
On the (re)design of an FPGA-based PUF

P. Grabher, D. Page and M. Wójcik
Department of Computer Science,

University of Bristol,
Merchant Venturers Building,

Woodland Road, Bristol, BS8 1UB, UK.
{grabher,page,wojcik}@cs.bris.ac.uk

Abstract—Physically Unclonable Functions (PUFs) repre-
sent a promising basis for solutions to problems such as
secure key storage, and delivery of higher-level applications
such as authentication. Although effective PUF designs exist
for CMOS-based technologies (e.g., arbiter PUFs), their
implementation on FPGAs remains a challenge (e.g., because
of their routing characteristics). With this in mind, Anderson
described a PUF design specifically tailored towards FPGAs.
In this paper we identify and analyse a flaw in said design
which renders it impractical for security-critical use. We
describe two alternative solutions (relating to different trade-
offs) that eliminate this flaw.

Keywords-FPGA; PUF

I. INTRODUCTION

A vast range of challenges and opportunities has
emerged as a result of the (ongoing) proliferation of
mobile and embedded computing. On one hand, an in-
crease in computational and storage capability has en-
abled more complex application classes on which we now
routinely depend. On the other hand, various supporting
technologies and techniques (efficient implementation, for
example) need to keep pace with such developments. In
particular, the omnipresent specters of power consumption
and security represent central problems. With respect to
the latter, cryptography can help to ensure the secrecy
and authenticity of data; in practice however, a range of
modern attack techniques mean concrete guarantees are
still difficult to achieve. Exemplars are captured by the
field of physical security, including active fault injection
and passive side-channel attacks [7].

Our focus in this paper is on secure cryptographic key
storage and device authentication within such a context.
In short, the issue is that modern cryptosystems are
implemented according to Kerckhoffs’s principle: security
should rely on secrecy of key material, rather than of the
algorithm design and/or implementation. For embedded
computing in particular this can represent a problem,
and development of robust solutions (e.g., which ensure
the key is protected from manipulation or leakage via a
physical attack) remains a non-trivial and ongoing issue.

Physically Unclonable Functions (PUFs) represent an
emerging but promising solution for these problems (and
many others). PUFs represent an example of the larger
field of hardware intrinsic security. The underlying idea
is that behaviour of such components should intrinsi-
cally depend on unique, physical features in a given

instance. This can be explained via analogy. The form
of a fingerprint, for example, depends on genetics plus
unique, physical influence such as wear; likewise, the
behavioural characteristics of an Integrated Circuit (IC)
depend on a design plus unique, physical variation during
fabrication. As a result, PUFs (potentially with suitable
post-processing) can support the delivery of key material
derived from the intrinsic properties of an instance, rather
than being stored in a conventional sense.

A PUF design is genuinely intrinsic whenever relies
only on components that already exist within the under-
lying platform. FPGAs are interesting as a result, since
they offer a (more) diverse range of such components
plus the usual benefit of flexibility that affords algorithm
agility. Although other options exist [9], [10], [2], [5]
Anderson [1] described a PUF design specifically tailored
towards resources on the Xilinx Virtex-5 family of FPGA
devices.

Section II presents an overview of PUFs, and the FPGA-
based design of Anderson which forms the basis for our
contribution. Section III identifies and then analyses a flaw
in [1] which renders the associated design impractical for
security-critical use. This flaw can be resolved in one of
(at least) two ways, which we outline in Section III-C and
Section III-D. We conclude in Section IV with some gen-
eral discussion on FPGA-based PUF design, and highlight
some areas for further work.

II. BACKGROUND

A. PUFs

1) Terminology and notation: We refer the reader to [6,
Chapter 1] for a comprehensive overview of PUFs from
both a theoretical and practical perspective.

Basic concepts: As the name suggests, a PUF is a
function in the sense it simply produces output given some
input. However, since a PUF is better described as a phys-
ical influenced process (or algorithm) than a mathematical
function, it is important to distinguish between the design
(or specification) and a physical instance of it.

Let Πi to denote the i-th distinct instance of a given
PUF design. An instance can be sampled (cf. function
evaluated) using an n-bit challenge c as input; the m-
bit response (or signature) r = Πi(c) is produced as
output. A set {(cj , rj = Πi(cj)) | 0 ≤ j < l} of the re-
sulting Challenge-Response Pairs (CRPs) describes the
instance behaviour (non-exhaustively, depending on l):



crucially, both the design and the process of instantiating
it contribute to said behaviour.

Note that some care is required regarding terminology:
a reconfigurable PUF (or rPUF) [4] is such that the be-
haviour of a specific instance can be (permanently) altered
via some mechanism. With this in mind, we consider the
combination of a specific FPGA device and a specific bit-
stream as representing a distinct PUF instance1. If partial
reconfiguration of the device is possible, this supports
reconfigurable PUF designs via online alteration of a given
instance.

Quality metrics: The unclonability of an instance is
a result of the physical and inherently non-reproducible
impact of instantiation, and (potential) lack of ability to
inspect the resulting instance: invasive inspection of the
instance may (by design, and usually permanently) alter
the behaviour of or destroy the PUF.

Beyond this, the quality of a given PUF design is often
evaluated in terms of inter- and intra-distance measures
over example instances:

• For a challenge c and two PUF instances Π1 and
Π2, inter-distance measures the difference between
r1 = Π1(c) and r2 = Π2(c). Intuitively, one wants
this difference to be large since this allows unique
identification of instances.

• For a challenge c and a PUF instance Π1, intra-
distance measures the difference between r1 = Π1(c)
and r2 = Π1(c). Intuitively, one wants this difference
to be small since this allows reliable identification of
instances.

The behaviour of a given instance may be influenced by
the environment (e.g., temperature, voltage or ageing of
the device). The associated impact is ideally minimised
somehow (e.g., via compensation logic) to ensure robust-
ness of the metrics above and help to prevent tampering-
based attack techniques.

Generic design components: Per [3, Chapter 3],
Figure 1 describes a complete PUF as three components.
The sample step first takes a challenge and supplies it as
input to the PUF, producing an output that is mapped onto
a response; the latter steps may involve some form of error
correction in order to cope with noise within samples.

The resulting component can be placed within various
surrounding modes of operation. An important example
are Controlled PUFs (CPUFs), whereby the PUF is com-
bined with other cryptographic primitives. For example, a
hash function could be used to post-process the response
to provide appropriate statistical properties (such as uni-
formity in the distribution of responses); where the PUF
response is used to derive key material, this addition is
sometimes termed a key extractor.

B. FPGA-based PUFs designs

1This choice implies a change in either device or bit-stream (e.g.,
resynthesis, even if the design and hence HDL source code is the same),
creates a new instance. However, any (re)configuration of the same device
with the same bit-stream produces the same instance.

1) Supporting features and components: Roughly
speaking, an FPGA fabric is a collection of logic resources
(or blocks) organised in a two-dimensional mesh; the logic
blocks are connected via configurable routing resources.

In Xilinx Virtex-5 devices, the central resource is a
Configurable Logic Block (CLB) [11] which incorporates
two slices. In turn, each slice contains four Look-Up
Tables (LUTs), four flip-flops and a chain of four intercon-
nected multiplexers (which permit fast carry propagation
when arithmetic operations are implemented); the LUTs
are SRAM-based, and can compute any 6-input, 1-output
Boolean function once configured appropriately. In Virtex-
5 devices, roughly a quarter of all slices can perform
extra functionality and can be used for implementation
of SRAM cells or shift registers; these are referred to as
SLICEM, with normal slices referred to as SLICEL.

2) A concrete design: In this section, we introduce the
PUF design due to Anderson [1] used as a basis for our
contribution. From here on, we refer to said design as
“the Anderson PUF” and use the short-hand 0 (resp. 1)
to denote the value logic-0 (resp. logic-1) used in [1].
For brevity, we let Cs

i denote signal s related to the i-
th instance of some component C (omitting either index
where appropriate).

The Anderson PUF was designed specifically with
FPGA fabrics in mind, and even more specifically for
the Xilinx Virtex-5 family. The design, which is outlined
in Figure 2, uses specific resources within such devices
and implies close integration of design and underlying
technology; this means it is very efficient, in terms of
resource utilisation, versus generic designs implemented
on the same fabric. More specifically, each instance re-
quires two SLICEM blocks and generates a 1-bit output
(i.e., response): the output value depends intrinsically on
the process variation dependent presence or absence of a
glitch.

The output bit is held in a flip-flop (DFF ), whose
input DFF pre is driven by a cascade of two multiplexers
(MUX0 and MUX1); furthermore, DFFQ is fed back
into DFFD so that the value is continuously latched
by positive edges of a clock signal. When the device
is initialised at power-on, DFF is initialised with 0. It
remains in this state until DFF pre = 1: this input is
asynchronous and active high, meaning even a transient
change (or glitch) will update the value held by DFF
from 0 to 1 independently from the clock. The rest of the
design is intended to generate said glitch, which controls
DFF and hence determines the PUF output. We refer the
reader to [1] for complete argumentation regarding the
behavioural characteristics.

The perfect PUF design would have no bias: given m
instances, the value of associated output bits would be
uniformly distributed. Several points are worth stressing:

1) The PUF design does not permit an input, or chal-
lenge, in the same way discussed in Section II-A.
Rather, the challenge is an intrinsic property of
(or hard-coded in) the bit-stream. This fact implies
security of the bit-stream is an important (though



Sample Identity mapping Quantisationci ri = f(ci)

Figure 1: A high-level overview of components within a generic PUF design.

LUT1

LUT0

MUX1

MUX0

DFFREG r c

r c

x

0

x

0

y

1

y

r

r

pre

Q PUF outputD

r x

x

Figure 2: The Anderson PUF design, which realises the first (i.e., sampling) step in Figure 1 (note that clock signals
driving REG, LUT0, LUT1 and DFF are omitted for clarity).

possibly dubious [8]) assumption for some use-
cases.

2) The value held by DFF may be changed from 0
to 1 by a glitch on DFF pre. However, there is no
complementary operation: once the flip-flop holds 1,
it remains in this state until the next power-on. As
shown in Section III, this fact is important and plays
a significant role in bias.

3) The “quality” of the glitch on DFF pre is also
important, and also plays a role in bias. Placement
of the LUTs can influence said quality and, as such,
different approaches to placement were studied in
[1, Section III].

III. ANALYSIS AND REDESIGN OF FPGA-BASED PUF

A. Experimental platform

We used a control workstation, in conjunction with a
remote controlled power supply, to conduct experiments
on two SASEBO-GII development boards; all experiments
were carried out under normal environmental conditions.
Each such board houses a Xilinx Virtex-5 device (model
XC5VLX50-1FFG324). A total of 28, 800 LUT cells are
available, approximately a quarter of which can be used
in shift register mode: this gives ∼ 7, 200 LUTs. Specific
placement constraints (e.g., two LUTs placed in two
different slices imply other cells within those slices are
“blocked”) and asymmetry of the FPGA fabric mean at
most 960 PUF cells can be instantiated on each device.
Following the approach of Anderson [1, Section IV], we
internally divided each device into three regions: the first
two hold PUF instances, while the third is reserved for an
RS232 module that allows communication between board
and control workstation. For clarity, we term Rj

i a virtual
board resulting from the j-th region on the i-th physical
board Ri (omitting either index where appropriate).

An existing2 VHDL implementation of the design in
Section II-B2 was used; synthesis was performed using
the Xilinx ISE tool-chain, using associated placement
constraints. Since each PUF instance produces a 1-bit
response, the design was wrapped in a (parameterisable)
module to permit m instances and hence an m-bit re-
sponse. This allows use of Hamming distance for both
inter- and intra-distance metrics.

B. Analysis of the Anderson PUF

Recall that each 1-bit PUF output is held by a flip-
flop initialised to 0; the flip-flop content will irrevocably
change to 1 whenever a glitch occurs on the asynchronous
preset input. According to [1], the routing path from the
output of the carry chain multiplexers to the flip-flop preset
input can be regarded as a low-pass filter, i.e., glitches of
too short a duration may not trigger the preset input of the
flip-flop, which almost always will remain at 0.

If this assumptions holds, one would expect a stable
PUF response (i.e., for the response to be constant over
time). Figure 3a shows the response for a 320-bit An-
derson PUF measured at different points in time. Notice
that as time progresses, the number of bits irrevocably
switching to 1 increases. In a sense, this is obvious: over
time glitches continue to occur, and even if they are
filtered, one will eventually trigger the preset input. This
results in responses whose Hamming weight increases as
time progresses, a phenomenon we term “saturation” of
the response.

Figure 3b illustrates intra- and inter-distance metrics for
a 320-bit Anderson PUF. The former gives an approxi-
mation of variation in PUF responses between samples
taken at power-on and also 50 s later. We measured an
intra-distance of roughly 90 bits; this corresponds to an

2http://www.eecg.toronto.edu/∼janders/PUF/



(unacceptable) error of around 30%, and will further
increase over time. This violates a basic requirement of
PUFs, namely that the response should be reproducible
(up to a small error) at any time.

C. Solution #1: measurement after specific delay

One approach to eliminate the saturation problem is to
latch the PUF output at a single point of time: this captures
a stable PUT response. Ideally, this would be performed
immediately after power-on so an applications can make
use of it straight away. However, Figure 3a shows there
is considerable bias towards 0 in the PUF response at
this time; the resulting non-uniformity makes the response
unusable for direct use as key material.

The idea, therefore, is to capture the PUF response at a
later point in time (potentially tuned to a specific device)
so the response is close to being uniformly distributed
without the need for key extraction. This approach implies
a trade-off between latency (i.e., time before the response
is captured and used) and quality.

Figure 3c shows the Hamming weight of responses
from the enhanced 320-bit PUF design on four virtual
boards; the results relate to sampling the PUF after 0.5 s
after power-on, then using the response at a variety of
times thereafter. The stability of responses is trivial, but
confirms resolution of the original problem. Figure 3d
shows intra- (with average µintra = 4%) and inter-distance
(with average µinter = 45%) variation concerning one
virtual board and the same experiment; both are clearly
(more) in line with requirements than the original PUF
design.

D. Solution #2: a “one-shot” approach

An alternative approach permits capture of a PUF
response immediately at power-on. As mentioned in the
previous section, there is considerable bias towards 0 at
this point for the original PUF design. In the proposed [1]
LUT placement, glitches tend to have a short duration,
meaning they are “damped out” while passing the first time
through the routing network acting as a low-pass filter.

The idea, therefore, is to control the glitch width for
transitions between LUT0 and LUT1, increasing it so the
probability that a glitch occurs at the preset input of the
flip-flop is also increased. This can realised simply by
inserting an additional carry chain between the two LUTs.
This approach implies a trade-off between area (i.e., an
additional LUT is required, per instance, to support the
extended carry chain) and flexibility (i.e., the range of
variation possible).

Figure 3e shows the Hamming weight of responses from
the enhanced 208-bit (fewer PUF instances due to the area
overhead) PUF design on four virtual devices; the results
relate to sampling the PUF immediately after power-on,
then using the response at a variety of times thereafter.
We stress that sampling at power-on is not a limitation,
and one can defer the process should a use-case require:
reinitialising both LUTs then sampling, or blocking input
from the external shift register until sampling are both

options. Figure 3f shows intra- (with average µintra = 5%)
and inter-distance (with average µinter = 46%) variation
concerning one virtual board and the same experiment.

IV. CONCLUSION

Design of cost efficient and secure solutions using
FPGA devices is a non-trivial task. In this paper, we
clearly underline this difficulty by identifying a flaw in
the Anderson PUF design; we examined two approaches
that resolve the flaw, transforming the design into a robust
building block. We note that the result not only applies
to stand-alone FPGA applications, but could also prove
beneficial in systems that embed a tightly-coupled FPGA
fabric. On the Zynq platform [12], for instance, the ARM
micro-controller could utilise the PUF response produced
on the integrated FPGA fabric.

Within this emerging field, a wide range of further
work seems important. Fundamentally, for a robust set
of results, experimentation would ideally be performed
across a large sample of devices (to evaluate the impact
of process variation). Without a large budget this is
clearly problematic, contrasting with SRAM-based PUFs
for example and especially where high-end FPGA de-
vices are used. In our case, we have only four virtual
devices: as such, rigorous evaluation of a larger sample,
plus different environmental conditions, is an important
next step. Then, methods for improving the PUF design
demand a more rigorous analysis of PUF cell placement
for example; again in comparison with other designs, esp.
arbiter PUFs, investigation of whether similar modelling
based approaches apply to FPGA-based designs seems
vital.

It would be also worth to investigate, if any modification
of the original Anderson design, such as changing a glitch
value to 0 instead of 1 will lead to a more robust design
with better properties. Further, investigation of whether the
saturation effect itself is an intrinsic property of an FPGA
device is also left as future work.

ACKNOWLEDGEMENTS

The work described in this paper has been supported in
part by EPSRC grant EP/H001689/1.

REFERENCES

[1] J.H. Anderson. A PUF design for secure FPGA-based
embedded systems. In ASP-DAC, pages 1–6, 2010.

[2] J. Guajardo, S.S. Kumar, G.J. Schrijen, and P. Tuyls. FPGA
intrinsic PUFs and their use for IP protection. In Proceed-
ings of the 9th international workshop on Cryptographic
Hardware and Embedded Systems, CHES ’07, pages 63–
80, 2007.

[3] I. Kim, A. Maiti, L. Nazhandali, P. Schaumont, V. Vignesh,
and H. Zhang. From statistics to circuits: Foundations
for future physical unclonable functions. In Towards
Hardware-Intrinsic Security, pages 55–78, 2010.

[4] K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Škorić, and
P. Tuyls. Reconfigurable physical unclonable functions —
enabling technology for tamper-resistant storage. In HOST,
pages 22–29, 2009.



[5] R. Maes, P. Tuyls, and I. Verbauwhede. Intrinsic PUFs
from flip-flops on reconfigurable devices. In 3rd Benelux
Workshop on Information and System Security (WISSec
2008), 2008.

[6] R. Maes and I. Verbauwhede. Physically unclonable func-
tions: A study on the state of the art and future research
directions. In Towards Hardware-Intrinsic Security, pages
3–37, 2010.

[7] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks - Revealing the Secrets of Smart Cards. Springer,
2007.

[8] A. Moradi, M. Kasper, and C. Paar. Black-box side-channel
attacks highlight the importance of countermeasures: An
analysis of the Xilinx Virtex-4 and Virtex-5 bitstream
encryption mechanism. In CT-RSA, pages 1–18. LNCS
7178, 2012.

[9] S. Morozov, A. Maiti, and P. Schaumont. An analysis of
delay based PUF implementations on FPGA. In ARC, pages
382–387, 2010.

[10] D. Suzuki and K. Shimizu. The glitch PUF: A new delay-
PUF architecture exploiting glitch shapes. In Proceedings
of the 12th international conference on Cryptographic
hardware and embedded systems, CHES’10, pages 366–
382, 2010.

[11] Xilinx. Virtex-5 FPGA user guide. http://www.xilinx.com/
support/documentation/user guides/ug190.pdf.

[12] Xilinx. Zynq-7000. http://www.xilinx.com/support/
documentation/data sheets/ds190-Zynq-7000%-Overview.
pdf.



(a) Anderson PUF, saturation test. (b) Anderson PUF, intra- and inter-distance test.

(c) Solution #1, saturation test. (d) Solution #1, intra- and inter-distance test.

(e) Solution #2, saturation test. (f) Solution #2, intra- and inter-distance test.

Figure 3: Experimental results for the Anderson PUF (top) and alterations relating to solution #1 (middle) and solution
2 (bottom); results for saturation (left), or Hamming weight of the PUF response over time, and inter- and intra-distance
(right). Note the line marking the ideal average inter-distance (right) relates to m/2, i.e, half the total PUF response
size; the ideal average intra-distance is clearly 0.


