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Abstract. Secure electronic circuits must implement countermeasures
against a wide range of attacks. Often, the protection against side channel
attacks requires to be tightly integrated within the functionality to be
protected. It is now part of the designer’s job to implement them. But this
task is known to be error-prone, and with current development processes,
countermeasures are evaluated often very late (at circuit fabrication).
In order to improve the confidence of the designer in the efficiency of the
countermeasure, we suggest in this article to resort to formal methods
early in the design flow for two reasons. First of all, we intend to check
that the process of transformation of the design from the vulnerable de-
scription to the protected one does not alter the functionality. Second,
we wish to prove that the security properties (that can derive from a
formal security functional specification) are indeed met after transfor-
mation. Our first contribution is to show how such a framework can be
setup (in COQ) for netlist-level protections. The second contribution is
to illustrate that this framework indeed allows to detect vulnerabilities
in dual-rail logics, with the examples of wave differential dynamic logic
(WDDL) and balanced cell-based differential logic (BCDL).

Keywords: Side-channel attacks, implementation-level countermeasures, dual-
rail with precharge logics, WDDL, BCDL, formal proof, COQ.

1 Introduction

More and more electronic circuits are entrusted with security functions. In par-
ticular, they must make sure the information they process, that can be sensitive,
is well kept secret. For this reason, electronic circuits must be prepared to be
attacked. Thus, it is important that they are properly protected against a wide
range of attacks, in particular against side-channel attacks. In practice, to thwart
those attacks, extra logic is required: its role is to mask the sensitive data or bal-
ance the leakage. From a design point of view, the countermeasure is either coded
manually, or implemented automatically by a tool.



In both cases, it would be relevant to ascertain that the functionality remains
unchanged after the application of the countermeasure, and that the counter-
measure is implemented as intended. But currently, these verifications are seldom
carried out: mostly, real attacks are tried after the product is produced, without
further formal investigations of the countermeasure after it is applied. The pur-
pose of this paper is to illustrate that the application of a countermeasure can
be formally verified. All the modelisations and proofs of lemmas given in this
paper have been obtained in the COQ [4] formal proof assistant.

Some efforts have already been led in order to formally study electronic
circuits and their correctness [10, 5, 2]. The present article differs from these
previous works in the sense that its objective is not only to study functional
correctness of circuits but also to study security properties of hardware counter-
measures.

The rest of the paper is structured as follows. In Sec. 2, the studied coun-
termeasures are presented, and described informally. In Sec. 3, a framework to
reason on combinational circuits is detailed. Some convenient circuits are defined
in appendix (Sec. A). The application of these tools to the formal description
of a single-to-dual-rail transformation is carried out in Sec. 4. It allows to show
weaknesses present in WDDL but absent from BCDL. Finally, conclusions are
given in Sec. 5. This last section also extends the presented methodology to other
kinds of dual-rail circuits.

2 Dual-rail Precharge Logic

2.1 Overview

Dual-rail Precharge Logic (DPL) is a class of logic-level countermeasures. It
aims at making the device activity constant and independent of the data being
processed. In this logic style, a signal is represented by a pair of wires, hence
the dual-rail qualifier. A cycle of computation is composed of two phases: (1)
a precharge phase where each pair of wires is discharged by propagating the
NULL value through the combinational part of circuit and (2) an evaluation
phase where the data is processed by the combinational part of the circuit and
in which exactly one wire among each pair toggles its state, depending on the
logical value the dual-rail conveys. This protocol is depicted in Fig. 1.
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Fig. 1. Separable dual-rail encoding with precharge, yielding a constant activity



Several DPL have been invented along the years: WDDL [13], MDPL [11],
DRSL [3], STTL [12], BCDL [8] and SDDL [7] to cite a few.

Each of these proposals succeeds in making the device activity constant.
Nonetheless, they differ on some implementation-level aspects. We focus in the
sequel on the specific characteristics of WDDL and BCDL.

2.2 Two examples

In this section, an informal description of WDDL (Wave Dynamic Differential
Logic) and Balanced Cell-based Differential Logic (BCDL) is provided.

WDDL consists in a separable logic to implement the true and false halves.
Glitches are partial transitions of the nets that are due to races between signals.
It is known that they can be responsible for data-dependent leakage [9]. To avoid
glitches, WDDL focuses on positive gates. Thus, only AND and OR primitives
are used.

Now, AND and OR functions have “short-cut” evaluation. If one input is one,
the AND gate has to wait for the second input before evaluating, whereas the OR
gate can evaluate one at once. This effect can happen in both evaluation and
precharge phases, and cause data-dependent toggling date. During one phase
(evaluation or precharge), the activity is constant, but decomposes into events
that are data-dependent within the phase (due to small delays between the
signals).

BCDL ensures the data-independence of the gates toggling date, thanks to a
synchronisation of the inputs at evaluation. The precharge has the functionality
to reset all the nodes. Thus, it can be always anticipated, which is implemented
by a global signal. This way, BCDL fixes the early propagation effect, and also
exhibits no glitches, since by construction a BCDL gate is evaluated only once.

2.3 Vulnerabilities

In DPL styles, the registers can be balanced easily, because they merely imple-
ment the “identity function”. One way to balance them is to be especially careful
at the place-and-route stage. For instance, both in ASIC and FPGA technologies,
it is possible to set placement constraints on the two dual registers. If placement
constraints are not enough (for instance because the routing would also deserve
a similar symmetry), another solution consists in applying a dedicated counter-
measures built on top of DPL circuits. A strategy such as “path switching” [1]
can be easily applied to the registers. It consist in saving the true (resp. false)
variable in either the true (resp. false) or the false (resp. true) register half,
depending on a random variable. The functionality remains unchanged, but the
leakage is balanced at the first order).



Therefore, in the sequel, we focus on the leakage generated by the combina-
tional logic. These gates are more delicate to perfectly balance, and are more sus-
ceptible to cause two major flaws previously mentioned: data dependent glitches
and early propagation.

3 Combinational circuits

In this section, we define a formalism that allows to reason about combinational
circuits.

3.1 Syntax

Intuitively, a combinational circuit is a directed acyclic graph whose nodes repre-
sent logical gates, and whose edges, which represent wires, are ordered. Despite
the fact that this definition is perfectly rigorous from a mathematical point of
view, it already involves some heavy mathematical notions which will not ease
further reasoning about these objects. So, rather than using this rough defini-
tion, we define the combinational circuits as being terms of a process algebra
that we define below.

Definition 1 (Combinational circuits). Let G be a set of logical gates. The
set of combinational circuits over G is defined inductively by (1) the empty circuit
0 is a combinational circuit, (2) any gate g ∈ G is a combinational circuit, (3) a
single wire I is a combinational circuit, (4) a fork Y, which duplicates a single
wire in two wires, is a combinational circuit, (5) a swap X of two wires is a
combinational circuit, and if P and Q are two combinational circuits then so are
(6) their parallel composition P ||Q and (7) their sequential composition P ; Q.

Note that by definition, a combinational circuit does not contain any loop.
Regarding the wiring primitives, we have made the choice of minimality.

Thus, we have considered a single wire I instead of a ribbon cable, a single swap
X instead of a generalised permutation operator, and a simple fork Y instead
of a generalised fork that would have replicated a single wire multiple times.
This choice, which has no impact on the expressiveness of the calculus (since
the generalised operators can easily be defined in terms of these simple ones),
allows us to easily define transformations on circuits. Some useful circuits that
rotate wires, that interleave or deinterleave wires, or that duplicate wires are
thus defined in Section A.

Example 1. We assume that the set of gates contains a xor gate, and an and
gate, i.e. we assume that {xor, and} ⊆ G. The half-adder depicted below is
represented by the term Half :=(Y ||Y) ; (I ||X || I) ; (and || xor).

and

xor



As a convenient circuit, we define, for n ∈ N, In which intuitively represents
a straight ribbon cable composed of n wires as I0 :=0 and In+1 := I || In.

In the sequel, we let G be a fixed set of gates and we consider combinational
circuits over G, unless stated otherwise.

3.2 Well-formedness

By definition, a combinational circuit does not contain any loop. However, some
circuits might be ill-formed. This can happen when composing sequentially two
circuits P and Q if the number of outputs of P is different from the number of
inputs of Q. To exclude these ill-formed circuits, we define a simple type system
on combinational circuits. For this, we assume that each gate g ∈ G has a type
(mg, ng) where mg is the fan-in (number of inputs) of the gate g and ng is the
fan-out (number of outputs) of the gate g. In other words, we assume that we
have a typing function T : G → N× N.

Definition 2 (well-formed circuits). Let P be a combinational circuits over
G. We say that P is well-formed and has m inputs and n outputs — written
P : m⊗n — if and only if there exists a typing derivation using the rules of the
type system given below. Otherwise, P is said to be ill-formed.

T (g) = (m,n)

g : m⊗ n
g ∈ G

0 : 0⊗ 0 I : 1⊗ 1 Y : 1⊗ 2 X : 2⊗ 2

P1 : m1 ⊗ n1 P2 : m2 ⊗ n2

P1 ||P2 : m1 +m2 ⊗ n1 + n2

P1 : m⊗ n P2 : n⊗ p
P1 ; P2 : m⊗ p

We comment briefly the rule for sequential composition as it is the source
of potential ill-formedness. This rule states that for P ; Q to be well-formed, we
must have that (1) P is well-formed, (2) Q is well-formed and (3) the number of
outputs of P is equal to the number of inputs of Q.

Example 2. Continuing Example 1, we assume that the and gate and and the
xor gate xor have 2 inputs and 1 output, i.e. that T (and) = (2, 1) and T (xor) =
(2, 1). Then Half is well-formed and has 2 inputs and 2 outputs, i.e. Half : 2⊗2.

Lemma 1 (uniqueness of type). Let P be a circuit. If P : n ⊗ m and P :
n′ ⊗m′ then n = n′ and m = m′.

3.3 Semantics

We interpret combinational circuits by partial functions on words over an alpha-
bet Σ. Before defining the formal semantics of circuits, we recall briefly some
definitions about languages to fix terminology and notations.

An alphabet is a finite set, whose elements are called letters. A word u over
an alphabet Σ is a finite sequence of letters u = u1 · . . . · un where ui ∈ Σ for



any i. We note Σ∗ the set of words over Σ. If u = u1 · . . . · un is a word over Σ,
we note |u| = n its length. The set of words of length n ∈ N is written Σn. We
note ε the empty word, i.e. the unique word of length 0. If u = u1 · . . . · un ∈ Σ∗
and v = v1 · . . . · vp ∈ Σ∗, the concatenation u • v of u and v is defined by
u • v = u1 · . . . · un · v1 · . . . · vp of length |u • v| = |u| + |v|. A language L over
Σ is a subset of Σ∗. If L1, L2 ⊆ Σ∗, we let L1 • L2 :={u • v | u ∈ L1 ∧ v ∈ L2}.
If L ⊆ Σ∗ and n ∈ N, we define Ln as L0 :={ε} and Ln+1 :=L • Ln. Finally, we
define the Kleene closure of L to be L∗ :=

⋃
i∈N

Li.

In the following, we let Σ be an alphabet. By abuse of notations, we will
identify each letter a ∈ Σ with the word a ∈ Σ∗ of length 1.

In order to define the semantics of circuits, we assume that each gate g ∈ G is
interpreted by a partial function E(g) : Σ∗ ⇀ Σ∗, which is defined consistently
with respect to the type of g, i.e. if T (g) = (m,n) then the definition domain of
E(g) is Σm and its image is included in Σn.

Definition 3. Let P be a combinational circuit over G and x, y ∈ Σ∗. We say
that P computes y on x — written P  x  y — if and only if there exists a
derivation of P  x y according to the following inductive rules.

x ∈ Σ∗ E(g)(x) = y ∈ Σ∗

g  x y
g ∈ G

0  ε ε I  a a
a ∈ Σ

Y  a aa
a ∈ Σ

X  ab ba
a, b ∈ Σ

P1  x1  y1 P2  x2  y2

P1 ||P2  x1 • x2  y1 • y2

P1  x y P2  y  z

P1 ; P2  x z

The next lemma summarises some important results about the semantics of
circuits.

Lemma 2. Let P be a combinational circuit, x, y, z ∈ Σ∗ and m,n ∈ N.

– Computation is deterministic.
If P  x y and P  x z then y = z.

– Existence of a computation implies well-formedness.
If P  x y then P : |x| ⊗ |y|.
As a consequence, we have that if P  x  y and P : m ⊗ n then |x| = m
and |y| = n.

– A well-formed circuit with m inputs and n outputs computes over Σm.
If P : m⊗ n and |x| = m then there exists y such that P  x y.
According to the previous results, we thus have that the definition domain of
a well-formed circuit with m inputs and n outputs is Σm and its image is
included in Σn.



3.4 Functional equivalence, structural congruence

Functional equivalence Intuitively, functional equivalence relates any two
circuits which compute the same function. It is formally defined below.

Definition 4 (functional equivalence). Two circuits P and Q are function-
ally equivalent, written P ' Q, if and only if

∀x, y ∈ Σ∗ : P  x y ⇐⇒ Q  x y

An important result, that allows compositional reasoning, is that functional
equivalence is a congruence. We formally state this result below.

Definition 5 (contexts, congruence). A context C[ ] is a circuit with a
hole [ ] inside. Formally, the syntax of contexts is given below.

C[ ] ::=[ ] | C[ ] ||Q | P ||C[ ] | C[ ] ; Q | P ; C[ ]

If P is a circuit and C[ ] is a context, we write C[P ] the circuit obtained by
syntactically replacing the hole in C[ ] with P .

A congruence R is an equivalence relation over CG that is preserved by ev-
ery context, i.e. such that whenever PRQ then for any context C[ ], we have
C[P ]RC[Q].

Theorem 1. ' is a congruence.

Another property of ' is that it identifies all the ill-formed circuits. Formally,
if P and Q are ill-formed, then P ' Q.

Structural congruence Intuitively, structural congruence identifies circuits
that only differ in some minor wiring details.

Definition 6. The structural congruence ≡ is the smallest congruence that sat-
isfies the following axioms:

1. for any P,Q and R, (P ||Q) ||R ≡ P || (Q ||R)
2. for any P , P ||0 ≡ 0 ||P ≡ P
3. for any P,Q and R, (P ; Q) ; R ≡ P ; (Q ; R)
4. for any P , if P : n⊗m then In ; P ≡ P ; Im ≡ P
5. for any P,Q,R and S, if P : n⊗m and Q : m⊗ p

then (P ; Q) || (R ; S) ≡ (P ||R) ; (Q ||S)
6. Y ; (I ||Y) ≡ Y ; (Y || I)
7. Y ; X ≡ Y
8. X ; X ≡ I || I
9. X ; (Y ||Y) ≡ (Y ||Y) ; (I ||X || I) ; (X ||X) ; (I ||X || I)

Structural congruence preserves the well-formedness. Formally, if P ≡ Q then
for any m and n, we have P : m⊗ n ⇐⇒ Q : m⊗ n.

Structural congruence is also a convenient proof method for showing func-
tional equivalence as stated in the following theorem.

Theorem 2. We have ≡⊆'.



4 Formalisation of WDDL and BCDL

4.1 Dual-rail Precharge Logic

Before defining formally the WDDL and BCDL transformations, we need some
more definitions.

In the following, let Σ = {0, 1}. The set of dual-rail words is
(
Σ2
)∗. Let

N := 00, T := 10, F := 01 and E := 11. Let NULL :={N}, VALID :={T, F} and
FAULT :={E}. A word u ∈ Σ∗ is said to be null if and only if u ∈ NULL∗,
to be valid if and only if u ∈ VALID∗, to be error-free if and only if u ∈
(NULL ∪VALID)

∗. If u ∈ Σ∗, its corresponding value in dual-rail representation
is [u] ∈ VALID∗. It is defined by induction on u by [ε] := ε, [0 · u] :=F • [u] and
[1 · u] :=T • [u]. Clearly, we have |[u]| = 2|u|.

As mentioned before, DPL alternates precharge phase and computation phase.
When a switch of phase occurs, input signals acquire their respective values. Thus
when switching from precharge to computation, each input signal N becomes
either the token T or the token F . To model this, we define on NULL ∪VALID
the order � such that for any x ∈ NULL ∪ VALID we have x � x and for any
x ∈ NULL and y ∈ VALID we have x � y. Note that by construction, the ele-
ments of VALID are maximal. Due to routing differences, input signals are likely
to acquire their respective logic value at different times. To model this evolution
when switching from precharge to computation, we extend the definition of �
to error-free words as follows: u � v if and only if there exists n ∈ N such that
u = t1 · · · tn, v = t′1 · · · t′n with ∀i : ti, t

′
i ∈ NULL∪VALID and for any 1 ≤ i ≤ n,

ti � t′i. For example, we have NN � TN � TF . By construction, since elements
of VALID are maximal, we have that if x ∈ VALID∗ and x � y then y = x.

We define the equivalence relation ∼ that equates dual-rail words of same
length where each corresponding signals has the same nature: null, valid or faulty.
Formally, we let ∼ be defined on Σ2 by x ∼ y if and only if both x and y are
null (i.e. x, y ∈ NULL) or both x and y are valid (i.e. x, y ∈ VALID) or both
x and y are faulty (i.e. x, y ∈ FAULT). In other words, ∼ is the equivalence
relation on Σ2 such that its equivalence classes are NULL, VALID and FAULT.
We extend this definition to dual-rail words as follows: u ∼ v if and only if there
exists n ∈ N such that u = t1 · · · tn, v = t′1 · · · t′n with ∀i : ti, t

′
i ∈ Σ2 and for any

1 ≤ i ≤ n, ti ∼ t′i.
To define semantics of circuits, we define the following Boolean operators:

– ¬ is the unary operator on Σ such that ¬x = 1 if and only if x = 0.
– ∧ is the binary operator on Σ×Σ such that x∧y = 1 if and only if x = y = 1.
– ∨ is the binary operator on Σ×Σ such that x∨y = 0 if and only if x = y = 0.

4.2 Wave Dynamic Differential Logic (WDDL)

WDDL transformation process is not defined for circuits built with arbitrary
logical gates. In the following, we thus assume that the circuits to be secured
with WDDL are built over the set G = {and, not}. The transformation produces
a circuit of CG′ where G′ = {andWDDL}.



We assume the following types: TG(and) = (2, 1), TG(not) = (1, 1) and
TG′(andWDDL) = (4, 2).

We assume that the interpretation functions of these gates are defined by:

– EG(and)(a · b) := a ∧ b for a, b ∈ Σ.
– EG(not)(a) :=¬a for a ∈ Σ.
– EG′(andWDDL)(at · af · bt · bf ) :=(at ∧ bt) · (af ∨ bf ) for at, af , bt, bf ∈ Σ.

We are now ready to define the WDDL securisation process. This process is
illustrated on Figure 2.

Definition 7. We define by induction on C ∈ CG the WDDL-secured circuit
WDDL(C) ∈ CG′ by

WDDL(0) :=0

WDDL(I) := I || I
WDDL(X) :=(I ||X || I) ; (X ||X) ; (I ||X || I)
WDDL(Y) :=(Y ||Y) ; (I ||X || I)

WDDL(and) := andWDDL

WDDL(not) :=X

WDDL(C1 ||C2) := WDDL(C1) ||WDDL(C2)

WDDL(C1 ; C2) := WDDL(C1) ; WDDL(C2)

a
b

s ⇒

at
bt

af
bf

st

sf

a s ⇒
at

sfaf

st

a a ⇒
at at
af af

a

ab

b

⇒
at

at

af

af
bt

bt

bf

bf

a
a

a
⇒

at
at

ataf

af

af

P

Q
⇒

JP K

JQK
P Q ⇒ JP K JQK

Fig. 2. WDDL securisation process

The WDDL securisation process produces a well-formed circuit if and only
if the input circuit is well-formed, as stated below.



Lemma 3. Let C ∈ CG. Then

– if C : n⊗m then WDDL(C) : 2n⊗ 2m.
– if WDDL(C) : n′ ⊗m′ then there exists n and m such that C : n ⊗m and
n′ = 2n and m′ = 2m.

The following lemma states that a WDDL circuit fulfils the DPL invariants:
it propagates the NULL state and the VALID state.

Lemma 4. Let C ∈ CG and assume that WDDL(C)  x y. Then

– if x ∈ NULL∗ then y ∈ NULL∗.
– if x ∈ VALID∗ then y ∈ VALID∗.

We prove with the following lemma that the WDDL securisation process is
sound. In other words, a WDDL secured circuit computes at least as the original
circuit.

Lemma 5. Let C ∈ CG. If C  x y then WDDL(C)  [x] [y].

The next lemma states the converse result: the WDDL securisation process
is complete. In other words, a WDDL secured circuit computes no more than
the original circuit on valid inputs.

Lemma 6. Let C ∈ CG. If WDDL(C)  x′  y′ and x′ ∈ VALID∗ then there
exists x, y ∈ Σ∗ such that x′ = [x], y′ = [y] and C  x y.

4.3 Balanced Cell-based Differential Logic (BCDL)

Contrary to WDDL, BCDL transformation process can be defined for circuits
build on top of arbitrary logical gates. We thus let G be the set of basic gates of
the circuits to be protected. We assume to have a typing function TG : G → N×N
and an evaluation function EG : G → (Σ∗ ⇀ Σ∗). The transformation process
produces a circuit of CG′ where G′ :={gBCDL | g ∈ G}∪{Un | n ∈ N}∪{ANDN}.

We assume the following types for the gates of G′. If g ∈ G and TG(g) = (n,m)
then TG′(gBCDL) = (n+ 1, 2m). The gate gBCDL corresponding to g has an extra
input that indicates whether evaluation is enabled or not and produces a dual-
rail result, thus the 2m outputs. We also assume TG′(ANDN) = (2, 1) and for
n ∈ N, TG′(Un) = (2n, 1).

Regarding the interpretation function, we assume that:

– EG′(ANDN)(a · b) :=(¬a) ∧ b for a, b ∈ Σ.
– for n ∈ N, and x ∈ Σ2n, EG′(Un)(x) := 1 if x ∈ VALIDn and EG′(Un)(x) := 0

otherwise.
– for g ∈ G, if TG(g) = (n,m) then for x ∈ Σn, EG′(gBCDL)(0 · x) := 02m and
EG′(gBCDL)(1 · x) :=[E(g)(x)].



Before defining the BCDL securisation process on whole circuits, we focus
on how a simple gate g ∈ G is secured. The idea of BCDL is that evaluation is
enabled only once every dual-rail input signal becomes valid and when global
precharge signal is low. Figure 3 shows how to achieve this. An unanimity gate Un

(circled on the figure) verifies that every dual-rail signal is valid and transmits the
result to a gate ANDN which ands this signal with the negation of the precharge
signal. The result is then transmitted to the dual-rail gate gBCDL corresponding
to g, which uses this signal to enable evaluation. Formally, for g ∈ G, we define
Cg :=(I || (unintn ; (dupn || In) ; (In || (intn ; Un)) ; rorn+1)) ; (ANDN || In) ; gBCDL.

ga, b, c, . . . s̃ ⇒

at
af

bt
bf
ct
cf

...
...

pre

at, bt, ct, . . .

Tg

Fg

[s̃]

Fig. 3. Securing an arbitrary gate with BCDL

The BCDL securisation process is defined thereafter. One difficulty that arises
when defining BCDL transformation process is the fact that a circuit only made
of wires (with no gates) does not need a global precharge signal. For this reason,
the BCDL transformation function returns a triple (b, n, C) where b ∈ {tt,ff}
is a boolean, n ∈ N is an integer and C a BCDL-secured circuit. The boolean
b indicates whether C has a global precharge signal. The integer n corresponds
to the number of inputs of the unsecured circuit (while we do not assume it is
well-formed).



Definition 8. We define by induction on C ∈ CG the BCDL-secured circuit
BCDL(C) ∈ CG′ by

BCDL(0) := (ff, 0,0)
BCDL(I) := (ff, 1, I || I)

BCDL(X) := (ff, 2, (I ||X || I) ; (X ||X) ; (I ||X || I))
BCDL(Y) := (ff, 1, (Y ||Y) ; (I ||X || I))

BCDL(g ∈ G) := (tt, n, Cg) if TG(g) = (n,m)

BCDL(C1 ; C2) := (tt, n1, (I ||C ′1) ; C ′2) if BCDL(C1) = (ff, n1, C′
1)

and BCDL(C2) = (tt, n2, C′
2)

:= (tt, n1, (Y || I2n1) ; (I ||C ′1) ; C ′2) if BCDL(C1) = (tt, n1, C′
1)

and BCDL(C2) = (tt, n2, C′
2)

:= (b, n1, C
′
1 ; C ′2) if BCDL(C1) = (b, n1, C′

1)

and BCDL(C2) = (ff, n2, C′
2)

BCDL(C1 ||C2) := (tt, n1 + n2, (rol2n1+1 || I2n2) ; (C ′1 ||C ′2))
if BCDL(C1) = (ff, n1, C′

1) and BCDL(C2) = (tt, n2, C′
2)

(tt, n1 + n2, (Y || I2n1+2n2) ; (I || rol2n1+1 || I2n2) ; (C ′1 ||C ′2))
if BCDL(C1) = (tt, n1, C′

1) and BCDL(C2) = (tt, n2, C′
2)

:= (b, n1 + n2, C
′
1 ||C ′2)

if BCDL(C1) = (b, n1, C′
1) and BCDL(C2) = (ff, n2, C′

2)

In the sequel, let δff := 0 and δtt := 1. The following lemma states that BCDL
securisation process produces a well-formed circuit if and only if the input circuit
is well-formed.

Lemma 7. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if C : n′ ⊗m then n = n′ and C ′ : 2n+ δb ⊗ 2m.
– if C ′ : n′ ⊗m′ then there exists m such that C : n ⊗m, n′ = 2n + δb and
m′ = 2m.

The next lemma states a result similar to that of Lemma 4: a BCDL circuit
propagates the NULL state when the precharge signal is high and propagates
the VALID state when the precharge signal is low.

Lemma 8. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt and BCDL(C)  1 · x y then
• if x ∈ NULL∗ then y ∈ NULL∗.
• if x ∈ VALID∗ then y ∈ VALID∗.

– if b = ff and BCDL(C)  x y then
• if x ∈ NULL∗ then y ∈ NULL∗.
• if x ∈ VALID∗ then y ∈ VALID∗.

Observe in the previous lemma that precharge signal is the first input, when
the BCDL secured circuit routes such a signal (i.e. when b = tt).

We can refine this result on circuits Cg where g ∈ G as shown in the next
lemma. Hence, when precharge signal is high, Cg produces null. It also produces
null when input is not valid, whatever the state of the precharge signal is.

Lemma 9. Let g ∈ G. Then



– if Cg  1 · x y then y ∈ NULL∗.
– if Cg  p · x y and x 6∈ VALID∗ then y ∈ NULL∗.

The next lemma states that a BCDL secured circuit computes at least as the
original circuit. This is a result analogous to Lemma 5.

Lemma 10. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt and C  x y then C ′  0 · [x] [y].
– if b = ff and C  x y then C ′  [x] [y].

The converse result is true, as it was the case for WDDL (see Lemma 6).
However, note that in the case of BCDL, it is only sufficient to assume that
the output is valid (and not the input) as long as the original circuit does not
contain a gate g with no outputs.

Lemma 11. Let C ∈ CG such that it does not contain a gate g with no outputs
and let b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt, C ′  0 · x′  y′ and y′ ∈ VALID∗ then there exists x, y such that
C  x y and x′ = [x] and y′ = [y].

– if b = ff, C ′  x′  y′ and y′ ∈ VALID∗ then there exists x, y such that
C  x y and x′ = [x] and y′ = [y].

4.4 Security properties

In this section, we will illustrate how our formalism allows us to tackle some
security properties such as glitches or early-evaluation.

Glitches An electronic glitch is an undesired transition that occurs before the
signal settles to its intended value. In DPL, the precharge and the evaluation
phase alternate. Thus, when switching from precharge to evaluation, input sig-
nals progressively change their value from NULL to VALID. And conversely,
when switching from evaluation to precharge, input signals progressively change
their value from VALID to NULL. This change of state is precisely modeled
by the partial order � we introduced previously (see Section 4.1). Indeed, when
switching from precharge to evaluation, input signals modeled by a word of (Σ2)∗

take different values x1, . . . , xn where x1 ∈ NULL∗, xn ∈ VALID∗ and for all
1 ≤ i < n, xi � xi+1. For instance, Figure 4 illustrates the transition of an input
signals composed of two dual-rails (at, af ), (bt, bf ) from the precharge phase to
the evaluation phase taking values NN � TN � TF .

The next two lemmas state that WDDL as well as BCDL-secured circuits
preserves the partial order �.

Lemma 12. Let C ∈ CG.
If WDDL(C)  x y, WDDL(C)  x′  y′ and x � x′, then y � y′.

Lemma 13. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then
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Fig. 4. � models transition of signals from null to valid

– if b = tt then for any p ∈ Σ, if C ′  p · x  p · y, C ′  p · x′  p · y′ and
x � x′, then y � y′.

– if b = ff then if C ′  x y, C ′  x′  y′ and x � x′, then y � y′.

The fact that WDDL and BCDL circuits preserve the partial order � in-
tuitively means that when input signals acquire progressively their values then
output signals also acquire progressively their values. By construction of �, this
means that once a dual-rail output signal has taken its value (in VALID), it
won’t change its value until the next switch of phase. This precisely means that
no glitches are possible.

Early-evaluation In order to address the problem of early-evaluation, we com-
pare the behaviour of circuits on equivalent inputs. Indeed, intuitively, a circuit
does not suffer from the early-evaluation problem if it produces the same amount
of work on equivalent inputs.

We have defined previously an equivalence relation ∼ that equate words
which have the same amount of information, i.e. in which corresponding dual-
rail signals have the same nature. For instance, on Figure 5, the pair of dual-rail
signals (at, af ),(bt, bf ) in scenario #1 and scenario #2 conveys the same amount
of information at time t1 since NN ∼ NN , at time t2 since TN ∼ FN and at
time t3 since TF ∼ FF .

The next lemma states that BCDL-secured circuit preserves the equivalence
relation ∼.

Lemma 14. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt then for any p ∈ Σ, if C ′  p · x  p · y, C ′  p · x′  p · y′ and
x ∼ x′, then y ∼ y′.

– if b = ff then if C ′  x y, C ′  x′  y′ and x ∼ x′, then y ∼ y′.

On the contrary, a similar result for WDDL circuits does not hold. Indeed,
consider the WDDL circuit andWDDL. We have that andWDDL  FN  F ,
andWDDL  TN  N and FN ∼ TN . But F � N . In other words, WDDL does
not preserve ∼ as stated below.
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Fig. 5. ∼ equates states where the nature of dual-rail signals is the same

Lemma 15. There exists C ∈ CG and x, x′, y, y′ such that WDDL(C)  x y,
WDDL(C)  x′  y′, x ∼ x′ and y � y′.

The problem of early-evaluation can also be seen in another manner. A DPL
circuit does not suffer from the early-evaluation problem if it produces valid
outputs only on valid inputs. It is insightful to compare Lemma 6 and Lemma 11
with this idea in mind. Indeed, in the case of BCDL, it is true that a BCDL-
secured circuit produces valid outputs only on valid inputs (provided it does
not contain gates with no outputs). On the contrary, this result does not hold
for WDDL-secured circuit. Indeed, consider the circuit andWDDL. Then we have
andWDDL  FN  F and F ∈ VALID∗. But FN 6∈ VALID∗.

Measuring activity of circuits Hitherto, we have shown how problems such
as glitches and early-evaluation effects can be detected by just looking at the
functionality of a circuit. However, this approach is not sufficient because the
principle of physical attacks is to look at the details of implementation and not
only to abstract the functionality of circuits.

For instance, the circuit of Figure 6 is a WDDL “and” gate, but the result is
conditioned by the fact that the input signals are valid. From the functionality
point of view, this circuit does not suffer from early-evaluation effect w.r.t. the
definition we suggested before: it preserves ∼ and it produces valid outputs only
on valid inputs. But this circuit is problematic because it still suffers from early-
evaluation. Indeed, the “and” and “or” gate computes whatever the nature of
the input signals and then the result is accepted or rejected depending on the
nature of the input signals. Hence, we can detect different speed of response of
the circuit depending on the input data.

In order to be able to compare different implementations of the same boolean
function, we propose to measure activity of circuits. We assume to have a func-
tion µG : G → Σ∗ → N which measures the activity of each gate g ∈ G, µG(g, x)
being the activity of g on input x ∈ Σ∗.
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The following inductive rules define the predicate µ(C, x, n), which relates
the activity n produced by a circuit C on input word x.

x ∈ Σ∗ E(g)(x) ∈ Σ∗

µ(g, x, µG(g, x))
g ∈ G

µ(0, ε, 0) µ(I, a, 0)
a ∈ Σ

µ(Y, a, 0)
a ∈ Σ

µ(X, ab, 0)
a, b ∈ Σ

µ(P1, x1, n1) µ(P2, x2, n2)

µ(P1 ||P2, x1 • x2, n1 + n2)

µ(P1, x, n) P1  x y µ(P2, y,m)

µ(P1 ; P2, x, n+m)

The next lemma gives basic properties of the activity predicate.

Lemma 16. 1. If µ(P, x, n) and µ(P, x, n′) then n = n′.
2. If µ(P, x, n) then there exists y such that P  x y.
3. If P  x y then there exists n such that µ(P, x, n).

We now study the activity of BCDL-secured circuit. We assume that the
activity of the basic gates is such that:

– for any n ∈ N, for any x, y ∈ Σ∗, if x ∼ y then µG
′
(Un, x) = µG

′
(Un, y).

– for any g ∈ G, for any x, y ∈ Σ∗, and s ∈ Σ, if |x| = |y| then we have
µG

′
(gBCDL, s · x) = µG

′
(gBCDL, s · y).

Then a BCDL-secured circuit has a constant activity on equivalent inputs,
as stated in the next lemma.

Lemma 17. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt, then for any p ∈ Σ, for any x, x′ ∈ Σ∗ and for any k, k′ ∈ N, if
µ(C ′, p · x, k), µ(C ′, p · x′, k′) and x ∼ x′ then k = k′.

– if b = ff, then for any x, x′ ∈ Σ∗ and for any k, k′ ∈ N, if µ(C ′, x, k),
µ(C ′, x′, k′) and x ∼ x′ then k = k′.

Note that a similar result is not true for the circuit of Figure 6 if we take
for µG(g, x) the hamming weight of E(g)(x). For (at, af ), (bt, bf ) = FN , we
would have an activity of 2 (one “xor” gate and one “or” gate react) whereas
for (at, af ), (bt, bf ) = TN we would have an activity of 1 (only one “xor” gate
reacts).



5 Conclusions and Perspectives

This article has shown that the transformation from an unprotected to a side
channel attack resistant netlist can be captured formally. The scheme described
in the article allows to work on any kind of combinational circuit, unprotected or
protected. To the authors’ best knowledge, it is the first time a circuit-level coun-
termeasure is processed formally. Furthermore, our scheme can be augmented
with the verification of some properties. In particular, we formally describe the
presence of glitches and of early propagations, properties that were previously
only discussed informally or on examples in the embedded secure literature.
These properties are tested on two dual-rail logic styles, namely WDDL and
BCDL. It is shown that none have glitches, but that WDDL is flawed with early
propagation. We also notice that our methodology permits to extract a certi-
fied tool that achieves the netlist-to-netlist (unprotected to WDDL or BCDL)
transformation without errors.

As a perspective, we intend to apply these results on other dual-rail styles. For
instance, SDDL [7] could be shown to be victim of both glitches and early prop-
agation. Also, some other subtle bugs could be discovered if the inner structure
of the logic gates was included in the modeling. Typically, DRSL [3] features
a data-dependent glitch happening only internally inside a gate [6]. This flaw
cannot be found in the current state of the scheme. In a nutshell, we believe the
scope of formal methods can be broadened to detect early some future security
troubles related to implementation-level attacks.
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A Wiring

In this section, we define several circuits that manipulate wires and are conve-
nient when defining more complex transformations.

A.1 Rotations

The right rotation −→u of a word u ∈ Σ∗ is ε if u = ε and a ·v if there exists a ∈ Σ
and v ∈ Σ∗ such that u = v • a. Similarly, the left rotation ←−u of a word u ∈ Σ∗
is ε if u = ε and v • a if there exists a ∈ Σ and v ∈ Σ∗ such that u = a · v.

Clearly, we have for any word u ∈ Σ∗ that
←−−→u =

−→←−u = u, i.e. left and right
rotation on words are inverse operations. Moreover, rotations preserve length,
i.e. for any u ∈ Σ∗, |←−u | = |−→u | = |u|.

We define by induction on n ∈ N the circuit rorn by (1) ror0 :=0, (2) ror1 := I,
and (3) rorn+2 :=(In ||X) ; (rorn+1 || I) for n ∈ N.

The next lemma states that the circuit rorn implements right rotation of
words of length n.

Lemma 18. Let n ∈ N. Then

– rorn : n⊗ n, and
– for all x, y ∈ Σ∗, rorn  x y if and only if |x| = n and y = −→x .

Similarly, we define by induction on n ∈ N the circuit roln by (1) rol0 :=0,
(2) rol1 := I, and (3) roln+2 :=(roln+1 || I) ; (In ||X) for n ∈ N.

The next lemma states that the circuit roln implements left rotation of words
of length n.

Lemma 19. Let n ∈ N. Then

– roln ; rorn ≡ rorn ; roln ≡ In,
– roln : n⊗ n, and
– for all x, y ∈ Σ∗, roln  x y if and only if |x| = n and y =←−x .

A.2 Interleaving

The interleaving u 9 v of two words u, v ∈ Σ∗ of the same length is defined by
induction on u and v by (1) ε 9 ε := ε, and (2) (a · u) 9 (b · v) := ab(u 9 v).

We define by induction on n ∈ N the circuit intn by (1) int0 :=0 and (2)
intn+1 :=(I || rorn+1 || In) ; (I || I || intn).

The next lemma states that the circuit intn interleaves two ribbons of n wires.

Lemma 20. Let n ∈ N. Then

– intn : 2n⊗ 2n, and



– for all x, y ∈ Σ∗, intn  x y if and only if there exists u, v ∈ Σ∗ such that
x = u • v and |u| = |v| = n and y = u 9 v.

We define by induction on n ∈ N the circuit unintn by (1) unint0 :=0 and
(2) unintn+1 :=(I || I ||unintn) ; (I || roln+1 || In).

The next lemma states that the circuit unintn deinterleaves a ribbon of 2n
wires.

Lemma 21. Let n ∈ N. Then

– intn ; unintn ≡ unintn ; intn ≡ I2n,
– unintn : 2n⊗ 2n, and
– for all x, y ∈ Σ∗, unintn  x  y if and only if there exists u, v ∈ Σ∗ such

that y = u • v and |u| = |v| = n and x = u 9 v.

A.3 Duplication

We define by induction on n ∈ NN the circuit dupn by (1) dup0 :=0, and (2)
dupn+1 :=(Y ||dupn) ; (I || roln+1 || In).

The next lemma states that the circuit dupn duplicates a ribbon of n wires.

Lemma 22. Let n ∈ N. Then

– dupn : n⊗ 2n, and
– for all x, y ∈ Σ∗, dupn  x y if and only if |x| = n and y = x • x.


