
The Stream Cipher Core of the 3GPP

Encryption Standard 128-EEA3: Timing Attacks

and Countermeasures⋆

Gautham Sekar

Indian Statistical Institute, Chennai Centre,
SETS Campus, MGR Knowledge City, CIT Campus, Taramani,

Chennai 600113, India.
sgautham@isichennai.res.in

Abstract. The core of the 3rd Generation Partnership Project (3GPP)
encryption standard 128-EEA3 is a stream cipher called ZUC. It was
designed by the Chinese Academy of Sciences and proposed for inclusion
in the cellular wireless standards called “Long Term Evolution” or “4G”.
The LFSR-based cipher uses a 128-bit key. In this paper, we first show
timing attacks on ZUC that can recover, with about 71.43% success rate,
(i) one bit of the secret key immediately, and (ii) information involving
6 other key bits. The time, memory and data requirements of the attacks
are negligible. While we see potential improvements to the attacks, we
also suggest countermeasures.

Keywords: Stream cipher, cache timing attack, key recovery.

1 Introduction

ZUC [8] is a stream cipher designed by the Data Assurance and Communication
Security Research Center (DACAS) of the Chinese Academy of Sciences. The
cipher forms the core of the 3GPP mobile standards 128-EEA3 (for encryption)
and 128-EIA3 (for message integrity) [7]. It was proposed for inclusion in the
Long Term Evolution (LTE) or the 4th generation of cellular wireless standards
(4G).1 ZUC is LFSR-based and uses a 128-bit key and a 128-bit initialization
vector (IV). Some key points in the evolution of ZUC are listed in the following
timeline.

Timeline:

⋆ A shorter and older version of this paper appears in the proceedings of Inscrypt 2011.
It was written when the author was with the National University of Singapore.

1 Strictly speaking, LTE is not 4G as it does not fully comply with the International
Mobile Telecommunications Advanced (IMT-Advanced) requirements for 4G. Put
differently, LTE is beyond 3G but pre-4G.

– 18th June 2010: The Security Algorithms Group of Experts (SAGE) of the
European Telecommunications Standards Institute (ETSI) published a doc-
ument providing the specifications of the first version of ZUC. The document
was indexed “Version 1.0”.

– 26th–30th July 2010: Improvements and minor corrections were made succes-
sively to the C implementation of the ZUC algorithm of Version 1.0. These
resulted in versions 1.2 and 1.3 of the ETSI/SAGE document. The preface
to Version 1.3 was corrected and the resulting document released as Version
1.4.

– 02nd–03rd December 2010 (First International Workshop on ZUC Algorithm):
A few observations on the algorithm of Version 1.4 were reported (see [6])
but none of these posed any immediate threat to its security.

– 05th–09th December 2010 (ASIACRYPT): The algorithm of Version 1.4 was
cryptanalysed by Wu et al. [24] and the results were presented at the rump
session of ASIACRYPT 2010.

The attack reduces the effective key size of ZUC to about 66 bits by
exploiting the fact that a difference set between a pair of IVs may result in
identical keystreams.

– 08th December 2010: Gilbert et al. reported an existential forgery attack on
the 128-EIA3 MAC algorithm.

The attack allows, given any message and its MAC value under an un-
known integrity key and an initialization vector, to predict the MAC value
of a related message under the same key and the same initialization vector
with a success probability of 1/2.

Gilbert et al. also gave a modified version of the 128-EIA3 algorithm (cf.
[12, Algorithm 2]).

In the original 128-EIA3 construction, some 32-bit keystream words are
used in computing the universal hash function, and then the next whole
word of keystream is used as a mask. But in [12, Algorithm 2], the first
keystream word is used as the mask. The latter algorithm better fits the
standard Carter-Wegman construction [5].

– 04th January 2011: In response to Wu et al.’s key recovery attack, the ini-
tialization of ZUC was modified. Version 1.5 contains the new algorithm
[8]. This algorithm is the one we analyse in this paper; we have been and
shall henceforth be simply calling it “ZUC” (i.e., without any accompanying
version numbers).

– 05th–06th June 2011 (The 2nd International Workshop on ZUC Algorithm
and Related Topics): Gilbert et al. presented an updated version (cf. [12])
of their paper. In this they argue that [12, Algorithm 2] might have slightly
greater resistance against nonce reuse.

– 07th June 2011 – 26th August 2011: Changing the ZUC integrity algorithm
of 128-EIA3 to [12, Algorithm 2] was being considered by the ETSI/SAGE in
June 2011. Although [12, Algorithm 2] offers some advantages, they appear
to be marginal.

In this paper, we present two timing attacks on ZUC, each of can (in
the best case) recover with (nearly) 0.7143 success probability, (i) one bit

2

of the key immediately, and (ii) information involving 6 other bits of the
key. Before describing how this paper is organised, we shall discuss timing
attacks briefly.

Timing attack: This is a side-channel attack in which the attacker exploits tim-
ing measurements of (parts of) the cryptographic algorithm’s implementation.
For example, in the case of unprotected AES implementations based on lookup
tables, the dependence of the lookup time on the table index can be exploited
to speed up key recovery [4]. A cache timing attack is a type of timing attack
which is based on the idea that the adversary can observe the cache accesses of
a legitimate party. The cache is an intermediate memory between the CPU and
the RAM and is used to store frequently used data fetched from the RAM. The
problem with the cache memory is that, unlike the RAM, it is shared among
users sharing a CPU.2 Hence, if Bob and Eve are sharing a CPU and Eve is
aware that Bob is about to encrypt, Eve may initiate her cache timing attack as
follows. She first fills the cache memory with values of her choice and waits for
Bob to run the encryption algorithm. She then measures the time taken to load
the earlier cache elements into the CPU; loading is quick if the element is still in
cache (such an event is called a cache hit ; its complement is a cache miss) and
not overwritten by one of Bob’s values. This technique is known as Prime+Probe

[18]. Cache timing attacks have been successfully mounted on several ciphers,
notably the AES [4, 18, 26, 14].

In [18], two types of cache timing attacks are introduced – synchronous and
asynchronous. In a synchronous attack, the adversary can make cache measure-
ments only after certain operations of the cipher (e.g., a full update of a stream
cipher’s internal state) have been performed. In this attack scenario, the plaintext
or the ciphertext is assumed to be available to the adversary. An asynchronous
cache adversary, on the other hand, is able to make cache measurements in par-
allel to the execution of the routine. She is able to obtain a list of all cache
accesses made in chronological order [26]. Here, there are different viewpoints
on the resources available to the adversary. According to Osvik et al., the adver-
sary has only the distribution of the plaintext/ciphertext and not sample values
[18]. Zenner differs in [26] where he argues that the adversary can (partially)
control input/output data and observe cache behaviour. Asynchronous attacks
are particularly effective on processors with simultaneous multithreading. One
of the timing attacks in this paper is an asynchronous cache timing attack, and
the other is a straightforward timing attack that does not involve the cache.

Organisation: Section 2 provides the specifications of ZUC along with some
notation and convention. The preliminary observations that lead us to timing
attacks are listed in Sect. 3 and the attacks are detailed in Sect. 4. We follow
this with an analysis of some design/implementation modifications that resist
the attacks, in Sect. 5. In Sect. 6, we see possible improvements to the timing

2 Actually, in most modern CPUs the cache is simply the static RAM (SRAM) and
the dynamic RAM (DRAM) is the other, predominant type of computer memory
that we simply call “the RAM”.

3

attacks and find that the proposed design modifications resist these improved
attacks too. In addition, we see several highlights of our attacks such as the
novelty of an employed technique. The paper concludes with a suggestion for
future work, in the same section.

2 Specifications of ZUC

In this paper, we use several of the notation and convention followed in [8] in
addition to that provided in Table 1.

Table 1. Notation and convention

Notation Meaning

LSB Least significant bit

MSB Most significant bit

⊙ Multiplication modulo (231 − 1)

ti(j) The jth bit (j = 0 denoting the LSB) of ti
[β1β2 . . . βn] β1||β2|| . . . ||βn

YH [Y(30)Y(29) . . . Y(15)] , when |Y | = 31 bits
[Y(31)Y(29) . . . Y(16)] , when |Y | = 32 bits

YL [Y(15)Y(14) . . . Y(0)]

As previously mentioned, the inputs to the ZUC cipher are a 128-bit key and
a 128-bit IV. The algorithm has three parts or “layers” – a linear feedback shift
register (LFSR) layer, a bit-reorganisation (“BR”) layer and a nonlinear func-
tion F . – that are shown in Figure 1. The execution of the algorithm proceeds
in two stages – an initialization stage and a “working” stage. Each iteration of
the algorithm in the working stage generates 32 bits of keystream output. We
shall now detail the layers and stages to the level that is required for the under-
standing of the results to follow. For the complete specifications, the interested
reader is referred to [8, Sect. 3].

The LFSR layer: ZUC uses one LFSR that contains sixteen 32-bit cells con-
taining 31-bit values s0, s1, . . . , s15. However, none of the 31-bit elements can
assume the value 0; the remaining 231 − 1 values are allowed. The steps of the
LFSR layer in the initialization mode comprise Algorithm 1.
The steps of the LFSR layer in the working mode comprise Algorithm 2.

The BR layer: In this layer, 128 bits are extracted from the cells of the LFSR
and four 32-bit words are formed. Three of these words (X0, X1, X2) are used
by the nonlinear function F , and the fourth word (X3) is used in producing the
keystream.

4

s15 s14 s13 s11 s10 s9 s7 s5 s4 s2 s0

Nonlinear function F

X0 X1 X2 X3

BR layer

32-bit integers

LFSR
(31-bit integers)

W

(32 bits)

Z (32 bits)

⊙ 215 ⊙ 217 ⊙ 221 ⊙ 220 ⊙ 28

+ + + + +

Fig. 1. The three layers of the ZUC algorithm

Algorithm 1 The LFSR layer in the initialization mode

1: v := 215 ⊙ s15 + 217 ⊙ s13 + 221 ⊙ s10 + 220 ⊙ s4 + 28 ⊙ s0 + s0 mod (231 − 1);
2: s16 := (v + u) mod (231 − 1); /* u is derived from the output of F */
3: if s16 = 0 then
4: s16 ← 231 − 1;
5: (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15);

The nonlinear function F : This function involves two 32-bit values in mem-
ory cells (R1, R2), one 32 × 32 S-box (S), two linear transforms (L1, L2) and the
aforementioned three 32-bit words produced by the BR layer. The output of the
function F is a 32-bit word W . The 32-bit keystream word Z, that is produced
in every iteration of the working mode of the ZUC algorithm, is simply W ⊕X3.
The F function is defined as follows:

F (X0, X1, X2){

1: W = (X0 ⊕R1) +R2 mod 232;
2: W1 := R1 ⊕X1;
3: W2 := R2 ⊕X2;
4: R1 = S(L1(W1L||W2H));
5: R2 = S(L2(W2L||W1H));}

5

Algorithm 2 The LFSR layer in the working mode

1: s16 = 215 ⊙ s15 + 217 ⊙ s13 + 221 ⊙ s10 + 220 ⊙ s4 + 28 ⊙ s0 + s0 mod (231 − 1);
2: if s16 = 0 then
3: s16 ← 231 − 1;
4: (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15);

Key loading: The key loading procedure expands the 128-bit secret key and the
128-bit IV to form the initial state of the LFSR. In [8], this key is denoted as k (=
k0||k1|| . . . ||k15, where each ki is a byte) and the IV as iv (= iv0||iv1|| . . . ||iv15,
where each ivi is a byte). In addition to k and iv, a 240-bit constant D (=
d0||d1|| . . . ||d15) is used in the key loading procedure. We shall now provide the
binary representations of the di’s first (in Table 2), followed by the key loading
procedure.

Table 2. The constants di, i ∈ {0, 1, . . . , 15}, used in the key loading procedure

d0 100010011010111 d8 100110101111000

d1 010011010111100 d9 010111100010011

d2 110001001101011 d10 110101111000100

d3 001001101011110 d11 001101011110001

d4 101011110001001 d12 101111000100110

d5 011010111100010 d13 011110001001101

d6 111000100110101 d14 111100010011010

d7 000100110101111 d15 100011110101100

Given this, the key loading is a set of very simple and straightforward steps
given by:

si = ki||di||ivi , for i ∈ {0, 1, . . . , 15} . (1)

The execution of ZUC: As mentioned earlier, the execution of the ZUC al-
gorithm proceeds in two stages. We shall now describe these stages.

The initialization stage: This stage is given by Algorithm 3.
The working stage: This stage, in turn, has two sub-stages that are given by
Algorithms 4 and 5.

3 Motivational Observations

We start with the following two trivial observations.

6

Algorithm 3 The initialization stage of ZUC execution
1: ctr = 0;
2: repeat
3: Execute the BR layer;
4: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2

of the BR layer;
5: Run Algorithm 1;
6: ctr ← ctr + 1;
7: until ctr = 32

Algorithm 4 First sub-stage of the working stage of ZUC execution

1: Execute the BR layer;
2: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2 of

the BR layer;
3: Discard the output W of F ;
4: Run Algorithm 2;

Algorithm 5 Keystream generating sub-stage of the working stage of ZUC
execution
1: repeat
2: Execute the BR layer;
3: Compute the nonlinear function F taking as inputs the outputs X0, X1 and X2

of the BR layer;
4: Compute the keystream as Z = W ⊕X3;
5: Run Algorithm 2;
6: until one 32-bit keystream word more than the required number of words is gen-

erated

7

Observation 1 The ZUC key is initially loaded directly into the 16 LFSR cells.

Observation 2 Multiplication and addition in the initialization mode and work-
ing mode of the LFSR layer are modulo (231 − 1). Other additions and multipli-
cations are modulo 232.

Addition modulo (231 − 1) of two 31-bit integers x and y is performed in
[8] as follows. First, they are stored in 32-bit cells and z = x + y mod 232 is
computed. If the end carry, meaning the carry-in at the MSB position of a 32-
bit word/register/memory cell, is b, the MSB of the 32-bit z is first discarded
and then this 31-bit word is incremented by b. This is implemented in C in [8]
as:

u32 Add(u32 x, u32 y) {

u32 z = x + y;

if (z & 0x80000000)

z = (z & 0x7FFFFFFF) + 1;

return z;

}

It is to be noted that the increment step in Add() cannot regenerate end carry3

because x, y ∈ {1, 2, . . . , 231 − 1} implies that u32 z has at least one zero in its
31 LSBs.

An end carry of 1 brings in one extra 32-bit AND operation and one 32-bit
addition in the software implementation (in hardware implementation, we have
32 bitwise AND operations and one 32-bit ripple carry addition). Let Tcarry

denote the total time taken by the processor to perform these additional oper-
ations and T denote the time taken to run the Add() subroutine without the
step where z is incremented. We now have the following simple observation that
forms the base of our timing analysis.

Observation 3 If the attacker observes that the time taken to run the Add()
subroutine is T + Tcarry, then she necessarily concludes that the end carry is
1, and can use this to retrieve some information on the summands x and y in
general and their MSBs in particular.

In Sect. 4, we shall show how we exploit Observations 1–3 to mount (partial)
key recovery attacks on ZUC.

4 The Timing Attacks

In this section, we shall examine the first invocation of the LFSR layer in the
initialization mode. Recall that the first step of Algorithm 1 is:

v := 215⊙ s15+217⊙ s13+221⊙ s10+220⊙ s4+28⊙ s0+ s0 mod (231− 1) . (2)

3 Throughout this paper, a ‘generated’ or ‘produced’ end carry is always 1 unless
otherwise stated.

8

Given a 32-bit cell containing a 31-bit integer δ, the product 2n ⊙ δ is im-
plemented in C in [8] as ((δ ≪ n)|(δ ≫ (31−n)))& 0x7FFFFFFF . Given this
and the manner in which the key bits are loaded into the cells initially (see [8,
Sect. 3]), we see that the 31-bit summands on the RHS of (2) in the first round
of the initialization mode are:

z1 := [k0(7)k0(6) . . . k0(0)d0(14)d0(13) . . . d0(0)iv0(7)iv0(6) . . . iv0(0)] ,

z2 := [d0(14) . . . d0(0)iv0(7) . . . iv0(0)k0(7) . . . k0(0)] ,

z3 := [d4(2)d4(1)d4(0)iv4(7) . . . iv4(0)k4(7) . . . k4(0)d4(14) . . . d4(3)] ,

z4 := [d10(1)d10(0)iv10(7) . . . iv10(0)k10(7) . . . k10(0)d10(14) . . . d10(2)] ,

z5 := [d13(5) . . . d13(0)iv13(7) . . . iv13(0)k13(7) . . . k13(0)d13(14) . . . d13(6)] ,

z6 := [d15(7) . . . d15(0)iv15(7) . . . iv15(0)k15(7) . . . k15(0)d15(14) . . . d15(8)] .

In the C implementation of ZUC in [8], the zi’s are added modulo (231 − 1)
as ((((z1+z2)+z3)+z4)+z5)+z6,

4 using the Add() subroutine. Recall that the
di(j)’s are known (see Table 2). There is no vector [z1(30)z2(30) . . . z6(30)] such
that an end carry is not produced. This is because d0(14) = 1 and d15(7) = 1. Let
c1 denote the carry bit produced by the addition of z1(29), z2(29) and the carry
coming in from bit position 28 (bit position 0 denotes the LSB), in the first step
of the Add() subroutine. The sum bit in this addition is added with z3(29) and
the corresponding carry coming in from bit position 28.5 Let c2 denote the carry
bit produced therefrom. Similarly c3, c4 and c5 are defined. The only binary
vectors Γ := [c1c2 . . . c5z1(30)] that are capable of producing end carry exactly
once are:

Γ1 := [0 0 0 0 0 0] ,

[Γ2Γ3Γ4Γ5Γ6Γ7]
T := I6 ,

where I6 is the identity matrix of size 6.

Clarification: Among the MSBs of the 31-bit zi’s, all but the MSB of z1 are
known to us. Let us, for example, suppose that this unknown bit is 1. Then, we
are bound to have a carry-out (in other words, carry-in at the bit position 31
or ‘end carry’). Since the zi’s are added progressively modulo (231 − 1), we can
have end carry produced many times (λ, say, in total). If the MSBs of the zi’s
are all variables, λ is bounded from above by 5, the number of additions modulo

4 Evidently there are other orders in performing the modular additions; e.g., ((((z1 +
z3) + z2) + z4) + z5) + z6. However, a similar analysis as that in this paper can be
performed for each of these orders.

5 Strictly speaking, the sum bit may be flipped before it is added with z3(29) and the
carry-in from bit position 28. This is because of the increment-by-1 step in Add().
However, the sum bit is flipped only (i) when there is an end carry and (ii) if all the
29 LSBs in the sum are 1’s. The probability for such an event is intuitively negligible,
even considering that many bits of the zi’s are constants. We therefore ignore such
bit flips.

9

232. (For the case at hand, though, this upper bound is conjectured to be 3 by
means of a simulation.)

Now, what must be the carry-in’s at the bit position 30, for each of these
additions, such that we have only one carry-out? It is rather straightforward to
see that the answer is [00000] for the 5 additions. If one of these bits is 1 instead
of 0, then we would certainly have one more carry-out. Thus, when the MSB of
z1 is 1, the only favourable carry vector is [00000]. This is what Γ7 means. We
similarly have Γ1, Γ2, . . . , Γ6 as the favourable binary vectors for the case when
the MSB of z1 is 0. ⊓⊔

Reverting back to the Γi’s, one can see that in 5 out of 7 cases, z1(30) = 0 and
c1 = 0. In each of z1, z2, . . . , z6, we have the unknown key bits, (un)known IV bits
and known d-bits. If all the 31 z-bits are unknown variables, one could assume
that they are uniformly distributed at random6 and evaluate the likelihood of
the occurrence of each of Γ1, Γ2, . . . , Γ7.

7 Because at least 15 bits of each of
z1, z2, . . . , z6 are constants, the assumption of uniform distribution cannot be
right away made anymore. If the IV is a known constant, one can assume that the
40 key bits k0||k4||k10||k13||k15 are uniformly distributed at random and compute
Pr(Γi), for i ∈ {1, 2, . . . , 7}, by running a simulation. Otherwise, the 40 IV
bits iv0||iv4||iv10||iv13||iv15 may also be assumed to be uniformly distributed at
random, and the probabilities Pr(Γi) estimated theoretically. However, the latter
approach appears to be highly involved, so we instead performed Experiment 1.

Experiment 1 The key/IV bytes k0 and iv0 are exhaustively varied, setting
every other key/IV byte to 0x00, and the cases where end carry is produced
exactly once, when the z1, z2, . . . , z6 are added modulo (231 − 1), are examined.

We found 6995 such cases (out of a total of 256 × 256 = 65536 cases). In 3444 of
the cases, the vector was Γ6; in 3030 cases, Γ5; and in the remaining 521 cases,
the vector was Γ3. (A few of these cases are listed in Appendix A.) Firstly, this
affirms that there are binary vectors that occur in practice. Next, if these are
the only such vectors that occur in practice, then we have recovered z1(30), or
the MSB of k0, with probability 1 when the time taken to execute (2) is at its
minimum. This minimum time period would naturally be Tconst + Tcarry, with
Tconst being the constant time component (i.e., the sum total of the execution
times of the steps, of the Add()’s invoked for (2), that are independent of the
respective x’s and y’s). With this, let us proceed to the second step of the
initialization mode, viz.,

s16 = v + u mod (231 − 1) , (3)

6 The probability distribution here is a priori.
7 Here, one may choose to ignore negligible biases in the carry probabilities. For exam-
ple, when two 32-bit words are added modulo 232, the carry-in at the MSB position
is likely to be 0 with a very small bias probability of 2−32. Bias probabilities of the
carries generated in modular sums have been examined in several works [23, 17, 21,
20].

10

where u = W ≫ 1 (see Sect. 2). We shall now argue that there are significantly
many cases where (3) does not involve an end carry generation.

We performed Experiment 1 again, this time counting the frequency at which
the MSB of the 31-bit v took the value 0. The total number of such cases was
32840, translating to a probability of 0.5011. Therefore, v(30) appears to be
uniformly distributed at random. The first value that u takes after it is initialised
is W = (X0⊕R1(ini))+R2(ini) mod 232, where R1(ini) and R2(ini) are the initial
values of R1 and R2, respectively. From [8, Sect. 3.6.1], we infer that R1(ini) = 0
and R2(ini) = 0. Hence, W = X0 and

u = W ≫ 1 = X0 ≫ 1

= s15H ||s14L ≫ 1

= [s15(30)s15(29) . . . s15(15)]||[s14(15)s14(14) . . . s14(1)]

= k15(7)||{0, 1}
30 ; (4)

and this is value of u that goes into step 2 of the first invocation of Algorithm 1.
Since k15(7) is an unknown key bit, u(30) can be reasonably assumed to be uni-
formly distributed at random. Given this, even if the carry-in at the bit position
30 were to be heavily biased towards 1, with 0.25 probability we would still have
the carry-out to be 0. In summary, the minimum execution time of Algorithm 1
can reasonably be expected to be T ′

const+Tcarry, T
′
const being the constant time

component, for at least 25% of the key-IV pairs. We shall now show two ways to
measure the execution time of Algorithm 1 and, using it, recover key-dependent
information.

1. Through cache measurements: In [26], Zenner makes a mention of a side-
channel oracle ACT KEYSETUP() that provides an asynchronous cache adversary a
list of all cache accesses made by KEYSETUP(), the key setup algorithm of HC-256,
in chronological order. Similarly, we introduce an oracle ACT Algorithm-3() that
provides the adversary with a chronologically ordered list of all cache accesses
made by Algorithm 3. Zenner does not mention in [26] whether or not such an
ordered list normally contains the time instants of the cache accesses as well.
We assume that the instants are contained in the list. This is a rather strong
assumption because in the absence of the oracle, the adversary has to have
considerable control over the CPU of the legitimate party, in order to obtain the
cache access times.

Given this assumption, the adversary scans through the list and calculates
the time difference between the third and the fourth accesses of the S-box S.
The first access to S is when it is initialised. Before Algorithm 1 is invoked for
the first time, the nonlinear function F is computed (see Algorithm 3). During
this computation, S is accessed twice (see the definition of F in Sect. 2). The
next (i.e., the fourth) access of S happens after a few constant-time operations
(e.g., executing the BR layer, computing W) that follow the first invocation
of Algorithm 1. Let the time taken to perform these operations be denoted by
T ′′
const. Then, the aforesaid time difference between the third and the fourth cache

accesses of S provides the adversary with T ′
const+λTcarry+T ′′

const, λ ∈ {1, 2, 3}.

11

The adversary can easily measure Tcarry, T
′
const and T ′′

const by simulating with
an arbitrarily chosen key-IV pair (in practice, quite a few pairs will be required
for precision). Thereby, the adversary obtains the value of λ. When λ = 1, the
adversary is able to recover the MSB of k0 immediately with probability 1.

Now, since Experiment 1 cannot be performed over all key-IV pairs, we rea-
sonably assume that Γ1, Γ2, . . . , Γ7 are equally likely to occur in practice. Under
this assumption, Pr(k0(7) = 0) falls to 6/7 = 0.8571. This probability is further
reduced to 5/7 = 0.7143 if we are to additionally have c1 = 0.

The timing analysis above assumes that S is in cache. This is a very realistic
assumption for the following reason. In [8, Appendix A], the S-box S is imple-
mented using two 8 × 8 lookup tables, viz., S0 and S1. Encryption performed
many times on a single CPU would ideally result in the elements of these tables
to be frequently accessed. And, every element of S0 and S1 could be expected to
be accessed frequently if each encryption, in turn, invokes Algorithm 5 multiple
times (i.e., long keystream is generated). This would ideally place the lookup
tables in the cache.

2. Using statistical methods that do not involve any cache measure-

ment: The execution time of Algorithm 1 can also be estimated without per-
forming cache measurements. Let us recall that Algorithm 1 is run 32 times
during the initialization process (see Algorithm 3). Following this, Algorithm 2
is run once (along with constant time steps of Algorithm 4 and Algorithm 5)
before the first 32-bit keystream word is output (see Algorithms 4 and 5). Now,
the first step of Algorithm 2 is identical to the first step of Algorithm 1. The
subsequent steps of Algorithm 2 are constant time operations.8 Thereby, the
total execution time till the first keystream word is generated is

T ′′′
const + Tcarry · (

31
∑

j=0

λj) + T
(w)
const + λ

(w)
1 · Tcarry , (5)

where

1. T ′′′
const is the sum total of 32 · T ′

const and the constant-time steps of Algo-
rithm 3;

2. λj , j ∈ {0, 1, . . . , 31}, is the number of times end carry is generated in the
(j + 1)th iteration of Algorithm 1;

3. T
(w)
const is the sum total of the execution times of the constant time steps of

Algorithm 2, plus the time to compute steps 1–3 of Algorithm 4 and steps
2–4 of Algorithm 5;

8 Throughout this paper, we ignore steps 3 and 4 of Algorithm 1 (and, naturally, steps
2 and 3 of Algorithm 2) because the event s16 = 0 occurs randomly with probability
2−31 which is negligible when compared to the probability that end carry is generated
exactly once. Besides, the step 4 of Algorithm 1 is just an assignment operation and
consumes only a small fraction of the time it takes to perform one 32-bit AND and
one 32-bit addition. Therefore, we can safely assume that steps 3 and 4 of Algorithm 1
have negligible influence on the timing analysis.

12

4. λ
(w)
1 is the λ of the first run of Algorithm 2;

5. λj , λ
(w)
1 ∈ {0, 1, . . . , 5}, ∀j ∈ {0, 1, . . . , 31}.

Let us now try to estimate the mean of the λ’s assuming the z-terms are
uniformly distributed from iteration 17 of Algorithm 1 onwards. This assumption
is very reasonable at iteration 17, when every LFSR element has been updated
once, and the subsequent iterations. We performed Experiment 2 to determine
the mean.

Experiment 2 The new [z1(30)z2(30) . . . z6(30)] is exhaustively varied, and so is
[c1c2 . . . c5]. The λ for each [z1(30)z2(30) . . . z6(30)c1c2 . . . c5] is counted.

We obtained the frequencies 12, 220, 792, 792, 220, and 12 for λ = 0, 1, 2, 3, 4, 5,
and 6 respectively.

From these frequencies we obtain that the mean λ,

λ̄ =
0 · 12 + 1 · 220 + 2 · 792 + 3 · 792 + 4 · 220 + 5 · 12

211
= 2.5 . (6)

For the iterations 17–32 of Algorithm 1 and iteration 1 of Algorithm 2, the
expected cumulative λ is 17 · λ̄ = 42.5. The cumulative λ (expected) can be
computed for iterations 2–16, but in these computations one needs to make
certain assumptions. This is because, in any iteration before the 17th, at least
one of the z-vectors is composed of bits loaded directly from the key, IV and
the d-constants. Assuming that the incoming carries at the bit position 30 are
uniformly distributed can make the λ calculations erroneous. One may instead
resort to simulations, but even then would have to perform extrapolations. For
example, if the IV is unknown, then in iteration 2, to determine

– Pr(c1 = 0), the simulation takes O(215) time (15 unknown key and IV bits);
– Pr(c2 = 0), the simulation takes O(215 · 216) = O(231) time (16 unknown

key and IV bits and 215 possible outputs of the previous simulation);
– Pr(c3 = 0) or Pr(c4 = 0), the simulation takes O(231 · 216) = O(247) time

(similar reasoning as the above);
– Pr(c5 = 0), the simulation takes O((231 − 1) · 231) = O(262) time (because

s15 has been changed at the end of iteration 1 and the new s15 can assume
any value in the set {1, 2, . . . , 231 − 1}).

From these probabilities, it is rather easy to compute the average λ by build-
ing a truth table of the λ-values and the corresponding vectors [z1(30) z2(30) . . .
z6(30) c1 c2 . . . c5]. Such a table would consist of 27 rows because z2(30), z3(30),
z4(30) and z5(30) are known constants. Looking at the O(262) time complexity,
however, one can at the best perform a partial simulation and extrapolate the
result. This means that there is always an error in computing the expected λ for
each of the iterations 2–16. Hence, we can instead assume that the expected λ is
λ̄ for each of these iterations. This is also error-prone, but we can construct an
appropriate credible interval to mitigate the error. This is done as follows. First,
upon performing Experiment 2 with more z- (and hence c-) bits and observing

13

the resultant frequencies (i.e., similar to those corresponding to (6)), we will ob-
serve that λ is near-normally distributed. Given this, we first choose a confidence
level9 (say, α) and construct a credible interval around λ̄. To reduce the error
in assuming that the λ’s of iterations 2–16 are also near-normally distributed,
we widen the credible interval corresponding to α while maintaining that the
confidence level is α.

Let λmin and λmax denote the lower and upper limits of the resulting credible
interval around λ̄. Now, let us suppose that the attacker clocks the encryption
up to the generation of the first keystream word. If this duration falls within the
interval (see (5)):

[T ′′′
const + 31 · Tcarry · (λ̄− λmin) + T

(w)
const + Tcarry · (λ̄ − λmin) + Tcarry ,

T ′′′
const + 31 · Tcarry · (λ̄− λmin) + T

(w)
const + Tcarry · (λ̄ − λmin) + 2 · Tcarry)

= [T ′′′
const + T

(w)
const + 81 · Tcarry − 32 · λmin · Tcarry ,

T ′′′
const + T

(w)
const + 82 · Tcarry − 32 · λmin · Tcarry) , (7)

then the attacker concludes that the λ for iteration 1 of Algorithm 1 is 1 (just

like T ′
const and Tcarry, the attacker can measure T

(w)
const). When this is the case,

the attacker concludes that k0(7) = 0 and c1 = 0 with probability 5/7. ⊓⊔

Given that k0(7) and c1 are recovered, using [d0(14)d0(13) . . . d0(7)] = [10001001],
we arrive at Theorem 1.

Theorem 1. When c1 = 0 and k0(7) = 0, we have:

(k0(1) · k0(2) · k̄0(3) + k0(3)) · k0(4) · k0(5) · k0(6) = 0 , (8)

with the ‘+’ symbol denoting standard integer addition.

Proof. We begin by examining the addition of [k0(7)k0(6) . . . k0(0)] and [d0(14)d0(13)
. . . d0(7)] while performing the first step of Add(u32 z1, u32 z2). We know that the
incoming carry at the MSB position (of the 31-bit z1 or z2) is c1. Let c1[−1], c1[−2],
. . . , c1[−7] denote the incoming carries at the bit positions of k0(6), k0(5), . . . , k0(0),
respectively. For the sake of simplicity and clarity, we denote c1 by c1[0]. Now,
we know that

c1[i+1] = k0(i+7) · d0(i+14) + c1[i] · (k0(i+7) ⊕ d0(i+14)) , i = −1,−2, . . . ,−7 , (9)

where the ‘+’ denotes standard integer addition. Solving the recurrence equa-
tion (9), we arrive at (8). ⊓⊔

4.1 Complexities and Success Probabilities

The cache attack requires a few cache timing measurements for precision. If the
S-boxes S0 and S1 are not in the cache, then Eve performs a few encryptions,

9 The term ‘confidence level’ is accepted in Bayesian inference also.

14

using key-IV pairs of her choice, until the instant when Bob starts encrypting.
We recall from Sect. 2 that the S-boxes are accessed twice in every iteration
of Algorithm 5. From [8, Appendix A], we infer that 4 elements of S0 and S1
are used in every iteration of Algorithm 5. In the initialization mode, we have
32 similar iterations where F is computed and, hence, S0 and S1 accessed. Let
η denote the number of iterations of Algorithm 5. Then, the total number of
iterations per key-IV pair is 32 + 1 + η = 33 + η (includes one iteration of
Algorithm 4). This translates to a total of 2 · (33 + η) (= η′, say) draws of
elements from each of S0 and S1. Assuming that the draws are uniform and
independent, the probability that every 8-bit S-box element appears at least θ
times in the list of draws is given by:

1

256η′
·

∑

ω0,ω1,...,ω255∈N ,

ω0+ω1+...+ω255=η′ ,
ω0≥θ,ω1≥θ,...,ω255≥θ

(

η′

ω0, ω1, . . . , ω255

)

, (10)

where θ is the number of quickly successive RAM-fetches after which the con-
cerned memory element is placed in the cache. The problem now is to find the
smallest η such that the probability given by (10) is reasonably close to 1. We are
not aware of any simple method to solve this problem. However, when η′ = 256·θ,
one expects that every element appears θ times in the list of uniform and in-
dependent draws. Given this, η = 128 · θ − 33. Therefore, the attack requires
128 · θ − 33 keystream words to be generated with one key-IV pair. The time
cost is (128 · θ − 33) · TKGA + Tini, where TKGA is the execution time of one
iteration of the keystream generating algorithm (i.e., Algorithm 5) and Tini is
the initialization time. Alternatively, the attack can be performed with many
key-IV pairs with each generating fewer keystream words. The time complexity
in this case will obviously be higher than (128 · θ− 33) · TKGA + Tini. But since
the attacker does not require the keystream words for the attack (so it is an
asynchronous attack even in the stricter viewpoint of Osvik et al. [18]), the data
complexity is irrelevant here. Hence, we choose one key-IV pair and mount the
attack in order to minimise its time complexity.

As an example, when θ = 100, the pre-computation phase of the single-
(key, IV) attack is expected to require 213.64 ·TKGA+Tini time. In practice, θ is
such that the time complexity is not significantly larger than that for θ = 100, we
believe. Besides, if the S-boxes are already in the cache, key recovery is almost
immediate.

For the statistical timing attack, when the IV is unknown, the attack requires
one 32-bit keystream word and the time needed to generate it. The success
probability is less than 5/7 because of the errors caused by the approximations
involved in the attack. While it seems extremely tedious to accurately compute
the error, its magnitude can intuitively be made negligible by choosing a wide
credible interval as stated earlier.

15

4.2 Implications of the Attacks to 128-EEA3

The 3GPP encryption algorithm 128-EEA3 is also a stream cipher that is built
around ZUC [7]. It uses a 128-bit “confidentiality key” (denoted in [7] as CK)
and encrypts data in blocks of size ranging from 1 bit to 20 kbits. Aside from
the ZUC algorithm, the 128-EEA3 contains the following main steps.

Key initialization: The confidentiality key CK initialises the ZUC key in a
straightforward manner as follows [7].

Let CK = CK0||CK1|| . . . ||CK15, where each CKi is a byte. Then,

ki = CKi , for i ∈ {0, 1, . . . , 15} . (11)

IV initialization: The IV of ZUC is initialised using three parameters of
ZUC, viz., COUNT , BEARER and DIRECTION . The parameter COUNT
(= COUNT0||COUNT1|| . . . ||COUNT4, where each COUNTi is a byte) is a
counter, BEARER is a 5-bit “bearer identity” token and DIRECTION is a
single bit that indicates the direction of message transmission [7]. Given these,
the IV of ZUC is initialised as:

ivi = COUNTi, for i ∈ {0, 1, 2, 3} ,

iv4 = BEARER||DIRECTION ||002 ,

iv5 = iv6 = iv7 = 000000002 ,

ivj = ivj−8, for j ∈ {8, 9, . . . , 15} .

From (11), it trivially follows that the timing attacks on ZUC are also attacks
on the 128-EEA3, with the corresponding bits of the confidentiality key CK
being (partially) recovered. In other words, if bit ki(j) of the ZUC key is recovered
then the bit CKi(j) of the 128-EEA3’s confidentiality key is recovered as well.

5 Countermeasures

In the previous sections, we described timing weaknesses that are mainly at-
tributable to the design/implementation flaws listed in Observations 1 and 2.
Consequently, we see the following countermeasures for the attacks that stem
from these weaknesses:

1. A constant-time implementation of the modulo (231−1) addition in software
and hardware.

2. A more involved key loading procedure.

Table 3 compares and contrasts the two countermeasures.
Of course, a conservative approach would be to complicate the key loading

procedure as well as implement the modulo (231−1) addition as a constant-time
operation.

For the key loading procedure, we suggest the following alternatives:

16

Table 3. A comparison of the suggested countermeasures

Involved key loading Constant-time implementation

May open doors to new attacks At times, like in the case of ZUC, it may
be easier to find a safe implementation
– this point will become evident from
the discussion to follow in this section

Affects the performance only if the key
is changed frequently

Can affect the performance even if
rekeying is rare

The timing weaknesses of this paper
still remain but cannot be exploited to
recover the key or key-dependent infor-
mation

The timing weaknesses of this paper are
removed; any other similar timing anal-
ysis, however, poses a risk of a straight-
forward (partial) key recovery

1. Applying a secure hash function to the si’s of (1): A preimage and timing
attack resistant hash function would solve our problem, ideally, if applied to
the si’s of (1). The size of the string [s15s14 . . . s0] is 496 bits. For the coun-
termeasure, this string is fed (after padding) into the compression function
of a secure hash function, such as SHA-512 [16], on which there is no known
preimage or timing attack despite years of scrutiny.10 The 512-bit output is
truncated to 496 bits, replacing [s15s14 . . . s0].

2. Employing 16 carefully chosen, secret N × 31 (N ≥ 31) S-boxes: The inputs
to the S-boxes (call them Bi, i ∈ {0, 1, . . . , 15}) are the si’s of (1). When the
S-boxes are all secret, N = 31 can suffice even though at least 15 input bits
are known constants. This is because (i) S-boxes are secret, and (ii) S-boxes
with outputs larger than inputs can still accomplish Shannon’s confusion
[22] (note that Shannon’s diffusion, as interpreted by Massey in [15], does
not apply to stream ciphers) [1].
Recall that the timing attacks of Sect. 4 can recover only one bit of B0(s0)

and some information on 6 other bits. While these may be improved in the
future (directions for this are provided in Sect. 6) to possibly recover more
key bits, recovering an entire 31-bit block seems far-fetched. Actually, with
the use of secret S-boxes it is no longer possible, in the first place, to perform
the exact same analysis as in Sect. 4. This is because we will have unknown
bits in place of the di(j)’s that constitute the MSBs of z1, z2, . . . , z6 (see
Sect. 4). Therefore, even upon making precise timing measurements, the
attacker will very likely have to guess the bits in place of the di(j)’s before
trying to determine the bits in the LFSR. The attacker can, given precise
timing measurements, find the number of 0’s in [z1(30)z2(30) . . . z6(30)], but
is unlikely to be able to ascertain which bits are 0’s. For example, the six
z-bits being uniformly distributed (given that the S-boxes are secret) and

10 There are, however, preimage attacks on step-reduced SHA-512 (see e.g. [2, 13]). The
best of these, due to Aoki et al. [2], works on 46 steps (out of the total 80), has a
time complexity of 2511.5 and requires a memory of about 26 words.

17

the carries into the bit position 30 being distributed close to uniformly (see
footnote 4), there is about 2−7.42 probability that there is no end carry.11

Given that there is no end carry, the attacker deduces that there are fewer
than two 1’s in [z1(30)z2(30) . . . z6(30)]. Consequently, the attacker is able to
recover at least 4 of the 6 z-bits but she cannot immediately ascertain if a
particular bit guess is correct.

Despite the seeming infeasibility, even if an entire 31-bit block Bi(si) is
recovered somehow, the input key bits cannot be recovered because Bi is
secret.

Caveat: As mentioned earlier, an S-box implemented as a lookup table is
stored in the cache if its elements are used frequently. One should therefore
ensure that the Bi, i ∈ {0, 1, . . . , 15}, are placed directly in the processor
registers so that memory accesses are avoided. We borrow this idea from
[18] where the authors also state that some architectures like the x86-64 and
PowerPC AltiVec have register files sufficiently large to store large lookup
tables.

Secret S-boxes have previously been used in ciphers (see e.g. GOST [25]).
However, security through obscurity is in direct violation of the Shannon’s maxim
[22]. Using a hash function like SHA-512 may be practical provided that the ZUC
key is not changed very often.

For the constant-time implementation in software, our suggestion is to change
the Add() subroutine to the following (we call it “AddC()”, with the ‘C’ denoting
‘constant-time’):

u32 AddC(u32 x, u32 y) {

u32 z = x + y;

z = (z & 0x7FFFFFFF) + ((z & 0x80000000) >> 31);

return z;

}

Osvik et al. provide some generic countermeasures against cache timing at-
tacks in [18, Sect. 5]. We have already stated one of them, i.e., avoiding memory
accesses by placing lookup tables in CPU registers wherever the architecture
permits to do so. Some of the other suggestions of [18, Sect. 5] that are relevant
to our cache timing analysis are:

1. disabling cache sharing,

2. disabling the cache mechanism per se,

3. adding noise to the cache access pattern (only mitigates the cache timing
attack), and

4. adding noise to the timing information (again, only mitigates the attack).

11 This probability is simply the ratio of the frequency corresponding to λ = 0 to the
total of the frequencies corresponding to (6). The probability was 0 in the timing
attacks of Sect. 4 because d0(14) = 1 and d15(7) = 1.

18

Placing entire lookup tables in the cache, by the legitimate party, prior to
encryption – a process known as cache warming – is suggested as a countermea-
sure in [19]. Let us suppose that our lookup tables fit completely into the cache.
Further let us assume that the adversary’s instructions or system processes do
not evict the contents of these tables. Then, by placing the tables in the cache,
one ensures that all S-box accesses are cache hits. Cache attacks that exploit
the difference in the register loading time between a cache hit and a miss are
precluded by this process. As we do not mount such cache attacks in this paper,
cache warming is not a useful countermeasure here.

Nomenclature: To facilitate future reference, we label some of the above, secure
modifications of ZUC in Appendix B.

6 Conclusions

In this paper, we have presented timing attacks on the stream cipher ZUC that
recover, under certain practical circumstances, one key bit along with some key-
dependent information with about 0.7 success probability and negligible time,
memory and data. To the best of our knowledge, these are the first attacks on
the ZUC cipher of Version 1.5. The following are other highlights of this paper.

– This is one of the very few and early papers analysing the cache timing
resistance of stream ciphers. As noted in [14], block ciphers (mainly the
AES) have been the prominent targets of cache timing attacks. Besides, cache
timing analyses of stream ciphers are recent additions to the cryptanalysis
literature, with the first paper (viz., [26]) being published as late as 2008
[14].

– The statistical timing attack is novel, to the best of our knowledge.

– The timing attacks of this paper warn that algorithms must be designed or
implemented to resist single-round/iteration timing weaknesses. This single
round can even belong to the key/IV setup of the cipher.

The weaknesses we have found that lead us to the attacks may be certifi-
cational. Nonetheless, we see a possibility for improving the attacks to recover
a few other key bits by, for example, examining the cases where end carry is
generated twice.

We have also proposed modifications to ZUC that resist not only the initia-
tory timing attacks but, evidently, also their potential improvements suggested
above. Analysis of these new schemes comes across to us as an interesting prob-
lem for future research.

Acknowledgements. The author would like to thank Steve Babbage, Hongjun
Wu, Erik Zenner and the anonymous referees of Inscrypt 2011 for their useful
comments and suggestions.

19

Update. The timing analysis presented in this paper was privately communi-
cated by the author to the ETSI/SAGE before the 2nd International Workshop
on ZUC Algorithm and Related Topics. Subsequently, the reference C implemen-
tation of ZUC was modified to the one in [9, Appendix A] (see also the “Docu-
ment History” of [9]). This revised code is the latest and the ZUC specification
with this code has been included in the LTE standards [11].

The latest code is essentially the code in [8] with two corrections: (i) the
if -statement in the LFSRWithInitialisationMode() subroutine is removed (it
is to be noted that the effect of this if -statement is not considered in the timing
analysis of this paper), and (ii) the variable-time AddM() subroutine (i.e., the
Add() of Sect. 3) is replaced by the constant-time AddC() subroutine of Sect. 5
– this idea, presented in this paper, was proposed independently by the author
to the ETSI/SAGE [10, Sect. 12.9].

References

1. C. M. Adams, “Constructing Symmetric Ciphers Using the CAST Design Proce-
dure”, Designs, Codes and Cryptography, vol. 12, pp. 283–316, 1997.

2. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang, “Preimages for Step-Reduced
SHA-2”, ASIACRYPT 2009 (M. Matsui, ed.), vol. 5912 of LNCS, pp. 578–597,
Springer, 2009.

3. M. Bellare, T. Kohno, “Hash Function Balance and Its Impact on Birthday At-
tacks”, EUROCRYPT 2004 (C. Cachin, J. Camenisch, eds.), vol. 3027 of LNCS,
pp. 401–418, Springer, 2004.

4. D. J. Bernstein, “Cache-timing attacks on AES”, Preprint, 14th April, 2005. Avail-
able at http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

5. J. L. Carter, M. N. Wegman, “Universal Classes of Hash Functions”, Journal of
Computer and System Sciences, vol. 18(2), pp. 143–154, April 1979.

6. Data Assurance and Communication Security Research Center, “Workshop Presen-
tations”, First International Workshop on ZUC Algorithm, 02nd–03rd December,
2010. Available at http://www.dacas.cn/zuc10/.

7. ETSI/SAGE, “Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification”,
ETSI/SAGE Specification, Version 1.5, 04th January, 2011.

8. ETSI/SAGE, “Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3. Document 2: ZUC Specification”, Version 1.5, 04th Jan-
uary, 2011.

9. ETSI/SAGE, “Specification of the 3GPP Confidentiality and In-
tegrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specifi-
cation”, Version 1.6, 28th June, 2011 (Published in 2012). Available at
http://www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3zucv16.pdf.

10. ETSI/SAGE, “Specification of the 3GPP Confidentiality and Integrity Al-
gorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Re-
port”, Version 2.0, 09th September, 2011 (Published in 2012). Available at
http://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3 EIA3 Design

Evaluation v2 0.pdf.
11. GSM Association, “3GPP Confidentiality and Integrity Algorithms 128-EEA3

& 128-EIA3”, Security Algorithms, 27th July 2012 (last accessed). Available at

20

http://www.gsma.com/aboutus/leadership/committees-and-groups/working-

groups/fraud-security-group/security-algorithms.

12. T. Fuhr, H. Gilbert, J.-R. Reinhard, M. Videau, “A Forgery At-
tack on the Candidate LTE Integrity Algorithm 128-EIA3”, Cryptol-
ogy ePrint Archive, Report 2010/618, 08th December, 2010. Available at
http://eprint.iacr.org/2010/618.pdf.

13. T. Isobe, K. Shibutani, “Preimage Attacks on Reduced Tiger and SHA-2”, Fast
Software Encryption 2009 (O. Dunkelman, ed.), vol. 5665 of LNCS, pp. 139–155,
Springer, 2009.

14. G. Leander, E. Zenner, P. Hawkes, “Cache Timing Analysis of LFSR-Based
Stream Ciphers”, IMA International Conference, Cryptography and Coding 2009
(M. G. Parker, ed.), vol. 5921 of LNCS, pp. 433–445, Springer, 2009.

15. J. L. Massey, “An Introduction to Contemporary Cryptology”, Proceedings of the
IEEE, vol. 76(5), pp. 533–549, May 1988.

16. National Institute of Standards and Technology, US Department of Com-
merce, “Secure Hash Standard (SHS)”, Federal Information Process-
ing Standards Publication, FIPS PUB 180-3, October 2008. Available at
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3 final.pdf.

17. K. Nyberg, J. Wallén, “Improved Linear Distinguishers for SNOW 2.0”, Fast Soft-
ware Encryption 2006 (M. J. B. Robshaw, ed.), vol. 4047 of LNCS, pp. 144–162,
Springer, 2006.

18. D. A. Osvik, A. Shamir, E. Tromer, “Cache Attacks and Countermeasures: the
Case of AES (Extended Version)”, revised 20th November, 2005. Available at
http://www.osvik.no/pub/cache.pdf. Original version: Proceedings of The Cryp-
tographers’ Track at the RSA Conference 2006 (D. Pointcheval, ed.), vol. 3860 of
LNCS, pp. 1–20, Springer, 2006.

19. D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel”,
Cryptology ePrint Archive, Report 2002/169, 11th November, 2002. Available at
http://eprint.iacr.org/2002/169.pdf.

20. P. Sarkar, “On Approximating Addition by Exclusive OR”, Cryptol-
ogy ePrint Archive, Report 2009/047, 03rd February, 2009. Available at
http://eprint.iacr.org/2009/047.pdf.

21. G. Sekar, S. Paul, B. Preneel, “New Weaknesses in the Keystream Generation
Algorithms of the Stream Ciphers TPy and Py”, Information Security Conference
2007 (J. A. Garay, A. K. Lenstra, M. Mambo, R. Peralta, eds.), vol. 4779 of LNCS,
pp. 249–262, Springer, 2007.

22. C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell Systems Tech-
nical Journal, vol. 28(4), pp. 656–715, 1949.

23. O. Staffelbach, W. Meier, “Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition”, CRYPTO 1990 (A. Menezes, S. A. Vanstone, eds.),
vol. 537 of LNCS, pp. 601–614, Springer, 1991.

24. H. Wu, P. H. Nguyen, H. Wang, S. Ling, “Cryptanalysis of the
Stream Cipher ZUC in the 3GPP Confidentiality & Integrity Al-
gorithms 128-EEA3 & 128-EIA3”, Presentation at the Rump Ses-
sion of ASIACRYPT 2010, 07th December, 2010. Available at
http://www.spms.ntu.edu.sg/Asiacrypt2010/Rump%20Session-%207%20Dec%202

010/wu rump zuc.pdf.

25. Gosudarstvennyi Standard, “Cryptographic Protection for Data Processing Sys-
tems,” Government Committee of the USSR for Standards, GOST 28147-89, 1989.

21

26. E. Zenner, “A Cache Timing Analysis of HC-256”, Selected Areas in Cryptography
2008 (R. M. Avanzi, L. Keliher, F. Sica, eds.), vol. 5381 of LNCS, pp. 199–213,
Springer, 2009.

A Practical Occurrences of Γ3, Γ5 and Γ6

Table 4 provides some example key-IV values that produce the favourable Γ -
vectors (i.e., the vectors that generate end carry exactly once).

Table 4. Some practical occurrences of the vectors Γ3, Γ5 and Γ6 (all entries except
those in the last column are in hexadecimal); in each of these examples, ki, ivi = 0∀ i 6=
0

k0 iv0 z1 z2 z3 z4 z5 z6 [c1c2 . . . c5z1(30)]

0 0 44D700 44D70000 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

2 1 144D701 44D70102 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

4 0 244D700 44D70004 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

5 5 2C4D705 44D70505 10000AF1 1AF1 1A0000F1 56000047 [000010] (Γ6)

2F 2B 17C4D72B 44D72B2F 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ5)

30 7 1844D707 44D70730 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ5)

30 28 1844D728 44D72830 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ5)

31 2E 18C4D72E 44D72E31 10000AF1 1AF1 1A0000F1 56000047 [000100] (Γ5)

6E 5C 3744D75C 44D75C6E 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

6F B1 37C4D7B1 44D7B16F 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

72 A1 3944D7A1 44D7A172 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

75 E 3AC4D70E 44D70E75 10000AF1 1AF1 1A0000F1 56000047 [010000] (Γ3)

B ZUC Modifications

We list our proposed algorithm/implementation modifications in Table 5.

22

Table 5. ZUC modifications: To each label we suffix a ‘+’ if one or more of the generic
countermeasures suggested by Osvik et al. in [18] are applied

Label Reference

ZUC-1.5C Constant-time software implementation of modulo (231 − 1) ad-
dition (i.e., implementation of Version 1.5 with AddC() replacing
the variable-time Add())

ZUC-1.5H Involved key loading: hash function

ZUC-1.5S Involved key loading: S-boxes

ZUC-1.5CH Constant-time implementation of modulo (231−1) addition along
with involved key loading using a hash function

ZUC-1.5CS Constant-time implementation of modulo (231−1) addition along
with involved key loading using S-boxes

23

