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Abstract

Non-malleable codes provide a useful and meaningful security guarantee in situations where tra-
ditional error-correction (and even error-detection) is impossible; for example, when the attacker
can completely overwrite the encoded message. Informally, a code is non-malleable if the message
contained in a modified codeword is either the original message, or a completely unrelated value.
Although such codes do not exist if the family of “tampering functions” F is completely unre-
stricted, they are known to exist for many broad tampering families F . One such natural family
is the family of tampering functions in the so called split-state model. Here the message m is
encoded into two shares L and R , and the attacker is allowed to arbitrarily tamper with L and R
individually. The split-state tampering arises in many realistic applications, such as the design of
non-malleable secret sharing schemes, motivating the question of designing efficient non-malleable
codes in this model.

Prior to this work, non-malleable codes in the split-state model received considerable attention
in the literature, but were constructed either (1) in the random oracle model, or (2) relied on
advanced cryptographic assumptions (such as non-interactive zero-knowledge proofs and leakage-
resilient encryption), or (3) could only encode 1-bit messages. As our main result, we build the first
efficient, multi-bit, information-theoretically-secure non-malleable code in the split-state model.

The heart of our construction uses the following new property of the inner-product function
〈L,R〉 over the vector space Fn

p (for a prime p and large enough dimension n): if L and R
are uniformly random over Fn

p , and f, g : Fn
p → Fn

p are two arbitrary functions on L and R ,
then the joint distribution (〈L,R〉, 〈f(L), g(R)〉) is “close” to the convex combination of “affine
distributions” {(U, aU + b) | a, b ∈ Fp} , where U is uniformly random in Fp . In turn, the proof
of this surprising property of the inner product function critically relies on some results from
additive combinatorics, including the so called Quasi-polynomial Freiman-Ruzsa Theorem which
was recently established by Sanders [San12] as a step towards resolving the Polynomial Freiman-
Ruzsa Conjecture [Gre05].
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1 Introduction

The problem of reliable storage/transmission of information is one of the oldest and fundamental
problems of information theory. The basic problem can be abstracted as the question of designing an
efficient way to encode/decode the message m , so that the resulted codeword c = Enc(m) is “resilient”
against some natural class of error or tampering functions F . In more detail, one can imagine the
attacker can choose an arbitrary (unknown) tampering function f ∈ F and modify the real codeword
c into a corrupted codeword c′ = f(c), and the goal of a good coding scheme (Enc,Dec) is to protect
against such tampering attacks. Depending on the richness of the tampering class F , one can demand
various security guarantees from such an encoding.

Error-Correcting Codes. The most desirable such guarantee would be error-correction, which
demands that m can be correctly recovered (possibly, with high probability) from c′ . This has led to
the rich theory of error-correcting codes, which provide such error-correction for the natural family of
functions F which flip some (small) subset of the bits (or symbols) of the encoding. Still, as useful
and natural error-correcting codes are, in some situations the tampering function f ∈ F might either
exceed the maximum number of errors for reliable error-correction, or might even touch the entire
codeword in some natural yet restricted way (see below). In such settings one must relax the notion
of error-correction to some meaningful weaker notion.

Error-Detecting Codes. One such notion is error-detection, which guarantees that the decoding
of the corrupted codeword c′ = f(c) will almost never output some message m′ 6= m , but is allowed
to output a special symbol ⊥ when it detects some tampering that cannot be corrected reliably. For
example, any (deterministic) code capable of correcting d Hamming errors must be able to reliably
detect at least 2d errors. More interestingly, error-detecting codes allow one to possibly handle
useful tampering classes F where there is no hope for meaningful error-correction. One such class of
tampering functions was considered by Cramer et al. [CDF+ 08] and consists of all functions f∆(c) =
c+∆ which add a fixed offset ∆ to the codeword c in some appropriate group (e.g., such a function can
flip every bit c when addition is ⊕). Notice that error-correction is indeed impossible here, since the
attacker can simply choose a random offset ∆ to completely erase any information about the original
message m . More interestingly, although this class might seem somewhat artificial at the first glance,
the authors showed that developing error-detecting codes — which they called algebraic-manipulation
detection (AMD) codes — for this class has useful applications to the design of so called robust secret
sharing schemes and robust fuzzy extractors [BDK+ 05, DKRS06]. Finally, unlike error-correction
codes, which can be deterministic, AMD codes must be probabilistic, since otherwise the attacker can
set ∆ = c1 − c for some valid codeword c1 .

Non-malleable Codes. Unfortunately, even error-detecting codes are rather limited in some sit-
uations, since they cannot protect a natural tampering function f(c) which simply overwrites the
codeword c by another fixed (and valid) codeword c∗ . This basic attack is quite natural both in the
message transmission scenario (where the channel might simply block the original encoded message,
and send a different message instead), and in the secure storage scenario (where the attacker might
be able to format the hard-drive, for example). Until recently, it was believed that handling such
“constant” tampering functions is impossible without having any secrets, and using tools from cryp-
tography (such as signatures or message authentication codes) is essential for preventing more general
tampering attacks. Fortunately, Dziembowski, Pietrzak and Wichs [DPW10] recently showed that
this belief is overly pessimistic, and introduced a natural and beautiful relaxation of error-detecting
codes which they called non-malleable codes (with respect to a given family F ). Intuitively, such a
non-malleable code ensures that the decoded message m′ = Dec(f(Enc(m))) is either (a) equal to m
(tampering corrected); or (b) equal to ⊥ (tampering detected); or (c) completely “unrelated” to the

2



original message m .1 Moreover, one can figure out which of the scenarios (a)-(c) happens by just
looking at the function f (independent of the original message m , to ensure that the choice of the
tampering (a)-(c) is not correlated with the message m). In other words, non-malleable codes aim
to handle a much larger class of tampering functions F at the expense of potentially allowing the
attacker to replace a given message m by an unrelated message m′ . We also allow a small “simulation
error” ε , which can be understood as an upper bound on the probability that none of the scenarios
(a)-(c) occurs, i.e. an upper bound on the probability that the adversary succeeds in mauling the
codeword to decode to a related message. Notice that as is the case for AMD codes, we allow the
encoding function for non-malleable codes to be probabilistic. This is essential for the formal security
definition that we will introduce in Section 2.

The authors of [DPW10] also showed that non-malleable codes are still useful in many scenarios
where the tampering capabilities of the attacker might be too strong for error-detection. For example,
imagine a tamper-prone signature card storing a signing key sk and some “context information” α
(e.g., the timestamp or some legal disclosure), which will return a signature σ of (α, β) when given
an input message β . Imagine now the attacker would like to change α (which he knows) to some
related value α′ 6= α , in the hope of obtaining an “illegal” signature of (α′, β). If m = (sk, α) is
encoded using a non-malleable code, then we are guaranteed that the signature σ′ obtained by the
attacker will either contain the correct value of α , or will not verify anyway, since changing α to α′

will also force the attacker to change the signing key sk to a completely unrelated value sk′ , making
the resulting signature σ′ (under sk′ ) “useless”.

Given the elegance and utility of non-malleable codes, it is natural to understand the tampering
families F for which such codes exist. As the first observation, we cannot hope to include all possible
tampering functions, since F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c))) for
any non-trivial function f ′ (as m′ = Dec(f(c)) = f ′(m) is obviously related to m). On the other hand,
[DPW10] showed the following positive results. First, they showed an existence result for any family
F which is only slightly smaller than the family Fall of all functions. Second, they showed an efficient
non-malleable code for the family Fbit of “individual” bit-tampering functions f . Although pretty
restricted, Fbit includes all constant functions f(c) = c∗ (something which cannot be error-detected),
and all algebraic manipulation functions f(c) = c+ ∆ over Fn2 mentioned earlier.

Split-State Model. This raises the question of finding a much larger family F which is (1) general
and realistic from the application point of view; but (2) naturally does not include the re-encoding
function to avoid the impossibility. The authors of [DPW10] propose to solve this dilemma in the fol-
lowing very elegant way, by defining the so called split-state model. The model was originally proposed
in the context of leakage-resilient cryptography [DP08, DDV10], but it is also very natural from the
perspective of tampering. Imagine that the encoded memory/state of the system is partitioned into
several disjoint parts P1, . . . , Pt , and the family Ft of tampering functions consists of all functions
f = (f1, . . . , ft) where fi is only applied to the data stored in the partition Pi . To put it differently,
the message m is split into t shares s1, . . . , st , and the attacker can arbitrarily tamper with each
share independently2 by changing it to s′i = fi(si). Still, the decoded message m′ = Dec(s′1, . . . , s

′
t) is

either equal to m , ⊥ or unrelated to m (as explained above).

As we can see, split-state tampering is very natural from the application point of view, espe-
cially when t is low and the shares s1, . . . , st are stored in different parts of memory, or by different
parties. Indeed, a non-malleable code with respect to Ft can be viewed as a type of non-malleable
secret sharing scheme. Recall, in traditional secret sharing schemes one primarily worries about the

1The formal definition (see Definition 2) is also quite clean and elegant, following the standard “simulation paradigm”
for other such definitions.

2Of course, we allow f1 . . . ft to be correlated, but each fi can only look at si , and not at the other sj ’s.
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privacy of the secret m against a certain bounded coalition of shares si (which clearly cannot include
all the t shares). Robust secret sharing schemes, considered by [CDF+ 08] (which used the AMD
codes mentioned earlier), additionally ensure that a bounded coalition of players cannot maliciously
modify their shares and cause the reconstruction of some secret m′ 6= m . Once again, the coalition
cannot include all t players. In contrast, a non-malleable secret sharing scheme, induced by a non-
malleable code in the split-state model, provides the non-malleability of the secret m (as explained
above) even if all t shares are individually modified, something which was never previously considered
possible/meaningful in the secret sharing literature.

Coming back to the split-state model, it also overcomes the impossibility result mentioned earlier,
since the decoding function will depend on all the shares s1, . . . , st (something which is not allowed
by the tampering function f ). Moreover, since Ft is indeed noticeably smaller than Fall for t > 1, we
know that non-malleable codes exist in the split-state model using the existential result from [DPW10].
In fact, the bit-wise tampering family Fbit mentioned above can be viewed as an extreme setting of
the split-state model, where each share si is only 1 bit (making it rather unrealistic for applications).
In particular, it is clear that as t decreases, the tampering family Ft becomes larger (i.e., more
realistic), and the problem of building non-malleable codes with respect to Ft correspondingly becomes
harder, becoming the hardest when t = 2. Hence, from now on we will concentrate on the most
useful/ambitious case of only two partitions/shares (“left” and “right”), which we will denote by L
and R in the sequel.

Summarizing the above discussion, this leads us to the main question of this work:

Main Question: Build an efficient non-malleable code in the (two-partition) split-state model.

Known Results. As we mentioned, this question is not new, and several partial results were
known prior to our work. First, we already mentioned the existential result of [DPW10] showing the
existence of such non-malleable codes. Second, the work of [DPW10] also gave an efficient construc-
tion in the random oracle model. Third, the work of Liu and Lysyanskaya [LL12] built an efficient
computationally-secure non-malleable code in the split model (necessarily restricting the tampering
functions f1 and f2 to be efficient as well). The construction assumes a so-called common refer-
ence string (CRS) which cannot be tampered with, and also uses quite heavy tools from public-key
cryptography, such as robust non-interactive zero-knowledge proofs [DSDCO+ 01] and leakage-resilient
encryption [NS09]. Thus, given the clean information-theoretic definition of non-malleable codes, we
believe it is important to construct such codes unconditionally.

Recently, an important step in this direction was taken by Dziembowski, Kazana and Obrem-
ski [DKO13], who constructed a very elegant non-malleable code for 1-bit messages in the split-state
model. Their construction is very simple. Both shares L and R lie in an n-dimensional vector space
Fn (for a large enough constant n and a finite field F of exponential-size). To encode 0, one chooses
a random pair of orthogonal vectors L and R (〈L,R〉 = 0), and to encode 1 one chooses a random
pair of non-orthogonal vectors L and R (〈L,R〉 6= 0). Despite the simplicity of this construction, the
security proof given by [DKO13] was quite involved, and introduced several novel techniques, such as
characterizing a given tampering function f1 or f2 as being “close” or “far” from a constant. Un-
fortunately, given the asymmetric nature of their construction (i.e., encodings of 0 and 1 are very
different) and several other “bit-specific” proof techniques they use,3 it is unclear how to extend the
proof (or even construction) to the much more useful case of encoding longer than 1 bit messages.

To summarize, despite lots of partial progress, the question of constructing efficient, information-
theoretically secure non-malleable codes for long messages was still open prior to our work.

3I.e., a special characterization of non-malleable codes for 1-bit messages.
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Our Result. Let non-malleable codes with simulation error ε be called ε-non-malleable codes. As
our main result, we resolve this open problem:

Theorem 1 For every k and ε > 0, there exists a polyomial-time (in k and log(1
ε )) information-

theoretically secure ε-non-malleable code for encoding k -bit messages in the (two-partition) split-state
model.

As we discuss below, our code is very simple and efficient relative to the length N of the shares L and
R (i.e., given N , our encoding and decoding are both very simple). On the other hand, the minimal
length N = poly(k, log(1/ε)) which is sufficient for our security proof is governed by the current
state-of-the-art in additive combinatorics. We discuss this in more detail below and in Section 7, here
only mentioning that the current provable bound is N = O((k + log(1/ε))7) (which is very likely
sub-optimal).

Our code is constructed in two steps. The first (and much simpler) step constructs a non-malleable
code (Enc′,Dec′) for an intermediate tampering family Faff consisting of all affine functions f(y) =
ay + b over some (sufficiently large) finite field Fp of prime order, where a, b ∈ Fp are arbitrary
constants. Notice, such Fp -affine family is rather natural and again includes all constant functions
(corresponding to a = 0), as well as all algebraic manipulation functions over Fp (corresponding to
a = 1), potentially making our intermediate non-malleable code interesting in its own right. The
actual code over the message space M is constructed by building what we call an affine-evasive
function h : Fp → M∪ {⊥} . Informally, such functions are surjective functions that not only send
most field elements u to ⊥ , but also guarantee that h(au+ b) = ⊥ for most u such that h(u) = m ,
for any message m and a, b where (a, b) 6= (1, 0) and a 6= 0 (i,e., excluding the trivial identity and
constant functions, respectively). As a result, the non-malleable code for Faff easily follows by setting
Dec′ = h and defining Enc′(m) as a uniformly random U such that h(U) = m . Moreover, we give a
construction of such affine-evasive functions h using an affine-evasive set constructed in [Agg15].

The second (and more involved) step can be seen as reducing the task of building a non-malleable
code for the split-state model to the non-malleable code for the Fp -affine function. In particular, we
simply use the inner product function over the n-dimensional vector space Fnp (for a large enough
n , discussed below) as our reduction. A bit more formally, Enc(m) first computes the intermediate
encoding y ← Enc′(m) for the affine family above, and then picks random shares L and R whose
inner product is y : 〈L,R〉 = y . Thus, our construction is similar in spirit to the 1-bit construction of
[DKO13], except we treat all messages in a symmetric manner, and ensure that a random pair (L,R)
decodes to ⊥ with high probability. We then show the soundness of our reduction from the split-state
model to the Fp -affine model, by showing the following key theorem about the “non-malleability” of
the inner product function:

Theorem 2 (Informal) Assume Fp is a finite field of prime order, n ≥ poly(log p)), L and R are
uniformly random over Fnp , and f, g : Fnp → Fnp are two arbitrary functions on L and R . Then,
the joint distribution (〈L,R〉, 〈f(L), g(R)〉) is “close” to a convex combination of affine distributions
{(U, aU + b) | a, b ∈ Fp}, where U is uniformly random over Fp .

The formal statement appears in Theorem 3. Intuitively, though, the above result shows that the
inner product function effectively maps the (seemingly) very powerful split-state tampering (given by
arbitrary functions f and g ) to a convex combination of much more basic affine functions ay+b (which,
in turn, are protected by our “inner” non-malleble code). Not surprisingly, the proof of Theorem 2
(or, more accurately, Theorem 3) forms the main technical contribution of our work, and may be of
independent interest. It is detailed in Section 5, but crucially relies on an improvement we give to the
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linearity test of [Sam07] for functions f : Fnp → Fnp (see Theorem 6), which in turn relies on several
results from additive combinatorics. Theorem 6 can be seen as an improvement of the linearity test of
[Sam07] for functions f : Fnp → Fnp . The key ingredient resulting in this improvement is the so called
Quasi-polynomial Freiman-Ruzsa Theorem, which was recently established by Sanders [San12] as a step
towards resolving the Polynomial Freiman-Ruzsa (PFR) conjecture [Gre05]. We refer to Section 5.3
and Section 6 for more details on specific parameters and how they are used to establish Theorem 3,
but mention that the (likely) sub-optimality of Sander’s result is the main reason for a relatively large
dimension n ≈ log6 p = O((k + log(1/ε))6) of the vector space Fnp for our non-malleable encoding
of k -bit messages, which leads to an even larger encoding length N = n log p = O((k + log(1/ε))7).
In fact, under the standard PFR conjecture, our construction is secure for N = O((k + log(1/ε))2),
and we conjecture that it might even be secure when n = O(1), which would lead to a constant-rate
non-malleable code. We refer to the “Conclusions” Section 7 for more discussion of the parameters.

Other Related Work. In addition to the already-mentioned results of [DPW10, LL12, DKO13],
several recent works [CCFP11, CCP12, CKM11] either used or built various non-malleable codes, but
none concentrated on the split-state model considered here.

The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN00], and has found
many applications in cryptography. Traditionally, non-malleability is defined in the computational
setting, but recently non-malleability has been successfully defined and applied in the information-
theoretic setting (generally resulting in somewhat simpler and cleaner definitions than their compu-
tational analogues). For example, in addition to non-malleable codes studied in this work, the work
of Dodis and Wichs [DW09] defined the notion of non-malleable extractors as a tool for building
round-efficient privacy amplification protocols.

Finally, the study of non-malleable codes falls into a much larger cryptographic framework of
providing counter-measures against various classes of tampering attacks. This work was pioneered
by the early works of [ISW03, GLM+ 03, IPSW06], and has since led to many subsequent models.
Listing all such tampering models (which are not directly related to the study of non-malleable codes)
is beyond the scope of this work, but we refer to [KKS11, LL12] for an excellent discussion of various
such models.

Subsequent Work. Also, following our work, there has been several works on non-malleable
codes [CG14a, CG14b, CGM+ 15, FMVW13, FMNV14, CMTV15, AGM+ 15b, JW15, AGM+ 15a,
CDTV16], and several others in the split-state model [CZ14, ADKO15b, ADKO15a, CGL15, Li16,
DNO16, AAnHKM+ 16, AKO]. Cheraghchi and Guruswami [CG14b] defined a notion of non-malleable
t-source extractors, and showed that a construction of non-malleable t-source extractors would im-
ply non-malleable codes against t-split-state adversaries. Additionally, Cheraghchi and Guruswami,
in [CG14a] showed that there exist (inefficient) non-malleable codes in the N -bit split-state model
where N = k(1 + o(1)). Some recent results [CGL15, Li16] have obtained improved constructions of
non-malleable codes in the 2-split-state model using the generic reduction of [CG14b].

2 Preliminaries

All logarithms are in base two. Unless stated otherwise, Fp is a finite field of prime order p .

Distributions. Let D be a discrete distribution. We denote by D[x] the probability it assigns to x ,
and by X ∼ D a random variable distributed according to D over a set X . For two distributions
D,D′ their statistical distance is

∆(D;D′) := 1
2

∑
x

|D[x]−D′[x]| .
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Equivalently, we have the following:

∆(D;D′) := max
Z⊆X

|
∑
x∈Z

(D[x]−D′[x])|

Let D be a family of distributions. We denote by ∆(D;D) the infimum of ∆(D;D′) over all D′ ∈ D .

A convex combination of distributions D1, . . . , Dk is any distribution D for which

D[x] =
∑

αiDi[x],

for all x , where αi ≥ 0 and
∑
αi = 1.

The min-entropy of a distribution is H∞(D) = minx log(D[x]−1). For a finite set S we denote by
US the uniform distribution over S . By x ← S , we denote that x is chosen uniformly at random
from S . Note that H∞(US) = log |S| . Moreover, if D is a distribution with min-entropy k then D
is a convex combination of distributions uniform over sets of size 2k [V+ 12].

We denote random variables by X,L,R . Let E be an event. We denote by X|E the conditional
random variable, conditioned on E holding. For a set S we shorthand X|S = X|[X ∈ S] . When
there is no chance of confusion, we use interchangeably a random variable to denote also its underlying
distribution.

Inequalities on distributions far from uniform. We will need the following claims. Their proofs can
be found in the appendix.

Claim 1 Let X ∈ S be a random variable for some set S . Assume that ∆(X ; US) = ε. Then if X ′

is an i.i.d copy of X then
1

|S|
+ 4ε2 ≥ Pr[X = X ′] ≥ 1 + 4ε2

|S|
.

Claim 2 Let Z = (X,Y ) ∈ Fnp × Fnp be a random variable, and let Z ′ = (X ′, Y ′) be an i.i.d copy of
Z . Then

Pr[〈X,Y 〉 = 〈X ′, Y ′〉] ≤ Pr[〈X,Y 〉 = 〈X ′, Y 〉].

Claim 3 Let X = (X1, X2) ∈ Fp × Fp be a random variable. Assume that for all a, b ∈ Fp not both
zero, ∆(aX1 + bX2 ; UFp) ≤ ε. Then ∆((X1, X2) ; UF2

p
) ≤ εp

√
2.

Claim 4 Let X1, X2, Y1, Y2 ∈ A be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then, for
any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

The Hadamard extractor. The Hadamard extractor is one of the most basic two-source extractors,
based on inner product. We would need the following folklore result. A proof can, for example, be
found in [LLTT05].

Lemma 1 Let L and R be independent random variables over Fnp . If

H∞(L) + H∞(R) ≥ (n+ 1) log p+ 2 log

(
1

ε

)
,

then
∆((L, 〈L,R〉) ; (L,UFp)) ≤ ε and ∆((R, 〈L,R〉) ; (R,UFp)) ≤ ε.
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3 The joint probability distribution of (〈L,R〉, 〈f(L), g(R)〉)

Let Fp be a finite field of prime order. Let L,R ∈ Fnp be uniform and independent. Let f, g : Fnp → Fnp
be a pair of functions. We consider the following family of distributions

φf,g(L,R) := (〈L,R〉, 〈f(L), g(R)〉) ∈ F2
p

We characterize in this section the possible joint distributions of φf,g(L,R) over F2
p for arbitrary

functions f, g . In order to build intuition, let us first consider a few of possible distributions achievable
this way.

• f(L) = (a, 0, . . . , 0), g(R) = (1, 0, . . . , 0) for a ∈ Fp . Then φf,g(L,R) has a distribution that is
statistically very close to (U, a) where U ∈ Fp is uniform.

• f(L) = aAL, g(R) = (AT )−1R for some a ∈ Fp , and invertible matrix A ∈ Fn×np . Then
φf,g(L,R) has a distribution that is statistically very close to (U, aU) where X ∈ Fp is uniform.

In general, by choosing f, g as an arbitrary mix of the above, we can achieve nearly any convex
combination of {(U, a) : a ∈ Fp} and {(U, aU) : a ∈ Fp} , where U is uniform in Fp . For a large
number of choices of f, g , these are the only possible distributions of φf,g(L,R). The following,
however, shows an example of f, g for which φf,g(L,R) has statistical distance about 1/p from any
of these distributions.

• Fix v ∈ Fnp with 〈v, v〉 = 1. Let f(L) = L+〈L, v〉v, g(R) = R−〈R, v〉v . Then φf,g(L,R) is very
close to being distributed as (U,U + XY ) where U,X, Y ∈ Fp are uniform and independent.
Note that the distribution of XY is not uniform, as it is equal to zero with probability 2/p−1/p2

instead of 1/p .

We do not have a complete characterization of all possible distributions φf,g(L,R). However,
our main technical result is that any such distribution is arbitrarily close to a convex combination of
(U, aU + b) where a, b ∈ Fp if n is large enough. Define D to be the family of convex combinations of
{(U, aU + b) : a, b ∈ Fp} where U ∈ Fp is uniform. This will be sufficient to analyze our construction
of non-malleable codes.

Theorem 3 There exist absolute constants c, c′ > 0 such that the following holds. For any finite field
Fp of prime order, and any n > c′ log6 p, let L,R ∈ Fnp be uniform, and fix f, g : Fnp → Fnp . Then

∆(φf,g(L,R) ; D) ≤ 2−cn
1/6
.

We give a proof of this theorem in Section 5.

4 Non-malleable Codes

Definitions. We first recall the definition of non-malleable codes from [DPW10].

Definition 1 A coding scheme consists of two functions: a randomized encoding function Enc :M→
C , and a deterministic decoding function Dec : C → M ∪ {⊥} such that, for each m ∈ M ,
Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encoding algorithm).
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Definition 2 Let F be some family of tampering functions. For each f ∈ F , and m ∈ M , define the
tampering-experiment

Tamperfm :=

{
c← Enc(m), c̃← f(c), m̃ = Dec(c̃)

Output: m̃.

}
which is a random variable over the randomness of the encoding function Enc . We say that a coding
scheme (Enc,Dec) is ε-non-malleable with respect to F if for each f ∈ F , there exists a distribution
(corresponding to the simulator) Df over M∪ {⊥, same∗} , such that, for all m ∈ M , we have that
the statistical distance between Tamperfm and

Simf
m :=

{
m̃← Df

Output: m if m̃ = same∗, and m̃, otherwise.

}
is at most ε . Additionally, Df should be efficiently samplable given oracle access to f(·).

Our result. For any ε > 0, and any K ∈ N , we give an encoding scheme from M = {1, . . . ,K} to
Fnp ×Fnp (where p = (Kε )Θ(log log(K/ε)) , and n = Θ(log6 p)) that is ε-non-malleable with respect to the
family of all functions in the split state model, i.e., all functions (f, g) : Fnp × Fnp → Fnp × Fnp , where f
and g are functions from Fnp → Fnp , and (f, g)(x, y) = (f(x), g(y)), for all x, y ∈ Fnp . Our construction
proceeds as follows.

• In Section 4.1, we construct an encoding scheme from M to Fp that is non-malleable with
respect to the class of all affine functions over Fp .

• In Section 4.2, we use Theorem 3 to argue that we can reduce the problem of constructing
an encoding scheme from M to Fnp × Fnp that is non-malleable in the split state model to the
problem of constructing an encoding scheme from M to Fp that is non-malleable with respect
to the class of all affine functions over Fp . We then use the result of Section 4.1 to conclude the
result.

For the subsequent sections, we denote by U a random variable distributed uniformly over Fp .

4.1 A non-malleable encoding scheme with respect to affine functions

For any K ∈ N and any ε > 0, we will construct an encoding scheme from M = {1, . . . ,K} to a
finite field Fp of prime order p , where p = (Kε )Θ(log log(K/ε)) that is ε-non-malleable with respect to
the family of affine functions Faff over Fp , i.e.,

Faff := {f(y) = ay + b : a, b ∈ Fp}.

Construction. For our construction, we use affine-evasive functions, defined as follows: A surjective
function h : Fp → M∪ {⊥} is called (γ, δ)-affine-evasive if for any a, b ∈ Fp such that a 6= 0, and
(a, b) 6= (1, 0), and for any m ∈M ,

• Pr(h(aU + b) 6= ⊥) = Pr(h(U) 6= ⊥) ≤ γ

• Pr(h(aU + b) 6= ⊥ | h(U) = m) ≤ δ

• A uniformly random X such that h(X) = m is efficiently samplable

9



Let h : Fp →M∪{⊥} be a (γ, δ)-affine-evasive function. The scheme is defined using h as follows:
The encoding function is defined as Enc(m) = X where X is chosen at random from Fp conditioned
on the fact that h(X) = m . The decoding function Dec : Fp →M∪{⊥} is defined as Dec(x) := h(x).

Theorem 4 Let M = {1, . . . ,K} and let Fp be a finite field. Let Faff ,Enc : M → Fp,Dec : Fp →
M∪ {⊥} be as defined above. The scheme (Enc,Dec) is (γ + δ + 1

p)-non malleable with respect to
Faff .

We now give a proof of Theorem 4.

Simulator. For any function f ∈ Faff , we define the distribution Df over M∪ {⊥, same∗} as the
output of the following (efficient) sampling procedure:

1. Choose x← Fp .

2. If f(x) = x , then output same∗ , else output h(f(x)).

The distribution Df can thus be expressed as:

Df =

{
same∗ with prob. Prx←Fp(f(x) = x)

m′ with prob. Prx←Fp (h(f(x)) = m′, and f(x) 6= x) ,

where m′ ∈M∪ {⊥} .

Security Proof. Consider some m ∈ M , and some f ∈ Faff given by f(y) = ay + b for some

a, b ∈ Fp . The random variable Tamperfm (abbreviated as Tamper
(a,b)
m ) has the following distribution

for all m′ ∈M∪ {⊥} .

Pr(Tamper(a,b)m = m′) = Pr
(
h(aU + b) = m′ | h(U) = m

)
(1)

The random variable corresponding to the simulator Simf
m (denoted as Sim

(a,b)
m ) has the following

distribution for all m′ ∈M∪ {⊥} .4

Pr(Sim(a,b)
m = m′) =

{
Pr (h(aU + b) = m′ ∧ U 6= aU + b) if m′ 6= m

Pr
(
U = aU + b ∨ (h(aU + b) = m ∧ U 6= aU + b)

)
if m′ = m

. (2)

Lemma 2 For any m ∈M, any a, b ∈ Fp , and any (γ, δ)-affine evasive function h,

∆
(
Sim(a,b)

m ; Tamper(a,b)m

)
≤ γ + δ +

1

p
.

Proof. If (a, b) = (1, 0), then Pr(Sim
(a,b)
m = m) = Pr(Tamper

(a,b)
m = m) = 1, and so

∆
(
Sim(a,b)

m ; Tamper(a,b)m

)
= 0 .

Thus, we may assume (a, b) 6= (1, 0). This implies that Pr(U = aU + b) ≤ 1
p . Therefore,

∆
(
h(aU + b) ; Sim(a,b)

m

)
≤ 1

p
.

4Recall that Simf
m is defined using the distribution Df .
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If a = 0, then we have ∆
(
h(aU + b) ; Tamper

(a,b)
m

)
= 0. So, we may also assume a 6= 0. We have by

the defintion of statistical distance that

∆
(
Tamper(a,b)m ; h(aU + b)

)
=

1

2
·
∑
m′∈M

∣∣∣Pr(Tamper(a,b)m = m′)− Pr(h(aU + b) = m′)
∣∣∣

+
1

2
·
∣∣∣Pr(Tamper(a,b)m = ⊥)− Pr(h(aU + b) = ⊥)

∣∣∣ .
Using the fact that

∆
(
Tamper(a,b)m ; h(aU + b)

)
≥
∣∣Pr(Tamper(a,b)m = ⊥)− Pr(h(aU + b) = ⊥)

∣∣ ,
we get

∆
(
Tamper(a,b)m ; h(aU + b)

)
≤

∑
m′∈M

∣∣∣Pr(Tamper(a,b)m = m′)− Pr(h(aU + b) = m′)
∣∣∣

≤ Pr(h(aU + b) 6= ⊥ | h(U) = m) + Pr(h(aU + b) 6= ⊥) ≤ γ + δ ,

where the last inequality makes use of the fact that h is (γ, δ)-affine evasive. Therefore, using the
triangle inequality,

∆
(
Sim(a,b)

m ; Tamper(a,b)m

)
≤ γ + δ +

1

p
.

ut
Remark: Note that although we don’t show this formally, the scheme (Enc,Dec) also achieves

error-detection with respect to non-constant affine functions {f(y) = ay + b : a, b ∈ Fp, a 6= 0}.

An affine-evasive function. For any set S ⊂ Z , let aS + b = {as+ b|s ∈ S} . By S mod p ⊆ Fp , we
denote the set of values of S modulo p .

We first define an affine-evasive set S ⊆ Fp .

Definition 3 A non-empty set S ⊆ Fp is said to be (γ, ν)-affine-evasive if |S| ≤ γp , and for any
(a, b) ∈ F2

p \ {(1, 0)} , we have
|S ∩ (aS + b (mod p))| ≤ ν|S| .

We claim that an affine-evasive function can be constructed from an affine-evasive set.

Claim 5 Let S ⊆ Fp be a (γ, ν)-affine-evasive set with ν · K ≤ 1, let K divides |S|, and let
M = {1, . . . ,K}.5 Furthermore, let S be ordered such that for any i, the i-th element is efficiently
computable. Then there exists a (γ, ν ·K)-affine-evasive function h : Fp →M∪ {⊥}.

Proof. Consider any fixed partition of S into K subsets S1, . . . , SK each of cardinality |S|/K . Let
h : Fp →M∪ {⊥} be defined as follows:

h(x) =

{
i if x ∈ Si
⊥ otherwise .

It is straightforward to see that h is a (γ, ν ·K)-affine-evasive function. The statement Pr(h(aU+b) 6=
⊥) ≤ γ is obvious by the definition of S , and the observation that aU + b is uniform in Fp .

5The assumption K divides |S| is just for simplicity.

11



Also, for any m ∈M , and for any (a, b) 6= (1, 0), and a 6= 0,

Pr(h(aU + b) 6= ⊥|h(U) = m) =
Pr(aU + b ∈ S ∧ U ∈ Sm)

Pr(U ∈ Sm)

≤ Pr(aU + b ∈ S ∧ U ∈ S)

|S|/K

=
K

|S|
Pr(U ∈ S ∩ (a−1S − ba−1) (mod p))

≤ ν ·K .

ut
Using the affine-evasive set from [Agg15] that satisfies the condition of Claim 5, we obtain the

following.

Corollary 1 Let M = {1, . . . ,K}. There exists an absolute constant ρ such that for any prime
p ≥ (Kδ )ρ , there exists a (δ, δ)-affine-evasive function h : Fp →M∪ {⊥}.

Using this affine-evasive function in the decoding scheme, we obtain the following corollary using
Lemma 2.

Corollary 2 For any ε > 0, M = {1, . . . ,K} and let p ≥ (4K
ε )ρ be a prime. Then the scheme

(Enc,Dec) is ε-non malleable with respect to Faff . In particular, for any m ∈M, any a, b ∈ Fp ,

∆
(
Sim(a,b)

m ; Tamper(a,b)m

)
≤ ε .

4.2 Non-malleable codes in the split-state model

Now we are in place to give an information-theoretically secure construction of non-malleable codes
in the split-state model.

Construction. We construct an ε-non-malleable encoding scheme from M = {1, . . . ,K} to Fnp ×Fnp ,

where Fp is a finite field of prime order p such that p ≥ (4K
ε )ρ , and n chosen as

(⌈
2 log p
c

⌉)6
(i.e.,

such that 2cn
1/6 ≥ p2 ), where c is the constant from Theorem 3.

The decoding function Dec∗ : Fnp × Fnp →M∪ {⊥} is defined using the Dec function (which was
chosen to be an affine-evasive function h) from Section 4.1 as:

Dec∗(L,R) := Dec(〈L,R〉) = h(〈L,R〉) .

The encoding function is defined as Enc∗(m) := (L,R) where L,R are chosen uniformly at random
from Fnp × Fnp conditioned on the fact that h(〈L,R〉) = m .

We will show that our scheme is ε-non-malleable with respect to the family of all functions (f, g) :
Fnp × Fnp → Fnp × Fnp , where f and g are functions from Fnp → Fnp , and (f, g)(x, y) = (f(x), g(y)), for
all x, y ∈ Fnp . Let us call this family of functions G .

Theorem 5 Let M = {1, . . . ,K} and let p ≥ (4K
ε )ρ be a prime. Let n be

(⌈
2 log p
c

⌉)6
. Let G,Enc∗ :

M → Fnp × Fnp ,Dec∗ : Fnp × Fnp → M ∪ {⊥} be as defined above. Then the scheme (Enc∗,Dec∗ ) is
ε-non malleable with respect to G .

We now give a proof of Theorem 5.
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Simulator. For any functions f, g : Fnp → Fnp , we define the distribution Df,g over M∪ {⊥, same∗}
as the output of the following sampling procedure:

1. Choose L,R← Fnp .

2. If 〈f(L), g(R)〉 = 〈L,R〉 , then output same∗ , else output h(〈f(L), g(R)〉).

Note that this distribution is efficiently samplable given oracle access to f and g . The distribution
Df,g can also be expressed as:

Df,g =

{
same∗ with prob. PrL,R←Fnp (〈f(L), g(R)〉 = 〈L,R〉)
m′ with prob. PrL,R←Fnp (h(〈f(L), g(R)〉) = m′, and 〈f(L), g(R)〉 6= 〈L,R〉) ,

where m′ ∈M∪ {⊥} .

Security Proof. The random variable corresponding to the tampering experiment Tamper
(f,g)
m has

the following distribution for all m′ ∈M∪ {⊥} .

Pr(Tamper(f,g)m = m′) = Pr
(
h(〈f(L), g(R)〉) = m′ | h(〈L,R〉) = m

)
. (3)

The random variable corresponding to the simulator Sim
(f,g)
m has the following distribution for all

m′ ∈M∪ {⊥} .

Pr(Sim(f,g)
m = m′) =

{
Pr
(
h(〈f(L), g(R)〉) = m′ ∧ E

)
if m′ 6= m

Pr
(
E ∨

(
h(〈f(L), g(R)〉) = m ∧ E

))
if m′ = m

, (4)

where L,R are uniformly random in Fnp and E is the event 〈f(L), g(R)〉 = 〈L,R〉 . The above
distribution is then immediate from the definition of Df,g .

From Theorem 3, we get that there exists a random variable (X,Y ) taking values in Fp×Fp such
that

∆ (〈L,R〉, 〈f(L), g(R)〉 ; X,Y ) ≤ 1

p2

and X,Y is a convex combination of {(U, aU + b) : a, b ∈ Fp} , where U is uniformly distributed in
Fp . This implies that there exist {pa,b : a, b ∈ Fp} such that

∑
a,b∈Fp pa,b = 1 and

Pr(X = x, Y = y) =
∑
a,b∈Fp

pa,b Pr(U = x, aU + b = y) ,

for all x, y ∈ Fp .

Using Claim 4 and that ∆ (〈L,R〉, 〈f(L), g(R)〉 ; X,Y ) ≤ 1
p2

, we get that

∆(Tamper(f,g)m ; T ) ≤ 2

p
and ∆(Sim(f,g)

m ; S) ≤ 1

p2
,

where S and T are defined as follows for all m′ ∈M∪ {⊥} :

Pr(T = m′) = Pr
(
h(Y ) = m′ | h(X) = m

)
Pr(S = m′) =

{
Pr (h(Y ) = m′ ∧ Y 6= X) if m′ 6= m

Pr (Y = X ∨ (h(Y ) = m ∧ Y 6= X)) if m′ = m
.
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The statistical distance between S and T is

∆(S ; T ) =
1

2

∑
m′∈M∪{⊥}

∣∣∣Pr(S = m′)− Pr(T = m′)
∣∣∣

=
1

2

∑
m′∈M∪{⊥}

∣∣∣ ∑
a,b∈Fp

pa,b Pr(Sim(a,b)
m = m′)−

∑
a,b∈Fp

pa,b Pr(Tamper(a,b)m = m′)
∣∣∣

≤ 1

2

∑
m′∈M∪{⊥}

∑
a,b∈Fp

pa,b

∣∣∣Pr(Sim(a,b)
m = m′)− Pr(Tamper(a,b)m = m′)

∣∣∣
=

1

2

∑
a,b∈Fp

pa,b
∑

m′∈M∪{⊥}

∣∣∣Pr(Sim(a,b)
m = m′)− Pr(Tamper(a,b)m = m′)

∣∣∣
≤

∑
a,b∈Fp

pa,bε/2 = ε/2 ,

where the last inequality follows from Corollary 2. Therefore, using triangle inequality,

∆
(
Tamper(f,g)m ; Sim(f,g)

m

)
≤ ∆

(
Tamper(f,g)m ; T

)
+ ∆ (T ;S) + ∆

(
S ; Sim(f,g)

m

)
≤ ε

2
+

1

p2
+

2

p
≤ ε ,

thus completing the proof of Theorem 5.

5 Proof of Theorem 3

We recall Theorem 3 for the convenience of the reader, where D was defined to be the family of convex
combinations of {(U, aU + b) : a, b ∈ Fp} where U ∈ Fp is uniform.

Theorem 3 There exist absolute constants c, c′ > 0 such that the following holds. For any finite
field Fp of prime order, and any n > c′ log6 p, let L,R ∈ Fnp be uniform, and fix f, g : Fnp → Fnp . Then

∆(φf,g(L,R) ; D) ≤ 2−cn
1/6
.

We prove Theorem 3 in this section. Let us fix functions f, g : Fnp → Fnp and shorthand φ(L,R) =
φf,g(L,R). An important ingredient in the proof will be conditioning φ on various subsets of Fnp ×Fnp .
We will use the following notation: for any set P ⊂ Fnp × Fnp let φ(L,R)|P denote the conditional
distribution of φ(L,R) conditioned on (L,R) ∈ P . Equivalently, it is the distribution of φ(L,R) for
uniformly chosen (L,R) ∈ P . We will typically be using this applied to product sets P = L ×R for
L,R ⊆ Fnp .

We start with the following simple lemma, showing that it suffices to prove Theorem 3 for partitions
of the ambient space.

Lemma 3 Let P ⊆ Fnp × Fnp . Let P1, . . . ,Pk be a partition of P . Assume that for all 1 ≤ i ≤ k ,

∆
(
φ(L,R)|(L,R)∈Pi ; D

)
≤ εi.

Then

∆
(
φ(L,R)|(L,R)∈P ; D

)
≤
∑

εi
|Pi|
|P|

.
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Proof. The lemma follows immediately from the definitions. For all i let Di ∈ D be such that
∆
(
φ(L,R)|(L,R)∈Pi ; Di

)
≤ εi. Let pi = |Pi|/|P| denote the probability that (L,R) ∈ Pi conditioned

on (L,R) ∈ P . Then φ(L,R) is (
∑
piεi)-close in statistical distance to D ∈ D given by D[(a, b)] =∑

piDi[(a, b)]. ut
We next define a partition of Fnp × Fnp to which we will apply Lemma 3. Let s = b n10c , and

t = b s1/6

c1 log pc , where c1 is some constant that will be chosen later. Note that s � t . We choose the

constant c′ in the statement of Theorem 3 such that t ≥ 3.

We first define a partition L1, . . . ,La of Fnp based on f . Intuitively, Li for 1 ≤ i < a will
correspond to inputs on which f agrees with a popular linear function; and La will be the remaining
elements.

We define L1, . . . ,La iteratively. For i ≥ 1, given L1, . . . ,Li−1 , if there exists a linear map
Ai : Fnp → Fnp for which ∣∣{x ∈ Fnp : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1)

∣∣ ≥ pn−s ,
then set Li to be {x ∈ Fnp : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1). If no such linear map exists, set a := i ,
La := Fnp \ (L1 ∪ . . .∪La−1) and complete the process. Note we obtained a partition L1, . . . ,La of Fnp
with a ≤ ps + 1.

We next define a parition based on g to elements whose output is too popular; and the rest. For
y ∈ Fnp let g−1(y) = {x ∈ Fnp : g(x) = y} be the set of pre-images of y . Define

R0 := {x ∈ Fnp : |g−1(g(x))| ≥ pt}.

and set R1 := Fnp \ R0 . We define the following partition of Fnp × Fnp :

{P0, . . . ,Pa} = {Fnp ×R0,L1 ×R1, . . . ,La ×R1}.

We will argue that for any part, either its probability is small, or the joint distribution of φ(L,R)
conditioned on (L,R) belonging to it, is close to D . We then apply Lemma 3 to obtain a proof of
Theorem 3.

5.1 g is close to constant

We first analyze the distribution conditioned on (L,R) ∈ Fnp ×R0 , that is on inputs x for which g(x)
has many preimages. This case and its analysis has some similarity to a similar result in [DKO13].

Lemma 4 ∆
(
φ(L,R)|Fnp×R0 ; D

)
≤ p−(t−1)/2 .

Proof. Let Y = {y ∈ Fnp : |g−1(y)| ≥ pt} . We can decompose R0 as the disjoint union over y ∈ Y
of g−1(y). By Lemma 3 it suffices to prove the lemma conditioned on R ∈ g−1(y) for all y ∈ Y . Fix
such a y ∈ Y and let Ry = R|g(R)=y denote the conditional random variable. Since by assumption
|g−1(y)| ≥ pt and L ∈ Fnp is uniform, using Lemma 1

∆((〈L,Ry〉, L) ; (U,L)) ≤ p−(t−1)/2,

where U ∈ Fp is uniform indepenent of L,Ry . In particular, noting that g(Ry) is always equal to y ,
we have that

∆ ((〈L,Ry〉, 〈f(L), g(Ry)〉) ; (U, 〈f(L), y〉)) ≤ p−(t−1)/2.

This concludes the proof since (U, 〈f(L), y〉) is in the convex combination of {(U, a) : a ∈ Fp} which
is contained in D . ut
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5.2 f is close to linear

Fix 1 ≤ i < a . We analyze in this subsection the joint distribution for (L,R)|Li×R1 . Let A : Fnp → Fnp
be a linear map so that for all x ∈ Li , f(x) = Ax .

Lemma 5 If |Li ×R1| ≥ p2n−2s then

∆(φ(L,R)|Li×R1 ; D) ≤ 2p−s.

Proof. Let L′ ∈ Li, R′ ∈ R1 be uniform and independent. Note that

〈f(L′), g(R′)〉 = 〈AL′, g(R′)〉 = 〈L′, AT g(R′)〉.

If (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−s -close to UF2
p

we are done since the uniform distribution is in D . If
not, then by Claim 3 there exist a, b ∈ Fp , not both zero, such that

∆(〈L′, aR′ + bAT g(R′)〉 ; UFp) ≥ p−2−s.

Now, by assumption, L′ is uniform over a set of size at least pn−s . Assume that H∞(aR′ +
bAT g(R′)) = k log p . Then, using Lemma 1 gives

∆(〈L′, aR′ + bAT g(R′)〉 ; UFp) ≤ p−(k−s−1)/2.

This means that k ≤ 3s+4 ≤ 4s . So, there exist y ∈ Fnp and a subset R′1 ⊂ R1 of size |R′1| ≥ |R1|·p−4s

such that
ax+ bAT g(x) = y ∀x ∈ R′1.

We clearly cannot have b = 0 since ax = y can hold only for one value of x . So, as b 6= 0 we can
rewrite (and rename the constants for convenience) as

AT g(x) = a1x+ y1 ∀x ∈ R′1.

Let R2 = R1 \ R′1 . We repeat this process with R1 replaced by R2 to get a set R′2 ⊂ R2 of size
|R′2| ≥ |R2| · p−4s and y2 ∈ Fnp such that

AT g(x) = a2x+ y2 ∀x ∈ R′2.

We continue this process to get R3, . . . ,Rb until |Rb| < p−s|R1| or until (L,R)|Li×Rb is p−s close to
UFp×Fp . Note that for j < b we have |R′j | ≥ |Rj | · p−4s ≥ |R1|p−5s .

Consider the partition of Li ×R1 as {Li ×R′1, . . . ,Li ×R′b−1,Li ×Rb} . We argue next that all
the partitions, except for perhaps the last one, induce distributions very close to D .

Claim 6 For 1 ≤ j < b,
∆(φ(L,R)|Li×R′j ; D) ≤ p−s.

Proof. Let L∗ ∈ Li and R∗ ∈ R′j be independent and uniform. We know that 〈f(L∗), g(R∗)〉 =

〈L∗, AT g(R∗)〉 = aj〈L∗, R∗〉+ 〈L∗, yj〉 . Moreover, we know that |Li ×R′j | ≥ |Li ×R1|p−5s ≥ p2n−7s .
So by Lemma 1 we have that

∆(〈L∗, R∗〉, L∗ ; U,L∗) ≤ p(n−7s−1)/2 ≤ p−s
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where the last inequality follows from our assumption that n ≥ 10s . So

∆(〈L∗, R∗〉, 〈f(L∗), g(R∗)〉 ; U, ajU +X) ≤ p−s

where U ∈ Fp is uniform and X ∈ Fp is independent from U and distributed like 〈L∗, yj〉 . As this
distribution is in D this conclude the proof. ut

For all j < b we have that the joint distribution of φ(L,R)|Li×R′j is p−s close to D . Also,

we know that either |Li×Rb|
|Li×R1| ≤ p−s ; or that (L,R)|Li×Rb is p−s close to UFp×Fp , which implies

∆(φ(L,R)|Li×Rb ; D) ≤ p−s . Hence, the lemma follows by Lemma 3. ut

5.3 f is far from linear and g is far from constant

The last partition we need to analyze is La×R1 , corresponding to the case where f is far from linear
and g is far from constant. For this, we need the following result that can be seen as a generalization
of the linearity test from [Sam07] and that is discussed and proved in Section 6.

Theorem 6 Let p be a prime, and n ∈ N. For any ε = ε(n, p) > 0, γ1 = γ1(n, p) ≤ 1, γ2 = γ2(n, p) ≥
1, the following is true. For any function f : Fnp → Fnp , let A ⊆ {(x, f(x)) : x ∈ Fnp} ⊆ F2n

p . If
|A| ≥ γ1 · |Fnp | and there exists some set B such that |B| ≤ γ2 · pn , and

Pr
a,a′∈A

[a− a′ ∈ B] ≥ ε,

then there exists a linear map M : Fnp → Fnp such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ p−O(log6(
γ2
γ1ε

))
.

We will now show that, φ(L,R)|La×R1 is close to uniform over Fp × Fp .

Lemma 6 If |La ×R1| ≥ p2n−t , then

∆(φ(L,R)|La×R1 ; UFp×Fp) ≤ p−t.

In particular,
∆(φ(L,R)|La×R1 ; D) ≤ p−t.

Proof. Let L′ ∈ La, R′ ∈ R1 be uniform and independent. We assume that φ(L′, R′) is not p−t -close
to UFp×Fp , as otherwise the result trivially holds. Then, by Claim 3 there exist a, b ∈ Fp , not both
zero, so that ∆(a〈L′, R′〉+b〈f(L′), g(R′)〉 ; UFp) ≥ p−t−2 . Define functions F,G : Fnp → F2n

p as follows

F (x) = (x, f(x)), G(y) = (ay, bg(y)).

We have that ∆(〈F (L′), G(R′)〉 ; UFp) ≥ p−t−2 . Applying Claim 1, we get that for (L′′, R′′) i.i.d to
(L′, R′) we have

Pr[〈F (L′), G(R′)〉 = 〈F (L′′), G(R′′)〉] ≥ 1

p
+

1

p2t+5
.

Applying Claim 2 with X = F (L′), Y = G(R′), X ′ = F (L′′), Y ′ = G(R′′) we get that

Pr[〈F (L′)− F (L′′), G(R′)〉 = 0] ≥ 1

p
+

1

p2t+5
.
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Define

B :=

{
α ∈ F2n

p : Pr[〈α,G(R′)〉 = 0] ≥ 1

p
+

1

p2t+6

}
.

Let B ∈ B be uniform. Then ∆(〈B,G(R′)〉, UFp) ≥ 1
p2t+6 . Also, since g(y) has at most pt preimages

for any y ∈ Fnp , G(R′) has min-entropy at least log(|R1|p−t) ≥ (n− 2t) log p . Hence, by Lemma 1,
we have H∞(B) ≤ (n+ 6t+ 13) · log p , which implies |B| ≤ pn+6t+13 . Furthermore, we have that

Pr[〈F (L′)− F (L′′), G(R′)〉 = 0] ≤ Pr[F (L′)− F (L′′) ∈ B] +
1

p
+

1

p2t+6
.

So we must have that

Pr[F (L′)− F (L′′) ∈ B] ≥ 1

p2t+5
− 1

p2t+6
≥ 1

p2t+6
.

Thus, using Theorem 6, we get that there exists a linear map M : Fnp → Fnp for which

Pr
x∈Fnp

[Mx = f(x)] ≥ p−O(t6 log6 p) .

This violates the definition of La whenever s ≥ C(t6 log6 p) for a big enough constant C .6 ut

5.4 Putting things together

In this section, we combine the results of Lemmas 4, 5, and 6, and use Lemma 3 to conclude the proof
of Theorem 3.

Proof. Consider the partition P0, . . . ,Pa of Fnp ×Fnp as defined earlier. In the following, let pi denote
|Pi|
p2n

. Note that if for any α, β, i , we have a statement of the form: If pi ≥ α , then ∆(φ(L,R)|Pi ; D) ≤
β . Then this statement implies that

∆(φ(L,R)|Pi ; D) · pi ≤ α+ β · pi .

Thus, using Lemma 3, and the results of Lemmas 4, 5, and 6, we get that

∆(φf,g(L,R) ; D) ≤ ∆(φ(L,R)|P0 ; D) · p0 +
a−1∑
i=1

∆(φ(L,R)|Pi ; D) · pi

+∆(φ(L,R)|Pa ; D) · pa

≤ 1

p(t−1)/2
· p0 +

a−1∑
i=1

(
1

p2s
+

2

ps
· pi
)

+

(
1

pt
+

1

pt
· pa
)

≤ 1

p(t−1)/2

a∑
i=0

pi +
ps

p2s
+

1

pt

≤ 2

p(t−1)/2
≤ 2−cn

1/6
,

for some constant c . ut
6The constant C here determines the choice of the constant c1 used while defining the parameter t .
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6 Generalized linearity testing

We now take a detour and prove Theorem 6 that generalizes the linearity test from [Sam07] for large
fields of prime order. The linearity test in [Sam07] for checking whether a function f : Fnp → Fnp
does the following: It picks x, x′ ∈ Fnp uniformly at random and accepts if and only if f(x − x′) =
f(x)− f(x′). Clearly, this test always accepts if f is linear, and it was shown for p = 2 that the test
rejects with high probability if f is sufficiently far from linear. More precisely, it was shown that for
any ε , if Prx,x′∈Fnp (f(x) − f(x′) = f(x − x′)) ≥ ε , then there exists a matrix M ∈ Fn×np such that
Pr(f(x) = Mx) ≥ ε′ . The dependence of ε′ on ε in the proof of [Sam07] was exponential.

We show here a more general and improved result that we stated in Section 5.3. The key difference
between this proof and the proof of [Sam07] is the use of a recent result by Sanders [San12].

Theorem 6 Let p be a prime, and n ∈ N. For any ε = ε(n, p) > 0, γ1 = γ1(n, p) ≤ 1, γ2 =
γ2(n, p) ≥ 1, the following is true. For any function f : Fnp → Fnp , let A ⊆ {(x, f(x)) : x ∈ Fnp} ⊆ F2n

p .
If |A| ≥ γ1 · |Fnp | and there exists some set B such that |B| ≤ γ2 · pn , and

Pr
a,a′∈A

[a− a′ ∈ B] ≥ ε ,

then there exists a linear map M : Fnp → Fnp such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ p−O(log6(
γ2
γ1ε

))
.

This result improves the linearity test from [Sam07] in several ways (i) The dependence of ε′ on ε
is only quasi-polynomial instead of exponential. (ii) This result is proven for any finite field of prime
order. While the ideas of [Sam07] generalize for larger fields, it results in an exponential dependence
of ε′ on p in addition to that on ε (iii) The linearity test is a special case of our result since we can
obtain it by setting B = A = {(x, f(x)) : x ∈ Fnp} (and hence, γ1 = γ2 = 1).

For the proof of this theorem, we need the following results from additive combinatorics. First we
introduce some notation. Let A′ ⊂ Fnp be a set. We denote by A′ − A′ = {a − a′|a, a′ ∈ A′} the
difference set of A′ . We denote by span(A′) the linear subspace over Fp spanned by A′ .

The following result is due to Balog, Szemeredi, and Gowers [BS94, Gow98]. The current formu-
lation is from a survey of Viola [Vio11], Theorem 3.1. The statement given in [Vio11] is for the case
when the field is p = 2, and A = B , but the proof is essentially the same.

Lemma 7 Let A,B ⊆ Fnp .If Pra,a′∈A[a−a′ ∈ B] ≥ ε then there exists A′ ⊆ A of size |A′| ≥ (ε/3) · |A|
such that |A′ −A′| ≤ 68|B|4

ε8|A|3 .

The following result is of Sanders [San12].

Lemma 8 Let A′ ⊂ Fnp and let |A′ − A′| ≤ K|A′|. Then there exists A′′ ⊆ A′ such that |A′′| ≥
p−O(log6K)|A′| and |span(A′′)| ≤ |A′|.

Finally, we need the following fact in linear algebra. Its proof can be found e.g. in [Vio11], Lemma
5.1.
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Lemma 9 Let f : Fnp → Fnp be a function. Let A′′ ⊂ Fnp × Fnp be a set such that

A′′ ⊆ {(x, f(x)) : x ∈ Fnp}.

Assume furthermore that

εpn ≤ |A′′| ≤ |span(A′′)| ≤ pn

ε
.

Then there exists a linear map M : Fnp → Fnp such that

Pr
(x,f(x))∈A

[f(x) = Mx] ≥ ε3

2p
.

Now we have the tools to complete the proof of Theorem 6.

Proof. First, we apply Lemma 7. We get that there exists a set A′ ⊂ A of size |A′| ≥ Ω(εγ1p
n) for

which |A′ −A′| = O
(
(γ4

2/γ
3
1ε

8)pn
)
. Applying Lemma 8 we get that there exists a subset A′′ ⊂ A′ of

size |A′′| ≤ p−O(log6(
γ2
γ1ε

))|A′| = p
−O(log6(

γ2
γ1ε

)) · pn for which |span(A′′)| ≤ |A′| . Applying Lemma 9 we

get that there exists a linear map M : Fnp → Fnp for which Pr(x,f(x))∈A′′ [Mx = f(x)] ≥ p
−O(log6(

γ2
γ1ε

))
,

which implies Pr(x,f(x))∈A[Mx = f(x)] ≥ p−O(log6(
γ2
γ1ε

))
. ut

7 Conclusions and Open Problems

We give an encoding scheme for k -bit messages to Fnp × Fnp that is ε-non-malleable in the split state
model. Hence, k -bit messages are encoded into N = O(n log p) bits. For our security proof, which is
based on Theorem 3, we need n to be Ω(log6 p), and p is 2Ω((k+log 1/ε) log(k+log 1/ε)) , and thus the size
of the encoding is N = O

(
(k + log 1/ε)7 log7(k + log 1/ε)

)
. We believe that there is a possibility of

reducing the size of both p and n , which will translate into lower N = O(n log p).

The choice of p is governed by the construction of an affine-evasive set in Section 4.1. A recent
work [Agg15] gives a construction of an affine-evasive set S ⊂ Fp where p, |S| are polynomially related.
This implies that we can choose p = 2Θ(k+log 1/ε) giving us a constant rate encoding scheme secure
against affine tampering functions.

Also, Theorem 3 might hold for a smaller value of n . In particular, if we replace Lemma 8 by
the PFR conjecture, then we get that our coding scheme is secure for n being Θ(log p), which means
N = O(log2 p). It is even conceivable that the following stronger variant of Theorem 3 for a constant
n (independent of p) holds, meaning that N = O(log p).

Conjecture 1 There exists absolute constants c, c′ > 0 such that the following holds. For any finite
field Fp of prime order, and any n > c′ , let L,R ∈ Fnp be uniform, and fix f, g : Fnp → Fnp . Then

∆(φf,g(L,R) ; D) ≤ p−cn .

We thus obtain the following corollary using our construction from Section 4.2.

Corollary 3 There exists an ε-non-malleable coding scheme against split-state adversaries from k -bit
messages to two N -bit parts, where

• N = Θ((k + log(1/ε))2) under the PFR conjecture.

• N = Θ(k + log(1/ε)) under Conjecture 1.
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8 Appendix

In this section, we prove the claims we stated in Section 2. The proofs use the following simple
inequality:

n∑
i=1

|xi|2 ≤ (

n∑
i=1

|xi|)2 ≤ n
n∑
i=1

|xi|2 .

Claim 1 Let X ∈ S be a random variable for some set S . Assume that ∆(X ; US) = ε. Then
if X ′ is an i.i.d copy of X then

1

|S|
+ 4ε2 ≥ Pr[X = X ′] ≥ 1 + 4ε2

|S|
.
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Proof. Let px = Pr[X = x] for x ∈ S . Then

Pr[X = X ′]− 1

|S|
=
∑
x∈S

(
px −

1

|S|

)2

≥ 1

|S|

(∑
x∈S

∣∣∣∣px − 1

|S|

∣∣∣∣
)2

=
4ε2

|S|
.

Also,

Pr[X = X ′]− 1

|S|
=
∑
x∈Fp

(
px −

1

|S|

)2

≤

(∑
x∈S

∣∣∣∣px − 1

|S|

∣∣∣∣
)2

= 4ε2 .

ut
Claim 2 Let Z = (X,Y ) ∈ Fnp × Fnp be a random variable, and let Z ′ = (X ′, Y ′) be an i.i.d copy

of Z . Then
Pr[〈X,Y 〉 = 〈X ′, Y ′〉] ≤ Pr[〈X,Y 〉 = 〈X ′, Y 〉].

Proof. We would use the following identity: for a random variable R ≥ 0 we have E[R]2 ≤ E[R2] .
We would actually prove a stronger inequality. For any a ∈ Fp ,

Pr[〈X,Y 〉 = 〈X ′, Y ′〉 = a] ≤ Pr[〈X,Y 〉 = 〈X ′, Y 〉 = a].

Fix a ∈ Fp and define f(x, y) = 1〈x,y〉=a . Then

Pr[〈X,Y 〉 = 〈X ′, Y ′〉 = a] = Pr[〈X,Y 〉 = a]2 = (EX,Y f(X,Y ))2

≤ EY (EXf(X,Y ))2 = Pr[〈X,Y 〉 = 〈X ′, Y 〉 = a].

ut
Claim 3 Let X = (X1, X2) ∈ Fp×Fp be a random variable. Assume that for all a, b ∈ Fp not both

zero, ∆(aX1 + bX2 ; UFp) ≤ ε. Then ∆((X1, X2) ; UF2
p
) ≤ εp

√
2.

Proof. Let X ′ = (X ′1, X
′
2) be i.i.d. as X . By Claim 1, we have that for all a, b ∈ Fp not both zero,

we have that

Pr(aX1 + bX2 = aX ′1 + bX ′2) ≤ 1

p
+ 4ε2 .

Let (A,B) be uniform in F2
p and independent of X,X ′ . Then,

Pr(AX1 +BX2 = AX ′1 +BX ′2) = Pr(AX1 +BX2 = AX ′1 +BX ′2|(A,B) 6= (0, 0)) · Pr((A,B) 6= (0, 0)) +

Pr((A,B) = (0, 0))

≤
(

1

p
+ 4ε2

)
·
(

1− 1

p2

)
+

1

p2
.

Thus,
(

1
p + 4ε2

)
·
(

1− 1
p2

)
+ 1

p2

≥ Pr(AX1 +BX2 = AX ′1 +BX ′2)

= Pr(A(X1 −X ′1) +B(X2 −X ′2) = 0|(X1, X2) 6= (X ′1, X
′
2)) · Pr((X1, X2) 6= (X ′1, X

′
2))

+ Pr((X1, X2) = (X ′1, X
′
2))

= Pr((X1, X2) = (X ′1, X
′
2)) +

1

p
· (1− Pr((X1, X2) = (X ′1, X

′
2)))

Simplifying, we get,

Pr((X1, X2) = (X ′1, X
′
2)) ≤ 1

p2
+ 4ε2(1 + 1/p) ≤ 1

p2
+ 8ε2 .

24



Using the inequality in Claim 1, we get the desired result. ut
Claim 4 Let X1, X2, Y1, Y2 ∈ A be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then,

for any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

Proof.

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) =
1

2

∑
x∈A

∣∣∣Pr(X2 = x | X1 ∈ A1)− Pr(Y2 = x | Y1 ∈ A1)
∣∣∣

≤ 1

2

∑
x∈A

(∣∣∣Pr(X2 = x ∧ X1 ∈ A1)

Pr(X1 ∈ A1)
− Pr(Y2 = x ∧ Y1 ∈ A1)

Pr(X1 ∈ A1)

∣∣∣
+ Pr(Y2 = x ∧ Y1 ∈ A1)

∣∣∣ 1

Pr(Y1 ∈ A1)
− 1

Pr(X1 ∈ A1)

∣∣∣)

≤ ε

Pr(X1 ∈ A1)
+

ε ·
∑
x∈A

Pr(Y1 ∈ A1 ∧ Y2 = x)

Pr(Y1 ∈ A1) · Pr(X1 ∈ A1)

=
2ε

Pr(X1 ∈ A1)
.

ut
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