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Abstract—This paper presents privacy-preserving, 

parallel computing algorithms on a graphic processing 

unit (GPU) architecture to solve the Edit-Distance (ED) 

and the Smith-Waterman (SW) problems. The ED and SW 

problems are formulated into dynamic programming (DP) 

computing problems, which are solved using the Secure 

Function Evaluation (SFE) to meet privacy protection 

requirements, based on the semi-honest security model. 

Major parallelization techniques include mapping of 

variables to support collision-free parallel memory access, 

scheduling and mapping of gate garblers on GPU devices 

to maximize GPU device utilization, and latency 

minimization of context switch for computing steps in the 

DP matrix. A pipelined GPU-CPU interface is developed 

to mask latency of CPU housekeeping components.  

The new solutions were tested on a Xeon E5504 at 

2GHz plus a GTX-680 GPU (as generator), connecting an 

i7-3770K at 3.5GHz plus a GTX-680 GPU (as evaluator) 

via local Internet. A 5000×5000 8-bit alphabet ED problem 

requires roughly 1.88 billion non-free gates, and the 

running time of around 26 minutes (roughly 1.209×10
6 

gate/second). A 60×60 SW problem is computed in around 

16.79 seconds. Compared to the state of art performance 

[5], we achieved the acceleration factor of 12.5× for the ED 

problem, and 24.7× for the SW problem. 

Keywords—Secure Function Evaluation, dynamic 

programming, GPU, acceleration 

I. INTRODUCTION 

The two-party Secure Function Evaluation (SFE) [13, 14] 

based dynamic programming scheme has been proposed for 

privacy-preserving matching of genomic data pairs.  In SFE, 

two players jointly compute an arbitrary logic function f(x,y) 

while they keep their multi-bit inputs x and y private at all 

time. Yao’s garbled circuits (GC) [13] and the oblivious 

transfer (OT) protocol [19] have been widely adopted for SFE 

implementation. One player assumes the role of a generator, 

who constructs the garbled circuit for f. The other player 

assumes the role of evaluator, who evaluates the circuit. To 

protect data privacy, each input bit (plain-text version) is 

represented as a pair of wire labels (tens of bits), and each 

Boolean logic is transformed to a sequence of a garbling 

(encryption) step on the generator side, plus a de-garbling 

(decryption) step on the evaluator side. 

 SFE has been used as the building block for privacy-

preserving applications such as secret auctions [15, 25], 

biometric or genomic computation [3, 4, 5], facial recognition 

[2, 7, 16, 17] and encryption [2, 5, 6]. To enable broader 

adoption of SFE for real world applications, in this paper we 

focus on acceleration of the SFE based dynamic programming 

(DP) [33]. We presented new parallel algorithms to solve the 

privacy-preserving ED and SW problems. In sharp contrast to 

existing SFE functions like AES, Hamming distance, RSA, or 

Dot product, DP needs complicated computations (addition, 

min/max, lookup tables, subtract etc.), and its computing steps 

exhibit strong interdependency. 

In the state of art solutions [4, 5], it took 3.5 hours and 7 

minutes respectively to solve a privacy-preserving ED 

problem (2000×10000 8-bit alphabet), and a 60×60 SW 

problem. In this paper, we achieve speedups of 12.5x (ED 

problem) and 24.7x (SW problem) through optimization of 

GPU resource management, efficient DP computing process 

mapping, and tight integration of GPU and CPU interactions.  

Details of our design will be discussed later. Succinctly 

put, our contribution includes: (1) a high-throughput gate 

garbler/de-garbler fully loading GTX-680; (2) for the ED 

problem and the SW problem respectively, the 

generator’s/evaluator’s GPU resource mapping policies that 

maximally utilize the gate garbler/de-garbler; (3) a pipelined 

CPU-GPU computing architecture to support end-to-end 

computing service. (4) We adopt several known optimizations: 

free-XOR [8], oblivious transfer extension [18], permute-and-

encrypt [1], efficient lookup-table design and compact circuits 

[5], and solve confliction between the free-XOR technique 

and our wire label pre-assigning scheme. Our GPU-based 

random wire label generator based on the mathematical model 

used in MIRACL [26]. 
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Fig. 1. Parallel Computing Models for (a) the ED problem, and (b) the SW 

problem. 
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Fig. 2. Conflict free parallel access to share memory banks. 

A. Parallel Computing Model for GC 

We assume that a GC is constructed from a number of 2-bit 
input, 1-bit output gate (G), c=G(a,b), where the one bit “wire” 

a (b) is provided by generator (evaluator). To compute G 
jointly, the generator produces wire labels {ka

0
,ka

1
},{kb

0
,kb

1
}, 

{kc
0
,kc

1
} for each possible value of a, b, and c. Through the OT 

protocol [19], the generator sends encrypted {kb
y
 kb

y’
} to the 

evaluator, but the evaluator can only decrypt kb
y 
that matches y, 

the actual value of b. Based on a random oracle model 
proposed in [18, 20], a virtually unlimited number of OT 
computations can be encoded into 80 1-out-of-2 OT 
transactions [18, 20], where 80 is a security parameter. The 80 
1-out-of-2 OT transactions can be computed in 0.6s [5]. That 
is, the primary computing bottleneck is garbling/de-garbling 
the vast number of circuits, not the OT, for the SFE. 

The computing logic of G is a four-entry truth table T{T00, 
T01, T10, T11}, where each entry of value 0(1) is associate with 
the output wire label kc

0
(kc

1
). The garbled truth table is a 

random permutation of the four cipher-texts: {Eka
0
(Ekb

0
(kc

T00
)), 

Eka
0
(Ekb

1
(kc

T01
)), Eka

1
(Ekb

0
(kc

T10
)), Eka

1
(Ekb

1
(kc

T11
))}, here E 

denotes the encryptor (also known as garbler). In the end, the 
evaluator learns the wire label kc

Txy
 that represents the real 

value of G given inputs a=x and b=y, while he does not know x. 

Using G as building blocks, we use SHDL in Fairplay [1] to 
construct GCs that can solve the privacy-preserving ED 
problem and SW problem. 

Our parallelization strategy is loosely divided into the GC 
level and DP level. In the GC level, the vast number of gates 
are concurrently garbled by the generator and de-garbled by the 
evaluator. On top of the GC level, the DP level computes the 
DP matrix of the ED or SW problem. The GC level is designed 
to meet the ultra-short security in TASTY [2], and the DP 
level aims to maximize processor utilization while enforcing 
the interdependency relationship between computing steps. 

The DP level design aims to maximize resource utilization. 
As shown in Fig. 1, the N×N DP matrix is processed into 2N-1 
slices, W= {S1, S2, …, S2N-1}. Fig. 1 shows that GC-slots 
(entries in the DP matrix) on the same slice are independent, 
and thus can be concurrently garbled (de-garbled) on the 
generator (evaluator) side. The degree of parallelism increases 
from S1, S2 until SN, and then it decreases from SN to S2N-1. For 
garbling GC-slots on Si, wire labels of GC-slots’ outputs on 
slices Si-2 and Si-1 are re-used, thus multiple slices can be 
garbled simultaneously once wire labels of all GC-slots’ 
outputs are pre-assigned. This observation is implemented as a 

cross-slice mapping policy (CSMP). However, for de-garbling 
GC-slots on Si, the pre-requisite is the de-garbled outputs on 
slices Si-2 and Si-1. So, the de-garbling process can only de-
garble one slice at a time. As a result, garbling the N×N matrix 
is transformed to a 1-D vector which is mapped to GPU units. 
For de-garbling, Si is mapped to GPU units after Si-1 is 
completed.  

The rest of the paper is organized as follows. Section 2 
discusses the GPU (de-)garblers. Sections 3 & 4 present 
designs in the DP level for the ED problem and SW problem 
respectively. The SFE system is presented in section 3. Section 
5 gives the related work. Section 6 concludes the paper. 

II. GPU-BASED GATE (DE-)GARBLER 

Our gate garbler is implemented on the CUDA (Compute 

Unified Device Architecture). GTX-680 is a GK104 

generation device [10, 34], which contains 8 streaming 

multiprocessors (SMX). Although each SMX supports parallel 

processing of 32 threads, called a warp, per clock, it usually 

simultaneously runs multiple warps of threads for better 

utilization of its pipeline. Each SMX has 64K 32-bit registers 

and 64KB on-chip shared memory/L1 cache, which is 

organized into 32 64-bit banks. 8 SMXs share 2GB 256-bit 

wide slow global memory. A program on GPU is called a 

kernel function. Its input setup, parallelism configuration, 

launching and output read-back are controlled by a host thread 

on CPU. At runtime, following the Single Instruction Multi 

Threads (SIMT) architecture, each GPU thread runs one 

instance of the kernel function. 

For garbling, an arbitrary entry Txy in the truth table of a 
gate G, is garbled (encrypted) as Encx,y(kc

z
) = H(ka

x
||kb

y
) XOR 

kc
z
, where H is the garbling function, ka

x
, kb

y
 and kc

z
 are wire 

labels, “||” is concatenation. Like Huang et al. [5], we adopt 80-
bit as the length of wire labels so that the ultra-short security in 
TASTY [2] is achieved. Candidates of H are SHA-1 [5], AES-
256 [6] supported by AES-NI, SHA-256, or other 
cryptographic hash functions. Among these choices, we 
adopted SHA-256 as H because it has similar computing cost 
as SHA-1 [29, 30], but without its vulnerability [27]. AES-256 
is not chosen because it is 3 times slower than SHA-1 on GPU 
[9]. So that, Encx,y (kc

z
) = SHA-256(ka

x
 || kb

y
 || i) XOR kc

z
, 

where i is a 32-bit unique gate index in a garbled circuit. This 
SHA-256’s input is a 192-bit block, and output a 256-bit 
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Fig. 3. The SFE building block (a GC-slot at DP[i][j]) for the ED problem. 

digest. The de-garbling (decryption) is Dec(Encx,y (kc
z
)) = 

SHA-256(ka
e
 || kb

e
 || i) XOR Encx,y (kc

z
), where ka

e
, kb

e
 are wire 

labels obtained from OT or previous de-garbling.  

We adopted the code base in PolarSSL [32] for the SHA-
256 implementation, with the following adjustments. Here, one 
round of SHA-256 is divided into four steps, each of which 
produces 16 (32-bit) words W[0~15] based on the elements in 
W computed in the current and previous steps. At end of each 
step, W[0~15] are used to update the 8 32-bit digest. A total of 
40 (32-bit) words of space are needed for each round. That is, 
16 (32-bit) registers to store W[0~15] in the current step, 8 (32-
bit) registers to store the digest, and one block of 16×32-bit 
shared memory is assigned to each thread to store W[0~15] 
produced in the past step, the storage format of such a shared 
memory block per thread is illustrated in Fig. 2. Here, each 
block resides on eight shared memory banks.  

GPU threads in a same warp will be stalled when some of 

them attempt to access different tiers (a low level GPU 

architecture) on the same memory bank. To eliminate the 

often hidden shared memory access conflicts, we fill in a strip 

of 64-bit chaff spacers, one in the front of every four
th

-thread’s 

W[0~15]. This way, parallel memory accesses {Ai, Ai+4, 

Ai+8,…Ai+28} issued by threads i, i+4, i+8, …i+28 (i=0,1,2, or 

3) to read  W[0~15] of the same  index in its own W array will 

access distinct memory banks with no conflict. Fig. 2 

illustrates the case i=0 and {A0, A4, A8… A28} read W[0].  

Each SHA-256 gate garbler thread uses 57 registers, 

where GK104 allows up to 63 registers per thread. Each SMX 

has 640 threads (20 warps), its 64KB on-chip memory is 

organized as 48KB of shared memory, plus 16KB of L1 

cache, and 41.25KB of the 48KB shared memory is occupied 

by W[0~15] with chaff spacers. The degree of parallelism is 

5120=8 SMX × 640 threads. The latency is 304ms for a GPU 

thread to read in a block of 192 bits 10000 times. The 

throughput is roughly 30.27Gbps, taking the GPU-CPU data 

exchange time into account, which is similar to the result of 

SHA1 on GTX-580 [28]. Intel reported their SHA256 

achieved 11.5 cycles/byte (equivalent to 2.47Gbps) on a single 

core of Intel i7 2600 in 2012 [36]. Next, we discuss our 

designs in the DP level. 

III. PRIVACY-PRESERVING EDIT DISTANCE COMPUTING 

A. SFE Building Block for Edit Distance  

Given two input strings A[N] and B[N] from the two 

players respectively, solving the ED problem is essentially 

processing of an (N+1)×(N+1) DP matrix, in which a GC-slot 

DP[i][j] (i,j [0,N]) is computed as: DP[i][0] = i, DP[0][j] = j; 

and if i,j [1,N], DP[i][j] = (Y > X) ? (X+1) : (Y+t), where t = 

(A[i] ≠ B[j]), X=min(DP[i-1][j] , DP[i][j-1]), and Y=DP[i-1][j-

1] [5]. Referring to Fig. 3, one GC-slot includes two Min_of_2 

circuits (Min_of_2 and Min_of_2_mux), one Char_EQ circuit 

(compute t), and one Add_One circuit. 

The maximum value of an arbitrary GC-slot DP[i][j] is 

max(i, j). To minimize the gate count, it is highly desirable to 

implement GC-slots based on the actual number of bits 

required for inputs in the multi-version compact circuits [5]. 

We adopt the multi-version Min_of_2, Min_of_2_mux and 

Add_One circuits in [5], so that one of the multiple versions is 

activated for a GC-slot according to its inputs’ bit widths.  The 

compact circuit [5] did not explicitly discuss how to handle 

variable bit widths. To solve this problem, we propose a width 

alignment scheme based on two 1-bit extension wires (see Fig. 

3) for {DP[i-1][j], DP[i][j-1]}, and {X, Y}. The maximum 

possible values of inputs and intermediate results in a GC slot 

are listed in Table I. For {DP[i-1][j], DP[i][j-1]}, m3=m2 – 

1(m2=m3 – 1) and the extension wire is activated for DP[i][j-1] 

(DP[i-1][j]) when i<j (i>j), and j (i) equals power of 2. 

Similarly, for {X, Y}, m1= m4 – 1 and the extension wire is 

activated for Y when i==j, and i is power of 2. 

TABLE I.  MAXIMUM POSSIBLE VALUES OF INPUTS AND INTERMEDIATE 

RESULTS IN A GC-SLOT DP[i][j] 

 DP[i][j-

1](width=m3) 

DP[i-

1][j](width=m2) 

X(width=m4) Y(width=m1) 

i<j max(i,j-1)=j-1 max(i-1,j)=j min(i-1,j)=j-
1 

max(i-1,j-
1)=j-1 

i==j max(i,j-1)=i max(i-1,j)=j min(i,j) = i max(i-1,j-

1)=i-1 

i>j max(i,j-1)=i max(i-1,j)=i-1 min(i,i-1) = 
i-1 

max(i-1,j-
1)=i-1 

B. Resource mapping policies and house keeping 

On the generator side, as discussed earlier, under CSMP, 

GC-slots perform garbling in parallel when their paired wire 

labels are pre-assigned. CSMP partitions the DP matrix into 

multiple tasks, each of which aims to fill up 5120 GPU gate 

garbler threads to maximize the speedup factor. For example, 

task[0] contains 5120 GC-slots, which is from slice 1, 2, 3, … 

up to a fraction of slice 101. When GPU runs the 5120 GC 

slots in lock-step, each GPU thread garbles its corresponding 

GC-slot gate by gate for the entire GC-slot.  

Three major cases need to be considered for pre-

assignments of paired wire labels. Referring to Fig. 3, LO 
represents the set of paired labels for wires of a GC-slot’s 

outputs. LI represents the set of paired labels for wires internal 
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Fig. 4. The pipelined garbling & de-garbling process (ED) 

to a GC-slot and not connected to other GC-slots. LG 

represents miscellaneous types of paired labels, and they are 

treated as a “global” set for the SFE to simplify memory 

management. Classification of the three groups of wire labels 

is not only important to efficient use of the GPU memory 

space, but also critical to synchronous accesses of memories 

by parallel threads. LO and LI are pre-assigned at initialization 

of a new task, but LG at initialization of the whole SFE system. 

LO and LI are overwritten if they are associated with an XOR 

gate’s output [8] by a calculation result based on the XOR 

gate’s inputs’ wire labels. Even though some LO and LI need to 

be overwritten during execution, they are still pre-assigned to 

simplify the wire label generation function at negligible costs. 

Overwriting of labels in LO occurs before garbling of a 

task. Generally speaking, wire labels in LI are overwritten 

during garbling because no other GC-slots depend to them. 

However, some wire labels in LI needs to be overwritten 

before overwriting of LO if the value of the latter is dependent 

on that of the former, as shown in the following example. 

Here, the output of an XOR gate G1 is the input of another 

XOR gate G2, and the output of G2 is also the GC-slot’s output. 

Labels associated with G1’s (G2’s) output is in LI(LO). 
Overwriting of labels for G1 needs to be done before 

overwriting of labels for G2, before garbling of a task. 

LO and LI for GC-slots in a task are sequentially stored GC-

slot by GC-slot. At initialization of the SFE system, a parser 

parses different versions of garbled circuits and calculates the 

version no. of circuits for each GC-slot in the DP matrix. After 

the maximum memory size for storing labels in LO and LI in a 

task is calculated, GPU memory space is statically allocated 

for a task, which is released until completion of the SFE 

computation. Static memory allocation eliminates costly 

cuda_malloc() and cuda_free() operations during computing. 

A dedicated memory block is reserved at the SFE initialization 

to store a copy of LO for GC-slots in the latest three slices of 

the current task, so that they can be re-used in next task. 

Next, we discuss cases related to LG. For GC slots that 

compute DP[1][j], or DP[i][1], i.e., the second row and second 

column of the DP matrix, their Min_of_2_mux circuit’s input 

DP[i-1][j-1] is a real value, rather than wire labels from other 

GC slots. As such, some gates in their Min_of_2_mux circuit 

need not perform garbling because they only accept inputs 

from the generator. We treat these gates the same as the 

generator’s inputs and directly assign paired wire labels for 

these gates’ outputs. For the Add_one circuit, the maximum 

possible value of its input is j-1 (i-1) if i<j (i>j). The 

maximum possible value of its output is j (i), which needs an 

overflow bit for its correct representation when j (i) is power 

of 2. The next case is for the extension wires mentioned 

earlier. The last case is labels associate with the generator’s 

input A[N] and the evaluator’s input B[N]. They are global 

because they need to be used by multiple GC-slots. 

The outputs of the garbling process are encrypted truth 

table entries and permute-and-encrypt bits [1] of all GC-slots 

in a task. Similar to LO and LI, memory of encrypted truth table 

entries and permute-and-encrypt bits in a task is also allocated 

statically. At completion of the garbling process of a task, the 

garbling outputs are copied from GPU to the host memory for 

network transfer to the evaluator. The actual utilization of the 

statically allocated memory space fluctuates with task 

execution. For instance, garbling output of task 0 in the 

reported test case needs less than 50% of the (statically 

allocated) memory space. As such, a compaction process is in 

place to identify and transmit only garbling outputs. 

On the evaluator side, as discussed earlier, the de-garbling 

process runs in the order of slice-by-slice, because a GC-slot 

DP[i][j] can be de-garbled only after GC-slots DP[i-1][j], 

DP[i][j-1] and DP[i-1][j-1] in the previous two slices have 

been de-garbled. After receiving the garbling outputs of a task 

from the generator, the evaluator first calculates the number of 

slices ready for de-garbling. Each GC-slot in the slice is 

mapped to a GPU gate de-garbler thread. Taking the slice 101 

as an example, the evaluator starts to de-garble it after 

receiving garbling outputs of task 1 since task 0 does not 

include all GC-slots in slice 101. Then the 101 GC-slots run 

on the GPU in lock-step, each GPU thread de-garbles its 

corresponding GC-slot gate by gate for the entire GC-slot.  

The evaluator and generator have the same rules for   

classification of wire labels (as LO, LI, or LG), but their 

management policies differ, except that on the evaluator only 

one of the two paired wire labels (on the generator) as de-

garbling result. Also, on the generator, the assessment of 

maximum memory usage is based on one task, but on the 

evaluator, it is based on one slice. When the problem size N is 

small, the former requires much larger memory space than the 

latter. As N exceeds the level of physical parallelism 

supported by the GPU, the latter requires more memory space 

than the former. 
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Fig. 6. The SFE building block (a GC-slot at DP[i][j]) for the SW problem. 

Smith-Waterman(α, β, gap, score):

1: DP[i][0] = 0; (i=[0, α.length])

2: for j from 0 to β.length:

3:    DP[0][j] = 0; (j=[0, β.length])

4: for i from 1 to α.length:

5:     for j from 1 to β.length:

6:         signed tmp = DP[i-1][j-1] + score[α[i]][β[j]];

7:         m = 0;

8:         for o from 1 to i, and then 1 to j:

9:             m = max(m, signed (DP[x][y]-|gap(o)|) ),

                here {x,y}={i-o,j}or{i,j-o}, DP[x][y] >= |gap(o)|

10:       DP[i][j] = max(m, signed tmp); 
 

Fig. 5. The SW algorithm 

Fig. 4 illustrates the pipelined processing flows between 

the garbling and de-garbling processes for the ED problem. 

The generator’s step 1 (the evaluator’s step 3) “house- 

keeping” calculates relative start addresses of LO, LI, LG, and 

garbling output (garbled data as input, and de-garbling result) 

for each GC-slot in a task (slice). This step also sets up flags 

of extension wires and overflow bits for each GC-slot. The 

latency of housekeeping is masked by the pipeline.  

TABLE II.  PIPELINE EXECUTION TIME BREAK DOWN (ED) 

Exec Time Generator Evaluator 

SFE System initialization 6.92s 2.94s 

Housekeeping 6.06s 23.04s 

GPU garbling & de-garbling 

(without GPU-CPU data copy) 

1062.95s 

(0.218 s/task) 

136.55s 

( 0.014 s/slice) 

GPU-CPU data copy, resource mgnt 99.13s 50.21s 

Total computing latency 1520s  345.3s 

C. Experimental results 

The test case is one 5000×5000 8-bit alphabet ED problem, 
which roughly costs 1.88 billion non-free gates. The generator 
runs 4883 tasks, and the evaluator runs 9999 slices. Table II 
lists the break down of execution times for major steps for the 
test case. The total computing latencies (1520s, 345.3s) do not 
include networking transmission latencies, nor the system 
initialization time. There exists a difference between the total 
computing latencies (row 5), and the sum of rows 2, 3, and 4. 
Such a difference is mainly spent on compaction of the 
garbling outputs. And on the evaluator side, the time difference 
is spent on a reverse process of the generator’s compaction 
process, which normalizes lengths of the garbling outputs. 

For the tested case study, the generator usually completes 
its total computing tasks when the evaluator completes 93% of 
de-garbling slices. The overall running time, excluding 
networking delays, to compute the 5000×5000 test case is 1555 
seconds, which translates to a throughput of 1.209*10

6
 gates 

per second. Compared with the computing speed of 96000 
gates per second [5], the acceleration rate is 12.5 fold. 

The memory space saving garbling outputs for one task is 
80MB (host and GPU), and circuit static information for each 
GC-slot costs 286MB host memory, LO and LI in one task is less 
than 20MB. The overall memory usage for computing is 
around 400MB. Because we observe the bursty of garbling 
outputs pushing into the network transferring queue, we set an 
empirical memory upper bound 3.2GB for the network 
transferring queue to prevent memory exhaustion. In sum, the 

total memory usage is around 3.6GB. Next, we will discuss the 
design for the SW problem, especially the part which is 
different from that for the ED problem. 

IV. PRIVACY-PRESERVING SMITH-WATERMAN COMPUTING 

A. Logic of the privacy-preserving Smith-Waterman problem 

The Smith-Waterman (SW) algorithm is widely used in the 
alignment of genome and protein sequences. In Fig. 5, we re-
organize the SW algorithm into the time complexity O(N

2
) 

steps (line 6) and the time complexity O(N
3
) steps (lines 7-10). 

The algorithm inputs include two sequences α and β from the 
generator and the evaluator respectively, a function gap(x) = 
a+b x (where a and b are public) and a 2-dimensional score 
matrix. Following [5], we use the typical function gap(x)=-12-
7x, and BLOSUM62 [35] score matrix. There are 20 types of 
genome enumerated in BLOSUM62, and thus the bit width of 
each symbol in α and β is 5. 

Lines 6-10 in Fig. 5 are translated to the building block (a 
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Fig. 8.Evaluator’s GPU resource mapping policies (SW) for (a) line 6 in Fig. 5 
and (b) line 7-10 in Fig. 5 

GC-slot at DP[i][j]) for the SFE of the SW problem, and the 
design is depicted in Fig. 6. Line 6 is implemented by a 
scoreLookup circuit of α[i] [5] and a signed_Addition circuit. 
Lines 7-10 correspond to a sequence of {signed_Subtraction, 
Max} circuits, denoted by SEQ, and an additional Max circuit 
to compare the result of SEQ and that of the signed_Addition. 
Note that the Max is unsigned. The original length of SEQ is 
i+j, which can be reduced based on the fact that DP[i][j] is 
always greater than 0. Reduction of the SEQ length is 
computed as follows. The maximum possible value of DP[i][j] 
is min(i,j)*SMAX where SMAX is the maximum positive value 
in BLOSUM62, a pair of {signed_Subtraction, Max} circuits is 
discarded if min(i,j)*SMAX <=(12+7o), for arbitrary o in [1,i] 
and then in [1,j]. For DP[1][j] and DP[i][1], the building block 
is simplified as one scoreLookup circuit since DP[i-1][j-1]=0, 
and the outputs of Max circuits are always 0. 

For the signed_Subtraction circuit, because gap(o) is a real 
value calculated by the generator, some gates are independent 
to the evaluator, and thus are treated as the generator’s input 
wires [5]. For all Max circuits in a GC-slot, their output bit 
width should be aligned as follows. Given an array of slots 
DP[i-o][j] (o=1,…, i) and DP[i][j-o] (o=1,…, j) which are 
inputs of the SEQ, we first identify the maximum possible 
values of DP[i-1][j] and DP[i][j-1], and then select the slot with 
higher maximum possible value as DP[x0][y0], in order to set 
the output width of the first Max, m0 as the largest among all 
Max in SEQ. The total number of 1-bit extension wires M is 

equal to the sum of bit width differences of all Max circuits in 
SEQ, plus m0 - n1, where n1 is the bit width of the 
signed_Addition circuit’s output.  

B. Resource mapping policies 

For reasons similar to design of the SFE for the ED 
problem, CSMP and slice-by-slice policies are employed for 
the generator and evaluator, respectively. Fig. 7 (a) illustrates a 

snapshot of task[0] that contains 5120 GC-slots. The generator 
first garbles {scoreLookup, signed_Addition} circuits for each 
GC-slot in task[0]. For each slice in task [0], it calculates the 
number of paired {signed_Subtraction, Max} circuits of all 
GC-slots per slice. Then, each pair of {signed_Subtraction, 
Max} circuits of the current slice is mapped to one GPU gate 
garbler thread. Fig. 7 (b) illustrates the mapping of lines 7-10 
of the 100

th
 slice. 

The evaluator has a slice-by-slice resource mapping policy. 
Fig. 8 (a) illustrates mapping of 100 {scoreLookup, 
signed_Addition (if applicable)} circuits in the 100

th
 slice to 

100 GPU threads. Then, for all signed_Subtraction circuits in 
the same slice, each circuit is mapped to one GPU thread 
because they are independent of each other. Later, in the same 
slice, all Max circuits of one GC-slot are mapped to one GPU 
thread to enforce serial de-garbling of Max circuits. 

Regarding classification of paired wire labels, LSO 
represents the set of paired labels for wires of GC-slots’ 
outputs, LCO the set of paired labels for wires of circuits’ 

outputs within GC-slots, LI the set of paired labels for wires 

within circuits. LI also include labels for extension wires for 
Max in SEQ and evaluator-independent gates in 
signed_Subtraction, since the number of these two types of 
wires in the entire DP matrix is not small. LG includes sets of 
wires labels for the overflow bits of the signed_Addition circuit 
of all GC-slots in the DP matrix, and the evaluator’s input 
β[N]. LCO and LI are pre-assigned at initialization of a new task, 

but LSO and LG at initialization of the SFE system. And LSO is 
treated as global variables during the entire privacy-preserving 
computing because their dependency crosses the DP matrix. 
The static memory allocation for LSO, LCO, LG and LI is similar to 
its counterpart in the ED problem. The only difference is the 
assessment of the maximum memory usage for saving LCO and 

LI for line 6 is per task, and LCO and LI for line 7-10 per slice.  

C. Experimental results 

A 60×60 SW problem is used as the test case, which needs 
to be run as one task by the generator, and as 119 slices by the 
evaluator.  

TABLE III.  EXECUTION TIME BREAK DOWN (SW) 

Exec Time Generator Evaluator 

SFE system initialization 2.6s 4.51s 

Housekeeping 0.0176 0.014s 

GPU garbling & de-garbling(scoreLookup) 0.02s 0.0018s 

GPU garbling & de-garbling(signed_Addition) 0.044s 0.037s 

GPU garbling & de-garbling(signed_Subtract) 0.45s 0.091s 

GPU garbling & de-garbling(Max) 2.7s 8.5s 

Total computing latency 5.6s 8.64s 

Table III shows that the slowest computing path is Max, it is 

mainly because all Max circuits within one GC-slot have to be 

de-garbled sequentially. The time latency from the generator’s 

task 0 to the evaluator’s de-garbling of slice 119 is 9.69 

seconds, and the total computing latency (two initialization 

phases + 9.69, excluding networking cost) is 16.79s. This 

result represents a 24.7x acceleration factor over the 

computing time (415 seconds) for the same 60×60 SW 

problem reported in Huang et al. [5]. For the studied case, it 

took about 40MB to store encrypted truth table entries and 



permute-and-encrypt bits. The statically allocated memory for 

saving all paired wire labels of GC-slots’ and circuits’ outputs 

is less than 4MB. 

V. RELATED WORK 

Fairplay [1] proposed a programming language SFDL to 
describe the semantic of a circuit, and a low-level language 
SHDL to describe logic gates’ inter-connection within one 
circuit. TASTY [2] allowed user to customize homomorphic 
encryption based arithmetic circuits [31] or garbled circuits to 
construct privacy preserving applications. Several circuit 
garbling techniques have been proposed: free-XOR [8], 
“permute-and-encrypt” [1], the m-to-n garbled lookup table 
and the compact circuit design [5], the garbled row reduction 
(GRR) [24] to reduce the network communication time. Jha et 
al. [4] proposed 3 protocols for the ED and the SW problems. 
Their protocol-3 solved a 200×200, 8-bit alphabet ED (60×60 
SW) problem in 658 (1000) seconds. Later, Huang et al. [5] 
proposed a compact circuit design for SFE, which can compute 
a 2000×10000 8-bit alphabet ED problem in 223 minutes, and 
a 60×60 SW problem in 415 seconds. Others had optimized DP 
problems in the malicious model [6, 12]. 

Frederiksen et al. [34] parallelized OT protocol and 
multiple instances of one garbled circuit in the malicious 
model. CUDASW++ [9] is an open source project for plain-
text large scale SW problem on GPU. We adopted the slice-by-
slice mapping policy in CUDASW++ for our slice-by-slice 
mapping policy on the evaluator side, but the garbling 
operations are too complicated to consider adoption or 
modification of CUDASW+ to meet privacy preserving 
requirement. 

VI. CONCLUSION 

This paper presents a parallel computing model for Secure 
Function Evaluation (SFE) on massively parallel GPU 
architecture to solve large scale Edit Distance (ED) and Smith-
Waterman (SW) problems. The experimental results showed 
that we achieve the highest acceleration for both ED and SW 
problems reported in the literature. Although our designs aimed 
for ED and SW problems, the two SFEs contain a set of 
generic arithmetic modules which can be further generalized 
for other types of computing tasks. A natural extension of this 
effort is creation of a tool chain to support automatic circuit 
structural information parsing, memory usage assessment and 
GPU resource mapping.  
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