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Abstract. In this paper we present a novel, publicly verifiable mixing
scheme which has everlasting privacy towards observers: all the infor-
mation published on the bulletin board by the mixes (audit information

etc)̇ reveals no information about the identity of any of the messages
published. The correctness of the mixing process is statistical: even if
all authorities conspire, they cannot change the contents of any message
without being detected with overwhelming probability.
We accomplish this by encoding the messages submitted using so-called
Pedersen commitments. Decoding (opening) these is possible because we
create a parallel mix-net run by the same mixes to which the public has
no access. This private mix-net uses the same permutations as the public
one, but uses homomorphic encryption, which is used to send auxiliary
information (messages, decommitment values) through the mix-net to
allow decoding.

1 Introduction

1.1 Motivation

Mix-nets were introduced by David Chaum in 1981 [8] to allow anonymous com-
munication within a network. The basic functionality of a mix-net is to process
a set of input messages so that the content remains unchanged while any link
between a single input and its associated output is removed. Chaum pointed
out that this technique is of interest for several applications where privacy plays
an important role like, for instance, eVoting and electronic mail services. The
original approach is the so-called decryption mix-net which makes use of public
key cryptography. In 1993 Park et al. introduced the re-encryption mix-net [24]
which takes advantage of the homomorphic properties of some public key cryp-
toschemes. The latter approach has been used in many eVoting systems and is
still a component of the most current proposals.

Important for use of mix-nets in application with high requirements regarding
integrity, is that the whole process can be verified by any third party. Therefore,
all recent variations of mix-nets publish additional information to allow verifi-
cation of its correct functioning by any observer. This information is encrypted



using some public key algorithm (often ElGamal or Paillier) based on number-
theoretic problems which are assumed to be computationally hard. However, at-
tacks like brute-force that consists of simply checking all possible solution would
still be successful (although a computational limited attacker needs decades).

This raises the question of how long certain information must remain secret.
One good example for an application which processes sensitive data and thus
needs information-theoretical security is electronic voting. To offer the voter the
possibility to verify the accuracy of the election outcome, additional information
of the tallying process is published. So many systems store the votes cast in
encrypted form, publish all received votes, and provide a receipt to the voter
which is linked to one entry. This enables the voter to check whether the entry
confirms with the receipt and thus she can verify whether the vote was recorded
as cast.

To protect the voter’s privacy, the published ciphertexts are made anony-
mous before decrypting. But both the encryption, as well as the anonymisation
process, provide computational privacy only. As soon as the underlying cryp-
tosystem is broken, the encrypted published votes (associated to the receipt)
can be decrypted. With the cost for storing information becoming less, the fact
that the encrypted votes have been published on the internet makes it virtually
impossible to remove this data later on. And processing power increases contin-
ually following Moore’s law, so all an attacker needs to do is to download the
published information and to wait until she can decrypt the information.

The existence of such an attack could have farreaching consequences. If mix-
nets are used for publishing highly sensitive information or for elections, then
the disclosure of the messages (or ballots), even decades later, can still be highly
embarrassing. For instance, think of a 65-year old presidential candidate whose
voting behavior when he or she was 20 becomes public. It might ruin his or her
chances.

The mere possibility of this type of disclosure could have a negative effect:
individuals might feel restricted about what they say, and voters about whom
they vote for. Certainly there is also a legal argument here: in all democratic
countries privacy of the ballot is protected by law and is eternal; no lawyer or
judge should approve a system that has the property that privacy of the ballot
might be violated several decades after the election was held. So mixes that only
provide computational privacy should not be used for elections.

We therefore believe that developing solutions for verifiable mixing offering
everlasting (or unconditional or information-theoretic) privacy is an important
research question.



1.2 High-level description of our mixing process

In this paper we show that it is possible to mix Pedersen commitments3. We use
these commitments to encode4 a message t as follows: u = αsβt. Here s is the
(randomly chosen) decommitment value. Any mix A can recode (or rerandomise)
such a commitment by multiplying it with αsa , that is, uA = αsau. It can do
so without knowing the value encoded. Observe that the new decommitment
value of ua is equal to da = sa + s, where addition is modulo the order of the
multiplicative group.

However, a problem with shuffling these encodings is the following: in order
to open them, one needs to know what the decommitment values s are. Unlike
conventional encryptions, in which the message is uniquely determined, uA can
represent any message, and its interpretation depends on the decommitment
value.

The solution is to send these decommitment values as auxiliary information
through a parallel mix network to which the public has no access. Any recoding
uA = αsau has a matching entry vA = E(sa)v, where v = E(s) and E is a
suitable homomorphic encryption scheme. In this paper we will be using Paillier
encryption.

So essentially we use two tightly synchronized mix networks run by the same
mixes: one which is mixing Pedersen commitments and which is fully public.
And a second one which uses homomorphic encryption to which the public has
no access, in order to transport the decommitment values. Observe that the
mixing permutations used in the private mix-net must be identical to those used
in public mix-net for the process to work.

Then, after the third mix C has published its data, vc is jointly decrypted
using the Paillier private key held by the key trustee which, due to the ho-
momorphic property, yields d = s + sA + sB + sc, the decommitment value of
uc = αs+sA+sB+scβt. Now recovering t corresponds to solving a discrete log
problem. If t is small (about 50-60 bits) there exist sophisticated guessing tech-
niques. If t is large, we require the user to send z = E(t) also through the private
mix net. In this case, the authorities must re-encrypt z to avoid linking, resulting
in zC . This value is jointly decrypted, yielding t.

The scheme sketched in the above paragraphs already provides everlasting
privacy towards observers. But it has one drawback: the first mix, to whom the
user submits her message, gets to see E(s). So when Paillier gets broken, this
mix, if dishonest, could reconstruct the user’s message. If this is a problem, an
obvious solution is to split the input in two (or more) parts, submit each part
to a separate sequence of mix-nets, and have the parts recombined, decrypted,
decoded and published by a special publication authority. This is the protocol
we present in Section 2.

3 Though commonly referred to as Pedersen commitments, these constructions were
actually first presented in [11].

4 Since we actually use bit commitments to encode messages, we use this term instead
of using the verb to commit.



1.3 Efficient verification of correctness

In order to be fully transparent, it is essential that the individual mixes prove
that their shuffle is correct, but often these proofs cause a performance bot-
tleneck. Thus, many mathematical Zero-Knowledge (ZK) proofs (e.g. Neff [23],
Furukawa [14], Wikström [29], and Bayer and Groth [4]), generic verification
methods (e.g. Jakobsson et al.[21], Golle et al. [16], Boneh and Golle [5], and
Sako and Kilian [27]) and such which combine both approaches (e.g. Allepuz
and Castelló [3], Demirel et al. [13]) have been proposed.

In practice the generic verification methods are the most common ones (e.g.
part of Helios [2], Civitas [12], Prêt à Voter [26], and Scantegrity [10]). A pos-
sible reason for their success might be the simple implementation and the good
efficiency compared to mathematical ZK proofs, although their accuracy level is
much lower. Thus, for the last election in Norway in 2011, an approach combin-
ing several generic verification methods with a mathematical ZK proof was used
to provide a good trade-off between these two values [15, 3].

Nevertheless, finding an efficient mathematical ZK proof is still of interest.
Good progress in this direction is made by Bayer and Groth [4]. Their approach
provides both, showing the correctness of a shuffle by a mathematical Zero-
Knowledge argument while at the same time providing good efficiency. A further
interesting approach is generating a compact proof which can be used to show
the accuracy of the whole shuffling process [6]. However, so far it has not been
evaluated which information a computationally unbounded party can gain from
these mathematical Zero-Knowledge based verification methods.

In this paper we show how the mix-net can be verified using a straightforward
cut-and-choose verification method, in order to show the concepptual simplicity
of our approach. As an optimization, we then show a combination between this
approach and RBV [13]. The evaluation whether [4] and [6] are applicable for
our newly proposed everlasting mixing process will be part of future work.

1.4 Summary of our results

The protocol we propose in this paper has the following properties:

Correctness Even if all authorities conspire, they cannot change the contents of
any message without being detected with overwhelming probability, provided
that they cannot break the discrete logarithm problem before the process has
ended and has been certified.

Universal verifiability Any observer can verify that the mixing process was
performed honestly.

Individual verifiability Each user can convince herself that her message was
included in the input batch.

Everlasting privacy All information published on the bulletin board reveals
no (Shannon) information about the identity of sender of any of the messages
published.



Robustness If all authorities follow the protocol correctly, then the protocol
always terminates successfully. If one authority cheats, it will get caught
with overwhelming probability.

Despite the vast literature on mix-nets, we are not aware of any publication
that achieves everlasting privacy for mixing. This property is achieved in the
Split-Ballot election system of Moran and Naor[22], and several ideas and tech-
niques used here are based on their work. There is also an overlap with [18] and
[25], which try to apply the same underlying idea on the Helios voting system:
homomorphic Pedersen commitments are used to tally the votes, but a private
channel is used to send auxiliary information to the tallying authority.

The structure of this paper is straightforward: in Section 2 we describe the
mixing process, and in Section 3 the private and public verification process using
RBV. Section 4 presents formal statements of the properties and proofs, followed
by discussion in Section 5.

2 Description of the mixing process

2.1 Cryptographic tools

Pedersen commitments and Paillier encryption Usually Pedersen com-
mitments are used in the multiplicative group modulo a prime number p, but it
is not obvious how to find a matching homomorphic encryption scheme whose
homorphic order is p − 1. We borrow therefore the construction proposed by
Moran and Noar [22, Appendix A].

They propose to use standard Paillier encryption with as public key an integer
N = p1p2 and an element γ ∈ G1 = Z∗N2 . The primes p1 and p2 must be safe
primes; they constitute the private key. Then the Paillier encryption of a message
m using randomness r ∈ G1 is E(m) = γmrN (mod N2). We assume that for
each encryption different value for r is used. Besides being homomorphic and
(therefore) allowing re-encryption, it is well-known that Paillier offers semantical
security.

The commitment scheme now takes place in the order N subgroup of Z∗4N+1,
were it is required that 4N + 1 is a prime number too. Note that with over-
whelming probability a random element of Z∗4N+1 has order N, 2N or 4N . So
finding generators of G1 is easy: pick α random in Z∗4N+1. Test if αN = 1; if not
then test if (αN )2 = 1; if not then test if (αN )4 = 1. A second generator β is
found in the same way.

The infeasibility of computing logα β is guaranteed if p1 is a sufficiently large
random safe prime, and α and β are random generators of G1.

Proofs of knowledge and verification The authorities must publish ad-
ditional information that will allow outsiders to audit them. This information
depends on the method chosen. In this section we present a straightforward cut-
and-choose method, which is easier to grasp but rather inefficient. A speed-up
for this approach is described in Section 3.



We will first describe how authority A shows it acted honestly. Let Ain =
{〈u(i), v(i)〉}Ki=1 be the input batch where u(i) = αsiβti is a secret ti “blinded”
by a random number si using Pedersen commitments and v(i) = E(si) the
encryption of the commitment values si (using Paillier). The output batch is
Aout = {〈uA(j), vA(j)〉}Kj=1 where uA(j) and vA(j) are shuffled recodings of
u(i) and v(i). A must show that it knows a permutation π and values sA(i)
such that uA(π(i)) = αsA(i)u(i), vA(π(i)) = E(sA(i))v(i) with π(i) = j. This is
accomplished by breaking up the permutation π in two permutations π1 and π2.
A creates an intermediate batch permuted under π1, commits to π−11 and π2,
and creates yet another set of blinded versions of u(i) using a different s′A(m)
for each entry. Here we used a different index, m, to emphasize that m = π1(i).

1. Let π1 be a random permutation of size K and define π2 such that π2 ·π1 = π.
For m ∈ I choose s′A(m) ∈ G∗1 and set u′A(m) = αs

′
A(m)u(π−11 (m)); v′A(m) =

E(s′A(m))v(π−11 (m)); yA(m) = BC(π−11 (m)) and zA(m) = BC(π2(m)).
For m ∈ I, A publishes the following information:
〈yA(m);u′A(m); v′A(m); zA(m))〉

2. The verifier issues a challenge, Left or Right.
3. If Left then for m ∈ I A opens all the yA(m) and all s′A(m) and V verifies

whether u′A(m)
?
= αs

′
A(m)u(π−11 (m)) and v′A(m)

?
= E(s′A(m))v(π−11 (m)).

If Right then for m ∈ I A opens all the zA(m) and all s′′A(m) :=

sA(m) − s′A(m)(mod q) and V verifies whether uA(π2(m))
?
= αs

′′
A(m)u′A(m)

and vA(π2(m))
?
= E(s′′A(m)Ev′A(m).

Note that during the public verification process, only the correct re-encryption
of u(i) to uA(j) is shown. This process is repeated for different permutations,
decommitment values, and challenges until the probability of an undetected
coercion is below a certain value, defined by the security parameter, λ.

2.2 Parties and cryptographic assumptions

For our protocol we have the following parties:

Users We have K users that will submit messages to the mix-net. We will write
the indexes i, j, k, l of the users between parenthesis.

Mixes We have three mixing authorities or mixes, A1, B1, C1; and three mixes
A2, B2, C2.

Publication authority We have one publication authority Z, whose task is to
calculate and publish the messages submitted.

Key trustee We have one key trustee T , who keeps the private Paillier key and
assists Z when decryption is stipulated.

Bulletin board There exists a write-only public bulletin board (BB) on which
users and mixes can publish information. This is a fairly standard assump-
tion. See for instance [20] for more details.

Random beacon We assume that all random challenge bits used in the verifi-
cation steps come from a trusted beacon. This assumption is fairly standard.
See, for instance, [22].



Auditors We have an unspecified set of auditors, who oversee the random bea-
con’s generation of random bits, and who verify and certify the election
result.

Observers Observers are interested parties, possibly voters, who verify the elec-
tion result.

We make the following assumptions:

Discrete Log The authorities cannot break the discrete log problem for the pa-
rameters chosen before the messages have been published and certified.

Private channels between the authorities There exist private channels be-
tween all the authorities. Using standard cryptographic techniques this is
easy to realize.

Private channels from user to A1 and A2 There exists a private channel
between the user and A1 and A2. This assumption is somewhat harder to
justify, since an unconditional channel can only be achieved using a one-time
pad. See Section 5.2 for a discussion on this topic.

Destruction of all information After the protocol has been certified all all
the authorities destroy all information private to them.

In the next sections we describe the protocol. Figure 1 shows the information
flow between all parties during the mixing process. We urge the reader to consult
Appendix A for a more detailed figure and a high-level description providing a
good overview of the protocol.

2.3 Phase I: Message submission

This section describes what a user must do to submit her message t to the
system.

1. The user chooses s, s′, s1, s
′
1, t1 ∈ G2 and computes s2, s′2, and t2 such that

s = s1 +s2, s′ = s′1 +s′2, and t = t1 + t2. She also generates a 128-bit random
number r

2. She computes ul = αslβtl , xl = αs
′
lβr, vl = E(sl), and yl = E(s′l).

3. Using a private channel, she sends vl, yl to Al.
4. The values u1, u2, x1 and x2 and some user identification number are sent

to the bulletin board. She can and should verify that they appear, exercising
her right to individual verifiability.

The above description applies only if t is small enough such that its value can
be determined by using standard discrete log algorithms on βt. For larger values
the user must create an additional message zl = E(tl) and send it through the
private channel, together with vl and yl. It is quite easy to modify the protocol
such that the zl are processed by the mixes, then multiplied and decrypted by
Z, resulting in t. To keep the presentation simple we chose to leave this out of
the description.



Fig. 1. Information flow between all entities during the mixing process

2.4 Phase II: The mixing process

In this section we describe the shuffling procedure for K inputs and one mix-net
consisting of three mixes A1, B1, and C1. The shuffling procedure for the three
mixes A2, B2, and C2 is identical.

1. (a) The input batch of the first mix A1 is {〈u1(i), x1(i), v1(i), y1(i)〉}Ki=1. For
each i ∈ [1,K], generate random sA1(i), s′A1(i) ∈ G2. A1 will recode u1(i)

and x1(i) as follows: uA1(i) = u1(i)αsA1(i) and xA1(i) = x1(i)αs
′
A1(i).

A1 re-encodes the encrypted decommitment values accordingly: vA1(i) =
v1(i)E(sA1(i)), yA1(i) = y1(i)E(s′A1(i)) which, due to the homomorphic
property, should equal E(s1(i) + sA1(i)) and E(s′1(i) + s′A1(i)).

(b) For the output batch, A1 puts the tuples 〈uA1(i), xA1(i), vA1(i), yA1(i)〉
in numerical order, thus implicitly defining a random permutation, called
πA1, between its input batch {〈u1(i), x1(i), v1(i), y1(i)〉}Ki=1 and output
batch {〈uA1(j), xA1(j), vA1(j), yA1(j)〉}Kj=1, where j := πA(i). The set of

public pairs {uA1(j), xA1(j)}Kj=1 is sent to the BB.
(c) A1 proves to the public that the public output batch is a recoding and

permutation of the public input batch.
(d) The set of private pairs {〈vA1(j), yA1(j)〉} and the corresponding input
{〈v1(i), y1(i)〉} is sent to the next mix, B1.

(e) A1 proves to B1 that the output batch (the public as well as the pri-
vate information) is a re-encryption and permutation of the entire input
batch.

2. Mix B1 does the same as A1:

(a) Using {〈uA1(j), xA1(j), vA1(j), yA1(j)〉}Kj=1 as its input batch, and the
newly generated random numbers sB1(j), s′B1(j) ∈ G2 , it com-

putes uB1(j) := uA1(j)αsB1(j), xB1(j) := xA1(j)αs
′
B1(j), vB1(j) :=

vA1(j)E(sB1(j)), and yB1(j) := yA1(j)E(s′B1(j)).
(b) The resulting tuples are ordered numerically resulting in the output

batch {〈uB1(k), xB1(k), vB1(k), yB1(k)〉}Kk=1, implicitly defining k :=
πB1(j). The set of public pairs {uB1(k), xB1(k)}Kj=1 is sent to the BB.

(c) Subsequently, B1 proves to the public that the public output batch is a
recoding and permutation of the public input batch.

(d) The set of private pairs {〈vB1(k), yB1(k)〉} and the corresponding input
{〈vA1(j), yA1(j)〉} is sent to the last mix, C1.

(e) B1 proves to C1 that the output batch is a re-encryption and permuta-
tion of the input batch.



3. Authority C1 acts analogically to B1. Its output batch
{〈uC1(l), xC1(l), vC1(l), yC1(l)〉}Kl=1 is considered the final result of the
shuffling operation. The uC1, xC1 are published, the vC1, yC1 are sent
privately to the Publication Authority Z, together with the proofs for the
correct re-encryption and permutation of mix C1.

2.5 Phase III: Decoding and publication of the messages

1. The output batches {〈uC1(l), xC1(l), vC1(l), yC1(l)〉}Kl=1 and
{〈uC2(l), xC2(l), vC2(l), yC2(l)〉}Kl=1 from C1 and C2 respectively con-
stitute Z’s input batch.

With the help of the key trustee, Z decrypts the yC1(l) and yC2(l), reveals
d′1(l) = s′1(l) + s′A1(l) + s′B1(l) + s′C1(l) and d′2(l) = s′2(l) + s′A2(l) + s′B2(l) +
s′C2(l) and decodes xC1(l) and xC2(l). These should decrypt to two equal
sets of random numbers βr(l), showing the correspondence between tuples
coming from the same user. Z publishes this correspondence in the form of a
permutation σ from {〈uC1(l), xC1(l)〉}Kl=1 to {〈uC2(σ(l)), xC2(σ(l))〉}Kl=1 on
the BB. It also proves that the βr(l) used in xC1(l) and xC2(σ(l)) is the
same.

2. Z publishes a proof that Dec(xC1(l)) = Dec(xC2(σ(l))) by showing that
it has knowledge of the “recoding value” d′2(l) − d′1(l) such that xC1(l) ∗
αd
′
2(l)−d

′
1(l) = xC2(σ(l)). This can be checked by applying the standard cut-

and-choose verification method.

3. Z privately computes v∗(l) = vC1(l)vC2(σ(l)). With the help of the key
trustee, Z privately decrypts: d(l) = s1(l)+sA1(l)+sB1(l)+sC1(l)+s2(l)+
sA2(l)+sB2(l)+sC2(l) = D(v∗(l)) and decodes t∗(l) = D(u∗(l)). It publishes
{d(l), t∗(l)}Kl=1 on the BB.

4. Z and the public can verify whether u∗(l) = uC1(l)uC2(σ(l)) = αd(l)βt
∗(l)

for l ∈ [1,K].

3 Verification speed-up for large input sets

3.1 Preliminaries

Introduction to Randomized Block Verification Universally verifiable
mix-nets introduce new advantages in eVoting schemes like end-to-end verifi-
ability while still providing voter anonymity. However, to motivate their use for
an election on state level, early verification methods were not fast enough. The
current systems (e.g. manual tallying, DREs, scanning solutions) provide the
first results already some hours after the poll station closed while, depending
on the size of the input set, the verification methods may take days before the
election outcome can be announced. Thus in 2002 Jakobsson et al. proposed
Randomized Partial Checking (RPC) [21] which provides sufficient efficiency to
be used in practise. The basic idea is that each mix shuffles its input set two



times and shows for each element in the intermediate batch either its correct as-
sociation to one input element or to one output element (e.g. decided by random
coin).

However, this approach has two drawbacks. First, the probability of doing
an undetected coercion is significantly higher compared to mathematical ZK
proofs (the probability of modifying n votes is at most 1

2n because just the
half of the associations is checked). Second, the correspondence between input
and output elements got restricted. More precisely, each output element, which
correct association to the intermediate batch was checked, is originated from
an input ciphertext which association to the intermediate batch has not been
revealed. This privacy leakage was identified by Chaum and addressed in [7].
Further, from the legal point of view, the probability of detecting a modified
vote might not be sufficient for a legally binding election.

In the same year Golle et al. introduced Optimistic Mixing [16]. The basic
idea is to use the homomorphic properties of the shuffled elements to prove the
correct re-encryption for the whole set of input and output elements. First all
input ciphertexts and output ciphertexts are multiplied. Due to the homomor-
phic property the value encrypted in the results equates the sum of all secrets.
The fact that the sum of all encrypted secrets should remain unchanged during
a correct shuffling process is used to prove the accurate re-encryption. How-
ever, this approach has been shown unsecure regarding anonymity of the voter
by Wikström [28] and Abe and Imai [1]. A weakness is that a mix can change
ciphertexts and adapt a further one so that the sum of the secret remains un-
changed while this modification is not detected before decoding. The proposed
roll-back process then reveals sensitive information, breaking voter privacy.

In the same year Boneh and Golle proposed another verification method [5]
in which not the product of all elements but of some randomly generated blocks
is checked. Though this modification provides a high chance of detecting such
an attack, the blocks can overlap and subsets of input elements can be mapped
to subsets of output elements.

Allepuz and Castelló further developed this idea. In their proposal, all input
elements are distributed to blocks in a way that each element is contained in
exactly one block and all blocks have the same size. In addition, the block division
for each mix depends on its predecessor to provide better privacy, similar to [7].
However, to provide that each output of the mix-net can be descended from each
input, all mixes have to be honest and keep their used permutation secret. This
drawback is addressed by Random Block Verification (RBV) [13]. Similar to RPC
each mix shuffles its set of input elements two times. This allows generating the
block fragmentation in a way that the statistical correspondence between each
input element and output element of each mix is almost equal.

High-level description of RBV We use the RBV approach to speed up
the slow verification offered by cut-and-choose. The cut-and-choose approach
described in Section 2.1 is very inefficient. To keep the probability of doing an
undetected coercion low, the described process has to be repeated several times.



In addition to the verification of the proof, for each iteration a new shuffled
and recoded output for all inputs has to be computed. This is very inefficient,
especially when the mix processed a large set of input values.

Using RBV, we divide the input elements of the mix into different, equally
sized, subsets (which in the following we will refer to as blocks) and ask the
mix to show the corresponding output subsets (each containing all elements of
the associated input block in recoded form). The mix needs knowledge of the
used permutation to answers this challenge. In the next step all elements of the
input block and all elements of the corresponding output block are multiplied.
Due to the additive homomorphic properties of Paillier encryption and Pedersen
commitments, the secret of every element of the input block is added and thus the
product of the input block encodes their sum. If the mix recoded and shuffled its
input correctly, the product of the corresponding output block encodes the same
secret in recoded form. Thus, the mix is asked to prove, by cut-and-choose, that
it has knowledge of the recoding value. If the mix processed its input correctly,
this value can easily be computed by adding all random numbers, used to recode
the elements of the input block.

In order to provide user privacy, it should be avoided that the block fragmen-
tation can be used to associate one output element of the mix-net to a subset of
mix-net inputs. To prevent overlapping of subsets, each ciphertext is contained
in exactly one block. Further, we require each mix to shuffle and recode its input
set two times to provide that each input ciphertext can be contained in each
output block. More precisely, first it is checked whether the intermediate batch
is a correct recoding of the input batch. The block distribution for this verifica-
tion step is generated by using the random beacon. Following, the input blocks
to verify the correct recoding of the intermediate batch are generated such that
each input block contains at least one ciphertext of each output block (generated
in the last verification step). This is possible, if the size L of the used blocks is
chosen such that for K inputs L2 ≥ K.

Note that the higher the block size, the lower the probability of doing an
undetected coercion. More precisely, to modify the secret of a ciphertext, the
mix has to adapt the secret of a further ciphertext, so that the sum remains
unchanged, and hope that both ciphertexts end up in the same block. The lowest
probability for such an undetected coercion is reached for block size L =

√
K and

is
√
K−1
K−1 (for more information see [13]). This probability decreases exponential

as a function of the number of modified outputs.

Notation Using the mix-net verification method RBV, each mix has
to shuffle its set of input values {〈u1(i), x1(i), v1(i), y1(i)〉}Ki=1 two times.
The output of the first mix A1 is {uA1(j), xA1(j), vA1(j), yA1(j)}Kj=1 af-

ter the first and {uA1′(j
′), xA1′(j

′), vA1′(j
′), yA1′(j

′)}Kj′=1 after the second
shuffling step. The output of A1 is the input of mix B1 which corre-
spondingly outputs {uB1(k), xB1(k), vB1(k), yB1(k)}Kk=1 after the first and
{uB1′(k

′), xB1′(k
′), vB1′(k

′), yB1′(k
′)}Kk′=1 after the second shuffling step. The

same notation is used for mix C1.



3.2 Verification by RBV

In this section we show the public verification process for K inputs and one
mix-net consisting of three mixes A1, B1, and C1 using a different approach.
Note that this verification process (in contrast to the cut-and-choose approach
described in Section 2.1) takes place after each mix finished its recoding and
shuffling process (in Phase II) and before Z matches the output and decodes the
secret (in Phase III). Note that the verifier of each mix is still its successor, since
it knows the private input and output values v and y, needed for verification.

Public Verification Process

1. After each mix completed its computation, a permutation on the set of input
ciphertexts {u1(i), x1(i)}Ki=1 is done. This permutation has to be unknown
during the shuffling process to prevent that the block fragmentation is pre-
dictable and will be created using the random beacon.

2. The set of permuted input ciphertexts {u1(π(i)), x1(π(i))}Ki=1 is divided into
L := b

√
Kc blocks. Thus we have R := K −L2 blocks of L+ 1 elements and

L−R blocks of L elements.
3. For each l ∈ [1, L] the first mix (A1) has to show a block nA1(l) composed of

output ciphertexts which contains the ciphertexts of the input block mA1(l)
in recoded form. As a consequence, for each l ∈ [1, L] the block product ulA1 is
a recoding of the block product ul1 with recoding value slA1 . The same holds
true for every block xlA1 and recoding value s′lA1. The association between
input and output blocks is published to provide universal verifiability.

4. Now mix A1 has to prove for each l ∈ [1, L] that

ulA1 = αs
l
A1 ∗ ul1. and that it has knowledge of slA1. This is done by us-

ing the “Zero-Knowledge Proof That Two Commitments Are Equivalent”
introduced in [22, Appendix B].

5. After each block has been verified, the output of the second shuffling step
{uA1′(j

′), xA1′(j
′)}Kj′=1 needs to be checked. In the verification process of the

second shuffling step the division of the input ciphertexts always depends on
the blocks build in the previous verification process. More precisely, the set
of input values {uA1′(j

′), xA1′(j
′)}Kj′=1 is divided into L blocks in a way that

each block mA1′(l) of {uA1′(j
′), xA1′(j

′)}Kj′=1 contains at least one ciphertext
of each block nA1(l) (output block determined in the verification of the
previous shuffling step).

6. Step 1 to 5 are repeated until the shuffling of each authority has been checked.

Private Verification by RBV

1. The verifier (in this case B1) divides the received encrypted decommitment
values {v1(i), y1(i)}Ki=1 and {vA1(j), yA1(j)}Kj=1 correspondingly to the block

division published by A1. Thus, for each l ∈ [1, L] the block vlA1 is a recoding
of block vl1 with recoding value slA1. The same holds true for every block ylA1

yl1 and recoding value s′lA1.



2. Thus, mix A1 has to show that for each l ∈ [1, L] it used the same decommit-

ment value slA1 to recode ul1 and vl1. More precisely, A1 shows ulA1 = αs
l
A1∗ul1,

vlA1 = E(slA1)∗vl1 and that it has knowledge of slA1. This can be done with the
“Zero-Knowledge Proof That Two Commitments Are Equivalent” described
in [22, Appendix B]. The same is shown for the decommitment values s′lA1

and blocks xl1 and yl1.
3. Step 1 and 2 are repeated until the shuffling of each mix has been checked.

4 Properties claimed and proofs

4.1 Correctness, Individual and Universal Verifiability

With respect to the correctness of the protocol, we claim the following property.

Claim. Let Tin = {t(1) . . . t(K)} be the set of messages as submitted by the
users, and let Tout = {t∗(1) . . . t∗(K)} be the set of message published by Z.
Then, with overwhelming probability, Tin = Tout even if all authorities conspire
to act maliciously.

Proof sketch: First, observe that for correctness, all auxiliary information
sent over the private channels is irrelevant. It only serves to help Z to open
the u’s. Second, even a dishonest mix cannot change the challenge bits used in
verification steps of the protocol since they come from a trusted beacon. Third,
in step III.1, Z must prove that the r(l) used in xC1(l) and xC2(σ(l)) is the same,
making cheating during the matching procedure on behalf of Z impossible, unless
breaking the discrete log is possible.

Now we can follow the familiar argument of re-encryption mixes together with
the binding property of the commitment scheme. Suppose that all authorities
conspire. The information that is published as a response to the challenges proves
(with overwhelming probability) that, during the various mixing phases, each
input has been multiplied by some factor αs. and has been permuted. This,
together with the matching procedure, implies that each value u∗(l) published
by Z must be of the form αd(l)βt(l), where d(l) = s1(l)+sA1(l)+sB1(l)+sC1(l)+
s2(l) + sA2(l) + sB2(l) + sC2(l). If the authorities open u∗(l) for a different value
t′ 6= t(l), this would imply that αd

′
βt
′

= αd(l)βt(l), meaning that they could
compute the discrete log of α with respect to base β, contradicting our first
assumption. Therefore Tin = Tout, completing the proof.

Note that, because of the audit information published during all the mixing
steps, any observer can perform the checks. This, together with the guaranteed
randomness of the challenge bit, means that the protocol is universally verifiable.
And individual verifiability follows, simply because of the fact that a user can
check that u1 and u2 appear on the BB.

Observe that the proof of the user in Phase I is not public. This means that
if a user and A1 or A2 conspire, then wrong values of d may be sent to Z and
she will not be able to decrypt/open the u belonging to that user. This does not
affect messages submitted by other users.



4.2 Privacy

Claim. For each message published, the public view, consisting of all the input
and output batches of the respective mixes together with the proofs and the
information published by Z, reveals no (Shannon) information about the identity
of its originator. This remains true even if one authority is dishonest.

Proof sketch: If all mixes were honest, then secret-splitting would not be
necessary, and privacy follows from the fact that the output batch Tout is an
unknown permutation of the input batch, Tin. No information is revealed, since
the commitments used to encode the messages are unconditional.

Note however the user submits to A1 and that B1 acts as a verifier for A1,
so both to see v and y. So without splitting s, a dishonest A1 or B1 can find out
t when the homomorphic encryption algorithm E has been broken. To eliminate
this possibility, the user has to split s and t and submit the shares to two different
authorities, A1 and A2. Obviously, the output batch of B1 and B2 cannot be
the mix-net’s final output batch. Therefore two more mixes, C1 and C2, are
used to shuffle the messages once more, thus guaranteeing privacy even if one of
the mixing authorities is dishonest.

Note that the speed-up described in Section 3 should only be used for a large
set of input ciphertexts. An attacker can determine the sum of the commitment
values, used to decode each block. Thus, the minimum size of one block (the
square root of K) should equal the size of the smallest set of inputs which can
be (securely) processed by a mix-net.

4.3 Robustness

Claim. The output of the mix-net can be decoded as long as the output set of
each mix has been verified.

It is clear from the construction that if everybody is honest, then the process
must succeed, always. Now let us first assume that all the user’s submissions
are constructed correctly. Each mix processes its input set and proves the cor-
rectness of the output to the successor. More precisely, each mix proves that
it has knowledge of the used permutation, the values used for recoding and re-
encrypting the input set, and that the same recoding values has been used to
recode the Pedersen Commitments on the public and the Paillier encryptions
of the private channel. If cheating is detected, the mix can simply be replaced.
However, in case the first mix is malicious, the users need to re-send their data.
For applications where this is undesirable, re-sending of data can be prevented
by redundancy.

Further, to avoid that a mix can lie about its input towards the verifier,
we ask the user and each mix to sign its output. Thus, a verifier can check the
authenticity of the input batch. Note that the digital signature scheme used does
not need to be information-theoretically secure.

A problem is that a user can submit inconsistent inputs. More specifically, it
seems impossible to verify that the public shares t1, t2 encoded, and the private



shares t1, t2 encrypted, are consistent while maintaining unconditional privacy
towards the first two mixes, A1 and A2. If a user errs, it just means her mes-
sage cannot be decoded by Z; it does not affect any other message. When it
comes to a dispute, the first two mixes can challenge the user to supply a proof
almost identical to the proofs used by the mixes that her public and private
inputs are consistent. Such a proof would reduce the user’s privacy to be only
computational, but the user will not be able to supply such a proof anyway.

5 Discussion

5.1 The extra work of the adversary

Note that if an adversary wants to attack the new protocol she needs to do a lot
more work than before. In current protocols for mixing an adversary can sit and
wait for years or decades until the homomorphic scheme is broken. She copies
the information from the bulletin board locally, decrypts, and find out who sent
which message.

In the new scheme, if all authorities are honest, an adversary’s only course
of action is either to eavesdrop on the communication between each individual
and the first authority, or intercept the communication between the authorities,
and then break the underlying cryptographic assumption.

The secret splitting is only justified when users distrust authorities. Observe
that in many instances, including elections, most users are not so worried about
the mix authorities being dishonest. But they could, rightfully, be worried about
their authorship of their (supposedly anonymous) message being exposed twenty
years later. Before this paper, even willing mixing authorities had no way of
offering a better service in this respect.

5.2 On the private channel assumption of the user

In order to guarantee its own privacy, a user should, ideally, use a private channel
to each mix authority to which she submits input shares. Implementing a private
channel using a one-time pad implies that the user must exchange a private
key through a reliable channel. This can be arduous or not, depending on the
situation. If the user does not want to go through all that trouble, it could give
up on unconditional privacy and use some public key cryptography scheme to
send her private key. The difference is that now the user can choose the scheme
(it could be post-quantum, for instance), as opposed to the old situation in which
everybody´s privacy depended on one scheme resisting attacks.

5.3 Alternative implementations and generalizations

We chose Pedersen commitments because of its homomorphic properties in both
the decommitment value and the commitment value. This propery is shared
by few commitment schemes. We believe that an alternative implementation



with unconditional Jacobi symbols commitments and Rabin encryption might
work, but the scheme would be very inefficient since each Jacobi symbol would
implement only one bit.

More interesting is the recent suggestion of Olivier Pereira (private commu-
nication) for an efficient unconditional bit commitment scheme with matching
homomorphic encryption scheme based on elliptic curves. If this could be used
in combination with the non-interactive proof (or rather, argument) techniques
proposed by Groth[19], this might lead to a very efficient verification procedure.

An obvious generalization of the scheme is to use more generators to encode
various ts: u = αsβt1L . . . βtLL .

Conclusion

We presented a novel protocol for a publicly-verifiable mix-net which offers ev-
erlasting privacy towards observers, meaning that the information made public
on the bulletin board does not help an adversary with unlimited computational
resources. We believe this is an important step forward since, as Chaum himself
already argued in 1984 [9], individuals cannot expect to understand the differ-
ence between computational and unconditional security, and they should not
have to worry about it.

In particular, computational security is simply not enough in elections were
there is a lot at stake, invalidating many proposed schemes based on homomor-
phisms and/or mix-nets. Several voting scheme with everlasting privacy have
been proposed [22, 17] but they only work with a very specific ballot layout. The
advantage of using a mix-net in an election is that it does not impose any restric-
tions on the ballot layout, since the message to be mixed can be any sequence
of bits.

The main purpose of this paper is to show that mixing with unconditional
privacy could be done in principle, maybe relaxing somewhat on the matter of
formal proofs on the one hand, and questions of optimizations and performance
on the other. We plan to work on these matters in the future, and encourage
other researchers to do the same.
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A Mixing process overview

Fig. 2. Detailed information flow between all entities during the mixing process



private channel public channel public channel private channel

User privately splits s = s1 + s2 , s′ = s′1 + s′2 and t = t1 + t2
v1 = E(s1) u1 = αs1βt1 u2 = αs2βt2 v2 = E(s2)

y1 = E(s′1) x1 = αs′1βr x2 = αs′2βr v2 = E(s′2)

send to A1 send to BB send to BB send to A2

A1’s input batch A2’s input batch

v1, y1 u1, x1 u2, x2 v2, y2
vA1 = v1E(sA1) uA1 = u1α

sA1 uA2 = u2α
sA2 vA2 = v2E(sA2)

yA1 = y1E(s′A1) xA1 = x1α
s′A1 xA2 = x2α

s′A2 yA2 = y2E(s′A2)

send to B1 send to BB send to BB send to B2

A1’s output batch A2’s output batch

vA1, yA1 uA1, xA1 uA2, xA2 vA2, yA2

B1’s input batch B2’s input batch

vB1 = vA1E(sB1) uB1 = uA1α
sB1 uB2 = uA2α

sB2 vB2 = vA2E(sB2)

yB1 = yA1E(s′B1) xB1 = xA1α
s′B1 xB2 = xA2α

s′B2 yB2 = yA2E(s′B2)

B1’s output batch B2’s output batch

send to C1 send to BB send to BB send to C2

vB1, yB1 uB1, xB1 uB2, xB2 vB2, yB2

C1’s input batch C2’s input batch

vC1 = vB1E(sC1) uC1 = uB1α
sC1 uC2 = uB2α

sC2 vC2 = vB2E(sC2)

yC1 = yB1E(s′C1) xC1 = xB1α
s′C1 xC2 = xB2α

s′C2 yC2 = yB2E(s′C2)

C1’s output batch C2’s output batch

send to Z send to BB send to BB send to Z

vC1, yC1 uC1, xC1 uC2, xC2, vC2, yC2

Z’s input batch

Z privately decrypts Z privately decrypts
yC1 → d′1 = s′1 + s′A1 + s′B1 + s′C1 yC2 → d′2 = s′2 + s′A2 + s′B2 + s′C2

Z privately decodes xC1 → βr Z privately decodes xC2 → βr

Z privately matches the random identities βr

Z publishes the correspondence as permutation σ

Z proves correct matching and knowledge of d′2 − d′1
Z (privately) computes u∗ = uC1σ(uC2)

Z privately computes v∗ = vC1σ(vC2)

Z privately decrypts v∗ → d = s1 + sA1 + sB1 + sC1 + s2 + sA2 + sB2 + sC2

Z privately determines t∗ from u∗α−d = βt

Z publishes uC1, σ(uC2), d, t∗

Z and the public verify that u∗ = uC1σ(uC2) = αdβt∗

Table 1. Summary of the protocol, with the information flow top-down (instead of left-
right, as in the figures). For clearness, the parentheses and indexes of the users have
been suppressed, leading to a slght abuse of notation with respect to the matching
permutation σ.


