
Computing Privacy-Preserving Edit Distance and

Smith-Waterman Problems on the GPU Architecture
Track: Cryptographic Technologies, Secure Compututation

Shi Pu

Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77840

shipu@cse.tamu.edu

Jyh-Charn Liu

Department of Computer Science and Engineering

Texas A&M University

College Station, TX 77840

liu@cse.tamu.edu

Abstract—This paper presents privacy-preserving,

parallel computing algorithms on a graphic processing

unit (GPU) architecture to solve the Edit-Distance (ED)

and the Smith-Waterman (SW) problems. The ED and SW

problems are formulated into dynamic programming (DP)

computing problems, which are solved using the Secure

Function Evaluation (SFE) to meet privacy protection

requirements, based on the semi-honest security model.

Major parallelization techniques include mapping of

variables to support collision-free parallel memory access,

scheduling and mapping of gate garblers on GPU devices

to maximize GPU device utilization, and latency

minimization of context switch for computing steps in the

DP matrix. A pipelined GPU-CPU interface is developed

to mask latency of CPU housekeeping components.

The new solutions were tested on a Xeon E5504 at

2GHz plus a GTX-680 GPU (as generator), connecting an

i7-3770K at 3.5GHz plus a GTX-680 GPU (as evaluator)

via local Internet. A 5000×5000 8-bit alphabet ED problem

requires roughly 1.88 billion non-free gates, and the

running time of around 26 minutes (roughly 1.209×10
6

gate/second). A 60×60 SW problem is computed in around

16.79 seconds. Compared to the state of art performance

[5], we achieved the acceleration factor of 12.5× for the ED

problem, and 24.7× for the SW problem.

Keywords—Secure Function Evaluation, dynamic

programming, GPU, acceleration

I. INTRODUCTION

The two-party Secure Function Evaluation (SFE) [13, 14]

based dynamic programming scheme has been proposed for

privacy-preserving matching of genomic data pairs. In SFE,

two players jointly compute an arbitrary logic function f(x,y)

while they keep their multi-bit inputs x and y private at all

time. Yao’s garbled circuits (GC) [13] and the oblivious

transfer (OT) protocol [19] have been widely adopted for SFE

implementation. One player assumes the role of a generator,

who constructs the garbled circuit for f. The other player

assumes the role of evaluator, who evaluates the circuit. To

protect data privacy, each input bit (plain-text version) is

represented as a pair of wire labels (tens of bits), and each

Boolean logic is transformed to a sequence of a garbling

(encryption) step on the generator side, plus a de-garbling

(decryption) step on the evaluator side.

 SFE has been used as the building block for privacy-

preserving applications such as secret auctions [15, 25],

biometric or genomic computation [3, 4, 5], facial recognition

[2, 7, 16, 17] and encryption [2, 5, 6]. To enable broader

adoption of SFE for real world applications, in this paper we

focus on acceleration of the SFE based dynamic programming

(DP) [33]. We presented new parallel algorithms to solve the

privacy-preserving ED and SW problems. In sharp contrast to

existing SFE functions like AES, Hamming distance, RSA, or

Dot product, DP needs complicated computations (addition,

min/max, lookup tables, subtract etc.), and its computing steps

exhibit strong interdependency.

In the state of art solutions [4, 5], it took 3.5 hours and 7

minutes respectively to solve a privacy-preserving ED

problem (2000×10000 8-bit alphabet), and a 60×60 SW

problem. In this paper, we achieve speedups of 12.5x (ED

problem) and 24.7x (SW problem) through optimization of

GPU resource management, efficient DP computing process

mapping, and tight integration of GPU and CPU interactions.

Details of our design will be discussed later. Succinctly

put, our contribution includes: (1) a high-throughput gate

garbler/de-garbler fully loading GTX-680; (2) for the ED

problem and the SW problem respectively, the

generator’s/evaluator’s GPU resource mapping policies that

maximally utilize the gate garbler/de-garbler; (3) a pipelined

CPU-GPU computing architecture to support end-to-end

computing service. (4) We adopt several known optimizations:

free-XOR [8], oblivious transfer extension [18], permute-and-

encrypt [1], efficient lookup-table design and compact circuits

[5], and solve confliction between the free-XOR technique

and our wire label pre-assigning scheme. Our GPU-based

random wire label generator based on the mathematical model

used in MIRACL [26].

... ...

...

..
.

..
.

..
.

...

...

..
...
.

..
.

..
.

..
.

S i-1 S i+
1 S i+

1
S i

S i-1

S i

GC slots

DP matrix

(a) (b)

dependency

Fig. 1. Parallel Computing Models for (a) the ED problem, and (b) the SW

problem.

chaff

thread access Ai

banks 0 1 7 8 31

w[0~1] w[2~3] ...

memory tiers

in each bank
GPU threads in a warp (32 threads)

......
A0 A1 A2

A0

A4

A8

A1

24

A3

w[0~1] w[0~1]

w[0~1] ... w[0~1]

w[14~15] chaff w[0~1]

A5

...

...

...

... w[0~1]

A9 A11

A7

... ...

A2

...

... w[0~1]... ...

... w[0~1]... ...

A6

A10

chaff

Fig. 2. Conflict free parallel access to share memory banks.

A. Parallel Computing Model for GC

We assume that a GC is constructed from a number of 2-bit
input, 1-bit output gate (G), c=G(a,b), where the one bit “wire”

a (b) is provided by generator (evaluator). To compute G
jointly, the generator produces wire labels {ka

0
,ka

1
},{kb

0
,kb

1
},

{kc
0
,kc

1
} for each possible value of a, b, and c. Through the OT

protocol [19], the generator sends encrypted {kb
y
 kb

y’
} to the

evaluator, but the evaluator can only decrypt kb
y
that matches y,

the actual value of b. Based on a random oracle model
proposed in [18, 20], a virtually unlimited number of OT
computations can be encoded into 80 1-out-of-2 OT
transactions [18, 20], where 80 is a security parameter. The 80
1-out-of-2 OT transactions can be computed in 0.6s [5]. That
is, the primary computing bottleneck is garbling/de-garbling
the vast number of circuits, not the OT, for the SFE.

The computing logic of G is a four-entry truth table T{T00,
T01, T10, T11}, where each entry of value 0(1) is associate with
the output wire label kc

0
(kc

1
). The garbled truth table is a

random permutation of the four cipher-texts: {Eka
0
(Ekb

0
(kc

T00
)),

Eka
0
(Ekb

1
(kc

T01
)), Eka

1
(Ekb

0
(kc

T10
)), Eka

1
(Ekb

1
(kc

T11
))}, here E

denotes the encryptor (also known as garbler). In the end, the
evaluator learns the wire label kc

Txy
 that represents the real

value of G given inputs a=x and b=y, while he does not know x.

Using G as building blocks, we use SHDL in Fairplay [1] to
construct GCs that can solve the privacy-preserving ED
problem and SW problem.

Our parallelization strategy is loosely divided into the GC
level and DP level. In the GC level, the vast number of gates
are concurrently garbled by the generator and de-garbled by the
evaluator. On top of the GC level, the DP level computes the
DP matrix of the ED or SW problem. The GC level is designed
to meet the ultra-short security in TASTY [2], and the DP
level aims to maximize processor utilization while enforcing
the interdependency relationship between computing steps.

The DP level design aims to maximize resource utilization.
As shown in Fig. 1, the N×N DP matrix is processed into 2N-1
slices, W= {S1, S2, …, S2N-1}. Fig. 1 shows that GC-slots
(entries in the DP matrix) on the same slice are independent,
and thus can be concurrently garbled (de-garbled) on the
generator (evaluator) side. The degree of parallelism increases
from S1, S2 until SN, and then it decreases from SN to S2N-1. For
garbling GC-slots on Si, wire labels of GC-slots’ outputs on
slices Si-2 and Si-1 are re-used, thus multiple slices can be
garbled simultaneously once wire labels of all GC-slots’
outputs are pre-assigned. This observation is implemented as a

cross-slice mapping policy (CSMP). However, for de-garbling
GC-slots on Si, the pre-requisite is the de-garbled outputs on
slices Si-2 and Si-1. So, the de-garbling process can only de-
garble one slice at a time. As a result, garbling the N×N matrix
is transformed to a 1-D vector which is mapped to GPU units.
For de-garbling, Si is mapped to GPU units after Si-1 is
completed.

The rest of the paper is organized as follows. Section 2
discusses the GPU (de-)garblers. Sections 3 & 4 present
designs in the DP level for the ED problem and SW problem
respectively. The SFE system is presented in section 3. Section
5 gives the related work. Section 6 concludes the paper.

II. GPU-BASED GATE (DE-)GARBLER

Our gate garbler is implemented on the CUDA (Compute

Unified Device Architecture). GTX-680 is a GK104

generation device [10, 34], which contains 8 streaming

multiprocessors (SMX). Although each SMX supports parallel

processing of 32 threads, called a warp, per clock, it usually

simultaneously runs multiple warps of threads for better

utilization of its pipeline. Each SMX has 64K 32-bit registers

and 64KB on-chip shared memory/L1 cache, which is

organized into 32 64-bit banks. 8 SMXs share 2GB 256-bit

wide slow global memory. A program on GPU is called a

kernel function. Its input setup, parallelism configuration,

launching and output read-back are controlled by a host thread

on CPU. At runtime, following the Single Instruction Multi

Threads (SIMT) architecture, each GPU thread runs one

instance of the kernel function.

For garbling, an arbitrary entry Txy in the truth table of a
gate G, is garbled (encrypted) as Encx,y(kc

z
) = H(ka

x
||kb

y
) XOR

kc
z
, where H is the garbling function, ka

x
, kb

y
 and kc

z
 are wire

labels, “||” is concatenation. Like Huang et al. [5], we adopt 80-
bit as the length of wire labels so that the ultra-short security in
TASTY [2] is achieved. Candidates of H are SHA-1 [5], AES-
256 [6] supported by AES-NI, SHA-256, or other
cryptographic hash functions. Among these choices, we
adopted SHA-256 as H because it has similar computing cost
as SHA-1 [29, 30], but without its vulnerability [27]. AES-256
is not chosen because it is 3 times slower than SHA-1 on GPU
[9]. So that, Encx,y (kc

z
) = SHA-256(ka

x
 || kb

y
 || i) XOR kc

z
,

where i is a 32-bit unique gate index in a garbled circuit. This
SHA-256’s input is a 192-bit block, and output a 256-bit

Min_of_2

Min_of_

2_mux

Char_EQ

Add_One

DP[i-1][j] DP[i][j-1]

width-alignment

extension

wire A[i] B[j]

8 bits

X

t

DP[i-1][j-1]

1-bit

MUX

extension

wire

Y 8 bits

1 bit

1 bit

1 bit

m1 bits

m2 m3

m4

m4
m4

DP[i][j]

m4

(i==1 or

j==1)

Legend

LO LG LI

m4

=0
=0

void

m1 = m4-1

m1 = m4

width-

alignment

overflow 1 bit circuit

LO or LO+LG

Fig. 3. The SFE building block (a GC-slot at DP[i][j]) for the ED problem.

digest. The de-garbling (decryption) is Dec(Encx,y (kc
z
)) =

SHA-256(ka
e
 || kb

e
 || i) XOR Encx,y (kc

z
), where ka

e
, kb

e
 are wire

labels obtained from OT or previous de-garbling.

We adopted the code base in PolarSSL [32] for the SHA-
256 implementation, with the following adjustments. Here, one
round of SHA-256 is divided into four steps, each of which
produces 16 (32-bit) words W[0~15] based on the elements in
W computed in the current and previous steps. At end of each
step, W[0~15] are used to update the 8 32-bit digest. A total of
40 (32-bit) words of space are needed for each round. That is,
16 (32-bit) registers to store W[0~15] in the current step, 8 (32-
bit) registers to store the digest, and one block of 16×32-bit
shared memory is assigned to each thread to store W[0~15]
produced in the past step, the storage format of such a shared
memory block per thread is illustrated in Fig. 2. Here, each
block resides on eight shared memory banks.

GPU threads in a same warp will be stalled when some of

them attempt to access different tiers (a low level GPU

architecture) on the same memory bank. To eliminate the

often hidden shared memory access conflicts, we fill in a strip

of 64-bit chaff spacers, one in the front of every four
th

-thread’s

W[0~15]. This way, parallel memory accesses {Ai, Ai+4,

Ai+8,…Ai+28} issued by threads i, i+4, i+8, …i+28 (i=0,1,2, or

3) to read W[0~15] of the same index in its own W array will

access distinct memory banks with no conflict. Fig. 2

illustrates the case i=0 and {A0, A4, A8… A28} read W[0].

Each SHA-256 gate garbler thread uses 57 registers,

where GK104 allows up to 63 registers per thread. Each SMX

has 640 threads (20 warps), its 64KB on-chip memory is

organized as 48KB of shared memory, plus 16KB of L1

cache, and 41.25KB of the 48KB shared memory is occupied

by W[0~15] with chaff spacers. The degree of parallelism is

5120=8 SMX × 640 threads. The latency is 304ms for a GPU

thread to read in a block of 192 bits 10000 times. The

throughput is roughly 30.27Gbps, taking the GPU-CPU data

exchange time into account, which is similar to the result of

SHA1 on GTX-580 [28]. Intel reported their SHA256

achieved 11.5 cycles/byte (equivalent to 2.47Gbps) on a single

core of Intel i7 2600 in 2012 [36]. Next, we discuss our

designs in the DP level.

III. PRIVACY-PRESERVING EDIT DISTANCE COMPUTING

A. SFE Building Block for Edit Distance

Given two input strings A[N] and B[N] from the two

players respectively, solving the ED problem is essentially

processing of an (N+1)×(N+1) DP matrix, in which a GC-slot

DP[i][j] (i,j [0,N]) is computed as: DP[i][0] = i, DP[0][j] = j;

and if i,j [1,N], DP[i][j] = (Y > X) ? (X+1) : (Y+t), where t =

(A[i] ≠ B[j]), X=min(DP[i-1][j] , DP[i][j-1]), and Y=DP[i-1][j-

1] [5]. Referring to Fig. 3, one GC-slot includes two Min_of_2

circuits (Min_of_2 and Min_of_2_mux), one Char_EQ circuit

(compute t), and one Add_One circuit.

The maximum value of an arbitrary GC-slot DP[i][j] is

max(i, j). To minimize the gate count, it is highly desirable to

implement GC-slots based on the actual number of bits

required for inputs in the multi-version compact circuits [5].

We adopt the multi-version Min_of_2, Min_of_2_mux and

Add_One circuits in [5], so that one of the multiple versions is

activated for a GC-slot according to its inputs’ bit widths. The

compact circuit [5] did not explicitly discuss how to handle

variable bit widths. To solve this problem, we propose a width

alignment scheme based on two 1-bit extension wires (see Fig.

3) for {DP[i-1][j], DP[i][j-1]}, and {X, Y}. The maximum

possible values of inputs and intermediate results in a GC slot

are listed in Table I. For {DP[i-1][j], DP[i][j-1]}, m3=m2 –

1(m2=m3 – 1) and the extension wire is activated for DP[i][j-1]

(DP[i-1][j]) when i<j (i>j), and j (i) equals power of 2.

Similarly, for {X, Y}, m1= m4 – 1 and the extension wire is

activated for Y when i==j, and i is power of 2.

TABLE I. MAXIMUM POSSIBLE VALUES OF INPUTS AND INTERMEDIATE

RESULTS IN A GC-SLOT DP[i][j]

 DP[i][j-

1](width=m3)

DP[i-

1][j](width=m2)

X(width=m4) Y(width=m1)

i<j max(i,j-1)=j-1 max(i-1,j)=j min(i-1,j)=j-
1

max(i-1,j-
1)=j-1

i==j max(i,j-1)=i max(i-1,j)=j min(i,j) = i max(i-1,j-

1)=i-1

i>j max(i,j-1)=i max(i-1,j)=i-1 min(i,i-1) =
i-1

max(i-1,j-
1)=i-1

B. Resource mapping policies and house keeping

On the generator side, as discussed earlier, under CSMP,

GC-slots perform garbling in parallel when their paired wire

labels are pre-assigned. CSMP partitions the DP matrix into

multiple tasks, each of which aims to fill up 5120 GPU gate

garbler threads to maximize the speedup factor. For example,

task[0] contains 5120 GC-slots, which is from slice 1, 2, 3, …

up to a fraction of slice 101. When GPU runs the 5120 GC

slots in lock-step, each GPU thread garbles its corresponding

GC-slot gate by gate for the entire GC-slot.

Three major cases need to be considered for pre-

assignments of paired wire labels. Referring to Fig. 3, LO
represents the set of paired labels for wires of a GC-slot’s

outputs. LI represents the set of paired labels for wires internal

SFE system init
OT

Runtime phase

scheduler

task 0

task 1

LO and LI pre-assignment2

1
housekeeping

2

GPU

controller
communicatior

Lo overwriting
31

2

4

3

4

5 send garbling outputs

5

5

communicatior scheduler+

GPU

controller

1

receive

encrypted data

count no. of slices

ready for de-garbling2

3 house keeping

3

de-garbling
4

1

GPU

GPU

slice 1

slice 2

Generator Evaluator

3

4

slice ...

GPU

GPU

garbling

Fig. 4. The pipelined garbling & de-garbling process (ED)

to a GC-slot and not connected to other GC-slots. LG

represents miscellaneous types of paired labels, and they are

treated as a “global” set for the SFE to simplify memory

management. Classification of the three groups of wire labels

is not only important to efficient use of the GPU memory

space, but also critical to synchronous accesses of memories

by parallel threads. LO and LI are pre-assigned at initialization

of a new task, but LG at initialization of the whole SFE system.

LO and LI are overwritten if they are associated with an XOR

gate’s output [8] by a calculation result based on the XOR

gate’s inputs’ wire labels. Even though some LO and LI need to

be overwritten during execution, they are still pre-assigned to

simplify the wire label generation function at negligible costs.

Overwriting of labels in LO occurs before garbling of a

task. Generally speaking, wire labels in LI are overwritten

during garbling because no other GC-slots depend to them.

However, some wire labels in LI needs to be overwritten

before overwriting of LO if the value of the latter is dependent

on that of the former, as shown in the following example.

Here, the output of an XOR gate G1 is the input of another

XOR gate G2, and the output of G2 is also the GC-slot’s output.

Labels associated with G1’s (G2’s) output is in LI(LO).
Overwriting of labels for G1 needs to be done before

overwriting of labels for G2, before garbling of a task.

LO and LI for GC-slots in a task are sequentially stored GC-

slot by GC-slot. At initialization of the SFE system, a parser

parses different versions of garbled circuits and calculates the

version no. of circuits for each GC-slot in the DP matrix. After

the maximum memory size for storing labels in LO and LI in a

task is calculated, GPU memory space is statically allocated

for a task, which is released until completion of the SFE

computation. Static memory allocation eliminates costly

cuda_malloc() and cuda_free() operations during computing.

A dedicated memory block is reserved at the SFE initialization

to store a copy of LO for GC-slots in the latest three slices of

the current task, so that they can be re-used in next task.

Next, we discuss cases related to LG. For GC slots that

compute DP[1][j], or DP[i][1], i.e., the second row and second

column of the DP matrix, their Min_of_2_mux circuit’s input

DP[i-1][j-1] is a real value, rather than wire labels from other

GC slots. As such, some gates in their Min_of_2_mux circuit

need not perform garbling because they only accept inputs

from the generator. We treat these gates the same as the

generator’s inputs and directly assign paired wire labels for

these gates’ outputs. For the Add_one circuit, the maximum

possible value of its input is j-1 (i-1) if i<j (i>j). The

maximum possible value of its output is j (i), which needs an

overflow bit for its correct representation when j (i) is power

of 2. The next case is for the extension wires mentioned

earlier. The last case is labels associate with the generator’s

input A[N] and the evaluator’s input B[N]. They are global

because they need to be used by multiple GC-slots.

The outputs of the garbling process are encrypted truth

table entries and permute-and-encrypt bits [1] of all GC-slots

in a task. Similar to LO and LI, memory of encrypted truth table

entries and permute-and-encrypt bits in a task is also allocated

statically. At completion of the garbling process of a task, the

garbling outputs are copied from GPU to the host memory for

network transfer to the evaluator. The actual utilization of the

statically allocated memory space fluctuates with task

execution. For instance, garbling output of task 0 in the

reported test case needs less than 50% of the (statically

allocated) memory space. As such, a compaction process is in

place to identify and transmit only garbling outputs.

On the evaluator side, as discussed earlier, the de-garbling

process runs in the order of slice-by-slice, because a GC-slot

DP[i][j] can be de-garbled only after GC-slots DP[i-1][j],

DP[i][j-1] and DP[i-1][j-1] in the previous two slices have

been de-garbled. After receiving the garbling outputs of a task

from the generator, the evaluator first calculates the number of

slices ready for de-garbling. Each GC-slot in the slice is

mapped to a GPU gate de-garbler thread. Taking the slice 101

as an example, the evaluator starts to de-garble it after

receiving garbling outputs of task 1 since task 0 does not

include all GC-slots in slice 101. Then the 101 GC-slots run

on the GPU in lock-step, each GPU thread de-garbles its

corresponding GC-slot gate by gate for the entire GC-slot.

The evaluator and generator have the same rules for

classification of wire labels (as LO, LI, or LG), but their

management policies differ, except that on the evaluator only

one of the two paired wire labels (on the generator) as de-

garbling result. Also, on the generator, the assessment of

maximum memory usage is based on one task, but on the

evaluator, it is based on one slice. When the problem size N is

small, the former requires much larger memory space than the

latter. As N exceeds the level of physical parallelism

supported by the GPU, the latter requires more memory space

than the former.

0 1 2 3 ... 100 101 ...

1

2

3
...

i

j

0 1

0

1

2

3

100

...

100
...

...

2 3 ... 100 101 ...

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

Score

Lookup

max

sub

thread

0

0

sub

max

...

thread

0

Task[0]: slice 1~101

thread

1

slide 100

...

...

(a)

(b)

thread

5119

DP[99][2]

Add

Score

Lookup

DP[1][1] DP[2][1]

DP[98][3]

Score

Lookup

DP[32][70]

max

sub

0

...

max

sub

0

...

...

DP[2][99]...

...

Fig. 7.Generator’s GPU resource mapping policies (SW) for (a) line 6 in Fig.

5 and (b) lines 7-10 in Fig. 5

SubSub

signed_Add ScoreLookup

of α[i] [5]

β[j]

sign

DP[i-1][j-1]
extension

wire

5 bits
1 bit

A sequence SEQ

DP[i][j]Legend

LSO LG LI

circuit

LCO or LCO+LG

4 bit

tmp

1 bit

sign

DP[x0][y0] DP[x1][y1] ...

gap(o0) gap(o1)

max

0

1 bit

sign

1 bit

sign

max

width-

alignment

Sub

max

...
max

m1

M

m0

m0

m1

m0

score

n0

n1

width-

alignment

m0

M=(m0-m1)+(m0-m2)…+(m0-n1)

LCO

...

Fig. 6. The SFE building block (a GC-slot at DP[i][j]) for the SW problem.

Smith-Waterman(α, β, gap, score):

1: DP[i][0] = 0; (i=[0, α.length])

2: for j from 0 to β.length:

3: DP[0][j] = 0; (j=[0, β.length])

4: for i from 1 to α.length:

5: for j from 1 to β.length:

6: signed tmp = DP[i-1][j-1] + score[α[i]][β[j]];

7: m = 0;

8: for o from 1 to i, and then 1 to j:

9: m = max(m, signed (DP[x][y]-|gap(o)|)),

 here {x,y}={i-o,j}or{i,j-o}, DP[x][y] >= |gap(o)|

10: DP[i][j] = max(m, signed tmp);

Fig. 5. The SW algorithm

Fig. 4 illustrates the pipelined processing flows between

the garbling and de-garbling processes for the ED problem.

The generator’s step 1 (the evaluator’s step 3) “house-

keeping” calculates relative start addresses of LO, LI, LG, and

garbling output (garbled data as input, and de-garbling result)

for each GC-slot in a task (slice). This step also sets up flags

of extension wires and overflow bits for each GC-slot. The

latency of housekeeping is masked by the pipeline.

TABLE II. PIPELINE EXECUTION TIME BREAK DOWN (ED)

Exec Time Generator Evaluator

SFE System initialization 6.92s 2.94s

Housekeeping 6.06s 23.04s

GPU garbling & de-garbling

(without GPU-CPU data copy)

1062.95s

(0.218 s/task)

136.55s

(0.014 s/slice)

GPU-CPU data copy, resource mgnt 99.13s 50.21s

Total computing latency 1520s 345.3s

C. Experimental results

The test case is one 5000×5000 8-bit alphabet ED problem,
which roughly costs 1.88 billion non-free gates. The generator
runs 4883 tasks, and the evaluator runs 9999 slices. Table II
lists the break down of execution times for major steps for the
test case. The total computing latencies (1520s, 345.3s) do not
include networking transmission latencies, nor the system
initialization time. There exists a difference between the total
computing latencies (row 5), and the sum of rows 2, 3, and 4.
Such a difference is mainly spent on compaction of the
garbling outputs. And on the evaluator side, the time difference
is spent on a reverse process of the generator’s compaction
process, which normalizes lengths of the garbling outputs.

For the tested case study, the generator usually completes
its total computing tasks when the evaluator completes 93% of
de-garbling slices. The overall running time, excluding
networking delays, to compute the 5000×5000 test case is 1555
seconds, which translates to a throughput of 1.209*10

6
 gates

per second. Compared with the computing speed of 96000
gates per second [5], the acceleration rate is 12.5 fold.

The memory space saving garbling outputs for one task is
80MB (host and GPU), and circuit static information for each
GC-slot costs 286MB host memory, LO and LI in one task is less
than 20MB. The overall memory usage for computing is
around 400MB. Because we observe the bursty of garbling
outputs pushing into the network transferring queue, we set an
empirical memory upper bound 3.2GB for the network
transferring queue to prevent memory exhaustion. In sum, the

total memory usage is around 3.6GB. Next, we will discuss the
design for the SW problem, especially the part which is
different from that for the ED problem.

IV. PRIVACY-PRESERVING SMITH-WATERMAN COMPUTING

A. Logic of the privacy-preserving Smith-Waterman problem

The Smith-Waterman (SW) algorithm is widely used in the
alignment of genome and protein sequences. In Fig. 5, we re-
organize the SW algorithm into the time complexity O(N

2
)

steps (line 6) and the time complexity O(N
3
) steps (lines 7-10).

The algorithm inputs include two sequences α and β from the
generator and the evaluator respectively, a function gap(x) =
a+b x (where a and b are public) and a 2-dimensional score
matrix. Following [5], we use the typical function gap(x)=-12-
7x, and BLOSUM62 [35] score matrix. There are 20 types of
genome enumerated in BLOSUM62, and thus the bit width of
each symbol in α and β is 5.

Lines 6-10 in Fig. 5 are translated to the building block (a

(a)

(b)

max

sub

0

max

...

sub

... max

0

max

sub

...

thread

97

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

slice 100

Add

Score

Lookup

thread

0

0 1 2 3 ... 100

1

2

3
...

i

j

0 1

0

1

2

3

100
...

100

2 3 ... 100

thread

0

...

...

 slice 100:

thread

1

...

slice 100:

slice 100:

...
thread

0

DP[100][1] DP[99][2]

Score

Lookup

DP[1][100]

Score

Lookup

thread

99
...

sub

DP[99][2] DP[50][51]

sub
...

...

...

DP[2][99]

......

...

sub

...

DP[99][2]DP[2][99]

Fig. 8.Evaluator’s GPU resource mapping policies (SW) for (a) line 6 in Fig. 5
and (b) line 7-10 in Fig. 5

GC-slot at DP[i][j]) for the SFE of the SW problem, and the
design is depicted in Fig. 6. Line 6 is implemented by a
scoreLookup circuit of α[i] [5] and a signed_Addition circuit.
Lines 7-10 correspond to a sequence of {signed_Subtraction,
Max} circuits, denoted by SEQ, and an additional Max circuit
to compare the result of SEQ and that of the signed_Addition.
Note that the Max is unsigned. The original length of SEQ is
i+j, which can be reduced based on the fact that DP[i][j] is
always greater than 0. Reduction of the SEQ length is
computed as follows. The maximum possible value of DP[i][j]
is min(i,j)*SMAX where SMAX is the maximum positive value
in BLOSUM62, a pair of {signed_Subtraction, Max} circuits is
discarded if min(i,j)*SMAX <=(12+7o), for arbitrary o in [1,i]
and then in [1,j]. For DP[1][j] and DP[i][1], the building block
is simplified as one scoreLookup circuit since DP[i-1][j-1]=0,
and the outputs of Max circuits are always 0.

For the signed_Subtraction circuit, because gap(o) is a real
value calculated by the generator, some gates are independent
to the evaluator, and thus are treated as the generator’s input
wires [5]. For all Max circuits in a GC-slot, their output bit
width should be aligned as follows. Given an array of slots
DP[i-o][j] (o=1,…, i) and DP[i][j-o] (o=1,…, j) which are
inputs of the SEQ, we first identify the maximum possible
values of DP[i-1][j] and DP[i][j-1], and then select the slot with
higher maximum possible value as DP[x0][y0], in order to set
the output width of the first Max, m0 as the largest among all
Max in SEQ. The total number of 1-bit extension wires M is

equal to the sum of bit width differences of all Max circuits in
SEQ, plus m0 - n1, where n1 is the bit width of the
signed_Addition circuit’s output.

B. Resource mapping policies

For reasons similar to design of the SFE for the ED
problem, CSMP and slice-by-slice policies are employed for
the generator and evaluator, respectively. Fig. 7 (a) illustrates a

snapshot of task[0] that contains 5120 GC-slots. The generator
first garbles {scoreLookup, signed_Addition} circuits for each
GC-slot in task[0]. For each slice in task [0], it calculates the
number of paired {signed_Subtraction, Max} circuits of all
GC-slots per slice. Then, each pair of {signed_Subtraction,
Max} circuits of the current slice is mapped to one GPU gate
garbler thread. Fig. 7 (b) illustrates the mapping of lines 7-10
of the 100

th
 slice.

The evaluator has a slice-by-slice resource mapping policy.
Fig. 8 (a) illustrates mapping of 100 {scoreLookup,
signed_Addition (if applicable)} circuits in the 100

th
 slice to

100 GPU threads. Then, for all signed_Subtraction circuits in
the same slice, each circuit is mapped to one GPU thread
because they are independent of each other. Later, in the same
slice, all Max circuits of one GC-slot are mapped to one GPU
thread to enforce serial de-garbling of Max circuits.

Regarding classification of paired wire labels, LSO
represents the set of paired labels for wires of GC-slots’
outputs, LCO the set of paired labels for wires of circuits’

outputs within GC-slots, LI the set of paired labels for wires

within circuits. LI also include labels for extension wires for
Max in SEQ and evaluator-independent gates in
signed_Subtraction, since the number of these two types of
wires in the entire DP matrix is not small. LG includes sets of
wires labels for the overflow bits of the signed_Addition circuit
of all GC-slots in the DP matrix, and the evaluator’s input
β[N]. LCO and LI are pre-assigned at initialization of a new task,

but LSO and LG at initialization of the SFE system. And LSO is
treated as global variables during the entire privacy-preserving
computing because their dependency crosses the DP matrix.
The static memory allocation for LSO, LCO, LG and LI is similar to
its counterpart in the ED problem. The only difference is the
assessment of the maximum memory usage for saving LCO and

LI for line 6 is per task, and LCO and LI for line 7-10 per slice.

C. Experimental results

A 60×60 SW problem is used as the test case, which needs
to be run as one task by the generator, and as 119 slices by the
evaluator.

TABLE III. EXECUTION TIME BREAK DOWN (SW)

Exec Time Generator Evaluator

SFE system initialization 2.6s 4.51s

Housekeeping 0.0176 0.014s

GPU garbling & de-garbling(scoreLookup) 0.02s 0.0018s

GPU garbling & de-garbling(signed_Addition) 0.044s 0.037s

GPU garbling & de-garbling(signed_Subtract) 0.45s 0.091s

GPU garbling & de-garbling(Max) 2.7s 8.5s

Total computing latency 5.6s 8.64s

Table III shows that the slowest computing path is Max, it is

mainly because all Max circuits within one GC-slot have to be

de-garbled sequentially. The time latency from the generator’s

task 0 to the evaluator’s de-garbling of slice 119 is 9.69

seconds, and the total computing latency (two initialization

phases + 9.69, excluding networking cost) is 16.79s. This

result represents a 24.7x acceleration factor over the

computing time (415 seconds) for the same 60×60 SW

problem reported in Huang et al. [5]. For the studied case, it

took about 40MB to store encrypted truth table entries and

permute-and-encrypt bits. The statically allocated memory for

saving all paired wire labels of GC-slots’ and circuits’ outputs

is less than 4MB.

V. RELATED WORK

Fairplay [1] proposed a programming language SFDL to
describe the semantic of a circuit, and a low-level language
SHDL to describe logic gates’ inter-connection within one
circuit. TASTY [2] allowed user to customize homomorphic
encryption based arithmetic circuits [31] or garbled circuits to
construct privacy preserving applications. Several circuit
garbling techniques have been proposed: free-XOR [8],
“permute-and-encrypt” [1], the m-to-n garbled lookup table
and the compact circuit design [5], the garbled row reduction
(GRR) [24] to reduce the network communication time. Jha et
al. [4] proposed 3 protocols for the ED and the SW problems.
Their protocol-3 solved a 200×200, 8-bit alphabet ED (60×60
SW) problem in 658 (1000) seconds. Later, Huang et al. [5]
proposed a compact circuit design for SFE, which can compute
a 2000×10000 8-bit alphabet ED problem in 223 minutes, and
a 60×60 SW problem in 415 seconds. Others had optimized DP
problems in the malicious model [6, 12].

Frederiksen et al. [34] parallelized OT protocol and
multiple instances of one garbled circuit in the malicious
model. CUDASW++ [9] is an open source project for plain-
text large scale SW problem on GPU. We adopted the slice-by-
slice mapping policy in CUDASW++ for our slice-by-slice
mapping policy on the evaluator side, but the garbling
operations are too complicated to consider adoption or
modification of CUDASW+ to meet privacy preserving
requirement.

VI. CONCLUSION

This paper presents a parallel computing model for Secure
Function Evaluation (SFE) on massively parallel GPU
architecture to solve large scale Edit Distance (ED) and Smith-
Waterman (SW) problems. The experimental results showed
that we achieve the highest acceleration for both ED and SW
problems reported in the literature. Although our designs aimed
for ED and SW problems, the two SFEs contain a set of
generic arithmetic modules which can be further generalized
for other types of computing tasks. A natural extension of this
effort is creation of a tool chain to support automatic circuit
structural information parsing, memory usage assessment and
GPU resource mapping.

REFERENCES

[1] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. “Fairplay – a Secure Two-
party Computation System”. In 13th USENIX Security Symposium, 2004.

[2] W. Henecka, et al. “TASTY: Tool for Automating Secure Two-Party
Computations”. In CCS 2010.

[3] Y. Huang, L. Malka, D. Evans, and J. Katz. “Efficient Privacy-
preserving Biometric Identification”. In NDSS 2011.

[4] S. Jha, L. Kruger, and V. Shmatikov. “Towards Practical Privacy for
Genomic Computation”. In S&P 2008.

[5] Y. Huang, et. al “Faster Secure Two-Party Computation Using Garbled
Circuits”. In 20th USENIX Security Symposium, 2011.

[6] B. Kreuter, A. Shelat, C.h. Shen, “Billion-Gate Secure Computation
with Malicious Adversaries”, In 21th USENIX Security Symposium,2012.

[7] Z. Erkin, M. Franz. J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T.
Toft. “Privacy-preserving Face Recognition”. In PET 2009.

[8] V. Kolesnikov and T. Schneider. “Improved Garbled Circuit: Free XOR
Gates and Applications”. In ICALP 2008.

[9] Y. Liu, et al. “CUDASW+2.0: enhanced Smith-Waterman protein
database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions”. BMC Research Notes 3(1) 93, 2010.

[10] GTX-680 white papers.
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf.

[11] S. Bromlings, S. MacDonald, J. Anvik, J. Schaeffer, D. Szafron, K. Tan.
“Pattern-based Parallel Programming”. In ICPP 2002.

[12] Y. Huang, J. Katz, D. Evans. “Quid Pro Quo-tocols: Strengthening
Semi-Honest Protocols with Dual Execution”, In S&P 2012.

[13] A. Yao. “How to Generate and Exchange Secrets”. In 27th Annual
Symposium on Foundations of Computer Science (SFCS), 1986.

[14] Y. Lindell and B. Pinkas. “A Proof of Security of Yao’s Protocol for
Two-Party Computation”. J. Cryptol., Vol. 22(2): pp. 161-188, 2009.

[15] M. Naor, B. Pinkas, and R. Sumner, “Privacy-preserving Auctions and
Mechanism Design”,In ACM Conference on Electronic Commerce,1999.

[16] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. “Efficient Privacy-
preserving Face Recognition”. In ICISC 2009.

[17] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. “SCiFI: a System
for Secure Face Identification”. In S&P 2010.

[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending Oblivious
Transfers Efficiently”. In Advances in Cryptology – Crytpo, 2003.

[19] M.O. Rabin. “How to Exchange Secrets with Oblivious Transfer”.
Technical Report 81, Harvard University, 1981.

[20] M. Naor and B. Pinkas. “Efficient Oblivious Transfer Protocols”. In
SODA 2001.

[21] V. Kolesnikov and R. Kumaresan. “Improved Secure Two-Party
Computation via Information-Theoretic Garbled Circuits”. In 8th
Conference on Security and Cryptography for Networks, 2012.

[22] D. Harnik, Y. Ishai, E. Kushilevitz, and J.B. Nielsen. “OT-combiners via
Secure Computation”. In 5th Theory of Cryptography Conference, 2008.

[23] C. Hazay and Y. Lindell. “Efficient Secure Two-party Computation:
Techniques and Constructions”. Springer, 2010.

[24] B. Pinkas, T. Schneider, N. Smart and S. Williams. “Secure Two-party
Computation is Practical”. In Advances in Cryptology –Asiacrypt, 2009.

[25] C. Cachin. “Efficient Private Bidding and Auctions with Oblivious
Third Party”. In CCS 1999.

[26] Multi-precision Integer and Rational Arithmetic C/C++ Library.
http://www.shamus.ie/index.php?page=Downloads

[27] Schneier on Security: “Cryptanalysis of SHA-1”,
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

[28] K. Jang, S.Han, S. Han, S.Moon, K.S. Park. “SSLShader: Cheap SSL
Acceleration with Commodity Processors”. In NSDI 2011.

[29] Performance Comparison: Security Design Choices.
http://msdn.microsoft.com/en-us/library/ms978415.aspx

[30] Crypto++5.6.0 benchmarks on Intel Pentium 4 CPU.
http://www.cryptopp.com/benchmarks-p4.html

[31] C. Gentry. “a Fully Homomorphic Encryption Scheme”. Ph.D.
dissertation. http://cs.au.dk/~stm/local-cache/gentry-thesis.pdf.

[32] SHA-256 in PolarSSL. https://polarssl.org/sha-256-source-code

[33] K. Asanovic, et al. “The Landscape of Parallel Computing Research: A
View from Berkeley”, tech report UCB/EECS-2006-183, 2006.

[34] T.K. Frederiksen, J.B. Nielsen. “Fast and Malicious Secure Two-Party
Computation Using the GPU”. http://eprint.iacr.org/2013/046.pdf.

[35] S. Henikoff and J.G. Henikoff. “Amino Acid Substitution Matrices from
Protein Blocks”. In the National Academy of Sciences of the United
States of America, 1992.

[36] J. Guilford, K. Yap, V. Gopal. “Fast SHA-256 Implementations on Intel
Architecture Processors”.
http://download.intel.com/embedded/processor/whitepaper/327457.pdf

http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

