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Abstract. TWINE is a lightweight block cipher proposed at ECRYPT
Workshop on Lightweight Cryptography 2011, Belgium. The cipher con-
sists of 36 rounds and has two versions TWINE-80 and TWINE-128
supporting key lengths of 80 and 128 bits, respectively. The block length
of the two versions is 64-bit. In this paper, we present the first single-key
attacks on the both versions of the cipher. In these attacks, we use the
recently developed biclique technique. The complexities of the attacks
on TWINE-80 and TWINE-128 are 279.10 and 2126.82 respectively and
the data requirement for the two attacks is 260.
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1 Introduction

The needs for security and privacy issues in resource constraint platforms such
as RFID tags and sensor nodes give rise to design lightweight cryptographic
algorithms. Some of the lightweight algorithms recently proposed are HIGHT
[6], PRESENT [2], KATAN/KTANTAN [3], PRINTcipher [7], KLEIN [4], LED
[5], Piccolo [9], and TWINE [10].

In this paper, we give our cryptanalytic results on TWINE. TWINE supports
two key lengths, 80 and 128 bits. For each key length, encryption functions are
the same but the key schedules are different. Corresponding to the key lengths,
we denote TWINE-80 and TWINE-128. To the best of our knowledge, the most
powerful attack is the impossible differential attacks against 23-round TWINE-80
and 24-round TWINE-128 with time complexities of 276.88 and 2115.10 encryp-
tions, respectively [10]. In this paper, we present attacks on the full TWINE-80
and TWINE-128. In these attacks, we use the biclique technique [1]. The com-
plexities of the attacks on TWINE-80 and TWINE-128 are 279.10 and 2126.82,
respectively.

The organization of the paper is as follows. In Section 2 we give the notation
which we use throughout the paper and a short description of TWINE algorithm.
We overview the biclique technique in Section 3. In Section 4 and 5 we present
the attacks on TWINE-80 and TWINE-128, respectively. We conclude the paper
in Section 6.



2 Notation and a Short Description of TWINE

2.1 Notation

Throughout the paper, we use the following notations:
A : a bit string
A(i) : i-th nibble of A. The left most nibble is A(0).
A(i, j, ..., k) : concatenation of i, j, ... , k-th nibbles of A.
A(i− j) : concatenation of i, (i+ 1), ..., j-th nibbles of A where i ≤ j.
A[i] : i-th bit of A. The left most bit of A is A[0].
A[i, j, ..., k] : concatenation of i, j, ..., k-th bits of A.
A[i− j] : concatenation of i, (i+ 1), ..., j-th bits of A where i ≤ j.
A <<< i : i-bit cyclic left shift of A.
A||B : concatenation of A and B.
RKi : 32-bit round key used in the i-th round where 1 ≤ i ≤ 36.
Ki : k-bit value calculated in the key schedule where k is the key

length of the cipher.
Xi : the output of the i-th round where X0 is the plaintext

and X36 is the ciphertext.

2.2 TWINE

TWINE is a block cipher supporting two key lengths, 80 and 128 bits. The
global structure of TWINE algorithm is a variant of Type 2 generalized Feistel
structure [12] with 16 4-bit sub-blocks. Each version of the algorithm has the
same round function depicted in Figure 1 and consists of 36 rounds.

S S S S S S S S

Fig. 1. One round of TWINE

In the round function, the key addition is applied before the S-box operation
as seen in the figure and then the permutation is performed. In the last round
the permutation does not exist.

The two versions of TWINE have key schedules which consist of S-box, round
constant addition, CON i = CON i

H ||CON i
L, and permutation operations.

The key schedule of TWINE-80 generates 36 32-bit round keys from the
80-bit master key as follows:

1. K0 = K
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2. RK1 = K0(1, 3, 4, 6, 13, 14, 15, 16)
3. for i=1,2,...,35 do the followings
4. – Ki = Ki−1

– Ki(1) = Ki(1)⊕ S[Ki(0)]
– Ki(4) = Ki(4)⊕ S[Ki(16)]
– Ki(7) = Ki(7)⊕ (0||CON i

H)
– Ki(19) = Ki(19)⊕ (0||CON i

L)
– Ki(0, 1, 2, 3) = Ki(0, 1, 2, 3) <<< 4
– Ki = Ki <<< 16
– RKi+1 = Ki(1, 3, 4, 6, 13, 14, 15, 16)

TWINE-128 has the following key schedule which generates 36 32-bit round
keys from the 128-bit master key.

1. K0 = K
2. RK1 = K0(2, 3, 12, 15, 17, 18, 28, 31)
3. for i=1,2,...,35 do the followings
4. – Ki = Ki−1

– Ki(1) = Ki(1)⊕ S[Ki(0)]
– Ki(4) = Ki(4)⊕ S[Ki(16)]
– Ki(23) = Ki(23)⊕ S[Ki(30)]
– Ki(7) = Ki(7)⊕ (0||CON i

H)
– Ki(19) = Ki(19)⊕ (0||CON i

L)
– Ki(0, 1, 2, 3) = Ki(0, 1, 2, 3) <<< 4
– Ki = Ki <<< 16
– RKi+1 = Ki(2, 3, 12, 15, 17, 18, 28, 31)

Our attacks are independent from the S-box and constants so we skip the
details. For a complete description of the algorithm one can refer to [10].

3 An Overview of the Biclique Cryptanalysis Technique

In this section, we give an overview of the biclique technique on block ciphers
proposed in [1]. In the biclique attack, firstly the key space is divided into 2k−2d

subspaces in which there exists 22d keys where k and d is the key length and
the dimension of the biclique, respectively. Then, for all the key subspaces the
two steps, biclique construction and meet-in-the-middle attack, are applied. To
perform the two steps, firstly the cipher E is considered as a composition of three
parts f , g, and h where E = h ◦ g ◦ f . Then, a biclique is constructed on the
first or last part (in the attack on TWINE-80 and TWINE-128 we construct the
bicliques on the first and last part as done in [11] and [1], respectively). After
that, the meet-in-the-middle attack is applied on the remaining parts. In this
section we give the attack idea in the case that the biclique is constructed in the
first part. The attack idea is similar for the other case.

A d dimensional biclique is a 3-tuple ({Pi}, {Sj}, {Ki,j}) such that fKi,j
(Pi) =

Sj , ∀i, j ∈ {0, 1, ..., 2d−1}. Two methods to construct a biclique are given in [1].
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In this work, we use one of the methods called independent related-key differen-
tials. In this method, first S0 is calculated from a chosen P0 under the key K0,0.
Then, Sj and Pi values are calculated from P0 and S0 using K0,j = K0,0 ⊕∆K

j

and Ki,0 = K0,0 ⊕ ∇Ki , respectively. Lets the differential trails in forward and
backward directions called as ∆j and ∇i, respectively. If the trails does not have
common active non-linear operations such as S-boxes then the probability of the
equation fKi,j

(Pi) = Sj where Ki,j = K0,0 ⊕∇Ki ⊕∆K
j is 1 as proved in [1].

The second step is the meet-in-the-middle attack on h ◦ g. In this step first
Ci = EK(Pi) values are obtained from the encryption oracle. After that a partial
matching is searched at some portion v between g and h. This matching step has
two sub-steps also. Firstly, in the forward and backward direction the internal
values which affect the value of v and does not depend on the value of i and j
respectively calculated using K0,j and Ki,0. Then the remaining internal values
which affect the values of v are calculated using Ki,j for all i and j. The keys
Ki,j are selected as candidate keys which lead to a matching on v. The number
of candidates will be approximately 22d−m in a subspace where m is the bit
length of v. The total number of key candidates will be 2k−2d × 22d−m = 2k−m.
At the end approximately 2k−m encryptions using dk−mn e plaintext-ciphertext
pairs are performed to eliminate all the wrong candidates.

4 Biclique Cryptanalysis of TWINE-80

In this section, we present a biclique attack on the full TWINE-80. Firstly,
we divide the key space into 272 subspaces of 28 keys each. Then for each key
subspace we construct a biclique on the first 8 rounds and by using this biclique
we apply the meet-in-the-middle attack on the last 28 rounds of the cipher.

4.1 Key Partitioning

The base keys of the key subspaces are of the form K0,0 = (∗ ∗ ∗ ∗ | ∗ ∗ ∗ 0| ∗
∗ ∗ ∗|0 ∗ ∗ ∗ | ∗ ∗ ∗ ∗), where two nibbles are fixed to zero and the remaining 18
nibbles determine the subspace. The 28 keys {Ki,j} in the subspaces are taken
as follows

Ki,j = K0,0

⊕
(0000|000i|0000|j000|0000), i, j ∈ {0, 1, . . . , 24 − 1}.

4.2 Biclique Construction on 8 Rounds

First of all, S0 is calculated from a randomly chosen P0 as S0 = fK0,0
(P0)

where f is the first 8 rounds of the cipher. Then a biclique is constructed using
the following two sets of 24 related-key differentials with respect to the base
computation P0

K0,0−−−→ S0.

1. ∆j-differentials over f . Each related-key differential in the first set maps
input difference ∆P = 0 to an output difference ∆j = ∆S = S0

⊕
Sj under

the key difference ∆K
j = (0000|0000|0000|j000|0000).
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0
∆K

j−−→
f

∆j .

2. ∇i-differentials over f−1. Each related-key differentials in the second set
maps input difference ∆S = 0 to an output difference ∇i = ∇P = P0

⊕
Pi

under the key difference ∇Ki = (0000|000i|0000|0000|0000).

0
∇K

i−−→
f−1

∇i.

∆j and ∇i differentials are given in Figure 2.

#1

#2

#3

#4

#5

#6

#7

#8

active s−box

a nibble which have a difference

Fig. 2. ∆j and ∇i differential trails for TWINE-80 on the left and right respectively.

As seen in the figure the differential trails do not share any active S-box.
Thus

∇i
∆K

j

⊕
∇K

i−−−−−−−→
f

∆j ,∀i, j ∈ {0, 1, . . . , 24 − 1}.

As a result, the triple ({Pi}, {Sj}, {Ki,j}) with the definition

Pi = P0

⊕
∇i,

Sj = S0

⊕
∆j ,

Ki,j = K0,0

⊕
∆K
j

⊕
∇Ki
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is a 8-round biclique of dimension 4.
Note that there is no difference in the 2-nd nibble of the plaintext in the

biclique. Thus we can use the plaintexts whose 2-nd nibble is a fixed value. This
reduces the data requirement of the attack to 260.

4.3 The Meet-in-the-Middle Step

By the biclique construction, 24 plaintexts Pi and 24 intermediate states Sj
are available with corresponding Ki,j ’s. First of all, we obtain Ci in the chosen
plaintext scenario. Then, we check if there is some i, j such that

Ci
Ki,j−−−−−−→

g−1◦h−1
Sj . (1)

where g and h as the composition of the rounds from the beginning of the 9-th
round to the end of the 19-th round and from the beginning of the 20-th round
to the end of the 36-th round respectively. For each one of the 272 key subspaces,
the complexity of this stage is 28. Hence, the overall complexity of the attack
will be near exhaustive search, but we can reduce this complexity applying the
attack given in Algorithm 1. In the algorithm the nibble X19(3) is taken as the
matching variable v. To meet on v, we do partial calculations in forward direction
starting from Sj and in backward direction starting from Ci.

Algorithm 1
1: Sj and Ci’s are given.
2: for j in 0,1,...15 do
3: Calculate the nibbles colored in gray in the forward direction in Figure 3 and

S[X10(2) ⊕ RK10(1)], S[X11(12) ⊕ RK11(6)], S[X12(2) ⊕ RK12(1)], S[X12(6) ⊕
RK12(3)], S[X12(2)⊕RK12(1)], S[X13(12)⊕RK13(6)] using K0,j and Sj .

4: for i in 0,1,...15 do
5: Calculate the nibbles colored in black in the forward direction in Figure 3

using Ki,j and the values calculated in step 3.
6: Store X19(3) in the (16× i+ j)-th cell of a table called A.
7: end for
8: end for
9: for i, j in 0,1,...15 do
10: Calculate the nibbles colored in black in the backward direction in Figure 3 using

Ci and Ki,j .
11: if The calculated value of X19(3) is equal to the value in the (16× i+ j)-th cell

of A then
12: if Ki,j satisfies another plaintext-ciphertext pair then
13: Output Ki,j as the right key
14: end if
15: end if
16: end for
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Fig. 3. Meet-in-the-middle step for TWINE-80. Note that the permutation in the last
round actually does not exist.

4.4 The Attack Complexity

The computational complexity of the attack is composed of several parts. In
the biclique construction step, for each of the 272 key subspaces we perform 24

7



8-round encryptions to compute 24 intermediate states Sj and 24 − 1 8-round
decryptions to compute 24 Pi’s. Therefore,

24×8+(24−1)×8
36 ≈ 22.78 encryptions

are performed to construct a biclique. In the meet-in-the-middle attack given in
Algorithm 1, the total number of S-box calculated for 24 and 28 different keys
are 30 and 127 as seen in Figure 3 as gray and black S-boxes, respectively. Since
the average number of remaining keys after the condition in Step 11 is 28×2−4 =
24, we perform 24 encryption operations in Step 12. Thus the total number of
operations in the algorithm is 24×30+28×127

36×8 +24 ≈ 27.03 encryptions. Therefore,
22.78+27.03 ≈ 27.10 encryptions are performed for each key subspace. As a result,
the overall complexity of the attack on the full TWINE-80 is approximately 279.10

encryptions with 28 memory.

5 Biclique Cryptanalysis of TWINE-128

In this section, we introduce a biclique attack on the full TWINE-128. In this
attack we divide the key space considering K32. The attack steps are similar to
the attack steps given in the previous section. Firstly, we divide the key space
into 2120 subspaces of 28 keys each and then for each key subspace we construct
a biclique on the last 11 rounds and by using this biclique we perform the meet-
in-the-middle attack on the first 25 rounds.

5.1 Key Partitioning

The key subspaces are enumerated by 2120 base keys of the form K32
0,0 = (∗ ∗ ∗ ∗

|∗∗∗∗|∗∗∗∗|∗∗∗∗|0∗∗∗|∗∗0∗|∗∗∗∗|∗∗∗∗). The 28 keys {K32
i,j} in a subspace are

taken as follows K32
i,j = K32

0,0

⊕
(0000|0000|0000|0000|i000|00j0|0000|0000), i, j ∈

{0, 1, . . . , 24 − 1}.

5.2 Contructing a Biclique

First of all, S0 is calculated from a randomly chosen C0 as S0 = h−1
K32

0,0
(C0)

where h is the last 11 rounds of the cipher. Then a biclique is constructed using
the following two sets of 24 related-key differentials with respect to the base

computation C0

K32
0,0−−−→

h−1
S0.

1. ∆j-differentials over h−1. Each related-key differential in the first set maps
input difference ∆C = 0 to an output difference ∆j = ∆S = S0

⊕
Sj under

the key difference ∆K
j = (0000|0000|0000|0000|0000|00j0|0000|0000).

0
∆K

j−−→
h−1

∆j .

2. ∇i-differentials over h. Each related-key differentials in the second set maps
input difference ∆S = 0 to an output difference ∇i = ∇C = C0

⊕
Ci under

the key difference ∇Ki = (0000|0000|0000|0000|i000|0000|0000|0000).
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0
∇K

i−−→
h
∇i.

∆j and ∇i differentials are given in Figure 4.

#26

#27

#28

#29

30

#31

#32

#33

#34

#35

#36

a nibble which have a difference

active s−box

Fig. 4. ∇i and ∆j differential trails for TWINE-128 on the left and right respectively.
Note that the permutation in the last round actually does not exist.

As seen in the figure the differential trails do not share any active S-box.
Thus

∇j
∆K

j

⊕
∇K

i−−−−−−−→
h

∆i,∀i, j ∈ {0, 1, . . . , 24 − 1}.

As a result, the triple ({Sj}, {Ci}, {Ki,j}) with the definition

Ci = C0

⊕
∇i,

Sj = S0

⊕
∆j ,

Ki,j = K0,0

⊕
∆K
j

⊕
∇Ki
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is a 11-round biclique of dimension 4.
Note that there is no difference in the 7-th nibble of the ciphertext in the

biclique. Thus we can use the ciphertexts whose 7-th nibble is a fixed value. This
reduces the data requirement of the attack to 260.

5.3 The Meet-in-the-Middle Step

The attack is very similar to that in TWINE-80. In this attack we choose the
subcipher f from the beginning of the 1-st round to the end of the 6-th round,
and the subcipher g from the beginning of the 7-th round to the end of the 25-th
round. The nibble X6(11) is taken as the matching variable v. The meet-in-the-
middle step is given in Algorithm 2.

Algorithm 2
1: Pi and Sj ’s are given.
2: for i in 0,1,...15 do
3: Calculate the nibbles colored in gray in the forward direction in Figure 5 using

K32
i,0 and Pi.

4: for j in 0,1,...15 do
5: Calculate the nibbles colored in black in the forward direction in Figure 5

using K32
i,j and the values calculated in step 3.

6: Store X6(11) in the (16× i+ j)-th cell of a table called A.
7: end for
8: end for
9: for j in 0,1,...15 do
10: Calculate the nibbles colored in gray in the backward direction in Figure 5 and

S[X23(15)⊕RK23(6)], S[X22(11)⊕RK22(7)], S[X21(7)⊕RK21(2)], S[X21(3)⊕
RK21(3)], S[X20(3)⊕RK20(3)], S[X20(15)⊕RK20(6)] using K32

0,j and Sj .
11: for i in 0,1,...15 do
12: Calculate the nibbles colored in black in the backward direction in Figure 5

using Sj , K32
i,j and the values calculated in step 10.

13: if The calculated value of X6(11) is equal to the value in the (16× i+ j)-th
cell of A then

14: if K32
i,j satisfies another plaintext-ciphertext pair then

15: Output K32
i,j as the right key

16: end if
17: end if
18: end for
19: end for

5.4 The Attack Complexity

For each key subspace, to construct a biclique 24×11+(24−1)×11
36 ≈ 23.24 encryp-

tions are performed. Also, in the meet-in-the-middle step 28×96+24×39
36×8 + 24 ≈
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Fig. 5. Meet-in-the-middle step for TWINE-128.
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26.69 encryptions are needed. Thus, 23.24 + 26.69 ≈ 26.82 encryptions are per-
formed for each key subspace. As a result, the overall complexity of the biclique
attack is approximately 2126.82 encryptions with 28 memory.

6 Conclusion

In this paper, we present the first single-key attacks on the full TWINE-80
and TWINE-128 by using recently developed biclique attack technique. In the
both attacks 260 data and 28 memory are required and the time complexities
of the attacks on TWINE-80 and TWINE-128 are 279.10 and 2126.82 encryption
operations, respectively.
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