

Review of Dynamic Accumulator [27]. A dynamic accumulator scheme allows a large set of values
to be accumulated into a single value called the accumulator. For each accumulated value, there
exists a witness, which is the evidence attesting that the accumulated value is indeed contained in
the accumulator. The proof can be carried out in a zero-knowledge fashion such that no information
is exposed about the witness and the value.

The details of Nguyen’s dynamic accumulator [27] are as follows. Let e : G; x Go — Gr be a
bilinear map as above, and h be generators of Gio. The public parameters include (Z = h*, h), and
the private key is z € Z. The accumulator, denoted as A, is initially assigned with an random

value* in G. The witness for a value k accumulated in A is W = AR, As such, (W, k) can be
verified by e(W, Z - h¥) = e(A, h). For brevity, the proof of knowledge protocol showing that k is
accumulated in A is denoted by PoK{(W,k) : e(W, Z - h*) = e(A, h)}. More details can be found
in [27,3].
Nguyen’s accumulator supports revocation of values from the accumulator. Specifically, the re-
vocation of value k; in the present accumulator A4 is performed as follows. The authority computes
1

the new accumulator as A, ey = /15;'0?, and publishes a new entry (Ayeqy, kj) in a public board. To re-
spond to this event, every witness holder needs to update her witness in order to keep consistent with

the new accumulator. In particular, for a holder with witness W; (corresponding to k;), the witness
1 1 1 1

1 1 1 .1 1
can be updated by computing W% = Wikﬁz = (A5T)ET = AE)Z;JFZ G B = (%)W
It is clear that each witness holder updates her witness without the knowledge of z.

Blinded Proof. To integrate Nguyen’s dynamic accumulator with the above forward unlink-
able self-blindable credential scheme, we have to avoid the original proof of knowledge protocol
PoK{(W,k) : e(W,Z - h¥) = e(A,h)} in [3,27]. Our observation is that the structure of a wit-
ness/value pair for the dynamic accumulator and that for an ASM signature are almost identical,
except the difference between A and A = a™b°d. We thus can use a blinded proof following exactly
the same rationale for the above forward unlinkable self-blindable credential scheme: blinding of
(W, k, A) works exactly in the same way as blinding of (M, k, s, m), with A/ replacing (a™b%d)/.
We omit the details, as they are simply a repetition of Equation 3.

6.3 Construction Details

The complete construction is a combination of the above forward unlinkable credential scheme and
Nguyen’s dynamic accumulator scheme (where the two primitives share system parameters). The
basic idea is that the “k” element of each credential is accumulated into the accumulator, so that
if a credential is revoked, then the corresponding “k” element is removed from the accumulator.
Below are the details.

Setup(17): Determine a bilinear map e : G; x Gy — Grp. Select a,b,d,t1,t2 € Gy, h € Gs.
Compute Z = h*, Ty = {,T> = t3, where z €g Z;. Initialize an accumulator A €r G7. Set
public parameters params = (e,a,b,d, t1,to,h, Z, T, To, A,CRL = (), and master secret key
msk = (z).

CredIssue(msk = (z),u): Compute an ASM signature (M, k, s, m) on the user’s private key m,
as discussed in Section 5.3 for achieving non-shareability, such that M = (ambsd)k%z. Compute

1
the witness W corresponding to k, such that W = A%+= | with A being the latest accumulator.
Set the credential to be ¢ = (M, k, s,m, W).

4 In [27], the accumulator A for a set of values (ki,ko,--- ,ke) is actually calculated as A = gnj}::l(kf“), where
g € (1 is a public parameter. As such, both accumulation of new values and revocation of existing values require
witness updates. The advantage of our assigning A a random initial value is that only revocation of values involves
witness updates.



Blind(c = (M, k,s,m,W): Generate a blinded credential bc as follows. Let A be the latest accu-
mulator. Select f,r1,r2 €r Z,, and compute

LM =(M-W) -
2. M" = (M-W)I'*. 172
3. A = (a™b*d- )Y

4. T) = T7%

5. T4 = ty?;

6.

PoK{(k, p,s, f,y,r1,7m2) : M" = MM 7T52 N A" = a*bsd! A NT) = T]* ATy = t42}, where

y=k-ri,p=m-f,c=s-f.
Set be = (M', M", A", T|, T}, PoK).

Revoke(msk = (z),c = (M, k,s,m,W)): To revoke a credential ¢, update the present accumula-
tor A as Apew = Ak%“z, and publish a new entry (k, Apeyw) in the CRL such that CRL =
CRL U (k, Apew)®. Existing self-blindable credential holders update their respective witnesses
as described earlier.

CredVerify(bc, CRL): The verifier gets the latest accumulator from the CRL, and checks all the
following for a given blinded credentials be = (M', M", A" T|, T}, PoK).

A %1€ Gy;
PoK is valid;
e(M', Z)e(M", h) = e(A',h)e(T}, h)e(T}, Z);

Correctness. Correctness can be easily shown. By cancelling out the elements associated with ry, 79,
we have e(M’, Z)e(M"  h) = e(A’, h)e(T}, h)e(Ty, Z) = e((M - W), Z)e(M - W)F* h) = e((a™b%d -
A)T . h), which is clearly a combination of an ASM signature and an accumulator.

6.4 Security Analysis

Revocability and non-shareability of the construction are clearly achieved. So is forward unlink-
ability, which can be proved similarly as in Theorem 4. It remains to analyze unforgeability: it
seems hard to directly relate unforgeability to that of the forward unlinkable scheme in Section 6.1,
although intuitively it is clear that the extra information W = A%+ does not affect unforgeability.

We actually relate unforgeability to the ¢-Strong Bilinear Collusion Attack Assumption (¢-
SBCAA), which is implied in [7,8]. Let G1,G2 be as in the bilinear map, and g € G1,h € Gs.

1
(-SBCAA asserts that for z € Z;, it is hard to compute (ko € Zg, g"0+=), given a (¢ + 3)-tuple

1 1 1
(g, h,h*, (k1,g%F1=), (k2, g*2%=), - -+, (ke, g*¢*#)), Vk; € Z;. We have the following theorem, and the
proof can be found in Appendix B.3.

Theorem 5. If the £-SBCAA holds, then our construction achieves unforgeability.

6.5 Witness Update Outsourcing

We rely upon Nguyen’s dynamic accumulator for credential revocation. Recall that it requires all
users to update their witnesses in the event of credential revocation. To get her witness updated, a
user should either keep connected to the revocation server around the clock or do a batch update
after a period of time. For resource-constrained devices, batch update is a more viable choice.

In a large-scale system where credential revocations are frequent, a batch update consists of
a plethora of witness update events. Then, the out-of-the-band witness update step may severely
impact the system performance. Fortunately, in our scheme the credential component corresponding
to the accumulator (i.e., W, k) can be public, as its role is simply a testimony that the credential is
not revoked. Based on this observation, users can outsource the witness update task to an untrusted

5 It may seem strange to publish accumulator values /A in the CRL. As introduced earlier, (k, A) should be published
in a public board in order for credential holders to update their witnesses. Here we actually abuse the CRL, using
it as the public board.

10



third party, who helps update their witnesses. A user simply needs to retrieve her witness back at the
time of authentication. Note that the third party is not necessarily trusted, as W, k are deemed not
secret. We stress that the disclosure of W, k does not compromise unlinkability of our construction,
as the security analysis already assumes that the adversary knows user credentials.

7 Performance Analysis

We provide an analysis on the performance of our constructions. Let |G| denote the bit length of an
element in group G, and EXP(G) denote an exponentiation operation in G. The efficiency advantage
of our constructions is attributed to the fact that the user computes entirely over G, whereas the
verifier performs bilinear pairings and group computation over Gr. This feature distinguishes our
proposal from virtually all existing bilinear map-based anonymous credentials and group signatures,
e.g., those mentioned in Section 2. Note that in the context of bilinear map, |G1| is much shorter
than |G2| and |Gr|, and EXP(G1) is an order of magnitude faster than EXP(G2), EXP(Gr), and
pairing operation.

In our second construction described in Section 6.3, the proof of knowledge PoK in the blinded
credential incurs 4 - EXP(G1) in computation (for commitment) and 4|G1| + 6|Z;| bits in communi-
cation (for response). Consequently, the total overhead of generating a blinded credential includes
9 - EXP(G1) and 9|G1| + 6]|Z,| bits. Similarly, the overhead of our first construction is 5 - EXP(G1)
in computation and 5|G1| + 4|Z,| in communication, respectively. Note that for computation cost,
we only count the number of exponentiations. Furthermore, by applying optimized algorithms for
multi-exponentiations, e.g., [26,21], the computation overhead for a multi-exponentiation is just
slightly more than a single-exponentiation. We thus do not distinguish multi-exponentiation and
single-exponentiation by EXP(G) in the calculations.

We list in Table 1 the comparison results of the user side performance between each of our
schemes with a representative existing anonymous credential scheme that implements similar func-
tionalities. Specifically, we compare our first scheme with DAA (see e.g., [9]), both supporting
verifier-local revocation; for our second scheme, we compare it with the relevant part of the k-TAA
scheme in [3]. Note that in [3], the k-TAA scheme includes, as building blocks, concrete proof of
knowledge protocols for both the ASM signature and Nguyen’s dynamic accumulator. The combina-
tion of the two protocols actually achieves the same revocation support as our second construction,
and represents the state of the art of bilinear map-based anonymous credentials. We thus compare
our construction with that combination (note that we do not compare with k-TAA)T.

Table 1. Performance Comparison

l [ Computation [ Communication ‘
DAA in [9] 5. EXP(F, )™ > 5|n|

Our first construction 5-EXP(Gh) 5|G1] + 3|Z4]
Combined scheme in [3] |8-EXP(G1)+2-EXP(Gr)|7|G1| + 2|Gr| + 12|Z,]
Our second construction 9-EXP(Gh) 9|G1| + 6|Z4]

# n is a RSA modulus and F;, denotes the finite filed over n.

When instantiating the bilinear map over MNT curves with 80-bit security, it is estimated in
[13] that |Gp| = 1026, |G| = 171, and |Z,| = 160, and 1 - EXP(G'r) = 10 - EXP(G7). In such a case,
|n| = 1024, and 1-EXP(F,) ~ 1 -EXP(Gr). Under such a setting, we can see that the computation
and communication overhead of our first scheme is about 10% and 25% of DAA, respectively. For

5 While claiming efficiency advantage over existing anonymous credential and group signature schemes, we acknowl-
edge that different schemes may depend on different cryptographic assumptions. Anyway, our objective is to develop
an efficient anonymous authentication primitive with reasonable security guarantees, suitable for weak devices.

7 While we do not compare with other bilinear map-based anonymous credential schemes such as [7, 8], they are no
better in efficiency than [3].
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our second construction, its computation cost is around 30% of that of [3]. Note that we have
assumed various optimizations for the computation in [3], e.g., transfer pairing operations into
fixed-base exponentiations in G by pre-computing. We believe that this efficiency gap should
be even larger in practice, especially upon resource-constrained devices, due to the fact that the
multi-exponentiations in [3] contain too many elements. The communication overhead of our second
construction is about 50% of [3].

8 Conclusion

Due to high computation/communication overheads, existing anonymous entity authentication
techniques such as anonymous credentials and group signatures are not suitable for for resource-
constraint smart devices. To address this problem, we have proposed two self-blindable credential
schemes with superior performance and revocation support. The efficiency advantage of our con-
structions stems from the fact that the computations at the weak device side work entirely on G
of bilinear map, which is an order of magnitude faster than pairing operations. We have formally
proved their security and also analyzed their performance against relevant existing schemes.
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A Formulation of Security Notions

The formulation of unforgeability, unlinkability is presented below.

Definition 2. [Unforgeability] A revocable self-blindable credential scheme satisfies unforgeability
if for any PPT adversary A, the probability of the following “unforgeability game” returning 1 is
negligible in k.

1. (params,msk) «— Setup(1");

2 be — ACredIssue(msk,-)(params)’.

3. if CredVerify(bc, CRL) = 1 A Origin(bc) ¢ {c1,ca...ce} then return 1; and returns 0 otherwise,
whereby {c;}i_, are the set of credentials returned by the Credlssue(msk,-) oracle, and Origin :
BC — C is a function taking as input a blinded credential and outputting the original credential
from which the former is generated.

Specifically, the definition asserts that given a set of credentials, the adversary cannot produce
a valid blinded credential, which is not generated from any given credential. In the definition,
unforgeability of the original credentials is implicit, as if the adversary can forge a self-blindable
credential, it can certainly generate a valid blinded credential.

Definition 3. [Unlinkability] A revocable self-blindable credential scheme satisfies unlinkability if
for any PPT adversary A, the probability of the following “unlinkability game” returns 1 is 1/2 +
v(k), where v(.) is a negligible function.

1. (params,msk) < Setup(1*); ¢ < Credlssue(msk,u);
2. o £ 40,1};
3. if o =1 then bc — Blind(c);
else bc < Simulate(params);
4. 0% — A(params,c,bc);
5. if o = o* then return 1 else return 0;

Specifically, the “unlinkability game” proceeds with the adversary A in such a way that A is
given either a blinded credential bc generated from a genuine credential ¢ or a simulation result
independent of ¢, depending on the random bit o. Above, Simulate(-) denotes the simulator function
that outputs a simulation of a blinded credential. Finally, A outputs a guess on o. Unlinkability
requires that A should not gain any significant advantage over a random guess, even though it is
given the original credential ¢ in the game.
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B Security Proofs

B.1 Proof of Theorem 3

Proof. We show by contradiction that if there exists a PPT adversary 4 against unforgeability of
our forward unlinkable self-blindable credential signature scheme, then there exists a PPT forger
F that compromises unforgeability of the ASM signature scheme [3]. Specifically, the construction
of F is as follows. F is challenged with the ASM signature scheme and is given oracle access to the
corresponding signing algorithm of the scheme. F first gets two ASM signatures (M, k1,1, m1)

and (Ma, ka, s2, m2) by invoking the signing algorithm. It holds that M; = (amlbsld)TlJrZ = M} =
a™b dMM so is ME = a™2b2dMy 2. F sets t; = My, Ty = a™ b dM[ " ty = My, Ty =
a™b*2dMy k2 and gives them to A together with the public parameters of the ASM signature
scheme, in order to simulate the public parameters of our construction. Clearly the simulation is
perfect.

From then on, it is straightforward for F to answer the queries of A to the Credlssue oracle
using its own ASM signing oracle. The simulation is again perfect, given that the simulation of
t1,Th,te, Ty is perfect. Upon receipt of the output (M’, M" A", T{, T}, PoK) of A, F executes the

knowledge extractor for PoK to get (k, p,s, f,7,71,72), and outputs (M’ -t; ”)f k,S ¥ ?) as the
forgery for the ASM signature scheme. This is because

e(M', Z)e(M" h) = e(A’, h)e(T], h)e(Ty, Z)

= e(M', Z)e(M™t7T52 h) = e(A’, h)e(T}, h)e(Ts, Z)
= e(M', Z)e(M™t{7 h) = e(A’, h)e(T}, h)

= e(M', Z)e(M™t]7,h) = e(A’, h)e(T]*, h)

= e(M', Z)e(M™t]7, h) = e(A', h)e(t]', Z)

= e(M't;™, Z)e(M™t]7,h) = e(A’, h)

= e(M't;™, Z)e(M't;"* h¥) = e(a"bsd! | h)

When r; = 7v/k, the output is an ASM signature.

B.2 Proof of Theorem 4

Proof. Construction of the simulator function Simulate(:) for a blinded credential follows the
idea of the proof for Theorem 2. Select M*, A* e€r G1, k*,v" €r Z,;, and let 7"1 = ~*/k*.
Then invokes the knowledge extractor for PoK{(r3) : e(M*, Z)e (M*,h)k* (t1,h)™7 (Tg h)2 =
e(A*, h)e(T1, h)Te(ty, Z)"2} to extract r5. Then set M** = M**"t T;;,T1 Tlf,T2 = t22 Next,
invoke the zero-knowledge proof simulator to produce PoK* PoK {(k*, ¢, f* %, rf,rs) -
M** = M* TN A = a0 AT AT = T AT = t;"5 }. Due to the XDH assump-
tion, (M™*, M**, A*, T, Ty, PoK™) are distributed computationally indistinguishable from the actual
blinded credential (M', M", A", T|, Ty, PoK).

B.3 Security Proof for Theorem 5

Proof. The proof follows the idea in the proof for Theorem 3. To avoid repetition, we only briefly
explain the main idea on how the adversary A for /-SBCCA simulates the adversary A’ for our

1 1
construction. Given a (¢ + 3)-tuple (g, h, h*, (k1,g% 1), (kg, g% =), Asets d = g,a = g™, b =
1

1
g, A=g", wherery,m,r €p Z;. Now A can easily transform the ¢- tuple (ki,g*it=), - (ke,gFet?)
(mi-ratsiry+1)- %tz +z
into E self-blindable credentials (M; = a™b%d = (g, ki, si €R Zg,m; €ER Zg, Wi =

g kﬁz),i € [1..4]. With the ¢ credentials in place, A can compute t;,77,t9,To and answer the
queries of A’ to the Credlssue oracle in a similar way as in the proof for Theorem 3.
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