
From oblivious AES to efficient and secure
database join in the multiparty setting

Sven Laur2,3, Riivo Talviste1,2?, and Jan Willemson1,3??

1 Cybernetica, Ülikooli 2, Tartu, Estonia
2 Institute of Computer Science, University of Tartu, Liivi 2, Tartu, Estonia

3 Software Technology and Applications Competence Center, Ülikooli 2, Tartu,
Estonia

Abstract. AES block cipher is an important cryptographic primitive
with many applications. In this work, we describe how to efficiently im-
plement the AES-128 block cipher in the multiparty setting where the
key and the plaintext are both in a secret-shared form. In particular, we
study several approaches for AES S-box substitution based on oblivious
table lookup and circuit evaluation. Given this secure AES implemen-
tation, we build a universally composable database join operation for
secret shared tables. The resulting protocol scales almost linearly with
the database size and can join medium sized databases with 100, 000
rows in few minutes, which makes many privacy-preserving data mining
algorithms feasible in practice. All the practical implementations and
performance measurements are done on the Sharemind secure multi-
party computation platform.

1 Introduction

Many information systems need to store and process private data. Encryption is
one of the best ways to assure confidentiality, as it is impossible to learn anything
from encrypted data without knowledge of the private key. However, the number
of processing steps one can carry out on encrypted data is rather limited unless
we use fully homomorphic encryption. Unfortunately, such encryption schemes
are far from being practical even for moderate-sized data sets [21].

Another compelling alternative is share-computing, since it assures data con-
fidentiality and provides a way to compute on secret shared data, which is several
magnitudes more efficient than fully homomorphic encryption. In this setting,
data is securely shared among several parties so that individual parties learn

? This research was supported by European Social Fund Doctoral Studies and Inter-
nationalisation Programme DoRa.

?? This research was, in part, funded by the U.S. Government. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Department of Defense or the U.S. Government. The research complied with all
relevant U.S. Government data privacy protections. Distribution Statement A (Ap-
proved for Public Release, Distribution Unlimited).

nothing about shared values during the computations and the final publication
of output shares reveals only the desired output(s). For most share-computing
systems, even a coalition of parties cannot learn anything about private data
unless the size of a coalition is over a threshold.

Development and implementation of such multi-party computing platforms
is an active research area. FairPlayMP [6], SecureSCM [2], SEPIA [13], Share-
mind [8], VMCrypt [30] and TASTY [24] computing platforms represent only
some of the most efficient implementations and share-computing has been suc-
cessfully applied to real-world settings [10,9].

Note that various database operations are particularly important in privacy-
preserving data processing. Efficient and secure protocols for most key operations
on secret-shared databases are already known, see [29]. The most notable op-
eration still missing is database join based on secret-shared key columns. This
operation can be used e.g. for combining customer data coming from different
organisations or linking the results of statistical polls into a single dataset.

Our main theoretical contribution is an efficient multi-party protocol for
database join, which combines oblivious shuffle with pseudorandom function
evaluation on secret-shared data. In practice, we instantiate the pseudorandom
function with the AES-128 block cipher and implement it on the Sharemind
platform [8]. The latter is a non-trivial task, since the input and the secret
key are secret-shared in this context. The resulting AES-evaluation protocol is
interesting in its own right. First, AES is becoming a standard performance
benchmark for share-computing platforms [18,25,33,28] and thus we can directly
compare how well the implementation on the Sharemind platform does. Second,
a secret-shared version of AES can be used to reduce security requirements put
onto the key management of symmetric encryption [18]. In brief, we can emulate
trusted hardware encryption in the cloud by sharing a secret key among several
servers.

2 Preliminaries

AES. Advanced Encryption Standard (AES) is a symmetric block cipher ap-
proved by the National Institute of Standards and Technology [31]. AES takes
a 128-bit block of plaintext and outputs 128 bits of corresponding ciphertext.
AES can use cipher keys with lengths of 128, 192 or 256 bits. In our work we
will only use AES-128, which denotes AES with 128-bit keys.

Sharemind platform. Sharemind platform is a practical and secure share-
computing framework for privacy-preserving computations [8], where the private
data is shared among three parties referred to as miners. In its original imple-
mentation, Sharemind uses additive secret sharing on 32-bit integers, i.e., a
secret s is split into three shares s1, s2, s3 such that s = s1 + s2 + s3 mod 232.
In this work, we use bitwise sharing where the secret can be reconstructed by
XOR-ing individual shares: s = s1 ⊕ s2 ⊕ s3.

The current Sharemind implementation is guaranteed to be secure only if
the adversary can observe the internal state of a single miner node. Thus, we re-
port performance results only for the semi-honest setting. Additionally, we show
how to generalise our approach to malicious setting. The latter is rather straight-
forward, as all protocols are based only on secure addition and multiplication
protocols. Although the bitwise sharing alone is not secure against malicious cor-
ruption, shared message authentication codes can be used to guarantee integrity
of secret sharings throughout the computations [19,32].

Security definitions and proofs. We use standard security definitions based
on ideal versus real world paradigm. In brief, security is defined by comparing a
real protocol with an ideal implementation where a trusted third party privately
collects all inputs, does all computations and distributes outputs to correspond-
ing parties. We say that a protocol is secure if any plausible attack against real
protocol can be converted to an attack against ideal protocol such that both
attacks have comparable resource consumption and roughly the same success
rate, see standard treatments [22,14,15] for further details.

A canonical security proof uses a wrapper (simulator) to link a real world ad-
versary with the ideal world execution model. More precisely, the simulator has
to correctly fake missing protocol messages and communicate with the trusted
party. As most protocols are modularly built from sub-protocols, security proofs
can be further compacted. Namely, if all sub-protocols are universally compos-
able, then we can prove the security in the hybrid model where executions of all
sub-protocols are replaced with ideal implementations [15].

Since almost all share-computing platforms including Sharemind provide
universally composable data manipulation operations, we use this composability
theorem to omit unnecessary details from security proofs (see also [8]).

Efficiency metrics in protocol design. Real-life efficiency of a protocol ex-
ecution depends on the number of rounds and the total amount of messages
sent over communication channels. The actual dependency is too complicated
to analyse directly. Hence, we consider two important sub-cases. When the total
communication is small compared to channel bandwidths, then the running time
depends linearly on the number of rounds. If the opposite holds, then running
time depends linearly on the communication complexity.

3 Share-computing protocol for AES block cipher

The overall structure of our protocol follows the standard AES algorithm speci-
fication [31]. However, there are some important differences stemming from the
fact that the secret key and the message is bitwise secret shared and we have to
use share-computing techniques. Fortunately, three out of four sub-operations
are linear and thus can be implemented by doing local share manipulations.
The efficiency of the AES protocol implementation is determined by SubWord()

and SubBytes() operations that evaluate the S-box on secret-shared data. The
SubWord() function used in key expansion applies the S-box independently to
each byte of its input word. Similarly, the SubBytes() function uses the S-box
independently on each byte of the 4-word state given as the argument.

3.1 S-box evaluation protocol based on oblivious selection

As the AES S-box is a non-linear one-to-one mapping of byte values, it can
be implemented as 256 element lookup table. In our setting, the input of the
S-box is secret shared and we need oblivious array selection to get the shares
of the right table entry. The latter can be achieved by using various techniques
from [29]. First, we must convert the input x into a zero-one index vector z where
all entries, except one, are zeros. The non-zero vector element zx corresponds to
the entry in the S-box array that we want to pick as the output. More precisely,
let x7x6 . . . x0 be the bit-representation of the input x and i7i6 . . . i0 be the bit-
representation of an index i. Then zi = [x7 = i7]∧ · · · ∧ [x0 = i0] and the shares
of index vector z can be computed by evaluating multinomials

zi = (x7 ⊕ i7 ⊕ 1) · · · (x0 ⊕ i0 ⊕ 1) . (1)

For example, the first entry can be computed as z0 = (1⊕x7)(1⊕x6) . . . (1⊕x0)
and the second entry as z1 = (1⊕ x7)(1⊕ x6) . . . (1⊕ x1)x0.

Note that each multinomial zi is of of degree 8 and thus 1792 secure multi-
plications over F2 are needed. To reduce the number of communication rounds,
we gather terms bij = xj ⊕ ij ⊕ 1 into eight 256 element vectors:

b7 = (b0,7, . . . , b255,7), . . . , b0 = (b0,0, . . . , b255,0)

and use vectorised bitwise multiplications to multiply all eight terms in the same
row. If we do them sequentially, then the computation of index vector requires
seven multiplication rounds. With tree-style evaluation strategy we can reduce
the number of multiplication rounds to three. For that, we must evaluate same
level brackets in parallel for z = ((b7 · b6) · (b5 · b4)) · ((b3 · b2) · (b1 · b0)). The
multiplicative complexity of this step can be further decreased by utilising the
underlying recursive structure of the index vector, as proposed by Launchbury
et al. [28]. For comparison, we also reimplemented their solution.

As the second step, we must compute scalar product between the indicator
vector z and 256-element output table y of the S-box. As elements of y are 8-bit
long whereas elements of z are from F2, we must select output bits one by one.
Let yj = (y0,j , . . . , y255,j) denote the vector of jth bits in the output table y.
Then the jth output bit fj of the S-box can be computed as

fj = 〈z,yj〉 =

255∑
i=0

zi yij (2)

over F2. Since the output table y is public, all operations can be done locally
and the second step does not contribute to the communication complexity.

3.2 S-box evaluation protocol based on circuit evaluation

The oblivious indexing as a generic approach is bound to provide a protocol with
sub-optimal multiplication complexity, as the two stage evaluation of output bits
fj forces us to compute terms zi that are dropped in the equation (2).

We can address this issue by secure computation techniques based on branch-
ing programs [26]. For that, we must convert the expression for fj into a binary
decision diagram B with minimal number of decision nodes. After that we must
build a corresponding arithmetic circuit that evaluates B in bottom-up manner.
As each decision node introduces two secure multiplications, the efficiency of
the resulting protocol is determined by the shape of B. Let c denote the total
number of decision nodes and d denote the longest path in B. Then the resulting
protocol consists of 2c secure multiplication operations over F2, which can be
arranged into d rounds of parallel multiplications.

Although this approach produces significant gains, we can use recent findings
in hardware optimisation to boost efficiency further. Circuit minimisation for
the AES S-box is a widely studied problem in the hardware design with many
known results. In this work, we use the designs by Boyar and Peralta [11,12].
Note that their aim was to minimise the total number of gates and the overall
circuit depth, while we need a circuit with minimal number of multiplication
gates (AND operations) and with paths that contain as few multiplications as
possible, i.e., have a low multiplicative depth. Hence, their best design with 128
gates is not the best for our purposes, as it contains 34 multiplications and its
multiplicative depth is 4, while their older design [11] contains 32 multiplication
and has a multiplicative circuit depth 6. Of course, the multiplicative depth
plays also important role in the protocol, when the bandwidth is high, hence,
the newer design might have advantages when only a few AES evaluations are
performed.

As extended versions of both articles contain straight-line C-like programs
for their circuits, it is straightforward to implement the corresponding secure
evaluation protocol with a minor technical tweak. As byte is the smallest data
unit supported by network communication libraries, entire byte is used to send
elements of F2 over the network during a secure multiplication protocol. We
can eliminate this bloat by doing eight multiplications in parallel, since eight
individual values can be packed into the same byte.

It is straightforward to achieve this grouping for the SubBytes() function,
as it evaluates 16 S-boxes in parallel. Consequently, if we treat original variables
as 16-element bit-vectors, we can evaluate all 16 copies of the original circuit in
parallel without altering the straight-line program. For the SubWord() function,
additional regrouping is necessary, as it evaluates only four S-boxes in parallel.
It is sufficient if we must split all multiplications into pairs that can be executed
simultaneously so that we can do eight multiplications in parallel.

3.3 Security analysis for the entire protocol

Note that all three versions of the AES S-box evaluation algorithms are arith-
metic circuits consisting of addition and multiplication gates. Hence, it is straight-
forward to prove the following result.

Theorem 1. If a share-computing framework provides universally composable
protocols for bitwise addition, bitwise multiplication and bit decomposition, then
all three AES S-box implementations are universally composable. Any universally
composable AES S-box implementation gives a rise to a universally composable
share-computing protocol for the AES block cipher.

Proof. The proof follows directly from the universal composability theorem as
we use share-computing protocols to evaluate arithmetic circuits. ut

Note that this result holds for any corruption model including the Sharemind
framework, which provides security against one-out-three static passive corrup-
tion. To get security against active corruption, the underlying secret sharing
scheme must support both bitwise addition and multiplication while being veri-
fiable. There are two principal ways to achieve this.

First, we can embed elements of F2 into some larger finite field F2t with ex-
tension element α and then use standard verifiable secret sharing schemes which
support secure multiplication over F2t . On top of that it is rather straight-
forward to implement universally composable bit decomposition [17], which
splits a secret x ∈ F2t into a vector of shared secrets xt−1, . . . , x0 such that
x = xt−1α

t−1 + · · ·x1α + x0. As a consequence, all three assumptions of Theo-
rem 1 are satisfied and we get a secure protocol for evaluating AES. However,
there is a significant slowdown in the communication due to prolonged shares.

Alternatively, we can use oblivious message authentication [19] to protect in-
dividual bits without extending shares. However, this step attaches a long secret
shared authentication code to each bit. To avoid slowdown, we can authenticate
long bit vectors with a singe authentication code. The latter fits nicely into the
picture, as we have to evaluate 16 circuits in parallel.

3.4 Further tweaks of the AES evaluation protocol

Block ciphers are often used to encrypt many messages under the same secret
key. In such settings, it is advantageous to encrypt several messages in parallel in
order to reduce the number of communication rounds. The latter is straightfor-
ward in the Sharemind platform, as it naturally supports parallel operations
with vectors. The corresponding vectorised AES protocol takes in a vector of
plaintext shares and a vector of shared keys and outputs a vector of cipher text
shares. As another efficiency tweak note that we need to execute that key schedul-
ing only once if the secret key is fixed during the encryption. Hence,we can run
the key scheduling protocol separately and store the resulting shares of all 128-
bit round keys for later use. The corresponding separation of pre-processing and
online phases decreases amortised complexity by a fair margin.

Protocol Multiplicative Running time Multiplicative Running time
depth (1 evaluation) complexity (4096 evaluations)

ObSel 3 32.5 ms 1792 9051 ms
Lddam 3 31.1 ms 304 1109 ms
BCirc-1 6 69.6 ms 32 148 ms
BCirc-2 4 40.8 ms 34 127 ms

Table 1. Performance results of various S-box evaluation algorithms.

3.5 Efficiency metrics and real-life performance

Having established essentially four methods with very different complexity pa-
rameters, we need to compare their real-life performance. For that we have im-
plemented four versions of SubBytes() routines on the Sharemind platform
and measured the actual performance. The tests were done on a cluster where
each of the three Sharemind miners was deployed in a separate machine. The
computers in the cluster were connected by an ethernet local area network with
link speed of 1 Gbps. Each computer in the cluster had 48 GB of RAM and a
12-core 3 GHz CPU with Hyper Threading. The channels between the computers
were also encrypted using 256-bit elliptic curve key agreement and the ChaCha
stream cipher [7] provided by the underlying RakNet networking library [1].
While the choice of ChaCha is not standard, the best known attacks against it
are still infeasible in practice [5].

We considered algorithms in two different settings. First, we measured the
time needed to complete a single evaluation of SubBytes() function. Second,
we measured how much time does it take to evaluate 4096 SubBytes() calls
in parallel. The first setting corresponds to the case where various delays have
dominant impact on the running-time, whereas the effect of communication com-
plexity dominates in the second case. Table 1 compares theoretical indicators4

and practical performance for all four protocols. The ObSel protocol is based on
oblivious selection vector and Lddam is the same protocol with reduced number
of multiplications [28]. Protocols based on Boolean circuits designed by Boyar
and Peralta are denoted by BCirc-1, BCirc-2.

The results clearly show that multiplicative depth and complexity are good
theoretical performance measures for optimising the structure of arithmetic cir-
cuits, as they allow us to predict the running times with 10 − 20% precision.
Each communication round costs 10− 12 ms in single operation mode and each
multiplication operation adds 3.5− 5.1 ms to amortised running-time.

Secondly, we measured amortised cost of the AES evaluation protocol with
precomputed round keys, see Figure 1. As expected, various algorithms have
different saturation points where further parallelisation does not decrease the
amortised cost any more. In particular, note that for few blocks the amortised
costs of Lddam and circuit evaluation algorithms BCirc-1 and BCirc-2 is

4 As all multiplications are carried over F2, we do not have to compensate for various
input lengths and can just count the number of multiplications.

●

●

●

●

●

●
● ● ● ● ● ● ●

1

10

100

1000

1 10 100 1000 10000
Number of parallel operations

T
im

e
pe

r
op

er
at

io
n

in
 m

ill
is

ec
on

ds

Operation

● ObSel

LDDAM

BCirc−1

BCirc−2

Fig. 1. Performance of AES evaluation protocols using precomputed round keys.

comparable, i.e., the advantage of circuit evaluation manifests only if we encrypt
around 80 plaintexts in parallel. Also, note that the newer design BCirc-2 with
smaller multiplicative depth performs better when the number of encryption calls
is between 100 − 10, 000. After that the impact of communication complexity
becomes more prevalent and the BCirc-1 protocols becomes more efficient.

As the final test, we measured the running time of the AES protocol with and
without key scheduling. Table 2 depicts the corresponding results. As before, we
give the running times for a single encryption operation and limiting cost of a
single operation if many encryptions are done in parallel. Mode I denotes en-
cryption with key expansion and mode II denotes encryption with pre-expanded
secret key. Again, the results are in good correspondence. The cost of a single
operation is roughly two times slower with the key expansion5 , since computing
a shared round key requires one parallel invocation of S-boxes. For the amortised
cost, the theoretical speedup should be 1.25 as there are 20 S-box invocation per
round in the mode I and 16 invocations per round in the mode II. The difference
in actual speedup factors suggest existence of some additional bottlenecks in our
key-expansion algorithms.

Table 3 compares our results with the state of the art in oblivious AES-
128 evaluation protocols. To make results comparable, the table contains results
only for the semi-honest setting. In most cases, authors report the performance of
AES with pre-shared keys (mode II). More than tenfold difference between two-
party and three-party implementations is expected, as two-party computations
require costly asymmetric primitives. Note that the cost of single operation for
our implementation in Table 3 uses the approach of Launchbury et al., whereas
the amortized time is obtained using the circuit-based approach.

5 The slowdown can be further reduced to 1.2 if we compute next subkey in parallel
with the AES round to reduce multiplicative depth of the circuit.

Single operation Amortised cost
Mode I Mode II Ratio Mode I Mode II Ratio

ObSel 682 ms 343 ms 1.99 20.34 ms 18.69 ms 1.09
Lddam 652 ms 323 ms 2.02 4.16 ms 2.51 ms 1.66
BCirc-1 1329 ms 664 ms 2.00 0.48 ms 0.29 ms 1.68
BCirc-2 890 ms 443 ms 2.01 0.37 ms 0.32 ms 1.17

Table 2. Performace results for various AES evaluation algorithms

We can not fully explain roughly 20 times performance difference between the
two implementations of single operation following the approach of Launchbury et
al. Possible explanations include measurement error and extreme concentration
on the network layer optimization by the authors of [28].

Authors Reference Setting Mode Single operation Amortised cost

Pinkas et al. [33] 2-party II 5000 ms — ms
Huang et al. [25] 2-party II 200 ms — ms
Damg̊ard and Keller [18] 3-party I 2000 ms — ms
Launchbury et al. [28] 3-party II 14.28 ms 3.10 ms
This work 3-party II 323 ms 0.29 ms

Table 3. Comparison of various secure AES-128 implementations

4 Secure database join

As mentioned in the introduction, secure database join is a way to combine
several data sources in privacy-preserving manner. In this work, we consider the
most commonly used equi-join6 operation, which merges tables according to one
of few key columns using the equality comparison in the join predicate. In many
cases, the key value is unique, such as social security number or name and postal
code combined. The uniqueness assumption significantly simplifies our task. The
need to deal with the colliding keys significantly increases the complexity of the
protocols, and this case is handled in Section 4.3.

An ideal secure inner join protocol takes two or more secret-shared database
tables and produces a new randomly ordered secret-shared table that contains
the combined rows where the join predicate holds. The parties should learn noth-
ing except for the number of rows in the new database. The random reordering
of the output table is necessary to avoid unexpected information propagation
when some entries are published either for input or for the output table.

6 The authors adapt the Structured Query Language (SQL) terminology in this paper.

Let m1 and m2 denote the number of rows and n1 and n2 the number of
columns in the input tables. Then it is straightforward to come up with a solu-
tion that uses Θ(m1m2) oblivious comparison operations by mimicking a näıve
database join algorithm. We can obliviously compare all the possible key pairs,
shuffle the whole database, open the comparison column and remove all the rows
with the equality bit set to 0. It is straightforward to prove that this protocol is
secure, since it mimics the actions of ideal implementation in verbatim. We will
refer to this algorithm as NaiveJoin and treat it as a baseline solution.

Theorem 2. If a share-computing framework provides universally composable
protocols for database shuffle and oblivious comparison, then the NaiveJoin
protocol is universally composable in the information theoretical model.

Proof (Sketch). The formal proof hinges on three facts. First, the oblivious com-
parison leaks no information and the extra column can be simulated without
problems. Second, the shuffle completely hides the order of the database rows.
Third, the number of rows can be deduced from the ideal output and it coincides
with the number of ones in the publishing phase.

In the simulation construction, we fake all shares until the shuffle phase
without any knowledge of the true output. Next, we use share shuffle protocol to
extract input shares of all malicious parties and submit them to the trusted third
party who outputs the corresponding output shares. The simulator assigns them
to random rows for m1m2 shuffle outputs and sets the corresponding comparison
column to 1. Remaining rows are filled with shares of zeroes. After that the
simulator continues with the shuffle simulation with this shuffle output table.
Publishing of shares is done according to the shuffle output table. ut

4.1 Secure inner join based on unique key column

As the first step towards a more efficient algorithm, consider a setting where
the computing parties (miners) obliviously apply pseudorandom permutation
πs to encrypt the key column. As πs is a pseudorandom permutation (a block
cipher depending on an unknown key s) and all the values in the key column are
unique, the resulting values look completely random if none of the miners knows
πs. Hence, it is secure to publish all the encryptions of key columns. Moreover,
the tables can be correctly joined using the encryptions instead of key values.

However, such a join still leaks some information – miners learn which data-
base rows in the first table correspond to the database rows in the second table.
By shuffling the rows of initial tables, this linking information is destroyed. The
resulting algorithm is depicted as Protocol 1. We emphasise that in each step all
the tables are in secret-shared form. In particular, each miner carries out step 4
with its local shares and thus the table T ∗ is created in a secret-shared form.
Note that we have also added step 5 to deal with the case of colliding keys. This
case will be discussed in Section 4.3.

As the actual join operation is performed on public (encrypted) values, the
construction works also for the left and right outer joins, where either the left or

Database shuffling phase

1. Miners obliviously shuffle each database table Ti.
Let T ∗

i denote the resulting shuffled table with a key column k∗
i .

Encryption and join phase

2. Miners choose a pseudorandom permutation πs by generating a shared key s.
3. Miners obliviously evaluate πs on all shared key columns k∗

i .
4. Miners publish all values πs(k∗ij) and use standard database join to merge

the tables based on columns πs(k∗
i). Let T ∗ be the resulting table.

Optional post-processing phase for colliding keys

5. If there are some non-unique keys in some key column πs(k∗
i), miners should

perform additional oblivious shuffle on the secret-shared table T ∗

Protocol 1: Secure implementation of PrpJoin operation

right table retains all its rows, whether a row with a matching key exists in the
other table or not. These outer joins are common in data analysis. For instance,
given access to supermarket purchases and demographic data, we can use outer
join to add person’s wealth and his/her home region to each transaction, given
that both tables contain social security number. As the data about some per-
sons might be missing from the demographic database, miners must agree on
predefined constants to use instead of real shares if the encrypted key is missing.
In this case, optional post-processing step is needed to hide rows with dummy
values. However, the post-processing phase does not hide the number of missing
data entries. We discuss this issue in Section 4.3.

Theorem 3. Let P = (πs) be a pseudorandom permutation family. If a share-
computing framework provides universally composable protocols for database shuf-
fle and oblivious evaluation of πs(x) from secret shared values of x and s, and
there are no duplicate key values in any of the input tables, then the PrpJoin
protocol is universally composable in the computational model.

Proof (Sketch). For clarity, let us analyse the security in the modified setting
where P is the set of all permutations and Steps 1–4 are performed by trusted
third party. Let m be the number of rows in the final database table and y1

and y2 the vectors of encrypted values published during PrpJoin protocol. For
obvious reasons, |y1 ∩ y2| = m and the set y1 ∪ y2 consists of m1 + m2 − m
values, which are chosen randomly from the input domain without replacement.
As Step 1 guarantees that the elements in y1 and y2 are in random order, it is
straightforward to simulate y1 and y2 given only the number of rows m.

Hence, the simulation of the protocol is straightforward. First, the simulator
forwards all input shares and gets back the final output shares and thus learns m.
After that it generates shares for the shuffled databases by creating the correct
number of valid shares of zero. As the adversarial coalition is small enough, the
adversary cannot distinguish them from valid shares. Next, it generates y1 and
y2 according to the specification given above and forwards the values to the

adversary together with properly aligned output shares such that a semihonest
adversary would assemble the database of output shares in the correct way.

It is easy to see that the simulation is perfect in the semihonest model. The
same is true for the malicious model with honest majority, since honest parties
can always carry out all the computations without the help from the adversarial
coalition. In case of dishonest majority, the adversarial coalition is allowed to
learn its output and then terminate the protocol. In our case, the simulator
must terminate the execution when the adversarial coalition decides to stop
after learning the encrypted vectors y1 and y2.

We can use the same simulation strategy for the original protocol where the
trusted third party uses a pseudorandom permutation family. As the key s is
unknown to all parties, the joint output distributions of the real and hybrid
worlds are computationally indistinguishable. The latter is sufficient, as security
in the hybrid model carries over to the real world through universal composability
of share shuffling and oblivious function evaluation protocols. ut

Efficiency. By combining the secure oblivious AES evaluation and the oblivious
shuffle from [29], we get an efficient instantiation of the PrpJoin protocol. For
all database sizes, the resulting protocol does Θ(m1 + m2) share-computing
operations and Θ(m1 logm1 +m2 logm2) public computation operations.7

4.2 Secure inner join based on unique multi-column key values

Let us now consider the case when database tables are joined based on several
columns, such as name and birth date. We can reduce this kind of secure join to
the previous case by using oblivious hashing. An ε-almost universal hash function
is a function h : K×M→ T that compresses message into shorter tags so that
the following inequality holds:

∀x 6= x′ ∈M : Pr [k ← K : h(k, x) = h(k, x′)] ≤ ε.

Such a function can be used to reduce the length of the unique key that spans
over several columns. However, this function must support efficient oblivious
evaluation. The Carter-Wegman construction [16]

h(k,x) = xsks + · · ·+ x2k2 + x1k1

is a good candidate for our application as it consist of a few simple operations
and it is 2−` almost universal when computations are done over the field F2` .
Another compelling alternative is to use several independent Carter-Wegman
functions over F2. For ` independently chosen keys, the collision probability is
still 2−`. In the semihonest model, the communication complexity of the resulting

7 The theoretical asymptotic complexity is higher, as the size of the database can be
only polynomial in the security parameter and thus oblivious PRF evaluation takes
poly(m) steps. Consequently, the protocol is asymptotically more efficient than the
naive solution as long as the PRF evaluation is sub-linear in the database size.

Offline phase

1. Generate shared random keys (kij) for the Carter-Wegman construction.

Online hashing phase

2. Treat each key tuple as a long bit string x = (xs, . . . , x1).
3. Use secure scalar product algorithm to compute the secret shared hash code:

h(kj ,x) = xsksj + · · ·+ x1k1j .

Protocol 2: Oblivious hashing Ohash

oblivious hashing protocols is the same, as the amount of communication scales
linearly wrt the bit length. For the malicious models, the trade-offs depend on
exact implementation details of multiplication protocol. The resulting algorithm
for oblivious hashing is depicted as Protocol 2.

Theorem 4. If a share-computing framework provides universally composable
protocols for addition and multiplication over F2, the Ohash protocol is uni-
versally composable in the information theoretical model. For ε-almost universal
hash function and m invocations of Ohash the probability that two different
inputs lead to the same output is upper bounded by 1

2m
2ε.

Proof (Sketch). The claim about security is evident as multiplication together
with addition is sufficient to implement scalar product over F2. The collision

probability follows from the union bound Pr [collision] ≤
(
m
2

)
· ε ≤ m2ε

2 . ut

Efficiency. A collision in the same key column invalidates the assumptions of
Theorem 3, whereas a collision between keys of different tables introduces fraud-
ulent entry in the resulting table. Hence, the size of Carter-Wegman construction
must be chosen so that the probability of a collision event is negligible. By using
2−80 as the failure probability, we get that 128 bit Carter-Wegman construction
allows us to operate up to 33.5 million table entries, which is clearly more than
a secure database join protocol can handle in feasible time. To handle around
million entries with the same failure probability it is sufficient to use 119-bit
Carter-Wegman construction. However, note that the standard implementation
of Ohash that computes each bit of the MAC separately and thus duplicates the
data vector for each bit, has a larger communication complexity than oblivious
AES. Experiments show that for 288 bit input and 128-bit output the complex-
ity of a single Ohash is around 25 ms while the amortised complexity is around
5.7 ms. The corresponding numbers are 11 ms and 0.012 ms for the optimised
Ohash protocol detailed in Appendix A. To put the results into context, note
that unoptimised Ohash is over 10 times slower than oblivious AES, while the
optimised Ohash has almost no impact to performance of the equi-join protocol
as its running time is around 5%.

4.3 Secure inner join based on non-unique key columns

It is straightforward to see that PrpJoin protocol leaks the number of coin-
ciding keys in the database tables. Without the additional shuffle round at the
end of PrpJoin, miners can also find out how many key collisions occur for a
particular row in the final database. In certain settings, this might be enough to
deduce private information. For instance, the number of purchases might identify
some supermarket clients. The extra shuffle step destroys a direct link between
database rows and number of collisions. However, collision events are still ob-
servable. More formally, let the occurrence signature for a key be the number of
occurrences in each table. Then we can state the following security claim.

Theorem 5. If the share-computing framework satisfies the same assumption
as in Theorem 3, the PrpJoin protocol leaks only the final size of the database
and occurrence signatures without the corresponding key values.

Proof (Sketch). The proof hinges on the fact that the full knowledge of occur-
rence signatures is sufficient for simulating the outcome of the encryption and
join phase and the database shares provided by the trusted third party can be
used to correctly align the output of the post-processing phase with the outputs
of honest parties. The properties of oblivious shuffle assure that the correspon-
dence between occurrence signatures and keys is not required in simulation. ut

Unfortunately, the occurrence signature itself might cause privacy breaches.
For instance, if we know how many times a person visited a doctor, then we can
detect (with certain probability) whether the person is in the database table or
not. If the database table contains cancer patients with bad prognosis, the result-
ing privacy breach may be significant. Similarly, the mere amount of purchase
transactions with the same identity might give valuable business insight.

In many cases, the number of rows with the same key value is small, say, less
than 10. Moreover, the upper bound ` on the number of rows corresponding to
the same key might be public, e.g., the maximal number of purchases one can
do might be limited. In such cases, we can solve the problem by adding fake
rows to the database so that each key occurs exactly ` times. The corresponding
unification protocol is depicted as Protocol 3.

The mask-and-mix phase can be implemented with standard share-computing
operations. The secret-shared binary columns b and c are used to keep track of
fake rows. The former is used only inside the protocol while the latter is added
to the output table. In the protocol output table the value ci is 0 for original
rows and 1 for added fake rows. After performing the actual join operation on
two such tables, we can filter out rows that contain fake entries (ci = 1 for either
one or both tables). The oblivious sorting step can be performed in Θ(m logm)
steps using the AKS sorting network [4] and the ordering predicate8

(ki, bi) � (kj , bj) ⇔ ki ≤ kj ∧ bi ≤ bj .

8 For practical database sizes, other networks with Θ(m log2m) are more efficient but
they are still sub-quadratic.

Mask-and-mix phase

1. Add two secret-shared bit columns b and c for marking fake rows.
2. For each row add `− 1 fake rows with the same key and flags bi = 1 and ci = 1.
3. Apply oblivious shuffle to the database to hide the content.

Sort-and-filtering phase

4. Sort all rows according to the key value and the flag pairs so that fake
entries with same keys are always after the non-faked ones.

5. Linearly scan key-flag pairs (ki, bi) and set flag bi to zero if less than ` rows
with the same key precede the current row.

6. Apply oblivious shuffle to the database and open the index column b.
Delete all rows, which are still marked as fake, i.e., bi = 1.

Protocol 3: Size unification protocol Sunif

For the fifth step we need a secret-shared counter n and the update rule:

n =

{
n+ 1, if ki−1 = ki ,

1, otherwise ,
bi =

{
0, if n ≤ ` ,
1, otherwise .

Theorem 6. Assume that a share-computing framework provides universally
composable protocols for arithmetic operations and protocols for oblivious sort
and shuffle and the maximal number of keys with the same value is below `.
Then the Sunif protocol produces a database where each key appears exactly `
times and leaks only the number of distinct keys.

Proof (Sketch). For the proof note that the third and sixth step destroy all
information about the location of fake rows and the number of ones revealed at
the last step is determined only by the database size and the number of distinct
keys. The simulation construction is analogous to the previous proofs. ut

Instead of opening the unused fake rows, we can assign them non-used keys
so that all keys occur exactly ` times. For instance, we can treat the pair (ki, bi)
as a new key and use a global counter d for generating new key values in a row.
That is, we set ki = d when n ≥ ` and increment d after ` assignments. As a
result, we get an new database where each key (ki, bi) occurs ` times. Let us
denote this protocol as Sunif+.

Corollary 1. Let the number of key occurrences be bounded by a public constant
`. Then by combining Sunif+ and PrpJoin protocol we get an equi-join protocol
that leaks no information besides the number of rows in the output table.

Proof (Sketch). The PrpJoin protocol leaks no information as each key occurs
exactly ` times. However, the resulting join after the join phase contains rows
that consist partly of fake entries. Then, we can use all fake flags ci to compute
whether the row is valid or not in the post processing step and eliminate invalid
database entries. Again, this leaks no information as the number of invalid entries
is determined by the number of rows in the output table. ut

●●●●● ● ● ● ● ●
0

20

40

60

0 250 500 750 1000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Algorithm

● PRP join

SUNIF−8 + PRP join

Naive join

●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

0

100

200

300

0 5 ⋅ 104 1 ⋅ 105

Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Database operation

●

●

Total running time

Oblivious AES evaluation

Public database join

Oblivious shuffle

Fig. 2. Benchmarking results for the oblivious database join operation.

Note that the resulting protocol has complexity which is roughly Θ(`m logm)
and thus is much faster than the plain NaiveJoin algorithm with quadratic
complexity described in Section 4.

Missing values. The simplest way to handle missing key values is to use a
dedicated key value. However, this might increase the maximal number of col-
liding keys ` in the table. To circumvent this, we can add a dedicated unique
key for each missing value and add dummy rows with corresponding keys to the
other database. Note that this addition does not change the maximal number
of colliding keys. Since we do not want to leak which values are missing, we
must add an extra row for each row in the first database and the same amount
of dummy rows with matching fake keys to the second database. To get rid of
extra dummy rows when the key is not missing from the second database, we
can use the analogous filtering technique to the Sunif protocol.

4.4 Benchmarking results

We measured the performance of two secure database join protocols with the
same setup as we used for timing the oblivious AES evaluation. For the experi-
ment, we measured how much time it takes to join two database tables consisting
of five 32-bit columns including the single column key. Both databases were of
the same size and each key in one table had exactly one matching key in the
other table. For AES, we used the BCirc-1 version of the protocol as it has the
lowest amortized cost for tables with thousands of rows.

Results depicted in Figure 2 clearly indicate that PrpJoin protocols is much
more efficient even for modest database sizes and it scales nearly linearly. More
precisely, the only non-linear performance component is public database join
operation, which is known to take Θ(m logm) operations. The exact balance
between oblivious AES evaluation and database shuffle depends on the number

●●●●●●● ● ●
●

●

●

●●●●●●● ●
●

●

●

●

10

20

30

40

50

0 1000 2000 3000 4000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Algorithm

●

●

l=2

l=4

l=8

l=16

●●●●●●
●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

0

20

40

60

0 1000 2000 3000 4000
Database rows

To
ta

l r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Database operation

●

●

Total running time

Oblivious sorting

Oblivious shuffle

Multiplication

Fig. 3. Benchmarking results for the Sunif operation.

of columns. As the oblivious database shuffle scales linearly with the number
of columns, the fraction of time spent on shuffling increases linearly with the
number of columns. However, the slope is rather small.

For instance, consider two database tables with 10, 000 rows each. Then the
amount of time spent on oblivious shuffle becomes comparable with oblivious
AES evaluation only if the number of columns per table exceeds 180 for our
experimental setting. Hence, we can safely conclude that the oblivious database
join is feasible in practical applications.

The NaiveJoin algorithm spends most of its time doing oblivious database
shuffle. The shuffle operation itself is efficient, but the share size of the database
is big. Even for two tables consisting of 1000 rows we must shuffle a database
with million rows. Hence, it is affordable only for small databases.

To show the tradeoff between both algorithms, Figure 2 contains the running-
time of secure database join with Sunif preprocessing that can handle up to 8 co-
inciding keys. Although the initial running-time is much worse than NaiveJoin
due to expensive oblivious sorting step, the algorithm scales near-linearly and
quickly becomes faster. The exact tradeoff point depends heavily on the value
of ` — the larger it is, the bigger the initial slowdown.

For comparison, we also benchmarked the case with non-unique keys. As
Sunif/Sunif+ protocols are independent of the actual join operation (PrpJoin)
and can be viewed as pre-processing of the database table, we measured the
performance of Sunif separately. As with testing PrpJoin, the input table of
Sunif has five 32-bit columns, including one key column and varying number of
rows. In addition, we have an extra parameter ` showing the maximal number
of equal keys in the table. To get good scalability, we used oblivious radix sort
in the sort-and-filter phase. As the right pane in Figure 3 clearly shows the
sorting algorithm indeed scales near-linearly with the data and is thus a good
candidate for processing large databases. The figure also shows that there is room
for further optimisation – by reducing the complexity of oblivious sorting one

can speed-up the algorithm more than ten times before other algorithms start
to impact the total working time. The left pane in Figure 3 clearly shows that
Sunif scales linearly with the number of rows in database table as expected.

4.5 Comparison with related work

Protocols for privacy-preserving database join have been proposed before. How-
ever, none of them are applicable in our model where input and output tables are
secret shared. One of the first articles on privacy-preserving datamining showed
how exponentiation can be used to compute equi-join in two-party case [3]. How-
ever, their protocol reveals the resulting database.

Freedman et al. showed how oblivious polynomial evaluation and balanced
hashing can be used to implement secure set intersection [20]. The resulting
two-party protocol is based on additively homomorphic encryption and has com-
plexity Θ(m1m2) without balanced hashing. The latter significantly reduces the
amount of computations by splitting the elements into small distinct groups.
The same idea is not directly applicable in our setting, since our data is secret
shared, while their protocol assumes that key columns are local inputs.

Oblivious polynomial evaluation is not very useful in our context, as it is
shorthand for the test x ∈ {b1, . . . , bk} which requires Θ(k) multiplications,
while the PrpJoin protocol does all such comparisons publicly.

Hazay and Lindell [23] have also proposed a similar solution that uses pseu-
dorandom permutation to hide initial data values and performs secure set inter-
section on ciphertexts. However, they are working in a two-party setting where
one of the parties learns the intersection.

5 Conclusion

In this paper we showed that there are several compelling ways to implement
oblivious AES evaluation in a multi-party setting where the plaintext and the
ciphertext are shared between the parties. As the second important contribu-
tion, we described and benchmarked efficient protocols for joining secret-shared
databases.

Our benchmarking results showed that it is possible to get throughputs
around 3500 blocks per second for the oblivious AES, which is the fastest three-
party MPC implementation known to the authors. In general, any block cipher
based on substitution permutation networks (SPN) is a good candidate for obliv-
ious evaluation as long as the Sbox has low multiplicative complexity and the
rest of the cipher is linear over F2k . Experimental results allow us to conclude
that throughput around 350 blocks per second is achievable for any comparable
SPN cipher, as the evaluation method of [28] is applicable for any Sbox.

Note that the AES key schedule is appropriate for oblivious evaluation, as
all the round keys can be computed on demand. Consequently, the usage of pre-
shared round keys reduces the running time for a single operation only by 25%.
The only way to get more efficient oblivious evaluation protocols is to use Sbox

constructions with smaller multiplicative complexity than 32. However, these
Sboxes are also more likely to be weaker against linear cryptanalysis and alge-
braic attacks. Thus, it would be really difficult to come up with more compelling
block cipher for multi-party setting – any secure block cipher designed for the
oblivious evaluation, is also a good ordinary block cipher.

For the database join, we showed how to combine oblivious evaluation of
almost universal hashing and pseudorandom functions to get a collision resistant
pseudorandom function, which can handle arbitrary sized database keys. The
resulting PrpJoin protocol works under the assumption that all key column
entries are unique. Although we can always fall back to NaiveJoin and preserve
security without this restriction, the performance penalty is excessive. A better
solution was also proposed in the paper for the case when the number of non-
unique occurrences of keys is upper bounded by some predefined quantity `.

From a truly theoretical viewpoint, the question whether sub-quadratic com-
plexity for oblivious database join is achievable depends on existence of pseudo-
random functions with low multiplicative complexity. The latter is an interesting
open question. Another practically more important open question is to find new
almost universal hash function constructions with lower multiplicative complex-
ity or to prove that current constructions are optimal. The circuit complexity of
universal hash functions has been studied in the context of energy efficiency [27],
the main goal has been minimisation of total circuit complexity which is a con-
siderably different minimisation goal.

Acknowledgments. The work of Riivo Talviste was supported by European
Social Fund’s Doctoral Studies and Internationalisation Programme DoRa. Also,
we would like to thank Helger Lipmaa for insightful theoretical suggestions.

References

1. Raknet – multiplayer game network engine. http://www.jenkinssoftware.com.
2. SecureSCM. Technical report D9.1: Secure Computation Models and Frameworks.

http://www.securescm.org, July 2008.
3. Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information

sharing across private databases. In Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, SIGMOD ’03, pages 86–97, New
York, NY, USA, 2003. ACM.

4. Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel sets.
Combinatorica, 3(1):1–19, 1983.

5. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha,
and Rumba. In Kaisa Nyberg, editor, Proc. of FSE ’08, volume 5086 of LNCS,
pages 470–488. Springer, 2008.

6. Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In CCS ’08: Proceedings of the 15th ACM conference on
Computer and Communications Security, pages 257–266, New York, NY, USA,
2008. ACM.

http://www.jenkinssoftware.com
http://www.securescm.org

7. D.J. Bernstein. ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html,
2008.

8. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast
Privacy-Preserving Computations. In Sushil Jajodia and Javier Lopez, editors,
Computer Security – ESORICS 2008, volume 5283 of Lecture Notes in Computer
Science, pages 192–206. Springer Berlin / Heidelberg, 2008.

9. Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-
party computation for financial data analysis. Cryptology ePrint Archive, Report
2011/662, 2011. http://eprint.iacr.org/.

10. Peter Bogetoft, Dan Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakob-
sen, Mikkel Krøigaard, Janus Nielsen, Jesper Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Secure multiparty computation goes live.
In Roger Dingledine and Philippe Golle, editors, Financial Cryptography and Data
Security, volume 5628 of LNCS, pages 325–343. Springer Berlin / Heidelberg, 2009.

11. Joan Boyar and René Peralta. A New Combinational Logic Minimization Tech-
nique with Applications to Cryptology. In Paola Festa, editor, Experimental Algo-
rithms, volume 6049 of LNCS, pages 178–189. Springer Berlin / Heidelberg, 2010.

12. Joan Boyar and René Peralta. A small depth-16 circuit for the aes s-box. In
Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, SEC, vol-
ume 376 of IFIP Advances in Information and Communication Technology, pages
287–298. Springer, 2012.

13. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain network events and statis-
tics. In Proceedings of the USENIX Security Symposium ’10, pages 223–239, Wash-
ington, DC, USA, 2010.

14. Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

15. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS ’01: 42nd Annual Symposium on Foundations of Computer
Science, pages 136–145, 2001.

16. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

17. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors, TCC, vol-
ume 3876 of Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

18. Ivan Damg̊ard and Marcel Keller. Secure multiparty aes. In Radu Sion, editor,
Financial Cryptography, volume 6052 of Lecture Notes in Computer Science, pages
367–374. Springer, 2010.

19. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Safavi-Naini and Canetti
[34], pages 643–662.

20. Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private Matching
and Set Intersection. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
ScienceLNCS, pages 1–19. Springer Berlin / Heidelberg, 2004.

21. Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme. In EUROCRYPT 2011, volume 6632 of LNCS, pages 129–148.
Springer, 2011.

22. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

http://cr.yp.to/chacha.html
http://eprint.iacr.org/

23. Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols
using standardsmartcards. In ACM Conference on Computer and Communications
Security, pages 491–500, 2008.

24. Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In CCS
’10: Proceedings of the 17th ACM conference on Computer and Communications
Security, pages 451–462. ACM, 2010.

25. Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster Secure Two-
Party Computation Using Garbled Circuits. In 20th USENIX Security Symposium,
pages 8–12, 2011.

26. Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science,
pages 575–594. Springer, 2007.

27. Jens-Peter Kaps, Kaan Yuksel, and Berk Sunar. Energy scalable universal hashing.
IEEE Trans. Comput., 54(12):1484–1495, December 2005.

28. John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran.
Efficient lookup-table protocol in secure multiparty computation. In Peter Thie-
mann and Robby Bruce Findler, editors, ICFP, pages 189–200. ACM, 2012.

29. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Xuejia Lai, Jianying Zhou, and Hui Li, editors, In-
formation Security, volume 7001 of LNCS, pages 262–277. Springer Berlin / Hei-
delberg, 2011.

30. Lior Malka. Vmcrypt: modular software architecture for scalable secure computa-
tion. In Proceedings of the 18th ACM conference on Computer and communications
security, CCS ’11, pages 715–724, New York, NY, USA, 2011. ACM.

31. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES). Federal Information Processing Standards Publications, FIPS-
197, 2001.

32. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Safavi-
Naini and Canetti [34], pages 681–700.

33. Benny Pinkas, Thomas Schneider, Nigel Smart, and Stephen Williams. Secure two-
party computation is practical. In Mitsuru Matsui, editor, Advances in Cryptology
– ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer Berlin /
Heidelberg, 2009.

34. Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Sci-
ence. Springer, 2012.

A Carter-Wegman MAC protocol proof

As the computation of Carter-Wegman hash function is essentially a matrix-
vector multiplication over the field F2, we can use an optimisation technique,
which is applicable in many other matrix multiplication settings. The corre-
sponding protocol is depicted as Protocol 4. We use double brackets to denote
secret shared values, e.g. the secret shared version of s = s1⊕s2⊕s3 is shown as
[[s]], where party Pi holds si. For double indices, the second index shows which

Input-oputput specification

Protocol input is a shared s-bit value [[m]] and shared s-bit keys [[k1]], . . . , [[k`]].
Protocol output is a shared `-bit MAC value [[c]].

Precomputation phase

1. Each miner Pi generates ` random bits r1i , . . . , r
`
i ← Z2.

Data distribution phase

3. Miner P1 sends s-bit shares m1, k1,1, . . . , k`,1 to P2.
Miner P2 sends s-bit shares m2, k1,2, . . . , k`,2 to P3.
Miner P3 sends s-bit shares m3, k1,3, . . . , k`,3 to P1.

Post-processing phase

5. Each miner Pi computes wt
ij ← mt

i ∧ ktj,i ⊕mt
i−1 ∧ ktj,i ⊕mt

i ∧ ktj,i−1

for each key j ∈ {1, . . . , `} and bit t ∈ {1, . . . , s} and sums them
up together with re-randomisation cji ← w1

ij ⊕ · · · ⊕ ws
ij ⊕⊕rji ⊕ r

j
i−1.

Protocol 4: More efficient protocol for Carter-Wegman MAC

party holds the bitstring and the first shows for which output bit it will be used
for. Since all values are bitwise shared, we can operate with individual bits of
the shares. Operations on individual bits use superscript bit index notation.

Theorem 7. Assume that the shares of m are correctly generated. Then Proto-
col 4 is correct and secure against single passively corrupted miner.

Proof (Sketch). For each bit cj of MAC the correctness follows from

[[cj]] =

3⊕
i=1

(
s⊕

t=1

mt
i ∧ ktj,i ⊕mt

i−1 ∧ ktj,i ⊕mt
i ∧ ktj,i−1

)
⊕ rji ⊕ r

j
i−1

=

3⊕
i=1

s⊕
t=1

(
mt

i ∧ ktj,i ⊕mt
i−1 ∧ ktj,i ⊕mt

i ∧ ktj,i−1
)

=

s⊕
t=1

(mt ∧ ktj) = h(kj ,m)

since the inner most sum contains all combinations of ma ∧ kb.
For the security analysis, it is sufficient to consider the corruption of P2 who

receivers all shares owned by P1. Note that two shares out of three have always
uniform distribution. Hence, it is trivial to simulate all messages received by
P2. Since P2 is semihonest, the simulator can extract shares of the message and
keys from the input of P2 and submit them to the trusted party who will return
shares c12, . . . , c

`
2. Since the simulator knows what random values r12, . . . , r

`
2 P2 is

going to use, it can pick r11, . . . , r
`
1 so that P2 will indeed output c12, . . . , c

`
2. We

leave the detailed analysis of the simulation construction to the reader. ut

	From oblivious AES to efficient and secure database join in the multiparty setting

