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Abstract

The Vernam cipher (or one-time pad) has played an important rule in

cryptography because it is a perfect secrecy system. For example, if an

English text (presented in binary system) X1X2... is enciphered according

to the formula Zi = (Xi + Yi) mod 2, where Y1Y2... is a key sequence

generated by the Bernoulli source with equal probabilities of 0 and 1,

anyone who knows Z1Z2... has no information about X1X2... without the

knowledge of the key Y1Y2.... (The best strategy is to guess X1X2... not

paying attention to Z1Z2....)

But what should one say about secrecy of an analogous method where

the key sequence Y1Y2... is generated by the Bernoulli source with a small

bias, say, P (0) = 0.49, P (1) = 0.51? To the best of our knowledge,

there are no theoretical estimates for the secrecy of such a system, as well

as for the general case where X1X2... (the plaintext) and key sequence

are described by stationary ergodic processes. We consider the running-

key ciphers where the plaintext and the key are generated by stationary

1



ergodic sources and show how to estimate the secrecy of such systems.

In particular, it is shown that, in a certain sense, the Vernam cipher is

robust to small deviations from randomness.

Keywords: running-key cipher, Vernam cipher, Shannon entropy, uncondi-

tional secrecy.

1 Introduction

We consider the classical problem of transmitting secret messages from Alice (a

sender) to Bob (a receiver) via an open channel which can be accessed by Eve

(an adversary). It is supposed that Alice and Bob (and nobody else) know a

so-called key K which is a word in a certain alphabet. Before transmitting a

message Alice encrypts it. In his turn, Bob, after having received the encrypted

message (ciphertext), decrypts it to recover the initial text (plaintext).

We consider so-called running-key ciphers where the plaintext X1...Xt, the

key sequence Y1...Yt and ciphertext Z1...Zt belong to one alphabet A (without

loss of generality we suppose that A = {0, 1, ..., n− 1}, where n ≥ 2. The i− th

letter of the ciphertext is defined by Zi = c(Xi, Yi), i = 1, ..., t, whereas the

deciphering rule is by Xi = d(Zi, Yi), i = 1, ..., t, i.e. d(e(Xi, Yi), Yi) = Xi.

Here c and d are functions called coder and decoder, correspondingly. Quite

often the following particular formula are used

Zi = (Xi + Yi) mod n , Xi = (Zi − Yi) mod n , (1)

i.e. c(Xi, Yi) = (Xi + Yi) mod n, d(Zi, Yi) = (Zi − Yi) mod n. In a case of

two-letter alphabet (1) can be presented as follows:

Zi = (Xi ⊕ Yi) , Xi = (Zi ⊕ Yi) (2)
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where a⊕ b = (a+ b) mod 2.

It is important to note that we consider a so-called unconditional (or information-

theoretical) security. That is, the cipher is secure even when Eve has unlimited

computing power. Roughly speaking, if the unconditionally secure cipher is

used, Eve has many highly probable possible versions of a plaintext and, hence,

cannot choose the real plaintext from them. The following informal consid-

eration helps to understand the main idea of an approach considered later:

Let there be two unconditionally secure ciphers which can be applied to one

plaintext. Imagine, that for the first cipher Eve has 10 equiprobable possible

deciphering texts whose overall probability equals 0.999, whereas for the second

cipher there are 100 equiprobable deciphering texts with the same overall proba-

bility. Obviously, the second system is more preferable, because the uncertainty

of Eve is much larger for the second system. This informal consideration is quite

popular in cryptography [6, 7, 9] and we will estimate the security of a cipher by

the logarithm of the total number of (almost) equiprobable possible deciphering

texts whose overall probability is close to 1.

The running-key cipher (1) is called the Vernam cipher (or one-time pad)

if any word k1...kt, ki ∈ A, is used as the key word with probability n−t, i.e.

P (Y1...Yt = k1...kt) = n−t for any k1...kt ∈ At. In other words, we can say

that the key letters are independent and identically distributed (i.i.d.) and

probabilities of all letters are equal.

The Vernam cipher is one of the most popular among the unconditionally

secure running-key ciphers. It has played an important rule in cryptography,

especially since C.Shannon proved that this cipher is perfectly secure [9]. That

is, the ciphertext Z1...Zt gives absolutely no additional information about the

plaintext X1...Xt. This fact can be interpreted as follows: a priori probability

of a plaintext is the same as a posteriori probability of a plaintext given the
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corresponding ciphertext [9]. Using Shannon entropy, it can be expressed by

the following equation h(X1...Xt) = h(X1...Xt|Z1...Zt), where h(X1...Xt) and

h(X1...Xt|Z1...Zt) are the entropy of the plaintext and the conditional entropy of

the plaintext given the ciphertext Z1...Zt, correspondingly (they will be defined

below). For example, if one uses the Vernam cipher (2) to cipher an English

text presented, say, in standard 7-bit binary ASCII, Eve can try to guess the

plaintext not paying attention on the ciphertext.

It was shown by Shannon that any perfectly secure system must use the

secret key whose length equals the plaintext length. That is why many authors

considered the problem of security of systems where either the length of the

key or its entropy is less than the length (or entropy) of the plaintext, see, for

example, [1, 4, 5, 6, 7, 9] and reviews therein. But, in spite of numerical papers,

some seemingly natural questions are still open. For example, what can we

say about secrecy of the system (2) where it is applied to an English text (in

binary presentation) and the key sequence is generated by the Bernoulli source

with a small bias, say, P (Yi = 0) = 0.51, P (Yi = 0) = 0.49. (Informally, it is

“almost” Vernam cipher). To the best of our knowledge, there are no theoretical

estimates for the security of such a system, as well as for the general case where

the plaintext and key are described as stationary ergodic processes.

In this paper we consider this problem for running-key ciphers (1) in a case

where the plaintext X1...Xt and the key sequence Y1...Yt are independently

generated by stationary ergodic sources and the entropy of the key can be less

than maximally possible value log n per letter (here and below log ≡ log2).

The goal of the paper is to find simple estimates of secrecy for such systems.

We would like to emphasize that the unconditional secrecy is meant, i.e. it is

supposed that Eve has unlimited computational power and unlimited time for

computations.
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It is worth noting that Shannon in his famous paper [9] mentioned that the

problem of deciphering of a ciphertext and the problem of signal denoising are

very close from mathematical point of view. In this paper we use some results

obtained in [8] considering the problem of denoising.

2 Preliminaries

We consider the case where the plaintext X = X1, X2, . . . and the key sequence

Y1, Y2, . . . are independently generated by stationary ergodic processes with the

finite alphabets A = {0, 1, ..., n− 1}, n ≥ 2.

The m−order Shannon entropy and the limit Shannon entropy are defined

as follows:

hm(X) = − 1

m+ 1

∑
u∈Am+1

PX(u) logPX(u), h(X) = lim
m→∞

hm(X) (3)

where m ≥ 0 , PX(u) is the probability that X1X2...X|u| = u (this limit always

exists, see, for ex., [2, 3]). Introduce also the conditional Shannon entropy

hm(X|Z) = hm(X,Z)− hm(Z), h(X|Z) = lim
m→∞

hm(X|Z) (4)

The Shannon-McMillan-Breiman theorem for conditional entropies can be

stated as follows.

Theorem 1 (Shannon-McMillan-Breiman). ∀ε > 0,∀δ > 0, for almost all

Z1, Z2, . . . there exists n′ such that if n > n′ then

P

{∣∣∣∣− 1

n
logP (X1..Xn|Z1..Zn)− h(X|Z)

∣∣∣∣ < ε

}
≥ 1− δ. (5)

The proof can be found in [2, 3].
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3 Estimations of secrecy

Theorem 2. Let a plaintext X = X1X2, . . . and the key sequence Y = Y1Y2, . . .

be stationary ergodic processes with a finite alphabet A = {0, 1, ..., n−1}, n ≥ 2,

and let a running-key cipher be applied to X and Y and Z = Z1, Z2, . . . be the

ciphertext. Then, for any ε > 0 and δ > 0 there is such an integer n′ that, with

probability 1, for any t > n′ and Z = Z1, Z2, . . . Zt there exists the set Ψ(Z) for

which the following properties are valid:

i) P (Ψ(Z)) > 1− δ

ii) for any X1 = X1
1 , . . . , X

1
t , X2 = X2

1 , . . . , X
2
t from Ψ(Z)

P

{
1

t

∣∣logP (X1|Z)− logP (X2|Z)
∣∣ < ε

}

iii) lim inft→∞
1
t log |Ψ(Z)| ≥ h(X|Z) .

Proof. According to Shannon-McMillan-Breiman theorem for any ε > 0, δ > 0

and almost all Z1, Z2, . . . there exists such n′ that for t > n′

P

{∣∣∣∣−1

t
logP (X1X2...Xt|Z1Z2...Zt)− h(X|Z)

∣∣∣∣ < ε/2

}
≥ 1− δ. (6)

Let us define

Ψ(Z) = {X = X1X2...Xt : P (X1X2...Xt|Z1Z2...Zt)− h(X|Z)| < ε/2} . (7)

The first property i) immediately follows from (6). In order to prove ii), note

that for any X1 = X1
1 , . . . , X

1
t , X2 = X2

1 , . . . , X
2
t from Ψ(Z) we obtain from

(6), (7)

1

t

∣∣logP (X1|Z)− logP (X2|Z)
∣∣ ≤ 1

t

∣∣logP (X1|Z)− h(X|Z)
∣∣
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+
1

t

∣∣logP (X2|Z)− h(X|Z)
∣∣ < ε/2 + ε/2 = ε .

From (7) and the property i) we obtain the following: |Ψ(Z)| > (1−δ)2t (h(X|Z)−ε) .

Taking into account that it is valid for any ε > 0, δ > 0 and t > n′, we obtain

iii).

So, we can see that the set of possible decipherings Ψ(Z) grows exponentially,

its total probability is close to 1 and probabilities of words from this set are close

to each other.

Theorem 2 gives a possibility to estimate an uncertainty of a cipher based

on the conditional entropy h(X|Z). Sometimes it can be difficult to calculate

this value because it requires knowledge of the conditional probabilities. In this

case the following simpler estimate can be useful.

Corollary 1. For almost all Z1Z2...

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ h(X) + h(Y )− log n .

Proof. From the well-known in Information Theory equation h(X,Z) = h(X)+

h(Z|X) (see [2, 3]) we obtain the following:

h(X|Z) = h(X,Z)− h(Z) = h(Z|X) + h(X)− h(Z).

Having taken into account that maxh(Z) = log n ([2, 3]), where n is the num-

ber of alphabet letters, we can derive from the latest equation that h(X|Z) ≥

h(Z|X) + h(X)− log n. The definition of the running-key cipher (1) shows that

h(Z|X) = h(Y ). Taking into account two latest inequalities and the third state-

ment iii) of Theorem 2 we obtain the statement of the corollary.

Comment. In Information Theory the difference between maximal value

of the entropy and real one quite often is called the redundancy. Hence, from
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the corollary we have new following presentations for the value 1
t log |Ψ(Z)|:

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ h(X)− rY , lim inf

t→∞

1

t
log |Ψ(Z)| ≥ h(Y )− rX ,

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ log n− (rX + rY ) , (8)

where rY = logn − h(Y ) and rX = logn − h(X) are the corresponding redun-

dancies.

Those inequalities confirm the well-known in cryptography and Information

Theory fact that reduction of the redundancy improves the safety of ciphers.

Let us return to the first question of this note about the Vernam cipher

with a biased key sequence. More precisely, let there be a plaintext X1X2...,

Xi ∈ {0, 1} and the key sequence Y1Y2..., Yi ∈ {0, 1}, generated by a source

whose entropy h(Y ) is less then 1. (h(Y ) = 1 if and only if Y1Y2... generated by

the Bernoulli source with letter probabilities P (0) = P (1) = 0.5, [2, 3]). From

(8) we can see that the size of the set Ψ(Z) of high-probable possible decipherings

grows exponentially with exponent grater than h(X)−rY , where rY = 1−h(Y ).

So, if rY goes to 0, the size of the set of possible probable decipherings trends

to the size of this set for the case of “pure” Vernam cipher. Indeed, if h(Y ) = 1

and, hence, rY = 0, the set Ψ(Z) of high-probable possible decipherings grows

exponentially with exponent h(X), as it should be for the Vernam cipher. For

example, it is true for the case where the key sequence Y1Y2... is generated by

the Bernulli source with biased probabilities, say P (0) = 0.5−τ, P (1) = 0.5+τ ,

where τ is a small number. If τ goes to 0, the redundancy rY goes to 0, too,

and we obtain the Vernam cipher. So, we can informally say that the Vernam

cipher is robust to small deviations from randomness.
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