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Abstract. Projecting bilinear pairings have frequently been used for designing cryptosystems since
they were first derived from composite order bilinear groups. There have been only a few studies on
the (im)possibility of projecting bilinear pairings. Groth and Sahai (EUROCRYPT 2008) showed that
projecting bilinear pairings can be achieved in a prime-order group setting. They constructed both
projecting asymmetric bilinear pairings and projecting symmetric bilinear pairings, where a bilinear
pairing e is symmetric if it satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise,
it is asymmetric. Subsequently, Freeman (EUROCRYPT 2010) generalized Groth-Sahai’s projecting
asymmetric bilinear pairings.

In this paper, we provide impossibility results on projecting bilinear pairings in a prime-order group
setting. More precisely, we specify the lower bounds of

1. the image size of a projecting asymmetric bilinear pairing
2. the image size of a projecting symmetric bilinear pairing
3. the computational cost for a projecting asymmetric bilinear pairing
4. the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the k-linear assumption, where the computational
cost means the number of generic operations.

Our lower bounds regarding a projecting asymmetric bilinear pairing are tight, i.e., it is impossible to
construct a more efficient projecting asymmetric bilinear pairing than the constructions of Groth-Sahai
and Freeman. However, our lower bounds regarding a projecting symmetric bilinear pairing differ from
Groth and Sahai’s results regarding a symmetric bilinear pairing; We fill these gaps by constructing
projecting symmetric bilinear pairings.

In addition, on the basis of the proposed symmetric bilinear pairings, we construct more efficient instan-
tiations of cryptosystems that essentially use the projecting symmetric bilinear pairings in a modular
fashion. Example applications include new instantiations of the Boneh-Goh-Nissim cryptosystem, the
Groth-Sahai non-interactive proof system, and Seo-Cheon round optimal blind signatures proven secure
under the DLIN assumption. These new instantiations are more efficient than the previous ones, which
are also provably secure under the DLIN assumption. These applications are of independent interest.

1 Introduction

A bilinear group is a tuple of abelian groups with a non-degenerate bilinear pairing. Projecting bilinear pair-
ings, which are bilinear pairings with homomorphisms that satisfy a commutative property, have frequently
been used for designing cryptosystems since they were first derived from composite order bilinear groups [10],
though Freeman identified and named the projecting property recently [15]. Of special interest is the Groth-
Sahai non-interactive proof system [22] and the Boneh-Goh-Nissim cryptosystem [10], both of which essen-
tially use the projecting property and have numerous applications in various fields in cryptography. For
example, the Groth-Sahai proofs were used to construct ring signatures [13], group signatures [19], round
optimal blind signatures [25], verifiable shuffles [20], a universally composable adaptive oblivious transfer
protocol [18], a group encryption scheme [12], anonymous credentials [7, 6], and malleable proof systems [14].
For its part, the Boneh-Goh-Nissim cryptosystem was used for designing private searching on streaming
data [31], non-interactive zero-knowledge [21], shuffling [5], and privacy-preserving set operations [32].



(Im)possibility of Projecting Bilinear Pairings: Although the projecting bilinear pairings are often
used for designing various cryptosystems, there have been only a few studies on the (im)possibility of pro-
jecting bilinear pairings. Groth and Sahai [22] demonstrated that projecting bilinear pairings can be achieved
in a prime-order group setting. They provided two distinct constructions in the prime-order group setting:
projecting asymmetric bilinear pairings and projecting symmetric bilinear pairings, where a bilinear pairing
e is symmetric if it satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise, it is asymmet-
ric. On the basis of this idea of projecting bilinear pairings, they developed non-interactive proof systems
for quadratic equations over modules that can be instantiated in composite-order bilinear groups, product
groups of prime-order bilinear groups with asymmetric bilinear pairings, and product groups of prime-
order groups with symmetric bilinear pairings. By extending Groth-Sahai’s idea, Freeman [15] generalized
Groth-Sahai’s projecting asymmetric bilinear pairings in the prime-order group setting.1 Groth-Sahai and
Freeman’s constructions of projecting bilinear pairings allow for the simultaneous treatment of subgroup
indistinguishability. To use projecting bilinear pairings for designing cryptographic protocols, we need to
deal with cryptographic assumptions such as subgroup decision assumption at the same time. Meiklejohn,
Shacham, and Freeman [25] have shown some impossibility results for projecting bilinear pairings in the
prime-order group setting, e.g., that projecting bilinear pairings cannot simultaneously have a cancelling
property if the subgroup indistinguishability is naturally induced from the k-linear assumption [23, 36]. Re-
cently, Seo and Cheon [35] proved that bilinear pairings can be simultaneously projecting and cancelling
when the subgroup decision assumption holds in the generic group model.2

Contribution: In this paper, our contribution is a two-fold. First, we aim to answer the fundamental
question how efficient constructions for projecting bilinear pairings can be. Second, we propose a construction
of projecting symmetric bilinear pairings that can achieve the efficiency of our lower bounds and then provide
several constructions of cryptosystems based on the proposal in a modular fashion.

We focus on constructions only in the prime-order bilinear group setting since this type of group usually
supports more efficient (group and bilinear pairing) operations than those in composite-order bilinear groups
(see [15] for a detailed comparison of composite and prime-order groups). We present several impossibility
results of the projecting bilinear pairings in a prime-order group setting. More precisely, we specify the lower
bound of

1. the image size of a projecting asymmetric bilinear pairing
2. the image size of a projecting symmetric bilinear pairing
3. the computational cost for a projecting asymmetric bilinear pairing, and
4. the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the decisional Diffie-Hellman (DDH) assumption, the
decisional linear (DLIN) assumption, and the k-linear assumption, where the computational cost means the
number of generic operations. In this paper, we restrict ourselves to a consideration of a framework in which
the subgroup indistinguishability in the framework relies in a natural way on simple assumptions (i.e., the
DDH, DLIN, and k-linear assumption). This framework covers all previous constructions by Groth-Sahai and
Freeman, and this restriction on the framework has already been used in [25] to show another impossibility
result on projecting bilinear pairings. As for the computational cost of projecting bilinear pairings, we
consider a slightly restricted computational model since there are typically several ways to perform a given
operation, which makes it very difficult to compare all possible (even unknown) ways. We have two basic
assumptions in our computational model. First, we only count the number of generic operations of the
underlying elliptic curve group and the pairings − that is, we assume that one cannot utilize information
about the representation of groups and bilinear pairing operations [37, 8]. Second, we assume that two inputs
of a projecting bilinear pairing are uniformly and independently chosen. In special cases, an additional

1 Freeman identified the other property of bilinear pairings in a composite-order group setting, called cancelling, and
demonstrated how to achieve the cancelling bilinear pairings in the prime-order group setting.

2 Seo and Cheon’s result does not contradict Meiklejohn et al.’s result. Rather, they showed that there is a more
general class of bilinear groups than Meiklejohn et al. considered and that some of theses can be both cancelling
and projecting.
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information about two inputs may lead to an efficient alternative way of computing a pairing operation. For
example, when one computes e(g1, g2) for the two given inputs g1 and g2, where e : G×G→ Gt is a pairing,
if we knows e(g, g), a1 and a2 such that g1 = ga1 and g2 = ga2 for a generator g of G, then we can perform
one field multiplication and one exponentiation in Gt instead of performing e for e(g1, g2) = e(g, g)a1a2 .
Since we want to consider the computational cost of e in general, that is, without any additional information
aside from the original two inputs, we assume that two inputs are uniformly and independently distributed
in their respective domains: Hence, our computational model rules out special cases like the above example.
Although our computational model does not perfectly correspond to the real world, we believe that its lower
computational bounds can aid our understanding of the projecting property and enable us to locate efficient
constructions for projecting bilinear pairings.

In this study, our lower bounds imply that Freeman’s construction of projecting asymmetric bilinear
pairings is optimal [15]: that is, it is the most efficient construction for projecting asymmetric bilinear pairings
in our framework and computational model. In contrast, our lower bounds for a projecting symmetric bilinear
pairing are different from those of Groth-Sahai [22]. We fill these gaps by constructing projecting symmetric
bilinear pairings and demonstrating that our construction can achieve an efficiency coincident with the lower
bounds.

The proposed projecting symmetric bilinear pairings can be used to create more efficient instantiations
of cryptosystems, which essentially use projecting property and symmetric bilinear pairings, in a modu-
lar fashion. To show that the proposed projecting symmetric bilinear pairings can be adapted to various
cryptosystems, we apply them to three distinct cryptosystems and create new efficient instantiations of the
Groth-Sahai non-interactive proof system [22], the Boneh-Goh-Nissim cryptosystem [10], and the Seo-Cheon
round optimal blind signatures [35] that are provably secure under the DLIN assumption.3 The proposed
instantiation of the non-interactive proof system has a faster verification than the Groth-Sahai’s instantiation
based on the DLIN assumption, and the proposed instantiation of the Boneh-Goh-Nissim cryptosystem has
a smaller ciphertext size and a faster decryption algorithm than the Freeman’s instantiation based on the
DLIN assumption. We can also reduce the verification costs of the Seo-Cheon round optimal blind signatures.
These applications are of independent interest. Our new instantiation is based on the DLIN assumption so
that we can improve the efficiency of all subsequent protocols using the Groth-Sahai’s instantiation 3 (based
on the DLIN assumption).

We should note here that symmetric bilinear pairings require the use of supersingular elliptic curves and
thus the associated bilinear groups are larger than those with asymmetric bilinear pairings using ordinary
curves (please see [16] for a detailed comparison). However, some constructions of pairing-based cryptosys-
tems essentially use the symmetric property of bilinear pairings (e.g., Groth-Ostrovsky-Sahai zero-knowledge
proofs [21]). Therefore, the proposed projecting symmetric bilinear pairings can be used for designing such
cryptosystems.

Modular Approach in Cryptography: Generally speaking, a modular approach for cryptosystems leads
to a simple design but inefficient constructions in comparison to an ad hoc approach. Recently, we have
found a few exceptions for structure preserving cryptography [1, 2, 11] and mathematical structures [26, 27].
Structure preserving schemes enable one to construct modular protocols while preserving conceptual simplic-
ity and yielding reasonable efficiency at the same time. Structure-preserving signatures, commitments [1],
and encryptions [11] restrict all components in schemes to group elements, so schemes can easily be com-
bined with Groth-Sahai proofs [22]. In a modular fashion, round optimal blind signatures, group signatures,
and anonymous proxy signatures can be derived from structure preserving signatures, and oblivious trusted
third parties can be achieved due to the structure preserving encryptions. There has been some impossibility
results for structure preserving cryptography [2–4]. These save our efforts in terms of impossible goals and
widen our understanding regarding modular constructions.

3 The Seo-Cheon round optimal blind signature scheme can be considered a prime order group version of the
Meiklejohn-Shacham-Freeman round optimal blind signature scheme in composite order groups [25]. Since we
only consider prime order group settings in this paper, we provide a new instantiation of the Seo-Cheon scheme
instead of the Meiklejohn-Shacham-Freeman scheme.
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Okamoto and Takashima [26] introduced a mathematical structure called “dual pairing vector spaces”
that can be instantiated using a product of bilinear groups or a Jacobian variety of a supersingular curve
of genus ≥ 1. On the basis of these dual pairing vector spaces, a homomorphic encryption scheme [26],
functional encryption scheme [27, 28, 30], attribute-based signature scheme [29], and (hierarchical) identity-
based encryption scheme [24] have been proposed.

Open Problem: It would be interesting to extend the (im)possibility of the projecting property into a wider
framework than ours. Furthermore, finding other applications of projecting pairings is also interesting.

Road Map: In Section 2, we give definitions for bilinear groups, projecting property, and cryptographic
assumptions. In Section 3, we explain our impossibility results of projecting bilinear pairings. In Section 4,
we show the optimality of Groth-Sahai and Freeman’s projecting asymmetric bilinear pairings and give
our construction for optimal projecting symmetric bilinear pairings. In Section 5, we apply the proposed
projecting symmetric bilinear pairings to three distinct cryptosystems, the Groth-Sahai non-interactive proof
system, the Boneh-Goh-Nissim cryptosystem, and the Seo-Cheon round optimal blind signatures.

2 Definition

We use notation x
$← A to mean that, if A is a finite group G, an element x is uniformly chosen from G,

and, if A is an algorithm, A outputs x by using its own random coins. We use [i, j] to denote a set of integers
{i, . . . , j}, 〈g1, . . . , gn〉 to denote a group generated by g1, . . . , gn, and Fp to denote a finite field of prime
order p. For a map τ : TD → TR, and any subset SD of TD, τ(SD) := {τ(s)|s ∈ SD}. All values in our paper
are outputs of some functions taking the security parameter λ and ≈ denotes the difference between both
sides is a negligible function in λ.

We use two commonly used mathematical notations internal direct sum, denoted by ⊕, and tensor product
(Kronecker product), denoted by ⊗. For an abelian group G, if G1 and G2 are subgroups of G such that
G = G1 + G2 = {g1 · g2|g1 ∈ G1, g2 ∈ G2} and G1 ∩ G2 = {1G} for the identity 1G of G, then we write
G = G1⊕G2. If A = (ai,j) is a m1×m2 matrix and B = (bi,j) is an `1× `2 matrix, the tensor product A⊗B
is the m1`1 ×m2`2 matrix whose (i, j)-th block is ai,jB, where we consider A⊗B as m1 ×m2 blocks. That
is,

A⊗B =

 a1,1B . . . a1,m2
B

...
. . .

...
am1,1B . . . am1,m2

B

 ∈Matm1`1×m2`2(Fp).

We use several properties of the internal direct sum and tensor product. Every element g in G has a unique
representation if G = G1 ⊕ G2. That is, g ∈ G can be uniquely written as g = g1g2 for some g1 ∈ G1

and g2 ∈ G2. If two matrices A and B are invertible, then A ⊗ B is also invertible and the inverse is given
by (A ⊗ B)−1 = A−1 ⊗ B−1. The transposition operation is distributive over the tensor product. That is,
(A⊗B)t = At ⊗Bt. We sometimes consider a vector over Fp as a matrix with one row.

2.1 Bilinear Groups and Projecting Bilinear Pairings

Definition 1 Let G be an algorithm that takes as input the security parameter λ. We say that G is a bilinear
group generator if G outputs a description of five finite abelian groups (G,G1, H,H1, and Gt) and a map e
such that G1 ⊂ G, H1 ⊂ H, and e : G×H → Gt is a non-degenerate bilinear pairing; that is, it satisfies

• Bilinearity: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2) for g1, g2 ∈ G and h1, h2 ∈ H,
• Non-degeneracy: for g ∈ G, if e(g, h) = 1 ∀h ∈ H, then g = 1. Similarly, for h ∈ H, if e(g, h) = 1 ∀g ∈
G, then h = 1.

In addition, we assume that group operations in each group (G, H, and Gt), bilinear pairing computations,
random samplings from each group, and membership-check in each group are efficiently computable (i.e.,
polynomial time in λ).
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If the order of output groups of G is prime p, we call G a bilinear group generator of prime order and say

G1
$→ (p,G,H,Gt, ê); that is, G, H and Gt are finite abelian groups of prime order p.

If G = H, G1 = H1, and e(g, h) = e(h, g) for all g, h ∈ G, we say that G is symmetric. Otherwise, we say
that G is asymmetric.

We define the projecting property of a bilinear pairings.

Definition 2 Let G be a bilinear group generator, and G $→ (G,G1, H,H1, Gt, e). We say that G is projecting
if there exist a subgroup G′t ⊂ Gt and three homomorphisms π : G→ G, π̄ : H → H, and πt : Gt → Gt such
that

1. π(G) 6= {1G}, π̄(H) 6= {1H}, and πt(e(G,H)) 6= {1t}, where 1G, 1H , and 1t are identities of G, H, Gt,
respectively.

2. G1 ⊂ ker(π), H1 ⊂ ker(π̄), and G′t ⊂ ker(πt).

3. πt(e(g, h)) = e(π(g), π̄(h)) for all g ∈ G and h ∈ H.

If G is symmetric, set π = π̄.

Note that in Definition 2 we slightly revised Freeman’s original projecting definition to fit our purpose.
First, we added a requirement for homomorphisms to be non-trivial (first condition of Definition 2). If we
allowed trivial homomorphisms, they would satisfy the projecting property. Since trivial homomorphisms
may not be helpful in designing cryptographic protocols, our modification is quite reasonable. Second, our
definition requires only the existence of G′t and homomorphisms while Freeman required them to be out-
put [15]. Since our definition is weaker than Freeman’s (if we ignore our first modification), our main results
(the lower bounds and optimal construction) are meaningful. Several other researchers [25, 24] have used an
existence definition like ours instead of Freeman’s definition for the projecting property.

2.2 Subgroup Decision Assumption and k-Linear Assumption

Here we define subgroup decision problem and subgroup decision assumption in the bilinear group setting,
which were introduced by Freeman [15].

Definition 3 Let G be a bilinear group generator. We define the advantage of an algorithm A in solving the
subgroup decision problem on the left, denoted by AdvSDPL

A,G (λ), as∣∣∣Pr
[
A(G,G1, H,H1, Gt, e, g)→ 1| (G,G1, H,H1, Gt, e)

$← G(λ), g
$← G

]
−Pr

[
A(G,G1, H,H1, Gt, e, g1)→ 1| (G,G1, H,H1, Gt, e)

$← G(λ), g1
$← G1

]∣∣∣.
We say that G satisfies the subgroup decision assumption on the left if, for any PPT algorithm A, its

AdvSDPL

A,G (λ) is a negligible function of the security parameter λ.

We analogously define the subgroup decision problem on the right, the advantage AdvSDPR

A,G of A, and the
subgroup decision assumption on the right by using H and H1 instead of G and G1.

Definition 4 We say that a bilinear group generator G satisfies the subgroup decision assumption if G
satisfies both the subgroup decision assumptions on the left and subgroup decision assumptions on the right.

For a subgroup decision assumption in the prime-order group setting, we use the widely-known k-linear
assumption which is introduced by Hofheinz and Kiltz and Shacham [23, 36], in the bilinear group setting.
We give the formal definition of k-linear assumption below.
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Definition 5 Let G1 be a bilinear group generator of prime order and k ≥ 1. We define the advantage of an
algorithm A in solving the k-linear problem in G, denoted by Advk-LinG

A,G1 (λ), to be∣∣∣Pr
[
A(G,H,Gt, e, g, ui, uaii , gb, h for i ∈ [1, k])→ 1|

(G,H,Gt, e)
$← G1(λ), g, ui

$← G, h $← H, ai
$← Fp for i ∈ [1, k], b

$← Fp
]

−Pr
[
A(G,H,Gt, e, g, ui, uaii , gb, h for i ∈ [1, k])→ 1|

(G,H,Gt, e)
$← G1(λ), g, ui

$← G, h $← H, ai
$← Fp for i ∈ [1, k], b =

∑
i∈[1,k] ai

]∣∣∣.
Then, we say that G1 satisfies the k-linear assumption in G if for any PPT algorithm A, Advk-LinG

A,G1 (λ) is a
negligible function of the security parameter.

We can analogously define the k-linear assumption in H. The 1-linear assumption in G is the DDH
assumption in G and the 2-linear assumption in G is the decisional linear assumption in G [9].

3 Impossibility Results of Projecting Bilinear Pairings

In this section, we first formally define natural product groups of prime-order bilinear groups. Next, we derive
conditions for projecting bilinear groups, and then provide our impossibility results of projecting bilinear
pairings. We begin by defining some notations that will help us to simplify explanations. For group elements
g, g1, . . . , gk+1 ∈ G, a vector −→α = (a1, . . . , ak+1) ∈ Fk+1

p , and a matrix M = (mi,j) ∈ Mat(k+1)×(k+1)(Fp),
we use the notation

g
−→α := (ga1 , . . . , gak+1) ∈ Gk+1

and
(g1, . . . , gk+1)M := (

∏
i∈[1,k+1]

g
mi,1

i , . . . ,
∏

i∈[1,k+1]

g
mi,k+1

i ).

From this notation, we can easily obtain (g
−→α )M = g(

−→αM).

3.1 Bilinear Groups Naturally Induced from k-linear Assumption

In Figure 1, we provide a generator G{A`}`∈[1,m]

k for A` ∈Mat(k+1)×(k+1)(Fp) and ` ∈ [1,m]. When we refer
to the natural construction of product groups of prime-order bilinear groups such that the subgroup decision

assumption “naturally” follows from the k-linear assumption, we mean G{A`}`∈[1,m]

k .4 When we consider the
subgroup decision assumption, which is induced from the k-linear assumption, to mean that, given g, it is

hard to determine if g
$← G1 or g

$← G, G is a rank-(k+ 1) Fp-module, and G1 is a randomly chosen rank-k

submodule of G. For any matrices A1, . . . , Am in Mat(k+1)×(k+1)(Fp), a group generator G{A`}`∈[1,m]

k satisfies
the subgroup decision assumption if the underlying prime-order bilinear group generator G1 satisfies the
k-linear assumption.

Theorem 1 [15, Theorem 2.5] If G1 satisfies the k-linear assumption in G and H, G{A`}`∈[1,m]

k satisfies the
subgroup decision assumption regardless the choice of {A`}`∈[1,m].

Note that G{A`}`∈[1,m]

k contains Groth-Sahai’s constructions based on the DDH assumption (k = 1) and
the DLIN assumption (k = 2).

4 Meiklejohn et al. [25] also used the word “natural” to refer to G{A`}`∈[1,m]

k . They used G{A`}`∈[1,m]

k to show the

limitation result of both projecting and cancelling: They showed that for any A` matrices used in G{A`}`∈[1,m]

k ,

G{A`}`∈[1,m]

k cannot be both projecting and cancelling with overwhelming probability, where the probability goes

over the randomness used in G{A`}`∈[1,m]

k .
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1. G{A`}`∈[1,m]

k takes the security parameter λ as input.

2. Run G1(λ)
$→ (p,G,H,Gt, ê).

3. Define G = Gk+1, H = Hk+1, and Gt = Gm
t .

4. Randomly choose −→x 1, . . . ,
−→x k,
−→y 1, . . . ,

−→y k ∈ Fk+1
p such that the set {−→x i}i∈[1,k] and {−→y i}i∈[1,k] are each

linearly independent.
5. Randomly choose generators g ∈ G and h ∈ H, and let G1 = 〈g

−→x 1 , . . . , g
−→x k 〉 and H1 = 〈h

−→y 1 , . . . , h
−→y k 〉.

6. Define a map e : G×H → Gt as an m-tuple of maps e(·, ·)` for ` ∈ [1,m] as follows:

e((g1, . . . , gk+1), (h1, . . . , hk+1))` :=
∏

i,j∈[1,k+1]

ê(gi, hj)
a
(`)
i,j ,

where A` = (a
(`)
ij ) ∈Mat(k+1)×(k+1)(Fp) for ` ∈ [1,m].

7. Output description of (p,G,G1, H,H1, Gt, e); each group description has its generators only. (e.g., G1’s de-
scription has g

−→x 1 , . . . , g
−→x k , but −→x i is not contained in the description of G1.)

Fig. 1. Description of G{A`}`∈[1,m]

k

3.2 Conditions for Bilinearity and Non-degeneracy

A bilinear pairing e of G{A`}`∈[1,m]

k in Figure 1 can be rewritten, using matrix notation, as

e(g
−→x , h

−→y )` = ê(g, h)
−→x A`

−→y t

where −→x is considered to be a 1× (k + 1) matrix, and −→y t is considered to be a (k + 1)× 1 matrix.

Theorem 2 Let e be a map generated by G{A`}`∈[1,m]

k . Then, e is always bilinear regardless of {A`}`∈[1,m].

Proof. The bilinearity of e comes directly from the bilinearity of ê and the definition of e. �

Theorem 3 Let e be a map generated by G{A`}`∈[1,m]

k . Let Vc and Vr be vector spaces over Fp spanned by all
column vectors and all row vectors of {A`}`∈[1,m], respectively. Then, e is non-degenerate if and only if both
dimensions of Vc and Vr are equal to (k + 1).

Proof. (⇒) We show that if dim(Vc) < k + 1 or dim(Vr) < k + 1, then e is degenerate. Suppose that
dim(Vc) < k + 1. Then, there exists a non-zero vector −→x ∈ V ⊥c ⊂ Fk+1

p , where V ⊥c is an orthogonal

complement of Vc in the (k+ 1)-dimensional vector space Fk+1
p ; That is, for ∀−→z ∈ Vc, −→x · −→z t = 0. It implies

that −→x A` = 0 for ∀` ∈ [1,m] so that for ∀−→y ∈ Fk+1
p ,

e(g
−→x , h

−→y ) = (ê(g, h)
−→x A1

−→y t

, . . . , ê(g, h)
−→x Am

−→y t

) = 1t,

where 1t is the identity of Gt. Therefore, e is degenerate. Similarly, if dim(Vr) < k + 1, then there exists a
non-zero vector −→y ∈ V ⊥r ⊂ Fk+1

p such that for ∀−→x ∈ Fk+1
p , e(g

−→x , h
−→y ) = 1t so that e is degenerate.

(⇐) Suppose that e is degenerate. Then, there exists a non-zero vector−→x ∈ Fk+1
p such that for ∀−→z ∈ Fk+1

p ,

e(g
−→x , h

−→z ) = 1t, or there exists a non-zero vector −→y ∈ Fk+1
p such that for ∀−→w ∈ Fnp , e(g

−→w , h
−→y ) = 1t. We

show that if such a vector −→x exists, then dim(Vc) < k + 1, and if such a vector −→y exists, then dim(Vr) <
k + 1. Suppose that there exists a non-zero vector −→x ∈ Fk+1

p such that for ∀−→z ∈ Fk+1
p , e(g

−→x , h
−→z ) =

(ê(g, h)
−→x A1

−→z t

, . . . , ê(g, h)
−→x Am

−→z t

) = 1t. Since ê is non-degenerate, −→x A`−→z t = 0 for ∀` ∈ [1,m] and ∀−→z ∈
Fk+1
p . This implies that −→x A` = (0, . . . , 0) ∈ Fk+1

p for ∀` ∈ [1,m] so −→x ∈ V ⊥c . Since −→x is a non-zero vector,

V ⊥c 6= {0} so that dim(Vc) < k + 1. Similarly, if that there exists a non-zero vector −→y ∈ Fk+1
p such that for

∀−→w ∈ Fk+1
p , e(g

−→w , h
−→y ) = 1t, then −→y ∈ V ⊥r is a non-trivial subspace so that dim(Vr) < k + 1. �

7



3.3 Conditions for Symmetric Property

If G1 is a symmetric bilinear group generator of prime-order, then one may think that G{A`}`∈[1,m]

k is also
a symmetric bilinear group generator. However, not all bilinear groups with underlying symmetric bilinear
pairings ê do satisfy symmetric property. The following theorem shows the necessary and sufficient condition

of {A`}`∈[1,m] for G{A`}`∈[1,m]

k to be symmetric; that is, e(g, h) = e(h, g) for any group elements g and h.

Theorem 4 G{A`}`∈[1,m]

k is symmetric if and only if G = H, g = h, −→x i = −→y i for all i ∈ [1, k], and A` is

symmetric for all ` ∈ [1,m], where G,H, g, h,−→x i and −→y i are defined in the description of G{A`}`∈[1,m]

k .

Proof. (⇒) Suppose that GBk is symmetric. Then, G = H, g = h, −→x i = −→y i for all i ∈ [1, k], and e(g
−→x , g

−→y ) =

e(g
−→y , g

−→x ). Thus,

(ê(g, g)
−→x A1

−→y t

, . . . , ê(g, g)
−→x Am

−→y t

) = (ê(g, g)
−→y A1

−→x t

, . . . , ê(g, g)
−→y Am

−→x t

).

Since −→x A`−→y t ∈ Fp, −→x A`−→y t = (−→x A`−→y t)t = −→y At`
−→x t; Hence, for all ` ∈ [1, k + 1] −→y At`

−→x t = −→y A`−→x t. Since
−→x and −→y are arbitrary, A` = At`.

(⇐) Suppose that G = H, g = h and −→x i = −→y i for all i ∈ [1, k]. These imply that G = H and G1 = H1.
Suppose that A` is symmetric; That is At` = A`. Since −→x A`−→y t ∈ Fp, −→x A`−→y t = (−→x A`−→y t)t = −→y At`

−→x t =
−→y A`−→x t. This implies that e(g

−→x , g
−→y ) = e(g

−→y , g
−→x ). �

3.4 Necessary Condition for Projection Property

Using a tensor product ⊗, we can further simplify e computation as follows: Let B be a (k+ 1)2×m matrix

such that B’s ((i− 1)(k + 1) + j, `) entry is a
(`)
i,j , where A` = (a

(`)
i,j ). Then,

e(g
−→x , h

−→y ) = (e(g
−→x , h

−→y )1, . . . , e(g
−→x , h

−→y )m)

= (ê(g, h)
−→x A1

−→y t

, . . . , ê(g, h)
−→x Am

−→y t

) = ê(g, h)(
−→x⊗−→y )B .

From now, we use a notation GBk as well as G{A`}`∈[1,m]

k to denote a bilinear group generator naturally induced
from the k-linear assumption, where B is defined by {A`}`∈[1,m] as above. This notation is well-defined since
there are one-to-one correspondence between B and {A`}`∈[1,m].

We give a necessary condition of B for GBk to be projecting in Lemma 1. This lemma says that if
G = G1 ⊕ G2 and H = H1 ⊕ H2, then e(G2, H2) should have at least an element not contained in the
subgroup generated by other parts of images.

Lemma 1 1. If GBk is asymmetric (that is, GBk
$→ (p,G,G1, H,H1, Gt, e)) and projecting, for decomposi-

tions G = G1 ⊕ G2 and H = H1 ⊕ H2 it satisfies that e(G2, H2) 6⊂ D, where D is the smallest group
containing e(G1, H) and e(G,H1).

2. If GBk is symmetric (that is, GBk
$→ (p,G,G1, Gt, e)) and projecting, for any decomposition G = G1 ⊕G2

it satisfies that e(G2, G2) 6⊂ D, where D is the smallest group containing e(G,G1).

Proof. (1) Suppose that GBk is projecting. Then, there exist three homomorphisms π, π̄, and πt. Since π and
π̄ are non-trivial homomorphisms, G1 and H1 are proper subgroups of G and H, respectively. Since G1 and
H1 are proper subgroups, for any decompositions G = G1 ⊕ G2 and H = H1 ⊕ H2, {1G} 6= G2 ⊂ G and
{1H} 6= H2 ⊂ H. We show that G1, G2, H1, and H2 satisfy the condition in the theorem. By definition of D,
D is a group generated by all elements in e(G1, H) and e(G,H1) so that every element in D can be written
as a product of elements in e(G1, H) and e(G,H1) (though it is not uniquely written). For any g1 ∈ G1,
h1 ∈ H1, g ∈ G, and h ∈ H, πt(e(g1, h)e(g, h1)) is equal to 1t since

πt(e(g1, h))πt(e(g, h1)) = e(π(g1), π̄(h))e(π(g), π̄(h1)) = e(1G, π̄(h))e(π(g), 1H).
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We can see that by homomorphic property of πt, πt(D) = 1t. If e(G2, H2) ⊂ D, then e(G,H) ⊂ D ⊂ ker(πt).
That is a contradiction of πt’s non-trivial condition.

(2) We can prove similarly as (1). Essential proof idea is same as (1). Thus, we omit it. �

For our impossibility results regarding the image size and computational cost, we will focus on the
(k+1)2×m matrix B of GBk . All non-zero entries in B imply ê-computations (bilinear pairing ê of underlying
bilinear group generator G1) and the lower bound of m implies the lower bound of the image size of bilinear
pairings. We compute the lower bound of the rank of B of GBk , where GBk is asymmetric and projecting, by
using the necessary condition of projecting property in Lemma 1. For projecting symmetric bilinear pairings,
the overall strategy is similar to those of projecting asymmetric bilinear pairings except that symmetric
bilinear pairings have the special form of B as mentioned in Theorem 4. We give the formal statement
below.

Lemma 2 The following statements about GBk are true with overwhelming probability, where the probability
goes over the randomness used in the GBk .

1. If GBk is asymmetric and projecting, then B has (k + 1)2 linearly independent rows.

2. If GBk is symmetric and projecting, then B has (k+1)(k+2)
2 linearly independent rows.

Proof. (1) Let GBk be a projecting asymmetric bilinear group generator. Let (G,G1, H,H1, Gt, e) be the
output of GBk and G and H be decomposed by G = G1 ⊕ G2 and H = H1 ⊕ H2, respectively for some

subgroups G2 and H2. Then, G1 = 〈g−→x 1 , . . . , g
−→x k〉, H1 = 〈h−→y 1 , . . . , h

−→y k〉, G2 = 〈g−→x k+1〉, and H2 = 〈h−→y k+1〉
for some sets of linearly independent vectors {−→x i}i∈[1,k+1] and {−→y i}i∈[1,k+1]. Let X be a (k + 1)× (k + 1)
matrix over Fp with −→x i as its i-th row, and Y be a (k+ 1)× (k+ 1) matrix over Fp with −→y i as its i-th row.
Note that X and Y are invertible. Since B is a (k+ 1)2×m matrix for some m, B can have at most (k+ 1)2

linear independent rows.
Suppose that B has less than (k + 1)2 linearly independent rows. We observe that

e(G2, H2) = 〈e(g
−→x k+1 , h

−→y k+1)〉 = 〈ê(g, h)(
−→x k+1⊗−→y k+1)B〉 = 〈ê(g, h)

−→e (k+1)2 (X⊗Y )B〉,

and similarly

D = 〈ê(g, h)
−→e 1(X⊗Y )B , . . . , ê(g, h)

−→e (k+1)2−1(X⊗Y )B〉,

where −→e i is the i-th canonical vector of F(k+1)2

p . Now, we show that there exists a non-zero vector −→c ∈ F(k+1)2

p

with a non-zero in the (k + 1)2-th entry such that −→c · (X ⊗ Y )B =
−→
0 ∈ Fmp . The existence of such a vector

−→c implies that the (k+ 1)2-th row of (X ⊗Y )B can be represented by the linear combination of upper rows
of (X ⊗ Y )B so that e(G2, H2) ⊂ D. Then, it would be a contradiction with Lemma 1.

By hypothesis (rank(B) < (k+1)2), there exists a non-zero vector −→r ∈ F(k+1)2

p such that −→r B =
−→
0 ∈ Fmp .

For such an −→r , we show that −→r (X−1 ⊗ Y −1) satisfies conditions for it to be −→c aforementioned. First, we

obtain −→r (X−1⊗Y −1) ·(X⊗Y )B = −→r B =
−→
0 . Next, we argue that −→r (X−1⊗Y −1)’s (k+1)2-th entry is non-

zero with overwhelming probability, where the probability goes over the randomness used in GBk (to choose
−→x 1, . . . ,

−→x k,−→y 1, . . . ,
−→y k). We consider the (k+ 1)-th column vector x̂t of X−1 such that x̂ is orthogonal to

all upper k rows of X. Denote the orthogonal complement of 〈−→x 1, . . . ,
−→x k〉 by 〈−→w 〉. Then, x̂t is a non-zero

vector in 〈−→w 〉. By definition of GBk , −→x 1, . . . ,
−→x k are randomly chosen so that −→w is also uniformly distributed

in Fk+1
p . Similarly, the (k+1)-th column vector ŷt of Y −1 is a non-zero vector in 〈−→y 1, . . . ,

−→y k〉⊥ := 〈−→z 〉, and
−→z is uniformly distributed in Fk+1

p . The (k+1)2-th entry of −→r (X−1⊗Y −1) is −→r (x̂t⊗ ŷt), and it is a non-zero
constant multiple of −→r (−→w ⊗−→z )t. By the first statement of Lemma 3, which is given below, −→r (−→w ⊗−→z )t is
non-zero with overwhelming probability. Therefore, we complete the proof of the first statement of theorem.

(2) We can prove the second statement of theorem by using the second statements of Lemma 1 and Lemma 3.
The overall strategy is same as the proof of the first statement of theorem. The key observation of the proof
of the second statement is that B has a special form due to Theorem 4.
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Let GBk be a projecting symmetric bilinear group generator, (G,G1, Gt, e) be its output, and G be de-

composed by G = G1 ⊕G2 for some subgroup G2. Then, G1 = 〈g−→x 1 , . . . , g
−→x k〉 and G2 = 〈g−→x k+1〉 for some

linearly independent vectors −→x 1, . . . ,
−→x k+1. Let X be a n× n matrix over Fp with −→x i as its i-th row. Note

that X is invertible.
We know that B has a some special form by Theorem 4 so that B has at most (k+1)(k+2)

2 linearly

independent rows: Let V be a subspace of F(k+1)2

p generated by {−→a i,j}1≤i≤j≤(k+1), where −→a i,j is a vector
with 1 in the (i− 1)(k+ 1) + j-th entry, −1 in the (j − 1)(k+ 1) + i-th entry, and zeros elsewhere. We know

that −→v B =
−→
0 for any vector −→v ∈ V . Since the dimension of V is k(k+1)

2 , B has at most (k+1)(k+2)
2 linear

independent rows. (Recall B has (k + 1)2 rows and (k + 1)2 = (k+1)(k+2)
2 + k(k+1)

2 .)

Suppose that B has linear independent rows less than (k+1)(k+2)
2 . We observe that

e(G2, G2) = 〈e(g
−→x k+1 , g

−→x k+1)〉 = 〈ê(g, g)(
−→x k+1⊗−→x k+1)B)〉 = 〈ê(g, g)

−→e (k+1)2 (X⊗X)B)〉,

and similarly,

D = 〈ê(g, g)
−→e 1(X⊗X)B), . . . , ê(g, g)

−→e (k+1)2−1(X⊗X)B)〉,

where −→e i is the i-th canonical vector of F(k+1)2

p . We show that there exists a non-zero vector −→c ∈ F(k+1)2

p

with a non-zero in the (k+ 1)2-th entry such that −→c · (X ⊗X)B =
−→
0 ∈ Fmp . The existence of such a vector

−→c implies that e(G2, G2) ⊂ D. Then, it would be a contradiction with Lemma 1.

By hypothesis (rank(B) < (k+1)(k+2)
2 ), there exists a non-zero vector −→r ∈ F(k+1)2

p \V such that −→r B =
−→
0 .

For such an −→r , we show that −→r (X−1 ⊗X−1) satisfies conditions for it to be −→c aforementioned. −→r (X−1 ⊗
X−1) · (X⊗X)B = −→r B =

−→
0 , so −→r (X−1⊗X−1) satisfies the first condition. Next, we argue that −→r (X−1⊗

X−1)’s (k + 1)2-th entry is non-zero, with overwhelming probability, where the probability goes over the
randomness used in GBk (to choose −→x 1, . . . ,

−→x k). We consider the (k + 1)-th column vector x̂t of X−1 such
that x̂ is orthogonal to all upper k rows of X. Denote the orthogonal complement of 〈−→x 1, . . . ,

−→x k〉 by 〈−→w 〉.
Then, x̂t is a non-zero vector in 〈−→w 〉. By definition of GBk , −→x 1, . . . ,

−→x k are randomly chosen so that −→w is also
uniformly distributed. The (k + 1)2-th entry of −→r (X−1 ⊗X−1) is −→r (x̂t ⊗ x̂t), and it is a non-zero constant
multiple of −→r (−→w ⊗−→w )t. By the second statement of Lemma 3, −→r (−→w ⊗−→w )t is non-zero with overwhelming
probability. Therefore, we complete the proof of the second statement of theorem. �

Lemma 3 Let V be a subspace of F(k+1)2

p generated by {−→a i,j}1≤i≤j≤k+1, where −→a i,j is a vector with 1 in
the (i− 1)(k + 1) + j-th entry, −1 in the (j − 1)(k + 1) + i-th entry, and zeros elsewhere.

1. For any non-zero vector −→r ∈ F(k+1)2

p , Pr[−→r · (−→w ⊗ −→z )t = 0] ≤ 2
p , where the probability goes over the

choice of vectors −→w , −→z ∈ Fk+1
p .

2. For any vector −→r ∈ F(k+1)2

p \ V , Pr[−→r · (−→w ⊗ −→w )t = 0] ≤ 2
p , where the probability goes over the choice

of a vector −→w ∈ Fk+1
p .

Proof. (1) Let−→r = (r1,1, . . . , r1,k+1, r2,1, . . . , r2,k+1, . . . , rk+1,k+1),−→w = (w1, . . . , wk+1), and−→z = (z1, . . . , zk+1).

Then, −→r · (−→t ⊗−→s )t =
∑
i,j∈[1,k+1] ri,jwizj . Since −→r is a non-zero vector,

∑
i,j∈[1,k+1] ri,jwizj is a non-zero

polynomial of degree at most 2 over Fp if we consider w1, . . . , wk+1, z1, . . . , zk+1 as variables. By Schwartz-
Zippel lemma, we obtain Pr[−→r · (−→w ⊗−→z )t = 0] ≤ 2

p .

(2) Let −→r = (r1,1, . . . , r1,k+1, r2,1, . . . , r2,k+1, . . . , rk+1,k+1), and −→w = (w1, . . . , wk+1). Then, −→r · (−→w ⊗
−→w )t =

∑
1≤i≤j≤k+1(ri,j + rj,i)wiwj . Since −→r 6∈ V , there exists a (i, j) such that (ri,j + rj,i) 6= 0. Thus,∑

1≤i≤j≤k+1(ri,j +rj,i)wiwj is a non-zero polynomial of degree at most 2 over Fp if we consider w1, . . . , wk+1

as variables. By Schwartz-Zippel lemma, we obtain Pr[−→r · (−→w ⊗−→w )t = 0] ≤ 2
p . �

Lemma 4 (Schwartz-Zippel) [33] Let P ∈ Fp[x1, . . . , xk+1] be a non-zero polynomial of degree d ≥ 0 over
Fp. Then,

Pr[P (t1, t2, . . . , tk+1) = 0] ≤ d

p
,
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where the probability goes over the randomness for uniformly choosing t1, . . . , tk+1.

3.5 Impossibility of Projecting Property

Basing on Lemma 2, we derive our main theorem on the impossibility results of projecting bilinear pairings.
We begin with explaining our computational model for the lower bounds of computational cost of projecting
bilinear pairings. In our computational model, we assume two things: First, one who computes projecting
bilinear pairings e can not utilize the representation of the underlying bilinear pairing ê and groups G,H, and
Gt over which ê is defined. Note that we rule out techniques for multi-pairings [34, 17] in our computational
model. This assumption is same as that of the generic group model [37], in particular, generic bilinear
group [8]. In [37, 8], the generic (bilinear) group model is used to show the computational lower bounds
of attacker solving number theoretic problems such as the discrete logarithm problem and q-strong Diffie-
Hellman problem. Second, two inputs are uniformly and independently chosen so that any relations with
two inputs are unknown. In special cases such that a relation with two inputs are known, there are several
alternative way to compute bilinear pairings. For example, one knowing g1, h1, e(g, h), and a relation g1 = g2

and h1 = h3 can compute e(g1, h1) by performing an exponentiation e(g, h)6 instead of performing a bilinear
pairing. Since we want to consider the computational cost of e in general without using any additional
information of two inputs, we assume that two inputs are uniformly and independently distributed in their
respective domains. We provide our main theorem below.

Theorem 5 (Lower Bounds) The following statements about GBk are true with overwhelming probability,
where the probability goes over the randomness used in the GBk .

1. The image size of a projecting asymmetric bilinear pairing is at least (k + 1)2 elements in Gt.
2. The image size of a projecting symmetric bilinear pairing is at least (k+1)(k+2)

2 elements in Gt.
3. Any construction for a projecting (asymmetric or symmetric) bilinear pairing should perform at least

(k + 1)2 computations of ê in our computational model.

Proof. (1) Suppose that GBk is asymmetric and projecting. Since a (k+1)2×m matrix B has at least (k+1)2

linearly independent rows by Lemma 2, m ≥ (k+ 1)2. This implies that Gt = Gmt consists of m (≥ (k+ 1)2)
elements in Gt.

(2) If GBk is symmetric and projecting, then (k+1)2×mmatrix B has at least (k+1)(k+2)
2 linear independent

rows by Lemma 2. Thus, m ≥ (k+1)(k+2)
2 ; hence, an element in Gt = Gmt is m (≥ (k+1)(k+2)

2 ) elements in Gt.

(3) First, we show that for two inputs g = (g1, . . . , gk+1) ∈ G and h = (h1, . . . , hk+1) ∈ H, projecting
(asymmetric or symmetric) pairings require computing all ê(gi, hj) for all i, j ∈ [1, k + 1]. To this end, it is

sufficient to show that every row in the matrix B is non-zero. (Recall that e(g
−→w , h

−→z ) = ê(g, h)(
−→w⊗−→z )B and

if every row in B is non-zero, then ê(gwi , hzj ) should be computed at least one time.) If a group generator
GBk is projecting and asymmetric, then the rank of B is (k + 1)2 by Lemma 1. Since B has (k + 1)2 rows,

there is no zero rows. If a group generator GBk is projecting and symmetric, then the rank of B is (k+1)(k+2)
2

by Lemma 1. We know that the matrix B of symmetric bilinear group generators has the special form by

Theorem 4. From Theorem 4, some k(k+1)
2 rows in B have respective same rows in B. Since B has (k + 1)2

rows and (k + 1)2 − k(k+1)
2 is equal to the rank of B, every row in B has at least one non-zero entry.

Next, we show that computing ê(gi, hj) cannot be generally substitute by a product of other ê(gi′ , hj′)
for i′ ∈ [1, k + 1] \ {i} and j′ ∈ [1, k + 1] \ {j} in our computational model. To this end, it is sufficient to

show that for any non-zero vector −→r = (r1, . . . , r(k+1)2) ∈ F(k+1)2

p ,

Pr
g

$←G,h $←H

[ ∏
i,j∈[1,k+1]

ê(gi, hj)
r(i−1)(k+1)+j = 1Gt

]
≈ 0.

For two random inputs g
−→w and h

−→z ,∏
i,j∈[1,k+1]

ê(gwi , hzj )r(i−1)(k+1)+j = ê(g, h)(
−→w⊗−→z )−→r t

,
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where −→w = (w1, . . . , wk+1) ∈ Fk+1
p and −→z = (z1, . . . , zk+1) ∈ Fk+1

p . Since −→r t is a non-zero vector in F(k+1)2

p ,
(−→w ⊗ −→z )−→r t 6= 0 with overwhelming probability by Lemma 3, and hence we obtain the desired result such
that ∏

i,j∈[1,k+1]

ê(gwi , hzj )r(i−1)(k+1)+j 6= 1Gt

with overwhelming probability.
Therefore, all projecting bilinear pairings require at least (k + 1)2 ê-computations.

�

4 Optimal Projecting Bilinear Pairings

In this section, we show that our lower bounds are tight; for projecting asymmetric bilinear pairing, we show
that Groth-Sahai and Freeman’s constructions are optimal (in our computational model), and for projecting
symmetric bilinear pairing, we propose a new construction achieving optimal efficiency (in our computational
model).

Definition 6 Let GBk be a projecting asymmetric (symmetric, resp.) bilinear group generator. If the bilinear

pairing e consists of (k+1)2 ê-computation in our computational model and Gt = G(k+1)2

t (Gt = G
(k+1)(k+2)

2
t ,

resp.), we say that GBk is optimal.

We can define GBk by defining a (k+ 1)2×m matrix B, or equivalently a set of (k+ 1)× (k+ 1) matrices
{A`}`∈[1,m]. For a projecting asymmetric bilinear group generator, we define B as I(k+1)2 , where I(k+1)2 is

the identity matrix in GL(k+1)2(Fp). Note that G
I(k+1)2

k is exactly equal to Freeman’s projecting asymmetric

bilinear group generator [15] (We can easily check that G
I(k+1)2

k does not satisfy the symmetric property due

to Theorem 4). Theorem 5 implies that G
I(k+1)2

k is optimal. Therefore, we obtain the following theorem.

Theorem 6 G
I(k+1)2

k is an optimal projecting asymmetric bilinear group generator.

G
I(k+1)2

k covers one of the most interesting cases k = 1: GI41 is optimal.5

4.1 Optimal Projecting Symmetric Bilinear Pairings

We propose an optimal projecting symmetric bilinear group generator GBk by defining B (equivalently
A1, . . . , Am). Let a set S be {(i, j) ∈ [1, k + 1] × [1, k + 1]|1 ≤ j ≤ i ≤ k + 1}. We consider a map

τ : S → [1, (k+1)(k+2)
2 ] defined by (i, j) 7→ i(i−1)

2 + j.

Lemma 5 τ is a bijective map.

Proof. If i(i−1)
2 + j = i′(i′−1)

2 + j′ for some 1 ≤ j′ ≤ i′ ≤ k + 1, then

(i− i′) i
′ + i− 1

2
= (j′ − j).

If i = i′, then j′ = j. Otherwise, without loss of generality we assume that i′ < i. Then, the left-hand side
is larger than or equal to i′, but the right-hand side is less than i′. Therefore, i′ = i and j′ = j, so that τ is
injective. Since τ is injective and the size of the domain of τ and the size of the range of τ are equal, τ is
surjective, too. �

5 Freeman used the notation GP , which is equivalent to our notation GI41 .
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Description of A` (equivalently B) for optimal projecting symmetric bilinear pairings: Let

τ−1(`) = (i, j). For each ` ∈ [1, (k+1)(k+2)
2 ], A` = (a

(`)
s,t) is defined as a (k + 1)× (k + 1) matrix with{

1 in the entry (i, j) and zeros elsewhere if i = j,
1 in the entries (i, j) and (j, i), and zeros elsewhere otherwise .

We give an example to easily explain the proposal.

Example 1. For k = 2, define

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 1 0
1 0 0
0 0 0

 , A3 =

0 0 0
0 1 0
0 0 0

 , A4 =

0 0 1
0 0 0
1 0 0

 , A5 =

0 0 0
0 0 1
0 1 0

 , A6 =

0 0 0
0 0 0
0 0 1

 .

�

Define B as a (k+ 1)2 × (k+1)(k+2)
2 matrix such that B’s ((s− 1)n+ t, `) entry is a

(`)
s,t for s, t ∈ [1, k+ 1] and

` ∈ [1, (k+1)(k+2)
2 ]. (Then, we implicitly define Gt = G

(k+1)(k+2)
2

t .) By using the matrix B, we can construct a
bilinear group generator GBk .

Next, we show that a group generator GBk , where B is defined as above, is an optimal projecting symmetric
bilinear group generator. The following Theorem 7 provides the desired result.

Theorem 7 Let GBk be a bilinear group generator with restrictions such that G = H, g = h, −→x i = −→y i for

all i ∈ [1, k], and B is a (k + 1)2 × (k+1)(k+2)
2 matrix defined as above. Then, GBk is an optimal project-

ing symmetric bilinear group generator with overwhelming probability, where the probability goes over the
randomness used in GBk .

Proof. We can denote A` by Ai,j for τ−1(`) = (i, j) since τ is bijective. By definition, Ai,i has 1 in only entry
(i, i) and zeros elsewhere. All column vectors of {Ai,i}i∈[1,k+1] span Fk+1

p and all row vectors of {Ai,i}i∈[1,k+1]

span Fk+1
p . Therefore, e is non-degenerate by Theorem 3. Since each A` is symmetric, GBk is symmetric by

Theorem 4.
Next, we show that GBk is projecting. G1 = 〈g−→x 1 , . . . , g

−→x k〉 for some set of linearly independent vectors

{−→x }i∈[1,k]. Choose a vector −→x k+1 Fk+1
p such that −→x 1, . . . ,

−→x k+1 are linearly independent. Let G2 = 〈g−→x k+1〉.
Let X be a (k+1)×(k+1) matrix such that the i-th row of X is −→x i. To show that GBk is projecting, we show
that e(G2, G2) 6= {1t} and e(G2, G2)∩D = {1t}, where D is a group generated by by all elements in e(G1, G).
Then, it is easy to check natural projections π : G→ G2, πt : Gt → e(G2, G2) and G′t := D satisfy conditions
for being projecting; (1) π(G) = G2 6= {1G}, πt(e(G,G)) = e(G2, G2) 6= {1t}, (2) G1 ⊂ ker(π), G′t = D ⊂
ker(πt), and (3) πt(e(g1g2, h1h2)) = πt(e(g1, h1)e(g2, h1)e(g1, h2) e(g2, h2)) = e(g2, h2) = e(π(g1g2), π(h1h2))
for any g1, h1 ∈ G1 and g2, h2 ∈ G2. We know that

e(G2, G2) = 〈ê(g, g)(
−→x k+1⊗−→x k+1)B〉

and

D = 〈ê(g, g)(
−→x i⊗−→x j)B : i ∈ [1, k] or j ∈ [1, k]〉.

Let Z be a (k+1)(k+2)
2 × (k+ 1)2 matrix such that its `-th row is −→x i ⊗−→x j for ` = (k+2−i)(k+1−i)

2 + k+ 2− j
and 1 ≤ i ≤ j ≤ k + 1 and let D = ZB. Then, by definition of D,

e(G2, G2) = 〈ê(g, g)
−→e 1D〉

and

D = 〈ê(g, g)
−→e 2D, . . . , ê(g, g)

−→e (k+1)(k+2)
2

D
〉,

13



where −→e i is the i-th canonical vector in F
(k+1)(k+2)

2
p . By Lemma 6, D is invertible so that we obtain the

desired result that e(G2, G2) 6= {1t} and e(G2, G2) ∩ D = {1t}.
Since for i = j, Ai,j has only one non-zero entry, and for i 6= j Ai,j has two non-zero entries, there are

(k+1)2 non-zero entries in all {Ai,j}. Since all non-zero entires are 1, e requires only (k+1)2 ê-computations
(without additional exponentiations). Therefore, the proposed GBk is optimal: that is, e requires (k + 1)2

ê-computations, and Gt = G
(k+1)(k+2)

2
t . �

Lemma 6 Let B be a (k + 1)2 × (k+1)(k+2)
2 matrix defined as above. Let {−→x i}i∈[1,k+1] be a set of linearly

independent vectors in Fk+1
p . Let Z be a (k+1)(k+2)

2 × (k + 1)2 matrix such that its `-th row is −→x i ⊗−→x j for

` = (k+2−i)(k+1−i)
2 + k + 2− j and 1 ≤ i ≤ j ≤ k + 1. Then, Z is well-defined and D = ZB is an invertible

(k+1)(k+2)
2 × (k+1)(k+2)

2 matrix.

Proof. Let I = k + 2 − i and J = k + 2 − j. Then, I and J satisfy ` = I(I−1)
2 + J and 1 ≤ J ≤ I ≤ n. By

Lemma 5, there is one-to-one correspondence between so ` and (I, J) such that I and J satisfy ` = I(I−1)
2 +J

and 1 ≤ J ≤ I ≤ n. Therefore, Z is well-defined.

We show that D’s rank is (k+1)(k+2)
2 . By the definition of Z, Z is a part of X ⊗ X (in the sense that

each row of Z is also row of X ⊗X). Let Z̄ be a k(k+1)
2 × (k + 1) matrix, which is a disjoint part of X ⊗X

from Z. By the definition of B, a rank of (X ⊗X)B is equal to that of D. (By definition of B, for each row
−→x j ⊗ −→x i ∈ Z̄, there exists a −→x i ⊗ −→x j ∈ Z such that (−→x j ⊗ −→x i)B = (−→x i ⊗ −→x j)B.) B’s rank is (k+1)(k+2)

2
(by the definition of B) and X ⊗ X’s rank is (k + 1)2 (by the property of the tensor product). Therefore,

(X ⊗X)B’s rank is (k+1)(k+2)
2 so that the rank of D is also (k+1)(k+2)

2 ; Hence, D is invertible. �

Our definition of projecting requires only the existence of homomorphisms satisfying some conditions. How-
ever, some applications (e.g., Boneh-Goh-Nissim cryptosystem [10, 15]) require that such homomorphisms
are efficiently computable. We provide the way how to construct efficiently computable homomorphisms
(precisely, natural projections) satisfying projecting property. Let G1 = 〈g−→x 1 , . . . , g

−→x k〉 and G2 = 〈g−→x k+1〉
such that −→x 1, . . . ,

−→x k+1 are linearly independent vectors in Fk+1
p . We construct two projections π : G→ G2

and πt : Gt → e(G2, G2). Let U be a (k + 1) × (k + 1) diagonal matrix with 1 in the entry (k + 1, k + 1)

and zeros elsewhere, and V be a (k+1)(k+2)
2 × (k+1)(k+2)

2 diagonal matrix with 1 in the entry (1, 1) and zeros
elsewhere. Let Z and B be defined in Lemma 6. Then, D is invertible. Define π and πt by

π(g) := gX
−1UX and πt(gt) := gD

−1V D
t .

Now, we show that π and πt are projections. Every element g ∈ G can be written as g
∑

i∈[1,k+1] ai
−→e iX for

some ai ∈ Fp.
π(g) = π(g

∑
i∈[1,k+1] ai

−→e iX) = (g
∑

i∈[1,k+1] ai
−→e iX)X

−1UX = gak+1
−→e k+1X .

Therefore, π is a projection to G2. Similarly, element gt ∈ Gt can be written as e(g, g)

∑
i∈[1, (k+1)(k+2)

2
]
ai
−→e iD

for some ai ∈ Fp.

πt(gt) = π(e(g, g)

∑
i∈[1, (k+1)(k+2)

2
]
ai
−→e iD

) = (e(g, g)

∑
i∈[1, (k+1)(k+2))

2
]
ai
−→e iD

)D
−1V D = e(g, g)a1

−→e 1D.

Therefore, πt is a projection to e(G2, G2). From the relation G = G1 ⊕G2, we know that elements g′, g′′ in
G can be uniquely written as g′ = g′1g

′
2 and g′′ = g′′1 g

′′
2 , where g′1, g

′′
1 ∈ G1 and g′2, g

′′
2 ∈ G2. Then,

πt(e(g
′, g′′)) = πt(e(g

′
1, g
′′
1 )e(g′1, g

′′
2 )e(g′2, g

′′
1 )e(g′2, g

′′
2 )) = e(g′2, g

′′
2 ) = e(π(g′), π(g′′)),

so π, πt, and G′t := D, where D is the smallest subgroup containing e(G,G1), satisfy the projecting property.
The first equality follows from the bilinearity of e, the second follows from the definition of πt, and the third
follows from the definition of π.
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Example 2. For k = 2, we can construct an optimal projecting symmetric bilinear group generator by using
the matrices in example 1. We denote such a bilinear group generator by GB∗2 , where B∗ is a 9 × 6 matrix
defined by the A1, . . . , A6 matrices in example 1.

B∗ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


for GB

∗
2

By Theorem 7, GB∗2 is optimal projecting symmetric: Since B∗ is a 9 × 6 matrix, the target group Gt is
equal to G6

t . Moreover, B∗ has nine 1’s in the entries and zeros elsewhere so that bilinear pairing e requires
9 ê-computations (without any exponentiations).

5 Application

On the basis of our optimal projecting symmetric bilinear pairings, we derive new instantiations of three
distinct cryptosystems with improved efficiency. In particular, we apply the projecting symmetric bilinear
group generator GB∗2 in the example 2 for the Groth-Sahai non-interactive proof system, the Boneh-Goh-
Nissim Cryptosystem, and the Seo-Cheon round optimal Blind signature scheme.

5.1 Groth-Sahai Non-Interactive Proof System under DLIN Assumption

We create a new instantiation of the Groth-Sahai non-interactive proof system for several types of quadratic
equations [22]. The proposed instantiation uses GB∗2 in example 2, which is symmetric and projecting. Since
GB∗2 is optimal (in the sense of Definition 6), our instantiation provides efficient verification algorithms. (In
Groth-Sahai non-interactive proof system, the bilinear pairing operations and the exponentiations in Gt are
used to verify the proofs.)

First we review the formal definition of non-interactive proof system for the Groth-Sahai proofs. Let R
be a ternary relation consists of the setup gk, the statement x and the witness w. In our instantiation, gk is
a bilinear group description. We let L be the language consisting of statements x with a witness w in R for a
given some gk. The Groth-Sahai non-interactive proof system consists of four algorithms: a setup algorithm
Setup, a common reference string (CRS) generation algorithm K, a prover P, and a verifier V. The setup
algorithm takes the security parameter λ as input and outputs a setup (gk, sk). In our instantiation, sk is
empty string.6 The CRS generation algorithm K takes (gk, sk) as input and outputs a CRS σ. The prover
P takes (gk, σ, x, w) as input and outputs a proof Θ. The verifier V takes (gk, σ, x,Θ) and outputs 1 if the
proof Θ is acceptable and 0 otherwise. We say these four algorithms (Setup, K, P, V) are a non-interactive
proof system for the relation R with setup algorithm Setup if it satisfies the following definitions of the
completeness and soundness properties.

Definition 7 We say that (Setup, K, P, V) is perfectly complete if for all adversaries A,

Pr
[
V(gk, σ, x,Θ) = 1 if (gk, x, w) ∈ R

∣∣∣ (gk, sk)
$← Setup ; σ

$← K(gk, sk);

(x,w)
$← A(gk, σ) ; Θ

$← P(gk, σ, x, w)

]
= 1.

6 The Groth-Sahai’s instantiation in composite-order group requires sk to be factorization information of the group
order.
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Definition 8 We say that (Setup, K, P, V) is perfectly sound if for all adversaries A,

Pr
[
V(gk, σ, x,Θ) = 1 if x 6∈ L

∣∣∣ (gk, sk)
$← Setup ; σ

$← K(gk, sk);

(x,Θ)
$← A(gk, σ)

]
= 0.

We give the definition of non-interactive proof system with composable witness-indistinguishability.

Definition 9 We say that (Setup, K, P, V) is composable witness-indistinguishable if there exists a proba-
bility polynomial time simulator S, such that for all non-uniform polynomial time adversaries A,∣∣∣Pr

[
A(gk, σ) = 1

∣∣∣ (gk, sk)
$← Setup;

σ
$← K(gk, sk)

]
− Pr

[
A(gk, σ) = 1

∣∣∣ (gk, sk)
$← Setup;

σ
$← S(gk, sk)

] ∣∣∣
is negligible in the security parameter, and for all adversaries A

Pr
[
A(Θ) = 1

∣∣∣ (gk, sk)
$← Setup ; σ

$← S(gk, sk);

(x,w0, w1)
$← A(gk, σ) such that (gk, x, w0), (gk, x, w1) ∈ R ; Θ

$← P(gk, σ, x, w0)

]
= Pr

[
A(Θ) = 1

∣∣∣ (gk, sk)
$← Setup ; σ

$← S(gk, sk);

(x,w0, w1)
$← A(gk, σ) such that (gk, x, w0), (gk, x, w1) ∈ R ; Θ

$← P(gk, σ, x, w1)

]
.

The common reference string generated by K contains soundness string and the description of imbedding
functions and the commitment schemes. The simulated common reference string generated by S consists
of witness-indistinguishability (WI) string and the description of imbedding functions and the commitment
schemes. We describe Setup, soundness string, WI string, imbedding functions and commitment schemes
below.

Setup(λ) GB∗2 (λ)
$→ (p,G,G1, Gt, e).

Set g2 = (1G, 1G, g) ∈ G, where g is a generator of G and G = G3.
and set gk = (p,G,G1, Gt, e, g2).

Soundness string On input gk, set σ = (p,G,G1, Gt, e, u1, u2, u3), where u1, u2, u3
$← G1.

WI string On input gk, set σ = (p,G,G1, Gt, e, u1, u2, u3),

where u1, u2, u
′
3

$← G1, u3 = u′3g
−1
2 .

Imbedding Functions Let G2 = 〈g2〉, and G′2 = 〈u3g2〉.
ιG2 : G → G2

X 7→ (1G, 1G,X ),
ιG′2 : Fp → G′2

x 7→ (u3g2)x,
ιe(G2,G2) : Gt → e(G2, G2)

Zt 7→ (1Gt
, 1Gt

, 1Gt
, 1Gt

, 1Gt
,Zt),

ιe(G2,G′2)
: G → e(G2, G

′
2)

Z 7→ e(ιG2(Z), ιG′2(1)),
ιe(G′2,G′2) : Fp → e(G′2, G

′
2)

z 7→ e(ιG′2(z), ιG′2(1)),
where gt = ê(g, g).

Commitment Schemes
CG2(X ) = ιG2(X )ur11 u

r2
2 u

r3
3 for r1, r2, r3

$← Fp,
CG′2(x) = ιG′2(x)ur11 u

r2
2 for r1, r2

$← Fp

Note that G2 ∩G1 = {1G} (with overwhelming probability), and in the soundness setting G′2 ∩G1 = {1G}
(with overwhelming probability). Imbedding functions ιG2

, ιG′2 , ιe(G2,G2), ιe(G2,G′2)
and ιe(G′2,G′2) are group

homomorphisms, where we consider G, Gt, G, Gt as multiplicative groups, and Fp as an additive group.
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Lemma 7 If the soundness string is given, the commitment schemes CG2 and CG′2 are perfectly binding,
and if the witness-indistinguishability string is given, CG2

and CG′2 are perfectly hiding.

Proof. In the soundness setting, suppose that for some X ,Y ∈ G, CG2(X ) = ιG2(X )ur11 u
r2
2 u

r3
3 is equal to

CG2
(Y) = ιG2

(Y)us11 u
s2
2 u

s3
3 . Then ιG2

(X ) · ιG2
(Y)−1 = us1−r11 us2−r22 us3−r33 ∈ 〈u1, u2, u3〉 = G1. By definition

of ιG2
, ιG2

(X ) · ιG2
(Y)−1 = (1G, 1G,X · Y−1) ∈ G2. Since G1 ∩G2 = {1G}, we obtain X = Y. Therefore, CG2

is perfectly binding.

In the soundness setting, suppose that for some x, y ∈ Fp, CG′2(x) = ιG′2(x)ur11 u
r2
2 is equal to CG′2(y) =

ιG′2(y)us11 u
s2
2 . Then ιG′2(x)·ιG′2(y)−1 = us1−r11 us2−r22 ∈ 〈u1, u2〉 = G1. By definition of ιG′2 , ιG′2(x)·ιG′2(y)−1 =

(u3g2)x−y. Since u3g2 6∈ G1, we obtain x = y. Therefore, CG′2 is perfectly binding.

In the witness-indistinguishability setting, CG2
(X ) is uniformly distributed in G regardless of X since

u1, u2, and u3 span G. In the witness-indistinguishability setting, CG′2(x) is uniformly distributed in G1

regardless of x since u1 and u2 span G1, and ιG′2(x) = u′x3 ∈ G1. Therefore, CG2
and CG′2 are perfectly

hiding. �

We give a non-interactive proof system for the following equation

ν∏
j=1

e(ιS1
(Aj), ιS2

(Yj))

µ∏
i=1

e(ιS1
(Xi), ιS2

(Bi))

µ∏
i=1

ν∏
j=1

e(ιS1
(Xi), ιS2

(Yj))
γij = ιe(S1,S2)(Z), (1)

where Aj ∈ S1, Bi ∈ S2, Z ∈ Dom(ιe(S1,S2)) are constants, Xi ∈ S1, Yj ∈ S2 are variables, S1, S2 ∈ {G2, G
′
2},

and commitments CS1
(Xi) and CS2

(Yj) are given. This equation covers all equations considered in [22]. In the
next subsection, we show that this equation implies a pairing product equation, a multi-scalar multiplication
equation in G, and a quadratic equation in Fp.

Proof: The prover takes the common reference string (imbedding functions, commitment schemes, and
σ) and witness {Xi}i∈[1,µ], {Yj}j∈[1,ν] as inputs. Then, the prover does as follows.

1. Commit to Xi ∈ S1 and Yj ∈ S2 as

CS1(Xi) := ιS1(Xi)u
ri1
1 uri22 uri33 , CS2(Yj) := ιS2(Yj)u

r′j1
1 u

r′j2
2 u

r′j3
3 ,

where

{
ri1, ri2, ri3

$← Fp if S1 = G2

ri1, ri2
$← Fp and ri3 = 0 if S1 = G′2

, and

{
r′j1, r

′
j2, r

′
j3

$← Fp if S2 = G2

r′j1, r
′
j2

$← Fp and r′j3 = 0 if S2 = G′2
.

2. Choose ζ1, ζ2, η
$← Fp and make a proof (Θ1, Θ2, Θ3) as follows.

Θ1 =

ν∏
j=1

ιS1
(Aj)

r′j1

µ∏
i=1

ιS2
(Bi)

ri1

µ∏
i=1

ν∏
j=1

ιS1
(Xi)

r′j1γijCS2
(Yj)

ri1γij · (uζ12 u
ζ2
3 ),

Θ2 =

ν∏
j=1

ιS1
(Aj)

r′j2

µ∏
i=1

ιS2
(Bi)

ri2

µ∏
i=1

ν∏
j=1

ιS1
(Xi)

r′j2γijCS2
(Yj)

ri2γij · (u−ζ11 uη3),

Θ3 =

ν∏
j=1

ιS1
(Aj)

r′j3

µ∏
i=1

ιS2
(Bi)

ri3

µ∏
i=1

ν∏
j=1

ιS1
(Xi)

r′j3γijCS2
(Yj)

ri3γij · (u−ζ21 u−η2 ).

For notational convenience, let
−→
Θ := (Θ1, Θ2, Θ3). Return a proof

−→
Θ for the satisfiability of the equation

(1).
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Verification: Given committed values {CS1(Xi)}i∈[1,µ], {CS2(Yj)}j∈[1,ν] and a proof
−→
Θ , check

ν∏
j=1

e(ιS1
(Aj),CS2

(Yj))

µ∏
i=1

e(CS1
(Xi), ιS2

(Bi))

µ∏
i=1

ν∏
j=1

e(CS1
(Xi),CS2

(Yj))
γij ?

= ιe(S1,S2)(Z)

3∏
i=1

e(ui, Θi),

and accept the proof if and only if it holds. We call the above equation by the verification equation.

We show that the above non-interactive proof system satisfies perfect completeness (no matter σ is the
soundness string or the witness-indistinguishability string), perfect soundness (where σ is the soundness
string), and composable witness-indistinguishability.

Theorem 8 The above protocol satisfies perfect completeness.

Proof. We show that an honestly generated proof
−→
Θ will be accepted. On substituting CS1

(Xi) and CS2
(Yj)

in the left-hand side of the verification equation with

CS1(Xi) = ιS1(Xi)u
ri1
1 uri22 uri33 and CS2(Yj) = ιS2(Yj)u

r′j1
1 u

r′j2
2 u

r′j3
3 ,

we obtain ∏ν
j=1 e(ιS1(Aj), ιS2(Yj)u

r′j1
1 u

r′j2
2 u

r′j3
3 )

∏µ
i=1 e(ιS1(Xi)u

ri1
1 uri22 uri33 , ιS2(Bi))

·
∏µ
i=1

∏ν
j=1 e(ιS1

(Xi)u
ri1
1 uri22 uri33 , ιS2

(Yj)u
r′j1
1 u

r′j2
2 u

r′j3
3 )γij

= ιe(S1,S2)(Z)
∏ν
j=1 e(ιS1

(Aj), u
r′j1
1 u

r′j2
2 u

r′j3
3 )

∏µ
i=1 e(u

ri1
1 uri22 uri33 , ιS2

(Bi))

·
∏µ
i=1

∏ν
j=1 e(ιS1(Xi), u

r′j1
1 u

r′j2
2 u

r′j3
3 )γije(uri11 uri22 uri33 , ιS2(Yj)u

r′j1
1 u

r′j2
2 u

r′j3
3 )γij

= ιe(S1,S2)(Z)e(u1,
∏ν
j=1 ιS1

(Aj)
r′j1
∏µ
i=1 ιS2

(Bi)
ri1
∏µ
i=1

∏ν
j=1 ιS1

(Xi)
r′j1γijCS2

(Yj)
ri1γij )

·e(u2,
∏ν
j=1 ιS1

(Aj)
r′j2
∏µ
i=1 ιS2

(Bi)
ri2
∏µ
i=1

∏ν
j=1 ιS1

(Xi)
r′j2γijCS2

(Yj)
ri2γij )

·e(u3,
∏ν
j=1 ιS1

(Aj)
r′j3
∏µ
i=1 ιS2

(Bi)
ri3
∏µ
i=1

∏ν
j=1 ιS1

(Xi)
r′j3γijCS2

(Yj)
ri3γij )

= ιe(S1,S2)(Z)e(u1, Θ1)e(u2, Θ2)e(u3, Θ3).

The first equality due to the statement equation (1). �

Note that (uζ12 u
ζ2
3 ) in Θ1, (u−ζ11 uη3) in Θ2 and (u−ζ21 u−η2 ) in Θ3 are used to blind other factors. On defining

Θ′1, Θ
′
2, Θ

′
3 by removing these blinding factors from Θ1, Θ2, Θ3, we can check that Θ′1, Θ

′
2, Θ

′
3 will also satisfy

perfect completeness.

Theorem 9 The above protocol satisfies perfect soundness.

Proof. When σ is the soundness string, u1, u2, u3 are chosen from G1 so that G1 ∩S1 = {1G} and G1 ∩S2 =
{1G}. (Recall that S1, S2 ∈ {G2, G

′
2}, G2 = 〈g2〉 and G′2 = 〈u3g2〉.) First, we argue that Gt = e(S1, S2)⊕D,

where D is the smallest group containing e(G1, G). Since GB∗2 is projecting, we obtain that e(G2, G2) 6⊂ D by
Lemma 1. This implies that e(S1, S2) 6⊂ D no matter whether S1, S2 ∈ {G2, G

′
2}. Since e(S1, S2) is a cyclic

group of order p, we obtain Gt = e(S1, S2)⊕ D.
Since Gt = e(S1, S2)⊕D, we can define a natural projection πe(S1,S2) from Gt to e(S1, S2) by g′tg

′′
t 7→ g′t,

where g′t ∈ e(S1, S2) and g′′t ∈ D. (Since Gt = e(S1, S2)⊕D, every element in Gt can be uniquely written as
g′tg
′′
t for some g′t ∈ e(S1, S2) and g′′t ∈ D.)
Suppose that the verification equation holds. By applying πe(S1,S2) in the left-hand side of the verification

equation, we obtain that

πe(S1,S2)(
∏ν
j=1 e(ιS1

(Aj),CS2
(Yj))

∏µ
i=1 e(CS1

(Xi), ιS2
(Bi))

∏µ
i=1

∏ν
j=1 e(CS1

(Xi),CS2
(Yj))

γij )

=
∏ν
j=1 e(ιS1

(Aj), ιS2
(Yj))

∏µ
i=1 e(ιS1

(Xi), ιS2
(Bi))

∏µ
i=1

∏ν
j=1 e(ιS1

(Xi), ιS2
(Yj))

γij .
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The equality follows from the fact that Gt = e(S1, S2) ⊕ D. (Note that CS`
(·) consists of a product of

an element in S` and an element in G1, and for all g1, g
′
1 ∈ G1, e(ιS1(·), g1), e(g1, ιS2(·)), e(g1, g′1) ∈ D ⊂

ker(πe(S1,S2)).)
Applying πe(S1,S2) in the right-hand side of the verification equation, we get

πe(S1,S2)(ιe(S1,S2)(Z)
∏3
i=1 e(ui, Θi))

= ιe(S1,S2)(Z).

The equality also follows from the fact that Gt = e(S1, S2)⊕D and πe(S1,S2) is a projection to e(S1, S2). We
applied πe(S1,S2) in the both sides of the verification equation. The result equation implies that the desired
statement equation (1). �

Lemma 8 If GB∗2 satisfies the subgroup decision assumption, then the common reference string in the
soundness setting is computationally indistinguishable from the common reference string in the witness-
indistinguishability setting.

Proof. We can prove by using the standard hybrid argument. Define Game1, Game2, and Game3 as follows.

In Game1 u3
$← G1, in Game2 u3

$← G, and in Game3 u3 = u′3g
−1
2 for u′3

$← G1. In all games u1, u2
$← G1.

The subgroup decision assumption gives us the indistinguishability between Game1 and Game2, and the
indistinguishability between Game2 and Game3. By the hybrid argument, Game1 and Game3 are indis-
tinguishable by the subgroup decision assumption. Since Game1 is identical to the soundness setting and
Game3 is identical to the witness-indistinguishability setting, we conclude the desired result. �

Lemma 9 Let (Θ′1, Θ
′
2, Θ

′
3) be a special solution of an equation

∏3
i=1 e(ui,Xi) = gt for some gt ∈ Gt,

where (u1, u2, u3) is CRS in the witness-indistinguishability setting, and X1,X2 and X3 are variables. For

ζ1, ζ2, η
$← Fp,

(Θ1 := Θ′1(uζ12 u
ζ2
3 ), Θ2 := Θ′2(u−ζ11 uη3), Θ3 := Θ′3(u−ζ21 u−η2 ))

is uniformly distributed in a solution set {(X1,X2,X3)|
∏3
i=1 e(ui,Xi) = gt}.

Proof. In the witness-indistinguishability setting, G = 〈u1, u2, u3〉 and {e(ui, uj)}1≤i≤j≤3 is basis of Fp-
module Gt. (Recall that Gt’s rank is 6.) Therefore, gt can be uniquely written as gt =

∏
1≤i≤j≤3 e(ui, uj)

αij

for some αij ∈ Fp. Re-define a variable Xi := u
(i)
1 u

(i)
2 u

(i)
3 by using variables u

(i)
j ∈ 〈uj〉. Since gt =∏3

i=1 e(ui,Xi) =
∏3
i=1

∏3
j=1 e(ui, u

(i)
j ), we obtain

e(u1, u
(1)
1 ) = e(u1, u1)α11 , e(u1, u

(1)
2 )e(u2, u

(2)
1 ) = e(u1, u2)α12 , e(u1, u

(1)
3 )e(u3, u

(3)
1 ) = e(u1, u3)α13 ,

e(u2, u
(2)
2 ) = e(u2, u2)α22 , e(u2, u

(2)
3 )e(u3, u

(3)
2 ) = e(u2u3)α23 , e(u3, u

(3)
3 ) = e(u3, u3)α33 .

Therefore, u
(1)
1 , u

(2)
2 , u

(3)
3 are fixed and there are p3 solutions in the solution set. We can easily check that for

each different tuple (ζ1, ζ2, η) ∈ F3
p,

(Θ′1(uζ12 u
ζ2
3 ), Θ′2(u−ζ11 uη3), Θ′3(u−ζ21 u−η2 ))

is a different solution by the fact that (u1, u2, u3) is a basis of Fp-module G. Since there are p3 number of

(ζ1, ζ2, η)-tuples, (Θ1 := Θ′1(uζ12 u
ζ2
3 )), Θ2 := Θ′2(u−ζ11 uη3), Θ3 := Θ′3(u−ζ21 u−η2 )) is uniformly distributed in

the solution set. �

Theorem 10 The above protocol satisfies composable witness-indistinguishability.

Proof. Under the decisional linear assumption, GB∗2 satisfies subgroup decision assumption by Theorem 1. By
Lemma 8 the soundness string is computationally indistinguishable from the WI string. When the simulated

common reference string generated by S is given, CSi
is perfectly hiding. By Lemma 9, a proof

−→
Θ is uniformly

distributed in a solution set of the verification equation. Therefore, the committed values and the proof always
have identical distribution regardless of the witness. �
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Size-reduced non-interactive proof system when S1 = S2 = G′2: If S1 = S2 = G′2, then we can
reduce the size of a proof by removing Θ3 and slightly changing blinding factors in Θ1 and Θ2. Suppose that
S1 = S2 = G′2. Define

−→
Θ = (Θ1, Θ2) := (Θ′1(uζ12 ), Θ′2(u−ζ11 )),

and modify a verification equation to contain only Θ1 and Θ2 as follows.

ν∏
j=1

e(ιG′2(Aj),CG′2(Yj))

µ∏
i=1

e(CG′2(Xi), ιG′2(Bi))

µ∏
i=1

ν∏
j=1

e(CG′2(Xi),CG′2(Yj))
γij ?

= ιe(G′2,G′2)(Z)

2∏
i=1

e(ui, Θi)

Then, similar arguments show that this protocol is also a non-interactive proof system with composable
witness-indistinguishability for satisfiability of a quadratic equation over bilinear groups where the decisional
linear assumption holds. Key observation of this size-reduced non-interactive proof system when S1 = S2 =
G′2 is that (1) Θ3 contains only blinding factors (ri3 = r′j3 = 0), and (2) the images of ιG′2 and CG′2 are
contained in G1 in the witness-indistinguishability setting. Therefore, we can (independently) blind Θ1 and
Θ2 by using only u1 and u2 instead of u1, u2 and u3.

Note that by applying similar method of extending from the original Groth-Sahai non-interactive proof
system with composable witness-indistinguishability for a quadratic equation to the one for a set of quadratic
equations, ours for a quadratic equation can be extend to the one for a set of quadratic equations. Further-
more, we can also obtain a non-interactive zero-knowledge proof system for a set of quadratic equations by
similar method as Groth-Sahai’s.

Verification Complexity: For verification, µν exponentiations in Gt, µν + µ+ ν + 3 e-computations are
required (if we ignore costs for multiplications in Gt and evaluations of imbedding functions). For each
exponentiation in Gt and each e-computation, they cost 6 exponentiations in Gt and 9 ê-computations,
respectively. Therefore, in total 6µν exponentiations in Gt and 9(µν + µ+ ν + 3) pairing computations are
required for verifying a quadratic equation.

Comparison with Instantiation of Groth-Sahai non-interactive proof system under DLIN: The
proposed instantiation is similar to the Groth-Sahai’s instantiation 3 (based on the DLIN assumption) since
both follow the module-based abstraction of the Groth-Sahai proof system. The biggest differences are
bilinear pairing e and the target group Gt. Groth and Sahai implicitly used a bilinear group generator that
differs from ours.7 They define a symmetric bilinear pairing e by using an asymmetric bilinear pairing ē as
follows: e(g, h) = (ē(g, h))1/2(ē(h, g))1/2 ∈ Gt = G9

t , where ē is defined by using a 9× 9 identity matrix (i.e.,
ē is the output of Freeman’s asymmetric projecting bilinear group GI92 ). They implicitly used a matrix B to
define the bilinear group generator:

B =



1 0 0 0 0 0 0 0 0

0 1/2 0 1/2 0 0 0 0 0

0 0 1/2 0 0 0 1/2 0 0

0 1/2 0 1/2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1/2 0 1/2 0

0 0 1/2 0 0 0 1/2 0 0

0 0 0 0 0 1/2 0 1/2 0

0 0 0 0 0 0 0 0 1 .


7 In [22], they used notation F and BT to denote a bilinear pairing and its target module, respectively; they are

equivalent to our e and Gt, respectively.
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However, we can improve the efficiency of the Groth-Sahai’s symmetric bilinear pairing, though they do
not mention how to improve efficiency of their construction. Since the second column and fourth column are
equal, the third column and seventh column are equal, and the sixth column and eighth column are equal, we
can remove the fourth, seventh, and eighth columns from B. Then, the resulting matrix has 6 columns and
nine non-zero entries. Since the number of non-zero entries corresponds to the number of ê-computations,
the resulting bilinear map costs 9 ê-computations. The 1/2 entries represent exponentiation, so that the
resulting bilinear map requires 6 additional exponentiations in Gt. (A map e in GB∗2 , which is used in our
protocol, costs only 9 ê-computations and has no exponentiations in Gt.) Therefore, the verification of the
proposed protocol is slightly faster than that of the Groth-Sahai’s DLIN instantiation. All components in
a proof are elements in G. Therefore, the size of the proof and the computational cost of the prover of the
proposed protocol are the same as those of the Groth-Sahai’s protocol.

5.2 Additional Details for Groth-Sahai Proofs

We show that the following equation implies a pairing product equation, a multi-scalar multiplication equa-
tion in G, and a quadratic equation in Fp.

ν∏
j=1

e(ιS1
(Aj), ιS2

(Yj))

µ∏
i=1

e(ιS1
(Xi), ιS2

(Bi))

µ∏
i=1

ν∏
j=1

e(ιS1
(Xi), ιS2

(Yj))
γij = ιe(S1,S2)(Z), (2)

Pairing product equation. Set S1 = S2 = G2. The image of e(·, ·) consists of 6 elements in Gt. The
equation (2) implies entry-wise equations in Gt, that is, 6 equations in Gt. We only focus on the last 6-th
entry of the equation (2). By definition of e, we know that e((1G, 1G, S), (1G, 1G, T )) = (1t, . . . , 1t, ê(S, T )) ∈
Gt = G6

t . Therefore, by definition of ιG2
and ιe(G2,G2), we obtain from the 6-th entry of the equation (2) the

desired pairing product equation

ν∏
j=1

ê(Aj,Yj)

µ∏
i=1

ê(Xi,Bi)

µ∏
i=1

ν∏
j=1

ê(Xi,Yj)
γij = Z,

where Aj,Bi ∈ G, Z ∈ Gt, γij ∈ Fp are constants and Xi,Yj ∈ G are variables.8

Multi-scalar multiplication equation in G. Set S1 = G2 and S2 = G′2. We know that every ele-
ment in the equation (2) is contained in e(G2, G

′
2), which is a cyclic group of order p, by definitions of

ιG2
, ιG′2 , and ιe(G2,G′2)

. Thus, we can take discrete logarithms of both sides of the equation (2) based on
e(g2, u3g2) ∈ e(G2, G

′
2).

For Aj,Xi,Z ∈ G, these group elements uniquely determine field elements aj, xi, z ∈ Fp such that Aj = gaj ,
Xi = gxi , and Z = gz. Since g2 = (1G, 1G, g), ιG2(Aj) = (1G, 1G,Aj) = g

aj
2 and ιG2(Xi) = (1G, 1G,Xi) = gxi2 and

ιG2(Z) = (1G, 1G,Z) = gz2. If we compute the discrete logarithm of the equation (2) based on e(g2, u3g2),
then we obtain

ν∑
j=1

ajYj +

µ∑
i=1

xiBi +

µ∑
i=1

ν∑
j=1

γijxiYj = z ( mod p).

This equation implies a multi-scalar multiplication equation in a cyclic group G of order p.

ν∏
j=1

Aj
Yj

µ∏
i=1

Xi
Bi

µ∏
i=1

ν∏
j=1

(Xi
Yj)γij = Z,

where Aj,Z ∈ G, Bi, γij ∈ Fp are constants and Xi ∈ G, Yj ∈ Fp are variables.

8 If we set Bi = 1G, m = n, and Xi = Yi for all i, we can more simplify. The resulting simplified equation is equivalent
the form of a pairing product equation in [22].
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Quadratic equation in Fp. Set S1 = S2 = G′2. We know that both sides of the equation (2) is con-
tained in e(G′2, G

′
2), which is a cyclic group of order p. Thus, we can take discrete logarithms based on

e(u3g2, u3g2). If we compute the discrete logarithm of the equation (2) based on e(g2, g2), then we obtain a
quadratic equation in Fp

ν∑
j=1

AjYj +

µ∑
i=1

XiBi +

µ∑
i=1

ν∑
j=1

γijXiYj = Z ( mod p),

where Aj,Bi,Z, γij ∈ Fp are constants and Xi,Yj ∈ Fp are variables.9

5.3 Boneh-Goh-Nissim Cryptosystem under DLIN Assumption

Our second application of the optimal projecting symmetric bilinear pairings is the partially doubly homo-
morphic encryption scheme (BGN encryption scheme) of Boneh, Goh, and Nissim [10]. Given two ciphertexts,
anyone can create a new ciphertext that encrypts the sum of two corresponding plaintexts. That is, the BGN
encryption scheme is additive homomorphic. In addition, the BGN encryption scheme supports one multipli-
cation (followed by arbitrary additions) of encrypted values. Since the BGN encryption scheme allows only
one multiplication, we call it “partially doubly homomorphic” encryption scheme.

We give our instantiation of the BGN encryption scheme, which is proven secure under the DLIN as-
sumption, in Figure 2. Our instantiation uses the projecting symmetric bilinear group generator GB∗2 in
the example 2. Note that GB∗2 supports random samplings from G and G1; The description of G (G1,
resp.) contains a basis of G (G1, resp.), and linear combinations of basis with random coefficients are
random elements in G (G1, resp.). Furthermore, one can randomly samples from D; For example, D =
〈e(u1, u1), e(u1, u2), e(u1, g), e(u2, u2), e(u2, g)〉, where G1 = 〈u1, u2〉 and G = G1 ⊕ 〈g〉. Thus, linear combi-
nations of e(u1, u1), e(u1, u2), e(u1, g), e(u2, u2), and e(u2, g) with random coefficients are random elements
in D. Note that G = G1 ⊕ G2 and Gt = e(G2, G2) ⊕ D, and π and πt satisfy the projecting property with
G′t = D.

For a ciphertext CT , if CT ∈ G, information about the corresponding plaintext M is contained in the
exponent of π(g). If CT ∈ Gt, then the corresponding plaintext information is contained in the exponent of
e(π(g), π(g)) = πt(e(g, g)). For ciphertexts CT1 and CT2, we can see that the output of Add contains the
addition of messages of CT1 and CT2 either in the exponent of π(g) (if both ciphertexts are in G) or in the
exponent of πt(e(g, g)) (if both ciphertexts are in Gt). Further, we can see that the output of Multiply contains
the multiplication of two input ciphertexts in the exponent of πt(e(g, g)). The correctness of decryption
algorithm directly follows from the fact that CT contains the corresponding plaintext information either in
the exponent of π(g) (if CT ∈ G) or in the exponent of πt(e(g, g)) (if CT ∈ Gt).

The semantic security of our instantiation of BGN cryptosystem follows from the subgroup decision
assumption in G. In a ciphertext CT ∈ G, a blinding factor g′ ∈ G1 is indistinguishable from the element
randomly chosen from G; Thus, CT is indistinguishable from an uniform element in G so that it leaks no
information about the corresponding plaintext. The semantic security of ciphertexts in Gt follows from the
semantic security of two input ciphertexts in G.

Theorem 11 If G1 satisfies the DLIN assumption and GB∗2 is constructed from G1 (as in the example 2),
then the BGN cryptosystem instantiated with GB∗2 is semantically secure.

Ciphertext Size: A ciphertext of our instantiation of the BGN cryptosystem consists of an element in
either G or Gt. By definition of GB∗2 , G = G3 and Gt = G6

t so that a ciphertext consists of either 3 elements
in G or 6 elements in Gt.

9 If we set Aj = 0, n = m, and Yj = Xj for all j, then we obtain a simplified equation that is equivalent to the form
of a quadratic equation in [22].
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KeyGen(λ)

GB∗2 (λ)
$→ (p,G,G1, Gt, e), where G = G3.

g
$← G. Let g2 = (1G, 1G, g) ∈ G and G2 = 〈g2〉.

Let D be the smallest group containing e(G,G1).
Define π : G → G2 and πt : Gt → e(G2, G2) by

g1g
′
2 7→ g′2 and gtg

′
t 7→ g′t,

where g1 ∈ G1, g
′
2 ∈ G2, gt ∈ D, and g′t ∈ e(G2, G2).

Choose g
$← G.

Output PK = {p,G,G1, Gt, e, g} and SK = {π, πt}.
Encrypt(PK,M)

Choose g1
$← G1.

Output the ciphertext CT = (gM · g1) ∈ G.
Multiply(PK,CT1, CT2)

Choose g′t
$← D.

Output the ciphertext CT = e(CT1, CT2) · g′t ∈ Gt

Add(PK,CT1, CT2)

If CT1, CT2 ∈ G, then choose g1
$← G1, and

output the ciphertext CT1 · CT2 · g1 ∈ G.
If CT1, CT2 ∈ Gt, then choose g′t

$← D, and
output the ciphertext CT1 · CT2 · g′t ∈ Gt.

Decrypt(SK,CT )
If CT ∈ G, then output the ciphertext logπ(g)(π(CT )).

If CT ∈ Gt, then output the ciphertext logπt(e(g,g))(πt(CT )).

Fig. 2. BGN encryption scheme under DLIN assumption

Comparison with Freeman’s Instantiation of the BGN cryptosystem under DLIN: Freeman
proposed an instantiation of the BGN cryptosystem under k-linear assumption. In his construction, he used
the projecting asymmetric bilinear pairing e defined over G × H so that the size of Gt = Gn2

t . Although
Freeman used the asymmetric bilinear group generator, the underlying group generator G1 can be symmetric;
That is, a map ê generated by G1 is a symmetric pairing. If G1 is symmetric, for a bilinear pairing e used in
Freeman’s construction of projecting asymmetric bilinear pairings one can compute both e(g, h) and e(h, g)
but e(g, h) 6= e(h, g). Thus, we call e is asymmetric. The original BGN cryptosystem in composite-order
bilinear groups uses a symmetric bilinear pairing, and in some applications the symmetric property of a
(underlying) bilinear pairing would be useful to design protocols.

When Freeman’s instantiation of the BGN cryptosystem uses a symmetric pairing ê in the underlying
prime-order group generator G1, each ciphertext consists of 1 element in either G or Gt. That is, a ciphertext
consists of either 3 elements in G or 9 elements in Gt. Therefore, our instantiation of the BGN cryptosystem
under DLIN assumption has smaller ciphertexts size than that of Freeman’s. In addition, the better efficiency
of our Apply algorithm and Decrypt algorithm follow from the fact that our protocol’s ciphertext size is shorter
than Freeman’s.

5.4 Seo-Cheon Round Optimal Blind Signatures under DLIN Assumption

The proposed projecting symmetric bilinear pairings can be used for efficient instantiation of the Seo-Cheon
round optimal blind signature scheme under DLIN assumption [35]. Seo-Cheon’s scheme uses Groth-Sahai’s
projecting symmetric bilinear pairings. Furthermore, they define a new property, called translating, and
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showed that the Groth-Sahai’s symmetric construction satisfies translating property. In the proof of their
scheme, both projecting and translating properties are essentially used. Our construction for projecting
symmetric bilinear pairings also satisfies the translating property.

Definition 10 (translating) G is a bilinear group generator. We say that G is (i, j)-translating if there exists
efficiently computable maps Ti,j : G′2i × G′j → G′j defined by (gi, g

a
i , gj) 7→ gaj for an integer a ∈ Z, where

G = ⊕i∈[1,k+1]G
′
i.

When we compare the proposed symmetric bilinear pairing with that of Groth-Sahai, both construc-
tions for projecting symmetric bilinear pairings have the same domain and range (if we slightly modify the
range of the Groth-Sahai’s construction for efficiency improvement as aforementioned). Only bilinear pairing
computation is different between ours and the Groth-Sahai’s construction for projecting symmetric bilinear
pairings. The definition of translating is only associated with G. Therefore, we can similarly show that our
construction also satisfies translating property as the proof given in [35].

When we use GB∗2 (λ) instead of GSP (λ, 3), which is given in [35], we can improve efficiency of interactions
and the resulting signatures. During each interaction between a user and a signer, the signer verifies GS
proofs by using bilinear pairings. The resulting signatures are Waters signatures [38] so that the verification
algorithm uses bilinear pairings. Since GB∗2 (λ) generates more efficient bilinear pairings than GSP (λ, 3), we
can improve efficiency in the both cases using bilinear pairings.
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