
Improved Differential Fault Analysis on ARIA

using Small Number of Faults ⋆

Yuseop Lee a, Kitae Jeong a, Jaechul Sung b, Seokhie Hong a,∗

aCenter for Information Security Technologies (CIST), Korea University, Republic
of Korea

bDepartment of Mathematics, University of Seoul, Republic of Korea

Abstract

In [15], Li et al. firstly proposed a differential fault analysis on ARIA-128. This
attack requires average 45 random byte fault injections. In 2012, Park et al. proposed
the improve DFA by using 33 random byte fault injection. Also Kim proposed
differential fault analysis based on multi byte fault model. In this model, the number
of fault injections is reduce to 13 and If access to the decryption oracle is allowed,
only 7 faults are required. In this paper, we propose improved differential fault
analysis on ARIA. Based on random byte fault model, the proposed attacks can
recover the secret key of ARIA-128/192/256 by using 6 fault injections within a few
minutes. Moreover, in cases of ARIA-128 and ARIA-256, it is possible to recover the
secret key using only 4 fault injections under a fault assumption where an attacker
can induce some faults during both encryption and decryption process, respectively.
Our results on ARIA-192/256 are the first known DFA results on them.

Key words: Differential fault analysis, Block cipher, ARIA, Cryptanalysis.

Differential fault analysis (DFA) is one of the most well-known side-channel
analysis on block ciphers. After Biham and Shamir first proposed a DFA on
DES [1], it was applied to AES [2,8,11,18,20,?], Triple-DES [9], CLEFIA [4],
SEED [10], ARIA [15,19,13], SMS4 and MacGuffin [16] and so on. In DFA,

⋆ This research was supported by the MKE(The Ministry of Knowledge Econ-
omy), Korea, under the ITRC(Information Technology Research Center) support
program(NIPA-2012-H0301-12-3007) supervised by the NIPA(National IT Industry
Promotion Agency.
∗ Corresponding author.
Email addresses: yusubi@korea.ac.kr (Yuseop Lee), kite.jeong@gmail.com

(Kitae Jeong), jcsung@uos.ac.kr (Jaechul Sung), hsh@cist.korea.ac.kr
(Seokhie Hong).

Preprint submitted to Elsevier 2 April 2013

an attacker induces some faults to registers of the target round and obtains
the corresponding faulty/right ciphertexts. Then the candidates of last round
key can be recovered by using differential cryptanalysis. By using them, he
can compute the input value of the last round. Thus, he repeats the above
procedure to recover more round keys until the secret key is obtained by the
key schedule.

ARIA is a 128-bit block cipher supporting 128/192/256-bit secret keys [14]. It
was adopted as a Korean Standard block cipher algorithm (KS X 1213). Until
now, many cryptanalytic results on this algorithm were proposed [3,5,6,17,21].
First DFA on ARIA-128 proposed in [15]. The attack procedure of this attack
is as follows. First, the last four round keys are recovered by using 45 random
byte fault injections. Then, the 128-bit secret key is computed by using the
recovered round keys. In [19], Park et al. proposed improve DFA on ARIA-128.
Thus they reduce the number of fault injections to 33. Also, Kim proposed
DFA on ARIA-128 based on multi byte fault model[13]. Thus they use only
13 fault injections. If access to the decryption oracle is allowed, only 7 faults
are required.

In this paper, we proposed improved DFAs on ARIA. In our attack, we con-
sider two random byte fault assumptions A1 and A2. Assumption A2 is a usual
random byte fault assumption. That is, an attacker does not know the loca-
tion and value of faults. Under assumption A1, he can control the location
of faults but he does not know the value of it. The assumption A1 is based
on the result of [7]. In [7], the authors presented that it is possible to con-
trol the location of fault injections to ISO/IEC 18033-3 block ciphers such
that AES, DES, Camellia, CAST-128, SEED and MISTY1. From this result,
it is reasonable that we can control the location of fault injection to ARIA.
Furthermore, we subdivide each assumption into Ai

E and Ai
DE, respectively

(i = 1, 2). Ai
E means a fault assumption where a fault injection happens dur-

ing only the encryption process. Ai
DE means a fault assumption where a fault

injection happens during the decryption or encryption process, respectively.
For example, a fault assumption considered in [15,19] is A2

E.

On the other hand, in [20], the authors constructed differential equations to
recover the secret key of AES. Thus, this attack requires only one random
byte fault injection. To reduce the number of required fault injections, we
apply this idea to ARIA-128/192/256. As a result, our attacks require 6 fault
injections under Ai

E. In detail, we induce some faults to the input registers of
target rounds. Then, we construct differential equations from the differential
propagation of injected faults. Thus, by using these equations, we recover the
last four round keys. From the key schedule of ARIA, we finally recover the
secret key of ARIA by using these round keys. In the case of Ai

DE, we can
recover the secret keys of ARIA-128/256 with only 4 fault injections. Our
results on ARIA are summarized in the Table 1.

2

Table 1
DFA results on ARIA

Target Fault ♯ of injected
Reference

algorithm assumption faults

ARIA-
128

A2
E 45 [15]

A2
E 33 [19]

A2∗
E 13 [13]

A2∗
DE 7 [13]

A1
E , A

2
E 6 Section 5.1, Section 5.2

A1
DE , A

2
DE 4 Section 5.3

ARIA-
192

A1
E , A

2
E 6 Section 5.1, Section 5.2

A1
DE , A

2
DE 4 Section 5.3

ARIA-
256

A1
E , A

2
E 6 Section 5.1, Section 5.2

A1
DE , A

2
DE 4 Section 5.3

∗ multi byte fault model

The difference between A1 and A2 is the computational complexity. In detail,
under assumption A1, the computational complexity is O(224). In the case of
A2, the computational complexity is O(232). As a simulation result, our attacks
under A1 can recover the secret key of ARIA within a few seconds. But, in
the case of A2, our attacks requires a few minutes. This paper is organized as
follows. In Section 2, we briefly introduce ARIA. In Section 3, we present our
fault assumptions and the basic idea of our attacks. The method to compute
round keys by using differential equations is described in Section 4. In Section
5, we present the detailed attack procedure of our attacks on ARIA. Finally,
we give our conclusion in Section 6.

1 Description of ARIA

ARIA is a 128-bit block cipher which supports 128-, 192- and 256-bit se-
cret keys. We call this algorithm ARIA-128/192/256, respectively. ARIA-
128/192/256 consist of 12, 14 and 16 rounds, respectively. Throughout this
paper, the following notations are used.

• Kn: the secret key of ARIA-n (n = 128, 192, 256).
• r: the number of round of ARIA (r = 12, 14, 16).
• Xi: the input value of round key addition in round i (i = 1, 2, · · · , r).
• Yi: the input value of substitution layer in round i.
• Zi: the input value of diffusion layer in round i.
• ≪ (≫) t: a left(right) circular rotation of operand by t bits.

3

128-bit Plaintext P

1
ek

SL type 1

DL

2
ek

SL type 2

DL

Round

1

Round

2

3
ek

1r
ek

−

SL type 1

DL

Round

r-1

r
ek

SL type 2
Round

r

1r
ek

+

128-bit Ciphertext C

1,0
X

1,1
X

1,2
X

1,3
X

1,4
X

1,5
X

1,6
X

1,7
X

1,8
X

1,9
X

1,10
X

1,11
X

1,12
X

1,13
X

1,14
X

1,15
X

SL type 1

DL

RKA

1,0
Y

1,1
Y

1,2
Y

1,3
Y

1,4
Y

1,5
Y

1,6
Y

1,7
Y

1,8
Y

1,9
Y

1,10
Y

1,11
Y

1,12
Y

1,13
Y

1,14
Y

1,15
Y

1,0
Z

1,1
Z

1,2
Z

1,3
Z

1,4
Z

1,5
Z

1,6
Z

1,7
Z

1,8
Z

1,9
Z

1,10
Z

1,11
Z

1,12
Z

1,13
Z

1,14
Z

1,15
Z

2,0
X

2,1
X

2,2
X

2,3
X

2,4
X

2,5
X

2,6
X

2,7
X

2,8
X

2,9
X

2,10
X

2,11
X

2,12
X

2,13
X

2,14
X

2,15
X

SL type 2

RKA

RKA

,0r
X

,1r
X

,2r
X

,3r
X

,4r
X

,5r
X

,6r
X

,7r
X

,8r
X

,9r
X

,10r
X

,11r
X

,12r
X

,13r
X

,14r
X

,15r
X

,0r
Y

,1r
Y

,2r
Y

,3r
Y

,4r
Y

,5r
Y

,6r
Y

,7r
Y

,8r
Y

,9r
Y

,10r
X

,11r
Z

,12r
Y

,13r
Y

,14r
Y

,15r
Y

,0r
Z

,1r
Z

,2r
Z

,3r
Z

,4r
Z

,5r
Z

,6r
Z

,7r
Z

,8r
Z

,9r
Z

,10r
Z

,11r
Z

,12r
Z

,13r
Z

,14r
Z

,15r
Z

0
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
C

14
C

15
C

Fig. 1. The structure of ARIA

Each round function is composed of three subfunctions such as Round Key
Addition (RKA), Substitution Layer (SL) and Diffusion Layer (DL). In last
round, DL is replaced by RKA. They are defined as follows. See [14] for detailed
descriptions of them (see the Figure 1).

• RKA is a XORing of the state and a 128-bit round key which is derived
from the secret key.

• SL is a non-linear byte substitution operation applied all bytes of state
in parallel. In odd rounds and even rounds, two different types of SL are
operated.

• DL is a linear matrix multiplication of the state with a 1616 binary matrix.

The key schedule of ARIA consists of an initialization part and a round key
generation part. First, a 256-bit (KL,KR) is filled with Kn as follows.

KL||KR = Kn||0 · · · 0.

In an initialization part, four 128-bit values (W0,W1,W2,W3) are computed
as follows. Here, Fo and Fe are the even and odd round function, respectively.

4

Here, CKi is a 128-bit constant.

W0 = KL,

W1 = Fo(W0, CK1)⊕KR,

W2 = Fe(W1, CK2)⊕W0,

W3 = Fo(W2, CK3)⊕W1.

In a round key generation part, r + 1 round keys (ek1, · · · , ekr+1) used in the
encryption process are generated as follows.

ek1 = W0 ⊕W≫19
1 , ek2 = W1 ⊕W≫19

2 , ek3 = W2 ⊕W≫19
3 ,

ek4 = W3 ⊕W≫19
0 , ek5 = W0 ⊕W≫31

1 , ek6 = W1 ⊕W≫31
2 ,

ek7 = W2 ⊕W≫31
3 , ek8 = W3 ⊕W≫31

0 , ek9 = W0 ⊕W≪61
1 ,

ek10 = W1 ⊕W≪61
2 , ek11 = W2 ⊕W≪61

3 , ek12 = W3 ⊕W≪61
0 ,

ek13 = W0 ⊕W≪31
1 , ek14 = W1 ⊕W≪31

2 , ek15 = W2 ⊕W≪31
3 ,

ek16 = W3 ⊕W≪31
0 , ek17 = W0 ⊕W≪19

1 .

2 Fault assumptions and the basic idea

2.1 Fault assumptions

Our fault assumption is based on a random byte fault model. In general, under
random byte fault model, an attacker induces some byte faults into the target
rounds and does not know the exact location of injected faults. However, in
[7], it is shown that it is possible to control the location a fault injection to
ISO/IEC 18033-3 block ciphers. They considered AES, DES, Camellia, CAST-
128, SEED and MISTY1. Though ARIA is not included in the list, we expect
that the result of [7] is also applicable to ARIA. Thus, we consider the following
two assumptions.

• Assumptions A1

(1) An attacker can induce some random byte faults to the input register in
the target round.

(2) The attacker can control the location of injected faults.
(3) The value of faults is unknown.
• Assumptions A2

(1) An attacker can induce some random byte faults to the input register in
the target round.

(2) The location and value of injected faults are both unknown.

5

Furthermore, Ai is partitioned into two assumptions Ai
E and Ai

DE, respectively
(i = 1, 2). Ai

E means a fault assumption where a fault injection happens during
only the encryption process. Ai

DE means a fault assumption where a fault
injection happens during the decryption and encryption process, respectively.
For example, A1

E and A1
DE are defined as follows.

• Assumptions A1
E

(1) An attacker can induce some random byte faults to the input register in
the target round during the encryption process.

(2) The attacker can control the location of injected faults.
(3) The value of faults is unknown.
• Assumptions A1

DE

(1) An attacker can induce some random byte faults to the input register in
the target round during the decryption and encryption process,
respectively.

(2) The attacker can control the location of injected faults.
(3) The value of faults is unknown.

Since ARIA satisfies the involutional property, the encryption process is equal
to the decryption process except for the round keys. Thus, it is reasonable
that we consider both processes.

2.2 Constructing differential equations

SL

DL

RKA

α

1
β

2
β

3
β

4
β

5
β

6
β

7
β

SL

DL

RKA

RKA

α α α α α α α

α α α α α α α

RKA

SL

Round

r

Round

r-1

Round

r-2

2r
Y −

2r
Z −

2r
X −

1r
Y −

1r
Z −

1r
X −

r
Y

r
Z

r
X

C

Fig. 2. The differential propagation where a fault is injected to Xr−2,0

When a random byte fault is induced to the first byte of input register Xr−2,0

of round r − 2, the differential propagation is shown in Figure 2. From this
figure, the input difference ∆Xr−1 of round r − 1 has the following pattern.
Here, α is the first byte difference of SL in round r − 2.

∆Xr−1 = (0, 0, 0, α, α, 0, α, 0, α, α, 0, 0, 0, α, α, 0).

6

That is, ∆Xr−1 has the same 7 difference bytes and 9 zero difference bytes.
Then ∆Zr−1 has the following pattern. Here, βi is a nonzero difference (i =
1, · · · , 7).

∆Zr−1 = (0, 0, 0, β1, β2, 0, β3, 0, β4, β5, 0, 0, 0, β6, β7, 0).

Then, we can construct differential equations on ∆Yr by using ∆Zr−1. Let M
be a matrix derived from DL. Then, ∆Zr−1 and ∆Xr satisfy the following
equation.

∆Xr = M · (∆Zr−1)
T .

Since M is an involutory matrix, that is M−1 = M , the above equation can
be rewritten as follows.

∆Zr−1 = M · (∆Xr)
T .

In our attack, we consider only positions of zero differences in ∆Zr−1. That is,
∆Zr−1,0,∆Zr−1,1,∆Zr−1,2,∆Zr−1,5,∆Zr−1,7,∆Zr−1,10,∆Zr−1,11, ∆Zr−1,12 and
∆Zr−1,15. Thus, we consider the following matrix M0. Here, M0 consists of 0-,
1-, 2-, 5-, 7-, 10-, 11-, 12-, 15-th rows of M .

M0 =



0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0

0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1

0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1

0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1

0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1

0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0

0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1



.

Then ∆Xr satisfies the following equation.

M0 · (∆Xr)
T = (00 · · · 0)T .

Also, since ∆Xr is equal to ∆Yr, we can construct the following 9 differential equa-
tions.

M0 · (∆Yr)
T = (00 · · · 0)T .

Note that all equations do not include ∆Yr,0.

Recall that 7 bytes of ∆Yr−1 have the same difference value. By using this property,
we can easily obtain six additional differential equations. Hence, when a random
byte fault is induced to Xr−2,0, we can construct total fifteen differential equations.
When a random byte fault is injected to other bytes of Xr−2, we can obtain fifteen
differential equations under other cases in a similar fashion.

7

2.3 Recovery of the secret key from round keys

We assume that four consecutive round keys are obtained under assumption Ai
E .

Then, it is known that the secret key of ARIA can be easily computed by using
linear equations. For example, in the case of ARIA-128, W0 satisfies the following
equation from the key schedule.

W0 ⊕W≪86
0 = ek13 ⊕ ek≪31

10 ⊕ ek≪92
11 ⊕ ek≪25

12 .

Thus, if we know 512-bit (ek10, ek11, ek12, ek13), we can compute W0. In detail, the
left side of the above equation can be rewritten as G ·W T

0 . Here, G is a 128× 128
binary matrix with rank 126. Thus we can compute 22 candidates of W0 by using
this linear equation. For each candidate of W0, we can compute (W1,W2,W3) by
using the following equations.

ek13 = W0 ⊕W≪31
1 ,

ek10 = W1 ⊕W≪61
2 ,

ek11 = W2 ⊕W≪61
3 .

(W0,W1,W2,W3) of ARIA-192/256 can be computed in a similar fashion.

For each candidate of four consecutive round keys, we obtained 22 candidates of
(W0,W1,W2,W3) from the above procedure. Furthermore, we can discard wrong
candidates of (W0,W1,W2,W3) by using an initialization part of the key schedule.
Recall that an initialization part conducts the following operations.

W0 = KL,W1 = Fo(W0, CK1)⊕KR, (1)

W2 = Fe(W1, CK2)⊕W0, (2)

W3 = Fo(W2, CK3)⊕W1. (3)

For each candidate of (W0,W1,W2,W3), we check that Equation (1), (2) and (3)
hold. In the case of ARIA-128, KR = 0 from the key schedule. Thus, the probability
that a wrong candidate passes this test is 2−384(= 2−128·3). Similarly, in the cases
of ARIA-192/256, the probability is 2−320 and 2−256, respectively. Hence we further
reduce the number of candidate of (W0,W1,W2,W3). The method to compute the
secret key from (W0,W1,W2,W3) is simple. From the key schedule, KL is equal to
W0. And KR is computed by using Equation (1).

Now, we consider assumption Ai
DE . We assume that the first round key and the

last round key are obtained. In cases of ARIA-128/256, W1 satisfies the following
equation, respectively.

• ARIA-128: W≪109
1 ⊕W≪31

1 = ek1 ⊕ ek13.

• ARIA-256: W≪109
1 ⊕W≪19

1 = ek1 ⊕ ek17.

8

α

α α αα α α α

α α αα α α α

1
β

2
β

3
β

4
β

5
β

6
β

7
β

SL

DL

RKA

α

1
β

2
β

3
β

4
β

5
β

6
β

7
β

SL

DL

RKA

RKA

α α α α α α α

α α α α α α α

RKA

SL

10
Y

10
Z

10
X

11
Y

11
Z

10
X

12
Y

12
Z

12
X

C

Fig. 3. In ARIA-128, two differential propagations where a fault is injected to X10,0

and X10,1

Similarly to the method to computing W0 under assumption Ai
E , we can compute

22 candidates of W1 from the above equation. Then, we can also compute W0 by
using the following equation.

ek1 = W0 ⊕W≫19
1 .

In the case of ARIA-128, we can reduce the number of candidates of (W0,W1) by
checking Equation (1). However, since we do not know KR in the case of ARIA-256,
we need some trial encryptions.

3 Computation of round keys

In this section, we describe the method to obtaining round keys from differen-
tial equations considered in Section 3.2. We first consider assumption A1. Under
A1

E , to recover the secret key, we need four consecutive round keys as mentioned
in Section 3.3. However, we consider only the method to computing the last two
round keys (ekr, ekr+1). When we obtain them, we repeat this procedure to compute
(ekr−2, ekr−1). In the case of A1

DE , we need to obtain (ek1, ekr+1). Thus, we com-
pute ekr+1 and ek1 by using the above procedure in the encryption and decryption
processes, respectively. Under A2, we do not know the location of injected faults.
Thus, we should guess it. Moreover, ARIA-128/192/256 have the same structure
except for the number of rounds and the key schedule. Thus we concentrate on
ARIA-128 in this section.

3.1 Assumption A1

Since methods to obtaining round keys from differential equations under A1
E and

A1
DE are similar, we consider only A1

E here. First, an attacker chooses a plaintext
P and obtains one right ciphertext C. And he injects two random byte faults to

9

Y10,0 and Y10,1, and computes the corresponding two faulty ciphertexts C1 and
C2, respectively (see Figure 3). From Section 3.2, we construct two matrices M0

(corresponding to the event where a random byte fault is injected to Y10,0) and M1

(corresponding to the event where a random byte fault is injected to Y10,1). Thus,
we can obtain total 18 differential equations on (∆Y 1

12,∆Y 2
12). Note that ∆Y 1

12 and
∆Y 2

12 are related to ∆C1(= C⊕C1) and ∆C2(= C⊕C2), respectively. On the other
hand, Y12 satisfies the following equation.

Y12 = SL−1(C ⊕ ek13).

Thus, guessing a 128-bit ek13, we can check the guessed ek13 by using these 18
equations. The probability that a wrong-guessed ek13 passes this test is 2−144. So
only the right ek13 passes it. However, the computational complexity of this method
is 2128.

In order to reduce the computational complexity, we consider divide and conquer
strategy. First, we modify M0 and M1 by using elementary row operations. Among
all possible patterns, we found the following two matrices H0 and H1.

H0 =



0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0



H1 =



1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0


Under this fault assumption where two random byte faults are injected to Y10,0 and
Y10,1 respectively, these matrices result in the lower computational complexity. As
a result, we obtain the following 18 differential equations to appropriate for divide
and conquer strategy.

∆Y 1
12,1 ⊕∆Y 1

12,2 ⊕∆Y 1
12,12 ⊕∆Y 1

12,15 = 0, (4)

∆Y 1
12,2 ⊕∆Y 1

12,6 ⊕∆Y 1
12,8 ⊕∆Y 1

12,12 = 0, (5)

∆Y 1
12,3 ⊕∆Y 1

12,6 ⊕∆Y 1
12,9 ⊕∆Y 1

12,12 = 0, (6)

∆Y 1
12,4 ⊕∆Y 1

12,8 ⊕∆Y 1
12,12 ⊕∆Y 1

12,13 ⊕∆Y 1
12,14 = 0, (7)

∆Y 1
12,5 ⊕∆Y 1

12,14 = 0, (8)

∆Y 1
12,6 ⊕∆Y 1

12,9 ⊕∆Y 1
12,13 ⊕∆Y 1

12,14 ⊕∆Y 1
12,15 = 0, (9)

∆Y 1
12,7 ⊕∆Y 1

12,13 = 0, (10)

∆Y 1
12,10 ⊕∆Y 1

12,13 = 0, (11)

∆Y 1
12,11 ⊕∆Y 1

12,14 = 0, (12)

(13)

10

∆Y 2
12,0 ⊕∆Y 2

12,3 ⊕∆Y 2
12,13 ⊕∆Y 2

12,14 = 0, (14)

∆Y 2
12,2 ⊕∆Y 2

12,3 ⊕∆Y 2
12,8 ⊕∆Y 2

12,9 = 0, (15)

∆Y 2
12,3 ⊕∆Y 2

12,7 ⊕∆Y 2
12,9 ⊕∆Y 2

12,13 = 0, (16)

∆Y 2
12,4 ⊕∆Y 2

12,10 = 0, (17)

∆Y 2
12,5 ⊕∆Y 2

12,6 ⊕∆Y 2
12,9 ⊕∆Y 2

12,10 ⊕∆Y 2
12,13 = 0, (18)

∆Y 2
12,6 ⊕∆Y 2

12,11 = 0, (19)

∆Y 2
12,7 ⊕∆Y 2

12,8 ⊕∆Y 2
12,10 ⊕∆Y 2

12,11 ⊕∆Y 2
12,14 = 0, (20)

∆Y 2
12,10 ⊕∆Y 2

12,15 = 0, (21)

∆Y 2
12,11 ⊕∆Y 2

12,12 = 0. (22)

By using the above differential equations, we recover ek13 as follows. Here, ’ek ⇒T E’
means that we check equations E by using candidates contained in the table T and
the guessed ek. Then, ek passing the test is included to T .

(1) Checking (ek13,5, ek13,6, ek13,11, ek13,12, ek13,14).

(a) Initialize table T1 to empty table.
(b) (ek13,5, ek13,14) ⇒T1 Equation (8).
(c) ek13,11 ⇒T1 Equation (12).
(d) ek13,12 ⇒T1 Equation (21).
(e) ek13,6 ⇒T1 Equation (18).

(2) Checking (ek13,4, ek13,7, ek13,10, ek13,13, ek13,15).

(a) Initialize table T2 to empty table.
(b) (ek13,7, ek13,13) ⇒T2 Equation (10).
(c) ek13,10 ⇒T2 Equation (11).
(d) ek13,15 ⇒T2 Equation (20).
(e) ek13,4 ⇒T2 Equation (16).

(3) Construct a table T by combining T1 and T2.

(4) Checking (ek13,0, ek13,1, ek13,2, ek13,3, ek13,8, ek13,9)

(a) ek13,8 ⇒T Equation (7) and (19).
(b) ek13,9 ⇒T Equation (9) and (17).
(c) ek13,1 ⇒T Equation (5).
(d) ek13,2 ⇒T Equation (4).
(e) ek13,3 ⇒T Equation (6), (14) and (15).
(f) ek13,0 ⇒T Equation (13).

Table 2 presents the length of guessed key, the computational complexity, the filter-
ing probability and the size of table for each step. From this table, the computational
complexity of the above procedure is O(224).

Theoretically, we expect that only the right ek13 passes the above procedure. How-
ever, note that ek13,0 and ek13,1 are checked only one time in the above procedure.

11

Table 2
Computing ek13

Step
Length of Computational Filtering Size of

guessed key complexity probability table

1-(a) · · · ·
1-(b) 16 216 2−8 28

1-(c) 8 216 2−8 28

1-(d) 8 216 2−8 28

1-(e) 8 216 2−8 28

2-(a) · · · ·
2-(b) 16 216 2−8 28

2-(c) 8 216 2−8 28

2-(d) 8 216 2−8 28

2-(e) 8 216 2−8 28

3 · · · 216

4-(a) 8 224 2−16 28

4-(b) 8 216 2−16 1

4-(c) 8 28 2−8 1

4-(d) 8 28 2−8 1

4-(e) 8 28 2−24 1

4-(f) 8 28 2−8 1

From the differential distribution table of S-box, given an input/output difference
pair, the number of possible input values is 0, 2 or 4. Thus, the number of candidates
of ek13 is 4, 8 or 16. On the other hand, we construct the following additional 12
differential equations on (∆Y 1

11,∆Y 2
11) as mentioned in Section 3.2.

∆Y 1
11,3 ⊕∆Y 1

11,4 = 0,∆Y 1
11,3 ⊕∆Y 1

11,6 = 0,

∆Y 1
11,3 ⊕∆Y 1

11,8 = 0,∆Y 1
11,3 ⊕∆Y 1

11,9 = 0,

∆Y 1
11,3 ⊕∆Y 1

11,13 = 0,∆Y 1
11,3 ⊕∆Y 1

11,14 = 0,

∆Y 2
11,2 ⊕∆Y 2

11,5 = 0,∆Y 2
11,2 ⊕∆Y 2

11,7 = 0,

∆Y 2
11,2 ⊕∆Y 2

11,8 = 0,∆Y 2
11,2 ⊕∆Y 2

11,9 = 0,

∆Y 2
11,2 ⊕∆Y 2

11,12 = 0,∆Y 2
11,2 ⊕∆Y 2

11,15 = 0.

With (C1, C2) and each candidate of ek13, we can compute candidates of ek12 by
checking the above differential equations. The computational complexity of this
procedure is O(216). Note that ek12,0, ek12,2, ek12,10 and ek12,11 do not affect the
above differential equations. Thus, the expected number of candidates of ek12 is
232.

Hence, we obtain at most 236(= 24 · 232) candidates of (ek12, ek13) with the O(224)
computational complexity and two fault injections.

12

3.2 Assumption A2

Under assumption A2, we assume that an attacker cannot know the location of
injected faults. Thus, to construct differential equations, he should guess it. Since
there exist 16 possible positions for each fault injection, we need to consider 256(=
16 · 16) possible cases for two fault injections.

These 256 cases can be partitioned into two types. The first type includes 240 cases
where the positions of two injected faults are different. For each case, we compute
candidates of ek13 by using the similar method to that under assumption A1. Here, if
a guessed position of injected faults is wrong, the expected number of the survived
ek13 is 2−16(= 2128 · 2−144). In the case of the right-guessed position, 4, 8 or 16
candidates of ek13 are remained.

The second type includes 16 cases where the positions of two injected faults are same.
By using this type, we can only recover 15 bytes of ek13. Recall that, in Section 3.2,
all constructed equations do not include ∆Yr,0 assuming that a random byte fault
is induced to Xr−2,0. In general, when a random byte fault is induced to Xr−2,i, all
constructed equations do not include ∆Yr,i(i = 0, · · · , 15). Thus, for each wrong-
guessed position, the expected number of the remained ek13 is 2

−16(= 28·2120·2−144).
In the case of the right-guessed position, 28 candidates of ek13 are survived.

In summary, if some candidates of ek13 pass this test, we may expect that a guessed
position is right. And, in this case, the number of candidates of ek13 is at most 28.
Note that we can obtain the exact position of injected faults from the above proce-
dure. Thus, as mentioned in Section 3.2, we can construct 12 differential equations
on (∆Y 1

11,∆Y 2
11). By using them, we obtain candidates of ek12 for each candidate

of ek13. Similarly to Section 4.1, the expected number of candidates of ek12 is 232.
Thus, in the worst case, 240(= 28 · 232) candidates of (ek12, ek13) are survived.

Hence, we obtain at most 240(= 28 ·232) candidates of (ek12, ek13) with the O(232(=
28 · 224)) computational complexity and two random byte fault injections.

4 DFAs on ARIA

Now, we are ready to propose DFAs on ARIA-128/192/ 256 under four fault as-
sumptions, that is A1

E , A
1
DE , A

2
E , A

2
DE . Table 3 summarizes our attack results on

ARIA.

4.1 DFA on ARIA under A1
E

Under assumption A1
E , the attack procedure on ARIA-128/192/256 is as follows.

13

Table 3
DFA results on ARIA

Fault Target Computational ♯ of injected

assumption algorithm complexity faults

A1
E

ARIA-128 O(224) 6

ARIA-192 O(224) 6

ARIA-256 O(224) 6

A2
E

ARIA-128 O(232) 6

ARIA-192 O(232) 6

ARIA-256 O(232) 6

A1
DE

ARIA-128 O(224) 4

ARIA-256 O(224) 4

A2
DE

ARIA-128 O(232) 4

ARIA-256 O(232) 4

(1) [Collection of right ciphertext] Choose a plaintext P and obtain the cor-
responding right ciphertext C.

(2) [Collection of faulty ciphertexts] After inducing six random byte faults to
(Yr−2,0, Yr−2,1, Yr−3,4, Yr−4,0, Yr−4,1, Yr−5,4), respectively, and obtain the corre-
sponding faulty ciphertexts (C1, C2, C3, C4, C5, C6).

(3) [Computation of candidates of (ekr, ekr+1)]

(a) With (C1, C2), compute candidates of (ekr, ekr+1) by using the method
presented in Section 4.1.

(b) With C3, construct additional 9 differential equations on Yr−2 and reduce
the number of candidates of (ekr, ekr+1) similarly to Step 3-(a).

(4) [Computation of candidates of (ekr−2, ekr−1)] By repeating Step 3 with
(C4, C5, C6), obtain candidates of (ekr−2, ekr−1).

(5) [Recovery of the secret key Kn] By using the method introduced in Section
3.3, recover the secret key Kn from candidates of (ekr−2, ekr−1, ekr, ekr+1).

As mentioned in Section 4.1, the expected number of candidates of (ekr, ekr+1)
passing Step 3-(a) is at most 236. Moreover, since the filtering probability of Step
3-(b) is 2−72, we expect that only the right (ekr, ekr+1) passes Step 3. Similarly to
Step 3, we expect that only the right (ekr−2, ekr−1) passes Step 4. It is known that,
if we know the four consecutive round keys, it is possible to recover Kn. Since we
know the right (ekr, ekr+1, ekr−2, ekr−1), we can recover Kn.

The computation complexity of the above attack algorithm depends on heavily Step
3 and Step 4. In Step 3-(a), the computational complexity is O(224) as mentioned in
Section 4.1. Compared to Step 3-(a), the computational complexity of Step 3-(b) is
negligible. Thus, the computational complexity of Step 3 is O(224). Since the com-
putational complexity of Step 4 is equal to that of Step 3, The total computational
complexity of our attack is O(224).

14

We simulated this attack on a PC 1000 times. As a result, we could always re-
cover Kn within a few seconds. Hence, our attack can recover the secret key of
ARIA-128/192/256 with six random byte fault injections and the computational
complexity of O(224).

4.2 DFA on ARIA under A2
E

Under assumption A2
E , the overall attack procedure is similar to that under A1

E . As
mentioned in Section 4.2, we obtain at most 240 candidates of (ekr, ekr+1) with the
O(232) computational complexity and two random byte fault injections. However,
similarly to Step 3-(b) under A1

E , the right (ekr, ekr+1) is only survived by using an
additional fault injection.

We simulated this attack on a PC 100 times. As a result, we could always recover
Kn within ten minutes. Hence, our attack can recover the secret key of ARIA-
128/192/256 with six random byte fault injections and the computational complex-
ity of O(232).

4.3 DFAs on ARIA-128/256 under A1
DE and A2

DE

Note that, under A1
DE and A2

DE , we need to obtain the first and last round keys
of ARIA. In the encryption and decryption processes, we obtain the last round key
ekr+1 and dkr+1, respectively. Here, it is known that dkr+1 is equal to ek1. Thus, if
we obtain (ekr+1, dkr+1), we can obtain (ek1, ekr+1).

The attack procedure under A1
DE is as follows. The case of A2

DE can be presented
in a similar fashion.

(1) [Collection of right ciphertext] Choose a plaintext P and obtain the cor-
responding right ciphertext C.

(2) [Collection of faulty ciphertexts in the encryption process] After in-
ducing two random byte faults to (Yr−2,0, Yr−2,1) in the encryption process,
and obtain the corresponding faulty ciphertexts (C1, C2).

(3) [Computation of candidates of ekr+1] With (C1, C2), compute candidates
of ekr+1 by using the method presented in Section 4.1.

(4) [Collection of faulty ciphertexts in the decryption process] After in-
ducing two random byte faults to (Yr−2,0, Yr−2,1) in the decryption process,
and obtain the corresponding faulty plaintexts (P 1, P 2).

(5) [Computation of candidates of ek1] By repeating Step 3 with (P 1, P 2),
obtain candidates of dkr+1. And convert dkr+1 to ek1.

15

(6) [Recovery of the secret key Kn] By using the method introduced in Section
3.3, recover the secret key Kn from candidates of (ek1, ekr+1).

The computational complexity of the attack under A1
DE and A2

DE is O(224) and
O(232), respectively. The simulation results are also similar to them under A1

E and
A2

E , respectively.

5 Conclusion

In this paper, we proposed DFAs on ARIA-128/192/256. The proposed attacks can
recover the secret key with the O(224) computational complexity and 6 random byte
fault injections. Furthermore, in cases of ARIA-128/256, it is possible to recover
the secret key with the O(224) computational complexity and 4 random byte fault
injections under a fault assumption where an attacker can induce some faults during
both encryption and decryption process, respectively. As simulation results, our
attacks recovered the secret key within a few minutes. Particularly, our results on
ARIA-192/256 are the first known DFA results on them.

In the future, we will study the method to reduce the fault injections and compu-
tational complexity.

References

[1] E. Biham and A. Shamir, Differential Fault Analysis of Secret Key
Cryptosystems, Crypto 1997, LNCS 1294, pp. 513–525, Springer-Verlag, 1997.

[2] J. Blomer and J. Seifert, Fault Based Cryptan alysis of the Advanced Encryption
Standard (AES), FC 2003, LNCS 2742, pp. 162–181, Springer-Verlag, 2003.

[3] A. Byukov, C. Canniere, J. Lano, S. Ors and B. Preneel, Security and
Performance Analysis of Aria, Version 1.2, 2004.

[4] H. Chen, W. Wu and D. Feng, Differential fault ana lysis on CLEFIA, ICICS
2007, LNCS 4861, pp. 284–295, Springer-Verlag, 2007.

[5] C. Du and J. Chen, Impossible Differential Crypt ana- lysis of ARIA Reduced to
7 Rounds, CANS 2010. LNCS 6467, pp. 20-30, Springer-Verlag, 2010.

[6] E. Fleischmann, C. Forler, M. Gorski and S. Lucks, New Boomerang Attacks on
ARIA, INDOCRYPT 2010, LNCS 6498, pp. 163–175, Springer-Verlag, 2010.

[7] T. Fukunaga and J. Takahashi, Practical fault attack on a cryptographic LSI with
ISO/IEC 18033-3 block ciphers, FDTC 2009, pp. 84–92, IEEE Computer Society,
2009.

16

[8] C. Giraud, DFA on AES, AES 2004, LNCS 3373, pp 27–41, Springer-Verlag,
2005.

[9] L. Hemme, A differential fault analysis against early rounds of (Triple-) DES,
CHES 2004, LNCS 3156, pp. 254–267, Springer-Verlag, 2006.

[10] K. Jeong, Y. Lee, J. Sung and S. Hong, Differential fault analysis on block
cipher SEED, Mathematical and Computer Modelling, Vol. 55, Issue 1-2, pp. 26–
34, Elsevier, 2012.

[11] C. Kim, Differential fault analysis against AES-192 and AES-256 with minimal
faults, FDTC 2010, pp 3–9, IEEE Computer Society, 2010.

[12] C. Kim, Differential fault analysis of AES: Toward reducing number of faults,
Information Sciences, Vol. 199, pp. 43–57, ELSEVIER, 2012.

[13] C. H. Kim, Differentialfault analysis of ARIA in multi-byte fault models, Jounal
of Systems and Software, Vol 85, No. 9, pp.2096–2103, 2012

[14] D. Kwon, J. Kim, S. Park, S. Sung, Y. Sohn, J. Song, Y. Yeom, E. Yoon, S. Lee,
J. Lee, S. Chee, D. Han and J. Hong, New block cipher ARIA, ICISC 2003, LNCS
2971, pp. 432–445, Springer-Verlag, 2003.

[15] W. Li, D. Gu and J. Li, Differential fault analysis on the ARIA algorithm,
Information Sciences, Vol. 178, No. 19, pp. 3727–3737, Elsevier, 2008.

[16] W. Li, D. Gu, and Y. Wang, Differential fault analysis on the contracting
UFN structure, with application to SMS4 and Macguffin, Journal of Systems and
Software, Vol. 82, No. 2, pp. 346–354, Elsevier, 2009.

[17] P. Li , B. Sun , C. Li, Integral cryptanalysis of ARIA, Proceedings of the 5th
international conference on Information security and cryptology, 2009.

[18] D. Mukhopadhyay, An improved fault based attack of the advanced encryption
standard, In AFRICACRYPT 2009, LNCS 5580, pp. 421–434, Springer-Verlag,
2009.

[19] J. Park and j. Ha, Improved Dierential Fault Analysis on Block Cipher ARIA,
The 13th International Workshop on Information Security Applications, 2012.

[20] M. Tunstall and D. Mukhopadhyay, Differential fault analysis of the advanced
encryption standard using a single fault, IACR eprint archive, 2009/575, 2009.

[21] W. Wu, W. Zhang, D. Feng, Impossible differential cryptanalysis of reduced-
round ARIA and Camellia, Journal of Computer Science and Technology, Vol. 22,
No. 3, pp. 449–456, 2007.

17

