
Beyond eCK: Perfect Forward Secrecy under
Actor Compromise and Ephemeral-Key Reveal?

Version 2.0, 19 October 2017??

Cas Cremers1 and Michèle Feltz2

1 Department of Computer Science, University of Oxford, UK
2 Institute of Information Security, ETH Zürich, Switzerland

Abstract. We show that it is possible to achieve perfect forward secrecy in two-message
or one-round key exchange (KE) protocols that satisfy even stronger security properties
than provided by the extended Canetti-Krawczyk (eCK) security model. In particular, we
consider perfect forward secrecy in the presence of adversaries that can reveal ephemeral
secret keys and the long-term secret keys of the actor of a session (similar to Key Compromise
Impersonation).
We propose two new game-based security models for KE protocols. First, we formalize a
slightly stronger variant of the eCK security model that we call eCKw. Second, we integrate
perfect forward secrecy into eCKw, which gives rise to the even stronger eCK-PFS model. We
propose a security-strengthening transformation (i. e., a compiler) between our new models.
Given a two-message Diffie-Hellman type protocol secure in eCKw, our transformation
yields a two-message protocol that is secure in eCK-PFS. As an example, we show how our
transformation can be applied to the NAXOS protocol.

Keywords: Key Exchange, Security Models, Protocol Transformations, Perfect Forward
Secrecy, Ephemeral-key reveal, Key Compromise Impersonation, Actor compromise

1 Introduction

The majority of recently developed key exchange protocols have been proven secure with respect
to game-based security models for key exchange protocols [2, 3, 10,17,20]. The first such security
model was introduced by Bellare and Rogaway [3]. In this model, the adversary is modeled as a
probabilistic polynomial-time Turing machine that interacts with the protocol participants through
queries. The queries specify the capabilities of the adversary. For instance, he can send messages to
parties and reveal certain session-keys. The definition of security in the Bellare-Rogaway model
requires that (a) two parties who complete matching sessions (i. e., the intended communication
partners) compute the same session-key and that (b) the adversary does not learn the session-key
with more than negligible probability. Building on this work, Canetti and Krawczyk [10] developed
a more complex security model that gives the adversary additional powers such as access to a
session-state query that reveals the internal state of a session. LaMacchia et al. [20] adapted the
Canetti-Krawczyk model to capture resilience to key compromise impersonation (KCI) attacks and
resilience to the leakage of various combinations of long-term and ephemeral secret keys in a single
security model. This model is known as the extended Canetti-Krawczyk (eCK) security model.

One important property of KE protocols that is not guaranteed by the eCK security model is
perfect forward secrecy (PFS). This property holds if an adversary cannot learn the session-keys
of past sessions, even if he learns the long-term secret keys of all the parties [26]. The designers
of the eCK model argued that this property cannot be achieved by two-message KE protocols,
based on [17]. In particular, in [17, p. 15], Krawczyk sketched a generic PFS attack, for which he
claimed that it breaks the security of any implicitly authenticated two-message KE protocol. In the

? An extended abstract of this paper appears in ESORICS 2012. This work was supported by ETH Research
Grant ETH-30 09-3 and the National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), which is supported by the Swiss National Science Foundation.

?? We provide a summary of changes in Appendix D.

2

attack, the adversary actively interferes with the communication between the parties by injecting
self-constructed messages. This enables him to compute the used session-key if he later learns the
long-term secret keys of the parties. To prove a slightly weaker notion of forward secrecy for the
HMQV protocol, Krawczyk introduced the notion of weak perfect forward secrecy (weak-PFS) [17].
When the long-term keys are compromised, weak perfect forward secrecy guarantees secrecy of
previously established session-keys, but only for sessions in which the adversary did not actively
interfere. Krawczyk’s comments seem to have led to the incorrect belief that the best that can
be achieved for two-message KE protocols is weak perfect forward secrecy [7, 12, 17, 20]. As a
result, even though the eCK security model [20] guarantees only weak perfect forward secrecy, it is
currently described in the literature as the strongest possible security model for two-message KE
protocols [11,20,22].

Contributions. Our first contribution is to push forward the theoretical limits of key exchange
security notions. This contribution has two parts. First, we generalize the eCK security model [20]
based on the observation that a restriction on the adversary in the eCK model, whose purpose it
is to prevent Krawczyk’s PFS attack, is stronger than needed. To weaken this restriction (while
still preventing the attack) we introduce the concept of origin-session, which relaxes the notion of
matching session. The resulting model, which we call eCKw, specifies a slightly stronger variant
of weak perfect forward secrecy than the eCK model. We then integrate perfect forward secrecy
into the eCKw model, which gives rise to the eCK-PFS model. The eCK-PFS model is strictly
stronger than eCKw, and also provides more guarantees than independently considering eCK/eCKw

security and PFS. In particular, security in eCK-PFS implies perfect forward secrecy in the presence
of a fully active attacker who can even learn the actor’s long-term secret key before the start of
the attacked session, or who can learn session-specific ephemeral secret keys (i. e. random coins
generated on a per-session basis).

Our second contribution is a generic security-strengthening transformation (a so-called compiler)
that contributes towards the modular design approach of KE protocols. Given a two-message Diffie-
Hellman (DH) type KE protocol that is secure in eCKw, our transformation yields a two-message
protocol that is secure in the eCK-PFS model. The transformation does not introduce additional
message dependencies. Consequently, if our transformation is applied to a one-round protocol, in
which all outgoing messages can be computed before any message is received, the result is also
a one-round protocol. As an example we show that NAXOS [20], the first key exchange protocol
proven secure in the eCK model, is also secure in eCKw and use our transformation to construct a
protocol that is secure in eCK-PFS. Thus, we demonstrate that it is possible for two-message and
even one-round KE protocols to achieve PFS, even under actor compromise (i. e. disclosure of the
long-term secret keys of the actor of a session) and leakage of ephemeral secret keys.

Related Work. The majority of related works claim that perfect forward secrecy cannot be achieved
in a two-message KE protocol [7, 12,17,19,20]. There are two notable exceptions. First, the two-
message modified-Okamoto-Tanaka (mOT) protocol by Gennaro et al. [14] provides perfect forward
secrecy in the identity-based setting. Additionally, they sketch variants of the protocol for the
PKI-based setting. As noted by the authors [14], the mOT protocol and its variants are not resilient
against loss of ephemeral keys, and they are therefore insecure in eCK-like models. Second, in [8],
Boyd and Gonzalez suggest a transformation C based on adding MACs on the message exchange
of a key-exchange protocol that satisfies weak perfect forward secrecy, to achieve perfect forward
secrecy. However, the MAC transformation does not ensure security in eCK-PFS, because it does
not guarantee perfect forward secrecy under actor compromise and leakage of ephemeral secret keys.
In Section 4 we show that, e. g., C(NAXOS) [8] is insecure in eCK-PFS.

In [15], Jeong, Katz and Lee introduce the one-round KE protocols TS2 and TS3 and show that
these protocols achieve forward secrecy. The underlying security model with respect to which both
protocols are proven secure is based on the Bellare-Rogaway model in [3] and captures forward
secrecy by allowing the adversary to corrupt both actor and peer of some target session in case the
adversary is passive during the execution of the target session (which corresponds to weak-PFS).
As observed in [1], protocol TS3 satisfies a stronger forward secrecy property than protocol TS2.
Whereas protocol TS2 only achieves weak-PFS, we conjecture that protocol TS3 achieves PFS
under the same assumptions as stated in [15, Theorem 3].

3

The eCK variant for protocols with more than two messages, defined in [19], guarantees perfect
forward secrecy. However, this eCK variant cannot be met by any of the protocols from the class
we are considering here because it uses the concept of matching session instead of origin-session.

Organization. In Section 2 we recall some standard definitions used in this paper. In Section 3
we motivate and define our security notions eCKw and eCK-PFS. In Section 4 we provide a
transformation that turns any two-message Diffie-Hellman type KE protocol secure in eCKw into a
two-message KE protocol secure in eCK-PFS. We show how this transformation can be applied to
the NAXOS protocol in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

Let G = 〈g〉 be a finite cyclic group of large prime order p with generator g.
Similar to the discrete logarithm experiment [16], we define the GAP discrete logarithm

(GAP-DLog) experiment for a given group-generating algorithm G, algorithm A, and parameter k
as follows.
The GAP discrete logarithm experiment GAP-DLogA,G(k):

1. Run G(1k) to obtain (G, p, g) with ||p|| = k.
2. Choose h ∈R G. (This can be done by choosing x′ ∈R Zp and setting h := gx

′
.)

3. A is given G, p, g, h, and outputs x ∈ Zp. In addition, A is given access to a decisional Diffie-
Hellman (DDH) oracle that, for any three elements gu, gv, gw ∈ G, replies whether or not
w = uv mod p.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Definition 1 (GAP-DLog Assumption [25]). The GAP-DLog assumption in G states that, given
gu, for u chosen uniformly at random from Zp, it is computationally infeasible to compute u with
the help of a decisional Diffie-Hellman (DDH) oracle (that, for any three elements gu, gv, gw ∈ G,
replies whether or not w = uv mod p). More precisely, we say that the GAP-DLog assumption
holds relative to G, if for all probabilistic polynomial-time algorithms A, there exists a negligible
function negl such that

P (GAP-DLogA,G(k) = 1) ≤ negl(k).

Definition 2 (GAP-CDH Assumption [27]). The GAP-CDH assumption in G states that,
given gu and gv, for u, v chosen uniformly at random from Zp, it is computationally infeasible to
compute guv with the help of a decisional Diffie-Hellman (DDH) oracle (that, for any three elements
gu, gv, gw ∈ G, replies whether or not w = uv mod p).

Definition 3 (Signature Scheme [16]). A signature scheme Σ is a tuple of three polynomial-time
algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security parameter 1k and
outputs a secret/public key pair (sk, pk).

2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key sk and a message
m ∈ {0, 1}∗. It outputs a signature σ := Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and
a signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write
b = Vrfypk(m,σ).

It is required that for every k, every (sk, pk) output by Gen and every m ∈ {0, 1}∗, it holds that
Vrfypk(m,Signsk(m)) = 1.

Definition 4 (Unique signature Scheme (see also [24]). A unique signature scheme Σ is a
signature scheme (conform Definition 3) that additionally satisfies uniqueness: There do not exist
values (pk,m, σ1, σ2) such that σ1 6= σ2 and Vrfypk(m,σ1) = Vrfypk(m,σ2) = 1.

Definition 5 (SUF-CMA [6]). A signature scheme Σ = (Gen,Sign,Vrfy) is strongly existen-
tially unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl such that AdvSigA (k) ≤ negl(k), where AdvSigA (k)
denotes the probability of successfully forging a valid signature σ on a message m and (m,σ) is not
among the pairs (mi, σi) (i = 1, ..., q) generated during the query phase to a signature oracle OSign

returning a signature for any message mi of the adversary’s choice.

4

3 Key Exchange Security Notions

We propose two new eCK-like security models for the analysis of key-exchange protocols. The first
model called eCKw captures a slightly stronger form of weak-PFS than the eCK model. The second
model called eCK-PFS integrates PFS directly into eCKw.

3.1 Motivation for the New Models

eCKw: strengthening weak-PFS. As stated in the introduction, the eCK model captures weak
perfect forward secrecy but not perfect forward secrecy, based on Krawczyk’s generic PFS attack [17].
We briefly recall the attack. Consider a two-message protocol in which the agents exchange ephemeral
public Diffie-Hellman keys, i. e., gx and gy, where x and y are chosen at random from Zp (for some

large prime p). The adversary, impersonating party Â, generates a random value x (∈ Zp) and

sends gx to a responder session at party B̂. B̂ responds by sending gy and computes the session key.
The adversary chooses B̂’s session as the test-session, i. e. the session under attack, and reveals Â’s
long-term secret key after B̂’s session ends. Now the adversary can simply follow all protocol steps
that an honest party Â would have performed using x and Â’s long-term secret key. In particular,
the adversary can compute the same session-key as the test-session, violating PFS.

Krawczyk’s attack works directly for all two-message KE protocols that exchange DH keys
of the form gz, where z does not involve the sender’s long-term secret key, such as HMQV [17].
Additionally, the attack also works on protocols like NAXOS [20], where z is a hash of the sender’s
long-term secret key and a random value. The adversary can just replace this value by an arbitrary
value.

To still prove some form of forward secrecy for such protocols, Krawczyk introduced the notion
of weak-PFS. In weak-PFS, the adversary is not allowed to actively interfere with the messages
exchanged by the test-session. This prevents the attack because the adversary is no longer allowed
to insert his own DH exponential. Similarly, in the eCK model, this restriction on interfering with
the test-session is modeled by checking if a matching session exists [20, p. 5]. If this is the case,
then the adversary must have been passive and he is allowed to reveal the long-term secret keys of
the actor and the intended communication partner of a session. If there is no matching session, the
adversary is not allowed to reveal the long-term secret key of the intended communication partner.

We observe that Krawczyk’s attack only depends on the adversary injecting or modifying the
message received by the test-session; he does not need to actively interfere with the message sent
by the test-session. However, eCK models passivity of the adversary in the test-session by checking
whether a matching session for the test-session exists, which also prevents the adversary from
modifying (or deleting) the message sent by the test-session. In this sense, the restriction on the
adversary in eCK is sufficient but not necessary for the prevention of Krawczyk’s attack. We
therefore relax the notion of matching sessions and introduce the concept of origin-session. This
allows us to capture the adversary’s capability of revealing the long-term secret key of the intended
communication partner (i. e. the peer) of the test-session s in case an origin-session s′ for s exists
even though no session matching to s exists. Thus, in contrast to the eCK model, the adversary
may reveal the long-term key of the peer of the test-session s in case an origin-session s′ for session
s exists and

– actively interfere with the message sent by the test-session (e. g. by modifying it or injecting his
own message), or

– replay a message from another session to the test-session (as in [8]), or
– leave session s′ incomplete (in case session s′ is in the initiator role).

We call our strengthened variant of the eCK model the eCKw model.

eCK-PFS: integrating PFS into eCKw. We extend the eCKw model by integrating perfect
forward secrecy which yields the strictly stronger eCK-PFS model. Perfect forward secrecy is
reflected in eCK-PFS by allowing the adversary to reveal the long-term secret keys of all the
protocol participants after the end of the test-session. These keys can be revealed irrespective of the
existence of an origin-session (or a matching session). The PFS attack scenario is neither captured
in eCKw (nor in eCK) if the origin-session (matching session) does not exist for the test-session. In

5

contrast to the CK-NSR model in [8] incorporating PFS, the eCK-PFS model additionally captures
leakage of various combinations of ephemeral secret keys and long-term secret keys as well as perfect
forward secrecy under actor compromise.

3.2 Defining eCKw and eCK-PFS

Terminology. Let P =
{
P̂1, P̂2, ..., P̂N

}
be a finite set of N parties’ identities. Each party can

execute multiple instances of a KE protocol, called sessions, concurrently. We denote session i
at party P̂ as the tuple (P̂ , i) ∈ P × N. We associate to each session s ∈ P × N a quintuple of
variables Ts = (sactor , speer , srole , ssent , srecv) ∈ P×P×{I,R}×{0, 1}∗×{0, 1}∗ (where the empty
sequence in {0, 1}∗ is denoted by −). The variables sactor , speer denote the identities of the actor
and intended peer of session s, srole denotes the role that the session is executing (either initiator
or responder), and ssent , srecv denote the concatenation of timely ordered messages as sent/received
by sactor during session s. The values of the variables speer and srole are set upon activation of
session s and the values of the variables ssent and srecv are defined by the protocol execution steps.
A session can only be activated once.

The notion of matching sessions specifies when two sessions are supposed to be intended
communication partners. Here we formalize the matching sessions definition from the eCK model [20]
which is based on matching conversations.

Definition 6 (matching sessions). Two completed sessions s and s′ are said to be matching if

sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole 6= s′role .

To relate a message received (and accepted) by some session to the session it originates from
(if the latter exists), we introduce the concept of origin-session. If an origin-session s′ for some
session s exists, then the messages received by session s have not been modified or injected (as in
Krawczyk’s PFS attack [17]) by the adversary.

Definition 7 (origin-session). We say that a (possibly incomplete) session s′ is an origin-session
for a completed session s when s′sent = srecv .

Note that, if two completed sessions s, s′ are matching, then s and s′ are origin-sessions for each
other. However, if session s is an origin-session for some session s′, then it might not necessarily be
a matching session for s′ (e. g. in case the roles of the sessions are identical). Thus, a session being
a matching session for some session is a stronger requirement than a session being an origin-session
for some session.

Adversarial capabilities. Similar to the eCK model [20], we model the adversary as a probabilistic
polynomial-time (PPT) Turing machine that controls all communications between parties through
the following queries:

1. send(s, v). This query models the adversary sending message v to session s. The adversary is
given the response generated by the session according to the protocol. The variables ssent and
srecv are updated accordingly (by concatenation). Abusing notation, we allow the adversary
to activate an initiator session with peer Q̂, via a send(s, Q̂) query and a responder session
by sending a message m to session s on behalf of Q̂, via a send(s, Q̂,m) query. In these cases,
speer is set to Q̂ and srole is set to I and R, respectively. The adversary is given the session’s
response according to the protocol and the variables ssent , srecv are initialized accordingly.

2. corrupt(P̂). This query reveals the long-term keys of party P̂ .
3. ephemeral-key(s). This query reveals the ephemeral secret keys (i. e., the random coins) of

session s.
4. session-key(s). This query returns the session key for a completed session s (i. e. a session that

has accepted/computed a session-key).
5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0, then the session-key

established in session s is returned. Otherwise, a random key is returned according to the
probability distribution of keys generated by the protocol. This query can only be issued to a
completed session.

6

Notions of Freshness. An adversary that can perform the above queries can simply reveal the
session key of all sessions, breaking any protocol. The intuition underlying Bellare-Rogaway style
KE models is to put minimal restrictions on the adversary with respect to performing these queries,
such that there still exist protocols that are secure in the presence of such an adversary. The
restrictions on the queries made by the adversary are formalized by the notion of fresh sessions.

Definition 8 (Fresh session in eCKw). A completed session s in security experiment W is said
to be fresh in eCKw if all of the following conditions hold:

1. W does not include the query session-key(s),
2. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
3. W does not include both corrupt(sactor) and ephemeral-key(s),
4. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer) and ephemeral-key(s′), and
5. if there exists no origin-session for session s, then W does not include a corrupt(speer) query.

Definition 9 (Fresh session in eCK-PFS). A completed session s in experiment W is said to
be fresh in eCK-PFS if all of the following conditions hold:

1. W does not include the query session-key(s),
2. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
3. W does not include both corrupt(sactor) and ephemeral-key(s),
4. for all sessions s′ such that s′ is an origin-session for session s, W does not include both

corrupt(speer) and ephemeral-key(s′), and
5. if there exists no origin-session for session s, then W does not include a corrupt(speer) query

before the completion of session s.

Security Experiment W in model M . Security of a key-exchange protocol Π is defined via a security
experiment W (or attack game) played by an adversary E, modeled as a PPT algorithm, against a
challenger. Before the experiment starts, each party P̂ runs a key-generation algorithm that takes
as input a security parameter 1k and outputs valid static secret/public key pair(s). The public
key(s) of each party are distributed in an authenticated way to all other parties. The adversary E
is given access to all public data. The setting of the security experiment W can be described in
four successive stages, as follows:

1. The adversary E can perform send, corrupt, ephemeral-key, and session-key queries.
2. At some point in the experiment, E issues a test-session query to a completed session that is

fresh in model M by the time the query is issued. The challenger chooses a random bit b and
provides E with either the real session-key of the test-session (for b = 0) or a random key from
the key space (for b = 1).

3. The adversary may continue with send, corrupt, ephemeral-key and session-key queries, without
rendering the test-session un-fresh in model M .

4. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W if he correctly guesses the bit b chosen by the
challenger during the test-session query (i. e. if b = b′ where b′ denotes E’s guess). Success of E in
the experiment is expressed in terms of E’s advantage in distinguishing whether he received the
real or a random session-key in response to the test-session query. The advantage of adversary E
in the above security experiment against a key exchange protocol Π for security parameter k is
defined as AdvΠE (k) = |2P (b = b′)− 1|.

Definition 10. A key exchange protocol Π is said to be secure in model M ∈ {eCKw,eCK-PFS}
if, for all PPT adversaries E, it holds that

– if two parties successfully complete matching sessions, then they compute the same session key,
and

– E has no more than a negligible advantage in winning security experiment W in model M , that is,
there exists a negligible function negl in the security parameter k such that AdvΠE (k) ≤ negl(k).

7

Comparison between eCKw and eCK-PFS. The eCK-PFS model is strictly stronger than eCKw

because it captures more attack scenarios. The eCK-PFS model allows the adversary to corrupt all
parties after the test-session is completed (regardless of whether an origin-session exists for the
test-session), capturing perfect forward secrecy. In contrast, in case there is no origin-session for
the test-session, the adversary is not allowed to reveal the long-term secret key of the peer of the
test-session in the eCKw model. As an example, NAXOS is provably secure in eCKw, as we show
in Section 5, but insecure in eCK-PFS due to the PFS attack described in Subsection 3.1.

4 A Transformation from eCKw to eCK-PFS

We define a class of two-message Diffie-Hellman type key exchange protocols (similar to the class of
KE protocols in [8]). Then, we present a security-strengthening transformation (compiler) that can
be applied to any such protocol. Finally we show that this transformation turns any KE protocol
secure in eCKw into a KE protocol secure in eCK-PFS.

Let k be a security parameter and let G be a finite cyclic group of prime order p with generator
g, where ||p|| = k. Let Ω be static publicly known data such as parties’ identities, their long-term
public keys or publicly known functions and parameters. Let S be a set of constants from which
random values are chosen (e. g. S = Zp or S = {0, 1}k). We denote by x ∈R S that x is chosen
uniformly at random from the set S. In the generic two-message DH type protocol, illustrated
in Figure 1, party Â’s long-term secret key is a ∈R Zp and Â’s long-term public key is A = ga.

The session-specific ephemeral secret key of the session at party Â is denoted by rÂ ∈R S and the

corresponding ephemeral public key is denoted by X. Similarly, party B̂’s long-term secret/public
key pair is (b, B) and the ephemeral secret/public key pair of the session at B̂ is denoted by (rB̂ , Y).
The public functions fI , fR : {0, 1}∗ → Zp depend on the ephemeral secret key and may depend on

the long-term secret key or on public information. The public functions FI , FR : {0, 1}∗ → {0, 1}k
depend on the Diffie-Hellman exponent the long-term secret key, the received Diffie-Hellman
exponential and other public information. We assume that the public keys of all parties are known
to all other participants in the protocol.

Â: (a,A)

rÂ, X = gfI(rÂ,a,Ω)

K
Â

= FI(fI(r
Â
, a, Ω), a, Y, Ω)

X−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−

B̂: (b,B)

rB̂ , Y = gfR(r
B̂
,b,Ω)

K
B̂

= FR(fR(r
B̂
, b, Ω), b, X,Ω)

Fig. 1. A generic two-message DH type protocol

Protocol description. The generic two-message DH type protocol, depicted in Figure 1, proceeds as
follows:

1. Upon activation of session s = (Â, i) ∈ P ×N with peer B̂, Â (the initiator) performs the steps:
– Choose an ephemeral secret key rÂ ∈R S and compute X = gfI(rÂ,a,Ω).
– Send X (and possibly other public data, e. g. identities of peer and actor of the session) to
B̂.

– Initialize Ts to (Â, B̂, I,m,−), where m denotes the message sent by session s.
2. Upon activation of session s′ = (B̂, j) ∈ P × N with message X (and possibly other data) on

behalf of Â, party B̂ (the responder) performs the steps:
– Check that X ∈ G.
– Choose an ephemeral secret key rB̂ ∈R S and compute Y = gfR(rB̂ ,b,Ω).
– Compute KB̂ = FR(fR(rB̂ , b, Ω), b,X,Ω).

– Send Y (and possibly other public data) to Â.
– Set Ts′ to (B̂, Â,R,m′, n′), where m′ denotes the message sent by session s′ and n′ the

message received by session s′, and complete the session by accepting KB̂ as the session-key.

8

3. Upon receiving message Y (with possibly other data) in session s , party Â performs the steps:

– Check that Y ∈ G.

– Compute KÂ = FI(fI(rÂ, a,Ω), a, Y,Ω).

– Update Ts to (Â, B̂, I,m, n) and complete the session by accepting KÂ as the session-key.

The above description also applies to protocols with additional checks, which we omit for clarity.
We assume that whenever a check in a session fails, all session-specific data is erased from memory
and the session is aborted, i. e., it terminates without establishing a session-key.

Definition 11 (Protocol Class DH-2). We define DH-2 as the class of all two-message key-
exchange protocols that follow the description of a generic DH type protocol and meet the following
validity requirement:

– in the presence of an eavesdropping adversary, two parties Â and B̂ can complete matching
sessions (in the sense of Definition 6), in which case they hold the same session-key.

The validity requirement requires that if the messages of two parties Â and B̂ are faithfully relayed
to each other, then both parties end up with a shared session-key (see also [2–4]). Note that, e. g.,
the KE protocols NAXOS [20], NAXOS+ [22], NETS [21] and CMQV [29] belong to the class
DH-2.

Protocol transformation. We now show how to transform any protocol Π ∈ DH-2 into a two-message
protocol SIG(Π), shown in Figure 2, by applying the signature transformation SIG. Party Â has
two independent valid long-term secret/public key pairs, one pair (a,A) from protocol Π and one
pair (skÂ, pkÂ) for use in a digital signature scheme Σ with security parameter k. Similarly, party

B̂’s long-term secret/public key pairs are (b, B) and (skB̂ , pkB̂). The transformed protocol SIG(Π)
in Figure 2 proceeds as protocol Π except that each party needs to additionally sign a message
using its secret signature key and check that the received signature on a message is valid with
respect to the long-term public key of its peer. The fields between square brackets within the
signature are optional. Note that if the objective is to obtain a one-round protocol, then X should
not be included in the second message.

Â: (a,A), (skÂ, pkÂ)

rÂ, X = gfI(rÂ,a,Ω)

K
Â

= FI(fI(r
Â
, a, Ω), a, Y, Ω)

X,σ
Â
=Signsk

Â
(X[,B̂])

−−−−−−−−−−−−−−−−−−→
Y,σ

B̂
=Signsk

B̂
(Y [,X,Â])

←−−−−−−−−−−−−−−−−−−−−

B̂: (b,B), (skB̂ , pkB̂)

rB̂ , Y = gfR(r
B̂
,b,Ω)

K
B̂

= FR(fR(r
B̂
, b, Ω), b, X,Ω)

Fig. 2. A transformed generic protocol SIG(Π)

Security analysis. We show in Theorem 1 below that the SIG transformation is a security-
strengthening transformation from the eCKw model to the stronger model eCK-PFS provided that
the digital signature scheme is a unique signature scheme that is strongly existentially unforgeable
under an adaptive chosen-message attack (SUF-CMA). For certain randomized signature schemes,
an efficient adversary can compute the secret (signature) key given the corresponding public key,
a signature on any message using the secret key, and the random coins involved in the signature
generation learned through an ephemeral-key query (as noted in [20]). We assume a unique signature
scheme to avoid the “no-match” attacks described in [23]. We give an alternative construction to
achieve security in the eCK-PFS model in Appendix C, where the session key of the transformed
protocol is computed as the hash of the message transcript concatenated with the session string of
the original protocol.

We recall the definition of strong partnering given in [9].

9

Definition 12. Let Π be an AKE protocol, and let M = (Q,F) be a security model. We say that
Π has strong partnering in the security experiment W in model M if no PPT adversary, when
attacking Π in experiment W in model M , can establish a session s that satisfies F and a session
s′ 6= s of protocol Π holding the same session key without being matching, with more than negligible
probability in the security parameter k.

The following lemma is used in the proof of Theorem 1.

Lemma 1 (Difference Lemma [28]). Let A,B, F be events defined on some probability space.
Suppose that event A ∧ F c occurs if and only if event B ∧ F c occurs. Then |P (A)− P (B)| ≤ P (F).

Theorem 1. Let Π ∈ DH-2. Suppose that

– Π is secure in the eCKw model,
– the signature scheme is unique and SUF-CMA, and
– SIG(Π) has strong partnering in the eCK-PFS model,

then the protocol SIG(Π) is a secure key-exchange protocol in the eCK-PFS model.

Proof. It is straightforward to verify the first condition of Definition 10, i. e., that matching sessions
of protocol SIG(Π) compute the same key (since matching sessions of protocol Π compute the
same key). We show next that the second condition of Definition 10 holds, i. e., the adversary has no
more than a negligible advantage in distinguishing the session key from a random key. We present
a security proof structured as a sequence of games, a proof technique introduced in [28]. Let Si
denote the event that the adversary correctly guesses the bit chosen by the challenger to answer
the test-session query in Game i and let αi = |2P (Si)− 1| denote the advantage of the adversary in
Game i. Let N, qs be upper bounds on the number of parties and activated sessions, respectively.

Game 0 This game reflects the security experiment W in model eCK-PFS, as defined in Subsec-
tion 3.2, played by a PPT adversary E against the protocol SIG(Π).

Game 1 [Transition based on a small failure event] Let CollSIG(Π) be the small failure event that
a collision for protocol SIG(Π) occurs (e.g. in ephemeral secret keys). As soon as event CollSIG(Π)

occurs, the attack game stops.

Analysis of Game 1 Game 0 is identical to Game 1 up to the point in the experiment where
event CollSIG(Π) occurs for the first time. The Difference Lemma yields that |P (S0)− P (S1)| ≤
P (CollSIG(Π)). Hence,

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)
≤ 2P (CollSIG(Π)) + α1.

Game 2 [Transition based on a large failure event (see [7, 13])] Before the adversary E starts the
attack game, the challenger chooses a random value m ∈R {1, 2, ..., qs}. The m-th session activated
by E, denoted by s∗, is the session on which the challenger wants the adversary to be tested. Let T
be the event that the test-session is not session s∗. If event T occurs, then the attack game halts
and the adversary outputs a random bit.

Analysis of Game 2 Event T is non-negligible, the environment can efficiently detect it and T is
independent of the output in Game 1 (i. e. P (S1|T) = P (S1)). If T does not occur, then the attacker
E will output the same bit in Game 2 as it did in Game 1 (so that P (S2|T c) = P (S1|T c) = P (S1)).
If event T occurs in Game 2, then the attack game halts and the adversary E outputs a random
bit (so that P (S2|T) = 1/2). We have,

P (S2) = P (S2|T)P (T) + P (S2|T c)P (T c) =
1

2
P (T) + P (S1)P (T c)

= P (T c)(P (S1)− 1

2
) +

1

2
.

Hence we get, α2 = |2P (S2)− 1| = P (T c)|2P (S1)− 1| = 1
qs
α1.

10

Game 3 [Transition based on a small failure event] Let D denote the event when the adversary
issues a session-key query to a session s that is not matching session s∗ but which accepted the
same session key. This game is the same as the previous one except that when event D occurs, the
experiment halts and E outputs a random bit.

Analysis of Game 3

Claim. We have |P (S2)− P (S3)| ≤ P (D).

Proof. If event F does not occur, then Game 2 and 3 proceed identically (i. e. S2 ∧ F c ⇔ S3 ∧ F c).
The Difference Lemma yields that |P (S2)− P (S3)| ≤ P (D).

Claim. We have that P (D) = u(k) is negligible in the security parameter k.

Proof. Since SIG(Π) has strong partnering in the eCK-PFS model, it holds that, with overwhelming
probability, if two sessions compute the same session-key, then they must be matching. Thus, event
D can only occur with negligible probability u(k).

Suppose w. l. o. g. that s∗role = I and that protocol Π does not include optional public information
in the sent messages. Let F be a forgery event with respect to the long-term public key pkP̂ of

party P̂ , that is, adversary E issues a send(s∗, V, σ) query to session s∗ being incomplete such that

– σ is a valid signature on message m = (V, [W, s∗actor]) with respect to the public key of P̂ , where
W is the Diffie-Hellman exponential contained in message s∗sent , and

– (V, σ) has never been output by party P̂ in response to a send query.

Game 4 [Transition based on a small failure event] This game is the same as the previous one
except that when a forgery event F with respect to the long-term public key of some party P̂ ∈ P
occurs, the experiment halts and E outputs a random bit.

Analysis of Game 4 The analysis of Game 4 proceeds in several steps.
Consider first the following two cases.

1. If E issues a corrupt(P̂) query before the completion of session s∗, then this query would render
session s∗ un-fresh. This would have caused Game 2 to abort since session s∗ would not be the
test-session. Recall that the test-session query can only be issued to a session that is fresh by
the time the query is issued. Hence this case can be excluded.

2. If E does not issue a corrupt(P̂) query before the completion of session s∗, then he can only
impersonate party P̂ to session s∗ by forging a signature on a message with respect to the
long-term public key of P̂ .

Claim. We have |P (S3)− P (S4)| ≤ P (F).

Proof. If event F does not occur, then Game 3 and 4 proceed identically (i. e. S3 ∧ F c ⇔ S4 ∧ F c).
The Difference Lemma yields that |P (S3)− P (S4)| ≤ P (F).

Claim. If the unique signature scheme is SUF-CMA, then P (F) is negligible. More precisely,

P (F) ≤ NAdvSignM (k), where AdvSignM (k) denotes the probability of a successful forgery.

Proof. Consider the following algorithm M using adversary E as a subroutine. M is given a public
signature key pk and access to the corresponding signature oracle OSign . It selects at random one
of the N parties and sets its public key to pk. We denote this party by P̂ and its signature key
pair by (skP̂ , pkP̂). Further, the algorithm M chooses signature key pairs (ski, pki) for all parties

P̂i ∈ P with P̂i 6= P̂ and stores the associated secret keys. It also chooses key pairs (ci, Ci) for all
parties P̂i ∈ P as needed for protocol Π and stores the associated secret keys.
ALGORITHM M :

1. Run E on input 1k and the public keys for all of the N parties.

11

2. If E issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P, then answer it as follows.
– If zactor 6= P̂ , then choose x ∈R Zp to get X = gx, compute the signature σ on message

m = (X[, Q̂]) on behalf of zactor and return the message (X,σ) to E.
– If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the signature oracle on message

m = (X[, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in a table
L, initially empty, and return the message (X,σ) to E.

3. If E issues a send(z, Q̂,m) query to activate session z, then answer it as follows. First check
whether message m is of the form (X,σ) for some X ∈ G and σ a valid signature on message
(X[, zactor]) with respect to the public key of Q̂. If the checks succeed, then:

– If zactor 6= P̂ , then choose y ∈R Zp to get Y = gy, compute the signature σ on message

m = (Y [, X, Q̂]) on behalf of zactor and return the message (Y, σ) to E.
– If zactor = P̂ , then choose y ∈R Zp to get Y = gx and query the signature oracle on message

m = (Y [, X, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in table
L (initially empty) and return the message (Y, σ) to E.

If one of the checks does not succeed, then abort session z.
4. If E issues a send(z,m) query to session z in role I, then check whether message m is of the

form (Y, σ) for some Y ∈ G and σ a valid signature on message (Y [, X, zactor]) with respect to
the public key of zpeer (where W ∈ G is contained in message s∗sent). If the check fails, then
abort session z.

5. If E makes a send(s∗, V, σ) query, where σ is a valid signature with respect to the public key
pkP̂ of party P̂ on message m = (V [,W, s∗actor]) (where W ∈ G is contained in s∗sent), before the
completion of the test-session s∗ and (m,σ) /∈ L, then stop E and output (m,σ) as a forgery.

6. The queries session-key, ephemeral-key are answered in the appropriate way since M has chosen
the ephemeral secret keys for all the sessions and the long-term secret keys for use in protocol
Π for all the parties.

7. The queries corrupt(P̂i), where P̂i ∈ P and P̂i 6= P̂ , are answered in the appropriate way since
M knows the secret key pairs of the parties P̂i 6= P̂ .

8. If E issues the query test-session(s∗), then abort with failure.

Under event F , algorithm M is successful as described in Step 5 and the abortion as in Step 8 does
not occur. The probability that E succeeds in forging a signature with respect to the public key
of P̂ is bounded above by the probability that M outputs a forgery multiplied by the number of
parties, that is, P (F) ≤ NAdvSignM (k).

Claim. Let Adv
SIG(Π),Game 4,O
E (k) := |2P (S4|O)− 1|, where O denotes the event that there is an

origin-session for the test-session. It holds that Adv
SIG(Π),Game 4
E (k)

= max(0, Adv
SIG(Π),Game 4,O
E (k)).

Proof. Note that |2P (S4|F)− 1| = |2 1
2 − 1| = 0 (since, when event F occurs in Game 4, E outputs

a random bit) and that if event F does not occur, then there exists an origin-session for the
test-session.

We next establish an upper bound for Adv
SIG(Π),Game 4,O
E (k) in terms of the security of protocol

Π.

Claim. Assume that in Game 4 there exists a unique3 origin-session s for the test-session s∗ with
sactor = s∗peer . If there is an efficient adversary E in eCK-PFS succeeding in Game 4 against protocol
SIG(Π) with non-negligible advantage, then we can construct an efficient adversary E′ in eCKw

succeeding in Game 4 against protocol Π with non-negligible advantage using adversary E as a

subroutine. Moreover, it holds that Adv
SIG(Π),Game 4,O
E (k) ≤ AdvΠ,Game 4,O

E′ (k).

Proof. Fix an efficient adversary E in eCK-PFS succeeding in Game 4 against protocol SIG(Π)
with non-negligible advantage. Let us construct an adversary E′ in eCKw succeeding in Game 4
against protocol Π with non-negligible advantage using adversary E as a subroutine.
ALGORITHM E′: E′ chooses secret/public signature key pairs for all the parties and stores the
associated secret signature keys. It is given all public knowledge, such as public (non-signature)
keys for all the parties.

3 No collision in the ephemeral secret keys occurs for SIG(Π) (where Π ∈ DH-2) since otherwise Game 1
would have caused the game to abort.

12

1. Run E against SIG(Π) on input 1k and the public key pairs for all of the N parties.

2. When E issues a corrupt(P̂) query to some party P̂ , E′ issues that query to party P̂ and returns
the answer to that query together with the secret signature key of P̂ (that E′ has chosen) to E.

3. When E issues an ephemeral-key or a session-key query to some session z, E′ issues that query
to session z and returns the answer to E.

4. send queries are answered in the following way.

– If E issues a send(z, Q̂) query to activate session z with peer Q̂, then E′ issues the same
query to session z. The response is a message W (∈ G). Since E′ knows the secret signature
key of zactor , it can sign the message m = (W [, Q̂]) on its behalf and then return the
message (W,σ) to E, where σ denotes the signature on m with respect to the public key of
zactor .

– If E issues a send(z, Q̂,m) query to activate session z, where message m is of the form
(W,σ), then E′ first checks whether W ∈ G and second whether σ is a valid signature on
message (W [, zactor]) with respect to the public key of Q̂. If the checks succeed, then E′

issues the query send(z,W) to session z. The response is a message V ∈ G. Since E′ knows
the secret signature key of zactor , it can sign the message m = (V [,W, Q̂]) on its behalf and
then return the message (V, σ) to E, where σ denotes the signature on m with respect to
the public key of zactor .

– If E issues a send(z,m) query, where message m is of the form (V, σ), then E′ first checks
whether V ∈ G and second whether σ is a valid signature on message (V [,W, zactor]) with
respect to the public key of zpeer , where W is the Diffie-Hellman exponential contained in
zsent . If the checks succeed, then E′ issues the query send(z, V) to session z.

If one of the checks fails, then session z is aborted (i. e. E′ aborts session z).

5. In case E issues the test-session query to session s∗, E′ issues the test-session query to session
s∗ and returns the answer to E.

6. At the end of E’s execution (after it has output its guess b′), output b′ as well.

Notice that since by assumption there exists a unique origin-session for the test session and since
the signature scheme is unique, the test session satisfying the freshness predicate of eCK-PFS
implies that the simulated test session in eCKw satisfies the freshness predicate of eCKw.4

Thus, it holds that Adv
SIG(Π),Game 4,O
E (k) ≤ AdvΠ,Game 4

E′ (k).

Finally,

Adv
SIG(Π)
E (k) ≤ 2P (CollSIG(Π)) + 2qsu(k) + 2qsNAdv

Sign
M (k) + qsAdv

SIG(Π),Game 4,O
E (k)

≤ 2P (CollSIG(Π)) + 2qsu(k) + 2qsNAdv
Sign
M (k) + qsAdv

Π,Game 4
E′ (k)

Since by assumption protocol Π is secure in eCKw, there is a negligible function g such that
AdvΠ,Game 4

E′ (k) ≤ g(k) which completes the proof.

ut

Remark 1. Let Mw and M-PFS be the security models obtained from eCKw and eCK-PFS (respec-
tively) by removing the ephemeral-key query and related restrictions in the freshness definitions.
Then it can be shown in a similar way as above that for any KE protocol Π ∈ DH-2 secure in Mw,
the transformed protocol SIG(Π) is secure in M-PFS using either a deterministic or a randomized
SUF-CMA unique signature scheme.

4 Note that if we would not assume a unique signature scheme but only a deterministic signature scheme Σ =
(Gen,Sign,Vrfy), then we cannot exclude that there is no other signature scheme Σ′ = (Gen ′,Sign ′,Vrfy ′)
such that Vrfypk(m,Signsk(m)) = Vrfypk(m,Sign ′

sk(m)) = 1 and Signsk(m) 6= Sign ′
sk(m) for some

tuple (sk, pk,m). If such a signature scheme Σ′ exists, then the adversary could cause the origin-session
not to match the test session and issue a session-key reveal query on the origin-session in the eCK-PFS
model without affecting the freshness of the test session in eCK-PFS; however, the simulated origin
session in eCKw would be matching the test session in eCKw and a session-key reveal query on the
origin-session would render the test session not to satisfy the freshness predicate of the eCKw model.
This was first pointed out in [23]. A concrete example of a deterministic signature scheme for which it is
not difficult to construct another signature scheme with the above property is EdDSA [5].

13

Remark 2. In contrast to the SIG transformation, the MAC transformation C suggested in [8]
applied to any protocol π ∈ DH-2 does not yield a two-message key-exchange protocol secure in
eCK-PFS since the transformed protocol is vulnerable to an attack that combines revealing the
long-term secret keys of the actor of the test-session with revealing the long-term secret keys of the
peer of the test-session after its completion. More precisely, an attacker can impersonate the peer of
the test-session by first revealing the long-term secret keys of the actor (which allows him to create
valid MACs on messages of his choice) and after the completion of the test-session revealing the
long-term secret keys of the peer. For example, this attack shows that C(NAXOS) [8] is insecure in
eCK-PFS.

5 NAXOS Revisited

The NAXOS protocol [20], shown in Figure 3, provides an example of a protocol belonging to the class

DH-2, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote two hash functions and rÂ, rB̂ ∈R
{0, 1}k. In analogy to Figure 1, note that fI(rÂ, a,Ω) = H1(rÂ, a), fR(rB̂ , b, Ω) = H1(rB̂ , b),

FI(fI(rÂ, a,Ω), a, Y,Ω) = H2(Y a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂), and FR(fR(rB̂ , b, Ω), b,X,Ω) = H2(AH1(rB̂ ,b),

Xb, XH1(rB̂ ,b), Â, B̂).

Â: (a,A)

rÂ, X = gH1(rÂ,a)

K
Â

= H2(Y a,B
H1(r

Â
,a)

, Y
H1(r

Â
,a)

, Â, B̂)

X−−−−−−−−→
Y←−−−−−−−−

B̂: (b,B)

rB̂ , Y = gH1(rB̂ ,b)

K
B̂

= H2(A
H1(r

B̂
,b)
, Xb,X

H1(r
B̂
,b)
, Â, B̂)

Fig. 3. NAXOS protocol [20]

The following proposition states that the NAXOS protocol is secure in eCKw.

Proposition 1. Under the GAP-CDH assumption in the cyclic group G of prime order p, NAXOS
is secure in the eCKw model, when H1 and H2 are modeled as independent random oracles.

In contrast to the proof of NAXOS in the eCK model [20], the proof of Proposition 1 distinguishes
between the cases whether or not an origin-session (instead of a matching session) exists for the
test-session.

Proof (Sketch). Similar to [20,29], we analyze the following three events:

1. DL ∧K
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test-session, DL denotes the event
that there exists a party Ĉ such that the adversary M , during its execution, queries H1 with (∗, c)
before issuing a corrupt(Ĉ) query and K denotes the event that M wins the security experiment
against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X)
and σ3 = CDH(X,Y) given that the test-session is s∗ with Ts∗ = (Â, B̂, I, X, Y). ut

Applying the SIG transformation on the NAXOS protocol yields the protocol SIG(NAXOS),
depicted in Figure 4.

Proposition 2. The SIG(NAXOS) protocol has strong partnering in the eCK-PFS security exper-
iment, under the assumption that H1 and H2 are modeled as independent random oracles and that
the signature scheme is unique.

Combining Proposition 1 and Proposition 2 with Theorem 1, we obtain the following result.

Corollary 1. Under the GAP-CDH assumption in the cyclic group G of prime order p, using a
unique SUF-CMA signature scheme, the SIG(NAXOS) protocol is secure in the eCK-PFS model,
when H1, H2 are modeled as independent random oracles.

14

Â: (a,A), (skÂ, pkÂ)

rÂ, X = gH1(rÂ,a)

X,σ
Â
=Signsk

Â
(X[,B̂])

−−−−−−−−−−−−−−−−−−→
Y,σ

B̂
=Signsk

B̂
(Y [,X,Â])

←−−−−−−−−−−−−−−−−−−−−

B̂: (b,B), (skB̂ , pkB̂)

rB̂ , Y = gH1(rB̂ ,b)

K
Â

= H2(Y a,B
H1(r

Â
,a)

, Y
H1(r

Â
,a)

, Â, B̂) K
B̂

= H2(A
H1(r

B̂
,b)
, Xb,X

H1(r
B̂
,b)
, Â, B̂)

Fig. 4. SIG(NAXOS) protocol

6 Conclusions

We provided two new eCK-like security notions, namely eCKw and eCK-PFS. The eCKw model
slightly strengthens eCK by a more precise modeling of weak-PFS. The stronger eCK-PFS notion
guarantees PFS, even in the presence of eCK-like adversaries. Proving security in eCK-PFS provides
strictly more guarantees than separately proving eCKw-security and PFS. Existing two-message KE
protocols such as CMQV [29], NAXOS [20], or C(NAXOS) [8] fail to achieve security in eCK-PFS.
We specified a security-strengthening transformation that transforms any two-message DH type KE
protocol secure in eCKw into a two-message protocol secure in eCK-PFS. As our transformation
does not introduce message dependencies, it also allows turning a one-round protocol secure in
eCKw into a one-round protocol secure in eCK-PFS. As future work, we would like to specify
further transformations on KE protocols that are based on the newly developed security models in
this work. It remains an open question whether there exist more efficient transformations that yield
two-message KE protocols secure in eCK-PFS.

Acknowledgments. We would like to thank Colin Boyd for constructive comments on an earlier
version of this work, and Li and Schäge [23] for pointing out a gap in the earlier proof.

References

1. D. Basin and C. Cremers. Degrees of security: Protocol guarantees in the face of compromising
adversaries. In Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual
Conference of the EACSL, volume 6247 of LNCS, pages 1–18. Springer, 2010.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary
attacks. In 19th International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’00, pages 139–155. Springer, 2000.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In 13th annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’93, pages 232–249. Springer New York,
NY, USA, 1994.

4. M. Bellare and P. Rogaway. Provably secure session key distribution: the three party case. In 27th
annual ACM symposium on Theory of computing, STOC ’95, pages 57–66. ACM New York, NY, USA,
1995.

5. Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. Eddsa for more
curves. Cryptology ePrint Archive, Report 2015/677, 2015. http://eprint.iacr.org/2015/677.

6. D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on computational Diffie-
Hellman. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC’06, volume 3958 of LNCS,
pages 229–240. Springer, 2006.

7. C. Boyd, Y. Cliff, J.M. Gonzalez Nieto, and K.G. Paterson. One-round key exchange in the standard
model. Int. J. Applied Cryptography, 1:181–199, 2009.

8. C. Boyd and J. Gonzalez. On Forward Secrecy in One-Round Key Exchange. In 13th IMA International
Conference, IMACC 2011, volume 7089 of LNCS, pages 451–468. Springer, 2011.

9. Colin Boyd, Cas Cremers, Michle Feltz, Kenneth G. Paterson, Bertram Poettering, and Douglas Stebila.
Asics: Authenticated key exchange security incorporating certification systems. Cryptology ePrint
Archive, Report 2013/398, 2013. http://eprint.iacr.org/2013/398.

10. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In B. Pfitzmann, editor, EUROCRYPT’01, volume 2045 of LNCS, pages 453–474. Springer
London, UK, 2001. full version on eprint.

15

11. Q. Cheng, C. Ma, and X. Hu. A new strongly secure authenticated key exchange protocol. In J. H.
Park, H-H. Chen, M. Atiquzzaman, C. Lee, T-H. Kim, and S-S. Yeo, editors, ISA ’09, volume 5576 of
LNCS, pages 135–144. Springer, 2009.

12. S. S. M. Chow and K-K. R. Choo. Strongly-secure identity-based key agreement and anonymous
extension. In J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta, editors, Information Security,
ISC’07, volume 4779 of LNCS, pages 203–220. Springer, 2007.

13. A.W. Dent. A note on game-hopping proofs. Cryptology ePrint Archive, Report 2006/260, 2006.
http://eprint.iacr.org/2006/260.

14. R. Gennaro, H. Krawczyk, and T. Rabin. Okamoto-Tanaka revisited: fully authenticated Diffie-Hellman
with minimal overhead. In J. Zhou and M. Yung, editors, ACNS’10, pages 309–328. Springer, 2010.

15. I.R. Jeong, J. Katz, and D.H. Lee. One-round Protocols for Two-Party Authenticated Key Exchange,
2008. http://www.cs.umd.edu/~jkatz/papers/1round_AKE.pdf.

16. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman Hall/CRC, 2008.
17. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In V. Shoup, editor,

Advances in Cryptology - CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer, 2005.
18. C. Kudla and K. G. Paterson. Modular security proofs for key agreement protocols. In Advances in

Cryptology - ASIACRYPT 2005, volume 3788 of LNCS, pages 549–565, 2005.
19. B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange.

Cryptology ePrint Archive, Report 2006/073, 2006. http://eprint.iacr.org/.
20. B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In

W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec’07, volume 4784 of LNCS, pages 1–16. Springer, 2007.
21. J. Lee and C.S. Park. An efficient authenticated key exchange protocol with a tight security reduction.

Cryptology ePrint Archive, Report 2008/345, 2008. http://eprint.iacr.org/.
22. J. Lee and J.H. Park. Authenticated key exchange secure under the computational Diffie-Hellman

assumption. Cryptology ePrint Archive, Report 2008/344, 2008. http://eprint.iacr.org/.
23. Y. Li and S. Schäge. No-match attacks and robust partnering definitions — defining trivial attacks for

security protocols is not trivial. In 24th ACM Conference on Computer and Communications Security
(CCS), 2017.

24. Anna Lysyanskaya. Unique Signatures and Verifiable Random Functions from the DH-DDH Separation,
pages 597–612. Springer Berlin Heidelberg, 2002.

25. U. Maurer. Abstract models of computation in cryptography. In Nigel Smart, editor, Cryptography and
Coding 2005, volume 3796 of LNCS, pages 1–12. Springer, December 2005.

26. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography, October 1996.
27. T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for the security of

cryptographic schemes. In K. Kim, editor, PKC’2001, volume 1992 of LNCS, pages 104–118. Springer,
2001.

28. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2006. http://eprint.iacr.org/.

29. B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS.
Cryptology ePrint Archive, Report 2007/123, 2007. Version June 22, 2009.

A Proof of Proposition 1

Proposition 1 Under the GAP-CDH assumption in the cyclic group G of prime order p, the
NAXOS protocol is secure in the eCKw model, when H1, H2 are modeled as independent random
oracles.

Proof. Here we show that NAXOS is secure in eCKw. We use the structure of the security proof of
the CMQV protocol in [29] as it is more detailed than the proof of NAXOS in [20].

Let the test-session s∗ be given by Ts∗ = (Â, B̂, I, X, Y). We first consider event Kc where
the adversary M wins the security experiment against NAXOS (with non-negligible advantage)
and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and
σ3 = CDH(X,Y).
Event Kc. If event Kc occurs, then the adversary M must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session-keys computed in sessions s
and s∗, respectively) and s does not match s∗. We consider the following four events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote the random
coins drawn in sessions s1 and s2, respectively).

16

2. A2 : there exist two sessions s1, s2 such that H1(rs1 , skactor ,s1) = H1(rs2 , skactor ,s2) and
rs1 6= rs2 .

3. A3 : there exists a session s′ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM) =
H2(inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc. We denote by qs an upper bound on the number of activated sessions by
the adversary and by qro2 an upper bound on the number of queries to the random oracle H2. We
have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2s
2

1

2k
+
q2s
2

1

p
+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the queries to the

oracle H1 occur and that none of the events A1, ..., A4 occurs. Similar to [20, 29], we next consider
the following three events:

1. DL ∧K
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test-session, DL denotes the event
where there exists a party Ĉ such that the adversary M , during its execution, queries H1 with (∗, c)
before issuing a corrupt(Ĉ) query and K denotes the event that M wins the security experiment
against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X)
and σ3 = CDH(X,Y).

Note that we analyze the security of the NAXOS protocol in case the messages only contain the
Diffie-Hellman exponentials.
Event DL ∧K. This event is independent of the event that there exists an origin-session for the
test-session. Since it might be possible that a redirect event occurs such that the actor of the
origin-session for the test-session is different to the peer of the test-session, the study of this event
applies to any party Ĉ ∈ P (not only to Â or B̂).

Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one party Ĉ at random and sets
its long-term public key to C. S chooses long-term secret/public key pairs for the remaining
parties and stores the associated long-term secret keys. Additionally S chooses a random value
m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗. Suppose further
that s∗actor = Â, s∗peer = B̂ and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as
follows:

1. send queries are answered in the usual way. In case a session s is activated via a send query, S
stores an entry of the form (s, rs, sksactor , κ) ∈ (P ×N)× {0, 1}k × (Zp ∪ {∗})×Zp in a table Q,
initially empty, (unless ephemeral public key validation on the received element fails in which
case the session is aborted). When computing the (outgoing) Diffie-Hellman exponential of
session s, S does the following:
– S chooses rs ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,
– if sactor 6= Ĉ, then S stores the entry (s, rs, sksactor , κ) in Q, else S stores the entry (s, rs, ∗, κ)

in Q,5 and
– S returns the Diffie-Hellman exponential gκ to M .

2. S stores entries of the form
(
P̂i, P̂j , r, U, V, λ

)
∈ P ×P ×{I,R}×G×G×{0, 1}k in a table T ,

initially empty. Upon completion of session s with Ts =
(
P̂i, P̂j , I, U, V

)
, S does the following:

5 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the random data of a session is negligible.

17

– If there exists an entry
(
P̂j , P̂i,R, V, U, λ

)
in table T , then S stores

(
P̂i, P̂j , I, U, V, λ

)
in

table T .
– Else if there exists an entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L, for some λ ∈ {0, 1}k, such that

DDH(V,U, σ3) = 1 and

• V skP̂i = σ1 (in case P̂i 6= Ĉ) or DDH(V, Pi, σ1) = 1 (in case P̂i = Ĉ), and

• UskP̂j = σ2 (in case P̂j 6= Ĉ) or DDH(U,Pj , σ2) = 1 (in case P̂j = Ĉ),

then S stores
(
P̂i, P̂j , I, U, V, λ

)
in table T .

– Else, S chooses µ ∈R {0, 1}k and stores the entry
(
P̂i, P̂j , I, U, V, µ

)
in T .

The session-key of a completed session s with Ts =
(
P̂j , P̂i,R, V, U

)
is determined and stored

similarly.
3. ephemeral-key(s): S answers this query in the appropriate way.
4. session-key(s): S answers this query by look-up in table T .
5. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate way.
6. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = Ĉ in which case S

aborts with failure.
7. S stores entries of the form (r, h, κ) ∈ {0, 1}k × Zp × Zp in a table J , initially empty. When M

makes a query of the form (r, h) to the random oracle for H1, answer it as follows:
– If C = gh, then S aborts M and is successful by outputting DLog(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .

– Else if there exists an entry (s, rs, sksactor , κ) in Q, for some s ∈ P×N, rs ∈ {0, 1}k , sksactor ∈
Zp and κ ∈ Zp, such that rs = r and sksactor = h, then S returns κ to M and stores the
entry (r, h, κ) in table J .

– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in J .

8. S stores entries of the form
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ G×G×G× P × P × {0, 1}k in a table L,

initially empty. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle

for H2, answer it as follows:

– If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1 and

• V skP̂i = σ1 (in case P̂i 6= Ĉ) or DDH(V, Pi, σ1) = 1 (in case P̂i = Ĉ), and

• UskP̂j = σ2 (in case P̂j 6= Ĉ) or DDH(U,Pj , σ2) = 1 (in case P̂j = Ĉ),

then S returns λ to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in

L.
9. M outputs a guess: S aborts with failure.

Analysis of event DL ∧K. S’s simulation of M ’s environment is perfect except with negligible

probability. The probability that M selects s∗ as the test-session is 1
qs

. Assuming that this is indeed

the case, S does not abort in Step 5. With probability at least 1
N , S assigns the public key C to a

party Ĉ for whom M queries H1 with (∗, h) such that C = gh before issuing a corrupt(Ĉ) query. In
this case, S is successful as described in Step 7 and does not abort in Steps 6 and 9. Hence, if event
DL ∧K occurs, then the success probability of S is given by P (S) ≥ 1

Nqs
P (DL ∧K).

Event TO ∧DLc ∧K. Let s∗ and s′ denote the test-session and the origin-session for the test-
session, respectively. We split event Ev := TO ∧DLc ∧K into the following events B1, ..., B3 so
that Ev = B1 ∨B2 ∨B3:

1. B1 : Ev occurs and s∗peer = s′actor .
2. B2 : Ev occurs and s∗peer 6= s′actor and M does not issue an ephemeral-key(s′) query to the

origin-session s′ of s∗, but may issue a corrupt(s∗peer) query.
3. B3 : Ev occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query, but may issue

an ephemeral-key(s′) query to the origin-session s′ of s∗.

18

Event B1. Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with
non-negligible probability. In this case S chooses long-term secret/public key pairs for all the
parties and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary M will be called s∗ and the n’th
activated session will be called s′. The ephemeral secret key of session s∗ is denoted by x̃0 and the
ephemeral secret key of session s′ is denoted by ỹ0. Suppose further that s∗actor = Â, s∗peer = B̂ and
s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. send(s∗, Y0): S proceeds with Step 7.
3. send(s′, P̂): S sets the ephemeral public key Y to Y0 and answers the query with message Y0.
4. send(s′, P̂ , Z): S checks whether Z ∈ G, sets the ephemeral public key Y to Y0, answers the

query with message Y0 and proceeds with Step 7. If the check fails, session s′ is aborted.
5. send(s′, Z): S proceeds with Step 7.
6. Other send queries are answered in the usual way.6

7. S stores entries of the form
(
P̂i, P̂j , r, U, V, λ

)
∈ P ×P ×{I,R}×G×G×{0, 1}k in a table T ,

initially empty. Upon completion of session s with Ts =
(
P̂i, P̂j , I, U, V

)
, S does the following:

– If there exists an entry
(
P̂j , P̂i,R, V, U, λ

)
in table T , then S stores

(
P̂i, P̂j , I, U, V, λ

)
in

table T .
– Else if there exists an entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L, for some λ ∈ {0, 1}k, such that

V
skP̂i = σ1, U

skP̂j = σ2 and DDH(V,U, σ3) = 1, then S stores
(
P̂i, P̂j , I, U, V, λ

)
in table

T .
– Else, S chooses µ ∈R {0, 1}k, and stores the entry

(
P̂i, P̂j , I, U, V, µ

)
in T .

The session-key of a completed session s with Ts =
(
P̂j , P̂i,R, V, U

)
is determined and stored

similarly.
8. ephemeral-key(s): S answers this query in the appropriate way.
9. session-key(s): S answers this query by look-up in table T .

10. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

11. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and

rĈ = x̃0 or if Ĉ = B̂ (i.e. c = b) and rĈ = ỹ0, in which case S aborts with failure.

12. corrupt(P̂): S answers this query in the appropriate way.

13. S stores entries of the form
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ G×G×G× P × P × {0, 1}k in a table L,

initially empty. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle

for H2, answer it as follows:

– If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Y a0 , σ2 = Xb

0 and DDH(X0, Y0, σ3) = 1, then S aborts M and

is successful by outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
, for some λ ∈ {0, 1}k

and U, V ∈ G, such that V
skP̂i = σ1, U

skP̂j = σ2 and DDH(V,U, σ3) = 1 in table T , then

S returns λ to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in

L.
14. M outputs a guess: S aborts with failure.

Analysis of event B1. S’s simulation of M ’s environment is perfect except with negligible prob-
ability. The probability that M selects s∗ as the test-session and s′ as the origin-session for the
test-session is 1

(qs)2
. Assuming that this is indeed the case, S does not abort in Step 10. Recall

6 Note that, if the group check fails, the session is aborted.

19

that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test-session, M can only obtain it via an
ephemeral-key(s∗) query before making an H1 query that includes x̃0. Similarly, M can only obtain
ỹ0 via an ephemeral-key(s′) query on the origin-session s′ before making an H1 query that includes
ỹ0. Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making an H1

query that involves the long-term secret key of party P̂ . Freshness of the test-session guarantees
that the adversary can reveal at most one value in each of the pairs (x̃0, a) and (ỹ0, b); hence S does
not abort in Step 11. Under event K, except with negligible probability of guessing CDH(X0, Y0),
S is successful as described in the first case of Step 13 and does not abort as in Step 14. Hence, if
event B1 occurs, then the success probability of S is given by P (S) ≥ 1

(qs)2
P (B1).

Event B2. Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with
non-negligible probability. The simulation of S proceeds in a similar way as for event B1. Steps 8
and 11 need to be replaced by the following:

– ephemeral-key(s): S answers this query in the appropriate way, except if s = s′ in which case S
aborts with failure.

– H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and
rĈ = x̃0, in which case S aborts with failure.

Analysis of event B2. S’s simulation of M ’s environment is perfect except with negligible prob-
ability. The probability that M selects s∗ as the test-session and s′ as the origin-session for the
test-session is 1

(qs)2
. Recall that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test-session,

M can only obtain it via an ephemeral-key(s∗) query before making an H1 query that includes x̃0.
Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making an H1

query that involves the long-term secret key of party P̂ . Freshness of the test-session guarantees that
the adversary can reveal at most one value of the pair (x̃0, a). Under event B2 the simulation does
not fail as in Step 8. Under event K, except with negligible probability of guessing CDH(X0, Y0),
S is successful as described in the first case of Step 13 and does not abort as in Step 14. Hence, if
event B2 occurs, then the success probability of S is given by P (S) ≥ 1

(qs)2
P (B2).

Event B3. Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with

non-negligible probability. In this case, S chooses one party B̂ at random and sets its long-term
public key to B. S chooses long-term secret/public key pairs for the remaining parties and stores the
associated long-term secret keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}.
We denote the m’th activated session by adversary M by s∗ and the n’th activated session by s′.
The ephemeral secret key of session s∗ is denoted by x̃0. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. send(s∗, Z): S proceeds with Step 4.
3. Other send queries are answered as for event DL ∧K.

4. S stores entries of the form
(
P̂i, P̂j , r, U, V, λ

)
∈ P × P × {I,R} ×G×G× {0, 1}k in a table

T , initially empty. Upon completion of session s with Ts =
(
P̂i, P̂j , I, U, V

)
, S proceeds as for

event DL ∧K (see above).
5. ephemeral-key(s): S answers this query in the appropriate way.
6. session-key(s): S answers this query by look-up in table T .
7. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

8. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and
rĈ = x̃0, in which case S aborts with failure.

9. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = B̂ in which case S
aborts with failure.

10. S stores entries of the form
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ G×G×G× P × P × {0, 1}k in a table L,

initially empty. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle

for H2, answer it as follows:

– If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = A

H1(rs′ ,sks′actor
)
, DDH(X0, B, σ2) = 1 and σ3 = X

H1(rs′ ,sks′actor
)

0 ,

then S aborts M and is successful by outputting CDH(X0, B) = σ2.

20

– Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

– Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1 and

• V skP̂i = σ1 (in case P̂i 6= B̂) or DDH(V, Pi, σ1) = 1 (in case P̂i = B̂), and

• UskP̂j = σ2 (in case P̂j 6= B̂) or DDH(U,Pj , σ2) = 1 (in case P̂j = B̂),

then S returns λ to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

– Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in

L.
11. M outputs a guess: S aborts with failure.

Analysis of event B3. S’s simulation of M ’s environment is perfect except with negligible prob-

ability. The probability that M selects s∗ as the test-session and s′ as its origin-session is 1
(qs)2

.

Assuming that this is indeed the case, S does not abort in Step 7. With probability 1
N , S assigns

the public key B to the peer of the test-session B̂. Under event B3, M does not issue a corrupt(B̂)
query, and so S does not abort in Step 9. Similarly, S does not abort in Step 11 and is successful
as described in Step 10. Hence, if event B3 occurs, then the success probability of S is given by
P (S) ≥ 1

N(qs)2
P (B3).

Event (TO)c ∧DLc ∧K. If there is no origin-session for the test-session, then there is also no
matching session for the test-session. Hence ((TO)c ∧DLc ∧K) ⊆ ((TM)c ∧DLc ∧K) (where TM
denotes the event that there exists a matching session for the test-session) which implies that event
(TO)c ∧DLc ∧K is covered in the analysis of event (TM)c ∧DLc ∧K for which we refer the reader
to [19,20]. Note that,

– S checks whether there is a query (σ1, σ2, σ3, P̂i, P̂j) by M to H2 such that
{
P̂i, P̂j

}
=
{
Â, B̂

}
,

DDH(A, Y, σ1) = 1, DDH(X0, B, σ2) = 1 and DDH(X0, Y, σ3) = 1 (assuming that the test-
session s∗ is given by Ts∗ = (Â, B̂, I, X0, Y) to solve the GDH instance (X0, B), and

– S keeps consistency between session-key and H2 queries as well as between send and H1 queries,

similar to the simulation related to Event B3. ut

B Proof of Proposition 2

Proposition 2 The SIG(NAXOS) protocol has strong partnering in the eCK-PFS security experi-
ment, under the assumption that H1 and H2 are modeled as independent random oracles and that
the signature scheme is unique.

Proof. Suppose otherwise. Namely, suppose that there exist two sessions s and s′ of SIG(NAXOS)
that hold the same session key but are not matching. Since the session key in SIG(NAXOS) is
derived by applying a random oracle, except with negligible probability, the input to the random
oracle in both sessions must be the same. Since they are not matching sessions, either sactor 6= s′peer
or speer 6= s′actor or ssent 6= s′recv or srecv 6= s′sent or srole = s′role .

– First suppose srole 6= s′role . Then either the identifiers or the transcripts of the two sessions do
not correspond.
• If the identifiers do not correspond, then, as they are inputs to the random oracle, except

with negligible probability, the outputs of the random oracle will be different, contradicting
that the two sessions hold the same session key.
• Suppose that sactor = s′peer and speer = s′actor and that either ssent 6= s′recv or srecv 6= s′sent .
∗ Suppose that ssent 6= s′recv . Then either the Diffie-Hellman exponentials contained in
ssent and s′recv are different or they are the same but the signatures are different.
· Suppose that the Diffie-Hellman exponential sent and received are different. The

Diffie-Hellman exponential contained in ssent is used in the computation of the
first component (if session s is executing a responder role), respectively in the
second component (if session s is executing an initiator role), of the call to H2.

21

The Diffie-Hellman exponential contained in s′recv is used in the computation of
the first component (if session s is executing an initiator role), respectively in the
second component (if session s is executing a responder role), of the call to H2.
So, if the Diffie-Hellman exponentials are different, then, except with negligible
probability, the outputs of the random oracle will be different, contradicting that
the two sessions hold the same key.
· Suppose that the Diffie-Hellman exponentials sent and received are the same but that

the signatures are different. However, as the signature scheme is unique, there do not
exist values (pk,m, σ1, σ2) such that σ1 6= σ2 and Vrfypk(m,σ1) = Vrfypk(m,σ2) =
1. So, this case cannot occur.

∗ Suppose that srecv 6= s′sent . The argument is similar to the previous case.
– Second suppose srole = s′role . As the identifiers are inputs to the random oracle, we must have

that sactor = s′actor and speer = s′peer , as otherwise the outputs to the random oracle will be
different, except with negligible probability. Except with negligible probability, two distinct
sessions will have different random coins (ephemeral secret keys), and hence the Diffie-Hellman
exponentials contained in ssent and s′sent will be different (except with negligible probability).
Thus, as srole = s′role , the Diffie-Hellman exponent computed in both sessions will be used in the
computation of the first (if s and s′ are both executing responder roles) respectively the second
(if s and s′ are both executing initiator roles) component of the call to H2, where speer = s′peer ,
and these values are different, so except with negligible probability, the outputs of the random
oracle will be different, contradicting that the two sessions hold the same session key.

C Alternative generic construction to achieve security in eCK-PFS

In [18] Kudla and Paterson present a modular technique to simplify the security proofs of key
exchange protocols. In particular, Kudla and Paterson [18] show that, under certain conditions,
security of a protocol in a model that permits the adversary to reveal session keys is implied by
the security of a variant of the protocol in a reduced model that does not incorporate session
key reveal queries. We show in this section how their result can be extended to achieve security
in the eCK-PFS model via a variant of the signature transformation SIG where, in addition to
the signatures on the messages exchanged, the session key computation involves the signatures
exchanged.

Given a key exchange security model X = (Q,F), we denote by cNR-X (using terminology
from [18], where cNR stands for “computational No-Reveals”, referring to the absence of session-key
reveals) the reduced computational experiment W ′ which is similar to the experiment W in model
X except that the adversary (a) is not allowed to issue session-key and test-session queries, (b) must
pick a session that has accepted and satisfies F at the end of its execution, and (c) output the
session key for this session. See Kudla and Paterson [18] for a more detailed description of reduced
games.

Definition 13 (cNR-X security). Let Π be an KE protocol and X = (Q,F) be an KE security
model. Π is said to be cNR-X-secure if, for all PPT adversaries E, it holds that

1. if two users successfully accept in matching sessions, then they both compute the same session
key, and

2. E has no more than a negligible advantage in winning the cNR-X experiment; that is, there
exists a negligible function negl in the security parameter k such that AdvcNR-X

Π,E (k) ≤ negl(k),

where AdvcNR-X
Π,E (k) is defined as the probability that E outputs (s, skey) for a session s that has

accepted and satisfies F .

We now consider a subclass DH-2-H of the class DH-2 of all two-message key exchange protocols.
The protocol class DH-2-H contains all protocols in DH-2 that compute the session key skey as a
hash H of some string strs, which we call the session string, that is, skey = H(strs), where H is a
hash function. For simplicity, we assume that the session string strs of session s includes the sent
and received messages of session s.

The session string decisional problem for some key exchange protocol Π is defined in [18] as
follows:

22

Definition 14 ([18]). Let M be a key exchange security model. Given the transcript ts of sent
and received messages of some session s in model M as well as the public keys of sactor and speer ,
and str, where str is a string, decide whether str = sss where sss is the session string of session s.

Let Cl denote the class of all two-message KE protocols. Let SIG’:DH-2-H→ Cl be the variant
of the signature transformation SIG which, when applied to a protocol Π in DH-2-H, returns a
protocol SIG′(Π) which contains signatures on the messages exchanged (as when applying the SIG
transformation to Π) and such that the session key of SIG′(Π) is computed as H(x, t), where x is
the session string as computed by protocol Π and t are the signatures on the exchanged messages.

Theorem 2 below states that for any protocol Π ∈ DH-2, under certain conditions, it holds
that security of the related protocol π in a reduced eCKw model implies security of SIG′(Π) in the
stronger non-reduced eCK-PFS model. In the cNR-X experiment of Theorem 2, where X =eCKw,
the query session-key is not allowed, whereas in eCK-PFS this query is allowed. In addition, as we
showed in Section 3.2, the eCKw model is strictly stronger than the eCK-PFS model. The latter
statement even holds if we do not give the adversary access to the session-key query and remove
the associated restrictions in the respective freshness definitions. Note that Theorem 2 is proven
under weaker assumptions on the signature scheme as Theorem 1.

Theorem 2. Let X =eCKw and Y =eCK-PFS. Let Π be a protocol in DH-2-H.

Suppose that

– SIG′(Π) has strong partnering in the eCK-PFS experiment,

– the related protocol π (defined in the same way as Π except that the session key generated in π
is the session string of Π (i.e., sπkey = ssΠ)) is secure in the cNR-X model,

– the session string decisional problem in the eCK-PFS experiment for SIG′(Π) is polynomial-time
reducible to the decisional problem of some relation φ, and

– the signature scheme is deterministic and SUF-CMA,

then the protocol SIG′(Π) is secure in model eCK-PFS, if H is modelled as a random oracle.

Proof. We denote by Λ the session key space associated to protocol Π.

By assumption, the session string decisional problem in the eCK-PFS experiment for SIG′(Π) is
polynomial-time reducible to the decisional problem of some relation φ. Hence there is an algorithm
W which solves the session string decisional problem for SIG′(Π) in polynomial-time τ ′′ given
access to a decisional oracle for φ.

Let B be an adversary winning the eCK-PFS experiment against protocol SIG′(Π) with
non-negligible probability η′ in time τ ′.

It is straightforward to verify the first condition of Definition 10, i. e., that matching sessions of
protocol SIG′(Π) compute the same key (since matching sessions of protocol Π compute the same
key).

We show next that the second condition of Definition 10 holds, i. e., the adversary has no more
than a negligible advantage in distinguishing the session key from a random key. We present a
security proof structured as a sequence of games, a proof technique introduced in [28]. Let Si
denote the event that the adversary correctly guesses the bit chosen by the challenger to answer
the test-session query in Game i and let αi = |2P (Si)− 1| denote the advantage of the adversary in
Game i. Let N, qs be upper bounds on the number of parties and activated sessions, respectively.

Game 0 This game reflects the security experiment W in model eCK-PFS, as defined in Subsec-
tion 3.2, played by a PPT adversary B against the protocol SIG′(Π).

Game 1 [Transition based on a small failure event] Let CollSIG′(Π) be the small failure event that
a collision for protocol SIG′(Π) occurs (e.g. in ephemeral secret keys). As soon as event CollSIG′(Π)

occurs, the attack game stops.

23

Analysis of Game 1 Game 0 is identical to Game 1 up to the point in the experiment where
event CollSIG′(Π) occurs for the first time. The Difference Lemma yields that |P (S0)− P (S1)| ≤
P (CollSIG′(Π)). Hence,

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)
≤ 2P (CollSIG′(Π)) + α1.

Game 2 [Transition based on a large failure event (see [7, 13])] Before the adversary D starts the
attack game, the challenger chooses a random value m ∈R {1, 2, ..., qs}. The m-th session activated
by D, denoted by s∗, is the session on which the challenger wants the adversary to be tested. Let T
be the event that the test-session is not session s∗. If event T occurs, then the attack game halts
and the adversary outputs a random bit.

Analysis of Game 2 Event T is non-negligible, the environment can efficiently detect it and T is
independent of the output in Game 1 (i. e. P (S1|T) = P (S1)). If T does not occur, then the attacker
D will output the same bit in Game 2 as it did in Game 1 (so that P (S2|T c) = P (S1|T c) = P (S1)).
If event T occurs in Game 2, then the attack game halts and the adversary D outputs a random
bit (so that P (S2|T) = 1/2). We have,

P (S2) = P (S2|T)P (T) + P (S2|T c)P (T c) =
1

2
P (T) + P (S1)P (T c)

= P (T c)(P (S1)− 1

2
) +

1

2
.

Hence we get, α2 = |2P (S2)− 1| = P (T c)|2P (S1)− 1| = 1
qs
α1.

Game 3 [Transition based on a small failure event] Let D denote the event when the adversary
issues a session-key query to a session s that is not matching session s∗ but which accepted the
same session key. This game is the same as the previous one except that when event D occurs, the
experiment halts and B outputs a random bit.

Analysis of Game 3

Claim. We have |P (S2)− P (S3)| ≤ P (D).

Proof. If event F does not occur, then Game 2 and 3 proceed identically (i. e. S2 ∧ F c ⇔ S3 ∧ F c).
The Difference Lemma yields that |P (S2)− P (S3)| ≤ P (D).

Claim. We have that P (D) = u(k) is negligible in the security parameter k.

Proof. Since SIG′(Π) has strong partnering in the eCK-PFS model, it holds that, with overwhelming
probability, if two sessions compute the same session-key, then they must be matching. Thus, event
D can only occur with negligible probability u(k).

Suppose w. l. o. g. that s∗role = I and that protocol Π does not include optional public information
in the sent messages. Let F be a forgery event with respect to the long-term public key pkP̂ of

party P̂ , that is, adversary B issues a send(s∗, V, σ) query to session s∗ being incomplete such that

– σ is a valid signature on message m = (V, [W, s∗actor]) with respect to the public key of P̂ , where
W is the Diffie-Hellman exponential contained in message s∗sent , and

– (V, σ) has never been output by party P̂ in response to a send query.

Game 4 [Transition based on a small failure event] This game is the same as the previous one
except that when a forgery event F with respect to the long-term public key of some party P̂ ∈ P
occurs, the experiment halts and B outputs a random bit.

24

Analysis of Game 4 The analysis of Game 4 proceeds in several steps.
Consider first the following two cases.

1. If B issues a corrupt(P̂) query before the completion of session s∗, then this query would render
session s∗ un-fresh. This would have caused Game 2 to abort since session s∗ would not be the
test-session. Recall that the test-session query can only be issued to a session that is fresh by
the time the query is issued. Hence this case can be excluded.

2. If B does not issue a corrupt(P̂) query before the completion of session s∗, then he can only
impersonate party P̂ to session s∗ by forging a signature on a message with respect to the
long-term public key of P̂ .

Claim. We have |P (S3)− P (S4)| ≤ P (F).

Proof. If event F does not occur, then Game 3 and 4 proceed identically (i. e. S3 ∧ F c ⇔ S4 ∧ F c).
The Difference Lemma yields that |P (S3)− P (S4)| ≤ P (F).

Claim. If the unique signature scheme is SUF-CMA, then P (F) is negligible. More precisely,

P (F) ≤ NAdvSignM (k), where AdvSignM (k) denotes the probability of a successful forgery.

Proof. Consider the following algorithm M using adversary B as a subroutine. M is given a public
signature key pk and access to the corresponding signature oracle OSign . It selects at random one
of the N parties and sets its public key to pk. We denote this party by P̂ and its signature key
pair by (skP̂ , pkP̂). Further, the algorithm M chooses signature key pairs (ski, pki) for all parties

P̂i ∈ P with P̂i 6= P̂ and stores the associated secret keys. It also chooses key pairs (ci, Ci) for all
parties P̂i ∈ P as needed for protocol Π and stores the associated secret keys.
ALGORITHM M :

1. Run B on input 1k and the public keys for all of the N parties.
2. If B issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P, then answer it as follows.

– If zactor 6= P̂ , then choose x ∈R Zp to get X = gx, compute the signature σ on message

m = (X[, Q̂]) on behalf of zactor and return the message (X,σ) to B.
– If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the signature oracle on message

m = (X[, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in a table
L, initially empty, and return the message (X,σ) to B.

3. If B issues a send(z, Q̂,m) query to activate session z, then answer it as follows. First check
whether message m is of the form (X,σ) for some X ∈ G and σ a valid signature on message
(X[, zactor]) with respect to the public key of Q̂. If the checks succeed, then:

– If zactor 6= P̂ , then choose y ∈R Zp to get Y = gy, compute the signature σ on message

m = (Y [, X, Q̂]) on behalf of zactor and return the message (Y, σ) to B.
– If zactor = P̂ , then choose y ∈R Zp to get Y = gx and query the signature oracle on message

m = (Y [, X, Q̂]) which returns the signature σ on message m. Store the pair (m,σ) in table
L (initially empty) and return the message (Y, σ) to B.

If one of the checks does not succeed, then abort session z.
4. If B issues a send(z,m) query to session z in role I, then check whether message m is of the

form (Y, σ) for some Y ∈ G and σ a valid signature on message (Y [, X, zactor]) with respect to
the public key of zpeer (where W ∈ G is contained in message s∗sent). If the check fails, then
abort session z.

5. If B makes a send(s∗, V, σ) query, where σ is a valid signature with respect to the public key
pkP̂ of party P̂ on message m = (V [,W, s∗actor]) (where W ∈ G is contained in s∗sent), before the
completion of the test-session s∗ and (m,σ) /∈ L, then stop B and output (m,σ) as a forgery.

6. The queries session-key, ephemeral-key are answered in the appropriate way since M has chosen
the ephemeral secret keys for all the sessions and the long-term secret keys for use in protocol
Π for all the parties.

7. The queries corrupt(P̂i), where P̂i ∈ P and P̂i 6= P̂ , are answered in the appropriate way since
M knows the secret key pairs of the parties P̂i 6= P̂ .

8. If B issues the query test-session(s∗), then abort with failure.

25

Under event F , algorithm M is successful as described in Step 5 and the abortion as in Step 8 does
not occur. The probability that B succeeds in forging a signature with respect to the public key
of P̂ is bounded above by the probability that M outputs a forgery multiplied by the number of
parties, that is, P (F) ≤ NAdvSignM (k).

Claim. Let Adv
SIG′(Π),Game 4,O
B (k) := |2P (S4|O)− 1|, where O denotes the event that there is an

origin-session for the test-session. It holds that Adv
SIG′(Π),Game 4
B (k)

= max(0, Adv
SIG′(Π),Game 4,O
B (k)).

Proof. Note that |2P (S4|F)− 1| = |2 1
2 − 1| = 0 (since, when event F occurs in Game 4, B outputs

a random bit) and that if event F does not occur, then there exists an origin-session for the
test-session.

We next establish an upper bound for Adv
SIG′(Π),Game 4,O
B (k) in terms of the security of protocol

π.

Claim. Assume that in Game 4 there exists a unique7 origin-session s for the test-session s∗ with
sactor = s∗peer .

Proof. Fix an efficient adversary B in eCK-PFS succeeding in Game 4 against protocol SIG′(Π)
with non-negligible advantage. Let us construct an adversary A in eCKw succeeding in Game 4
against protocol Π with non-negligible advantage using adversary B as a subroutine.
ALGORITHM A: A chooses secret/public signature key pairs for all the parties and stores the
associated secret signature keys. It is given all public knowledge, such as public (non-signature)
keys for all the parties. We now define A’s responses to B’s queries for the pre-specified peer setting;
the post-specified peer case proceeds similarly.

1. Run B against SIG′(Π) on input 1k and the public key pairs for all of the N parties.
2. q ∈ Q ∩ {ephemeral-key}: When B issues an ephemeral-key query to some session z, A issues

that query to session z and returns the answer to B.
3. q ∈ Q ∩ {corrupt}: When A issues a corrupt(P̂) query to some party P̂ , A issues that query to

party P̂ and returns the answer to that query together with the secret signature key of P̂ (that
A has chosen) to B. .

4. send queries are answered in the following way.
– If B issues a send(z, Q̂) query to activate session z with peer Q̂, then A issues the same

query to session z. The response is a message W (∈ G). Since A knows the secret signature
key of zactor , it can sign the message m = (W [, Q̂]) on its behalf and then return the
message (W,σ) to B, where σ denotes the signature on m with respect to the public key of
zactor .

– If B issues a send(z, Q̂,m) query to activate session z, where message m is of the form
(W,σ), then A first checks whether W ∈ G and second whether σ is a valid signature on
message (W [, zactor]) with respect to the public key of Q̂. If the checks succeed, then A
issues the query send(z,W) to session z. The response is a message V ∈ G. Since A knows
the secret signature key of zactor , it can sign the message m = (V [,W, Q̂]) on its behalf and
then return the message (V, σ) to B, where σ denotes the signature on m with respect to
the public key of zactor .

– If B issues a send(z,m) query, where message m is of the form (V, σ), then A first checks
whether V ∈ G and second whether σ is a valid signature on message (V [,W, zactor]) with
respect to the public key of zpeer , where W is the Diffie-Hellman exponential contained in
zsent . If the checks succeed, then A issues the query send(z, V) to session z.

If one of the checks fails, then session z is aborted (i. e. A aborts session z).
5. H query: To answer B’s queries to the random oracle for H, A stores entries of the form (xi, λi)

with λi ∈ Λ in the H-List. When B makes a query x to the random oracle for H, A determines
the return value for B as follows:
– If there exists an entry (xi, λi) in the H-List with xi = x, then return λi.

7 No collision in the ephemeral secret keys occurs for SIG′(Π) (where Π ∈ DH-2-H) since otherwise Game
1 would have caused the game to abort.

26

– Else if there exists an entry (sactor , speer , srole , ssent , srecv , λi) in the G-List, for some session
s that has accepted and λi ∈ Λ, such that x is the session string of session s (i.e., x = ss)
using algorithm W , then store the entry (x, λi) in the H-List and return λi.

– Else, A chooses λ ∈R Λ, stores the entry (x, λ) in the H-List and returns λ.
6. session-key(s) : To answerB’s session-key queries,A stores entries of the form (sactor , speer , srole , ssent , srecv , λi)

with λi ∈ Λ in the G-List. When B makes a session-key(s) query to an initiator session s that
has accepted, A determines the return value for B as follows:
– If there exists an entry (sactor , speer , I, ssent , srecv , λi) in the G-List, for some λi ∈ Λ, then

return λi.
– Else if there exists an entry (speer , sactor , R, srecv , ssent , λi) in the G-List, then A stores the

entry (sactor , speer , I, ssent , srecv , λi) in the G-List and returns λi.
– Else if there exists an entry of the form (xi, λi) in the H-List, where xi = ss using algorithm
W , then A stores the entry (sactor , speer , I, ssent , srecv , λi) in the G-List and returns λi.

– Else, A chooses λ ∈R Λ, stores the entry (sactor , speer , I, ssent , srecv , λ) in the G-List, and
returns λ.

A session-key query to a responder session that has accepted is answered similarly.
7. In case B issues the test-session query to session s∗, A issues the test-session query to session
s∗ and returns the answer to B.

8. At the end of B’s execution (after it has output its guess b′), output b′ as well.

A can detect the complementary event Kc by checking which of the entries (xi, λi) in the H-List
has xi = ss∗ using algorithm W .

Notice that since by assumption there exists a unique origin-session for the test session, the
test session satisfying the freshness predicate of eCK-PFS implies that the simulated test session

in eCKw satisfies the freshness predicate of eCKw. Thus, it holds that Adv
SIG′(Π),Game 4,O
B (k) ≤

Advπ,Game 4
A (k).
Finally,

Adv
SIG′(Π)
B (k) ≤ 2P (CollSIG′(Π)) + 2qsu(k) + 2qsNAdv

Sign
M (k) + qsAdv

SIG′(Π),Game 4,O
B (k)

≤ 2P (CollSIG′(Π)) + 2qsu(k) + 2qsNAdv
Sign
M (k) + qsAdv

π,Game 4
A (k)

Since by assumption protocol π is secure in cNR-X, there is a negligible function g such that
Advπ,Game 4

A (k) ≤ g(k) which completes the proof.

C.1 Application to NAXOS’

The NAXOS’ protocol, shown in Figure 5, is the variant of the NAXOS [20] protocol that additionally
includes the exchanged Diffie-Hellman exponentials in the session key computation.

Â: (a,A)

rÂ, X = gH1(rÂ,a)

K
Â

= H2(Y a,B
H1(r

Â
,a)

, Y
H1(r

Â
,a)

, Â, B̂, X, Y)

X−−−−−−−−→
Y←−−−−−−−−

B̂: (b,B)

rB̂ , Y = gH1(rB̂ ,b)

K
B̂

= H2(A
H1(r

B̂
,b)
, Xb,X

H1(r
B̂
,b)
, Â, B̂, X, Y)

Fig. 5. NAXOS’ protocol

The following proposition states that the NAXOS’ protocol is secure in the cNR-eCKw model.

Proposition 3. Under the Computational Diffie-Hellman assumption in the cyclic group G of
prime order p, the session string variant of the NAXOS’ protocol is secure in the cNR-eCKw model,
when H1 is modeled as a random oracle.

Proof. Here we show that NAXOS’ is secure in cNR-eCKw. We use the structure of the security
proof of the NAXOS protocol. The idea of the proof is that we assume that there exists an adversary

27

M for the session string variant of protocol NAXOS’ who wins the cNR-eCKw game with non-
negligible advantage, and we construct from M an adversary S who solves the CDH problem in G
with non-negligible probability.

Let the session s∗ given by Ts∗ = (Â, B̂, I, X, Y) be the session on which the adversary wants
to be tested.

In the subsequent events (and their analyses) we assume that no collisions in the queries to the
oracle H1 occur. We next consider the following three events:

1. DL ∧K
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test-session, DL denotes the event
where there exists a party Ĉ such that the adversary M , during its execution, queries H1 with (∗, c)
before issuing a corrupt(Ĉ) query and K denotes the event that M wins the security experiment
against the session string variant of NAXOS’ by outputting the session key (σ1, σ2, σ3, Â, B̂,X, Y)
of the session the adversary wants to be tested on, where σ1 = CDH(Y,A), σ2 = CDH(B,X) and
σ3 = CDH(X,Y).

Note that we analyze the security of the session string variant of the NAXOS’ protocol in case
the messages only contain the Diffie-Hellman exponentials.
Event DL ∧K. This event is independent of the event that there exists an origin-session for the
test-session. Since it might be possible that a redirect event occurs such that the actor of the
origin-session for the test-session is different to the peer of the test-session, the study of this event
applies to any party Ĉ ∈ P (not only to Â or B̂).

Let the input to the DLog challenge be C. Suppose that event DL∧K occurs with non-negligible
probability. In this case, the simulator S chooses one party Ĉ at random and sets its long-term
public key to C. S chooses long-term secret/public key pairs for the remaining parties and stores
the associated long-term secret keys. Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We
denote the m’th activated session by adversary M by s∗. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send queries are answered in the usual way. In case a session s is activated via a send query, S
stores an entry of the form (s, rs, sksactor , κ) ∈ (P ×N)× {0, 1}k × (Zp ∪ {∗})×Zp in a table Q,
initially empty, (unless ephemeral public key validation on the received element fails in which
case the session is aborted). When computing the (outgoing) Diffie-Hellman exponential of
session s, S does the following:

– S chooses rs ∈R {0, 1}k (i. e. the randomness of session s),
– S chooses κ ∈R Zp,
– if sactor 6= Ĉ, then S stores the entry (s, rs, sksactor , κ) in Q, else S stores the entry (s, rs, ∗, κ)

in Q,8 and
– S returns the Diffie-Hellman exponential gκ to M .

2. ephemeral-key(s): S answers this query in the appropriate way.
3. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = Ĉ in which case S

aborts with failure.
4. S stores entries of the form (r, h, κ) ∈ {0, 1}k × Zp × Zp in a table J , initially empty. When M

makes a query of the form (r, h) to the random oracle for H1, answer it as follows:

– If C = gh, then S aborts M and is successful by outputting DLog(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .

– Else if there exists an entry (s, rs, sksactor , κ) in Q, for some s ∈ P×N, rs ∈ {0, 1}k , sksactor ∈
Zp and κ ∈ Zp, such that rs = r and sksactor = h, then S returns κ to M and stores the
entry (r, h, κ) in table J .

– Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in J .

5. M outputs (s, skey): S aborts with failure.

8 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the random data of a session is negligible.

28

Analysis of event DL ∧K. S’s simulation of M ’s environment is perfect except with negligible

probability. The probability that M would output s∗ at the end of its execution is 1
qs

. With

probability at least 1
N , S assigns the public key C to a party Ĉ for whom M queries H1 with (∗, h)

such that C = gh before issuing a corrupt(Ĉ) query. In this case, S is successful as described in the
first case of Step 4 and does not abort in Steps 3 and 5. Hence, if event DL ∧K occurs, then the
success probability of S is given by P (S) ≥ 1

Nqs
P (DL ∧K).

Event TO ∧DLc ∧K. Let s∗ and s′ denote the test-session and the origin-session for the test-
session, respectively. We split event Ev := TO ∧DLc ∧K into the following events B1, ..., B3 so
that Ev = B1 ∨B2 ∨B3:

1. B1 : Ev occurs and s∗peer = s′actor .
2. B2 : Ev occurs and s∗peer 6= s′actor and M does not issue an ephemeral-key(s′) query to the

origin-session s′ of s∗, but may issue a corrupt(s∗peer) query.
3. B3 : Ev occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query, but may issue

an ephemeral-key(s′) query to the origin-session s′ of s∗.

Event B1. Let the input to the CDH challenge be (X0, Y0). Suppose that event B1 occurs with
non-negligible probability. In this case S chooses long-term secret/public key pairs for all the
parties and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary M will be called s∗ and the n’th
activated session will be called s′. The ephemeral secret key of session s∗ is denoted by x̃0 and the
ephemeral secret key of session s′ is denoted by ỹ0. Suppose further that s∗actor = Â, s∗peer = B̂ and
s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. send(s′, P̂): S sets the ephemeral public key Y to Y0 and answers the query with message Y0.
3. send(s′, P̂ , Z): S checks whether Z ∈ G, sets the ephemeral public key Y to Y0, answers the

query with message Y0. If the check fails, session s′ is aborted.
4. Other send queries are answered in the usual way.
5. ephemeral-key(s): S answers this query in the appropriate way.
6. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and

rĈ = x̃0 or if Ĉ = B̂ (i.e. c = b) and rĈ = ỹ0, in which case S aborts with failure.

7. corrupt(P̂): S answers this query in the appropriate way.
8. M outputs (s, skey) where skey = (a, b, c, Â, B̂,X0, Y0): If s 6= s∗ or if s′ is not the origin-session

for session s∗, then S aborts. Else, S outputs c.

Analysis of event B1. S’s simulation of M ’s environment is perfect except with negligible prob-
ability. The probability that M selects s∗ as the test-session and s′ as the origin-session for the
test-session is 1

(qs)2
. Assuming that this is indeed the case, S does not abort in Step 8. Recall

that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test-session, M can only obtain it via an
ephemeral-key(s∗) query before making an H1 query that includes x̃0. Similarly, M can only obtain
ỹ0 via an ephemeral-key(s′) query on the origin-session s′ before making an H1 query that includes
ỹ0. Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making an H1

query that involves the long-term secret key of party P̂ . Freshness of the test-session guarantees
that the adversary can reveal at most one value in each of the pairs (x̃0, a) and (ỹ0, b); hence S does
not abort in Step 6. Under event K, except with negligible probability of guessing CDH(X0, Y0),
S is successful as described in Step 8. Hence, if event B1 occurs, then the success probability of S
is given by P (S) ≥ 1

(qs)2
P (B1).

Event B2. Let the input to the CDH challenge be (X0, Y0). Suppose that event B2 occurs with
non-negligible probability. The simulation of S proceeds in a similar way as for event B1. Steps 5
and 6 need to be replaced by the following:

– ephemeral-key(s): S answers this query in the appropriate way, except if s = s′ in which case S
aborts with failure.

– H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and
rĈ = x̃0, in which case S aborts with failure.

29

Analysis of event B2. S’s simulation of M ’s environment is perfect except with negligible prob-
ability. The probability that M selects s∗ as the test-session and s′ as the origin-session for the
test-session is 1

(qs)2
. Recall that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test-session,

M can only obtain it via an ephemeral-key(s∗) query before making an H1 query that includes x̃0.
Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before making an H1

query that involves the long-term secret key of party P̂ . Freshness of the test-session guarantees
that the adversary can reveal at most one value of the pair (x̃0, a). Under event K, except with
negligible probability of guessing CDH(X0, Y0), S is successful as described in Step 8. Hence, if
event B2 occurs, then the success probability of S is given by P (S) ≥ 1

(qs)2
P (B2).

Event B3. Let the input to the CDH challenge be (X0, B). Suppose that event B3 occurs with

non-negligible probability. In this case, S chooses one party B̂ at random and sets its long-term
public key to B. S chooses long-term secret/public key pairs for the remaining parties and stores the
associated long-term secret keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}.
We denote the m’th activated session by adversary M by s∗ and the n’th activated session by s′.
The ephemeral secret key of session s∗ is denoted by x̃0. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query with message X0.
2. Other send queries are answered as for event DL ∧K.
3. ephemeral-key(s): S answers this query in the appropriate way.
4. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e. c = a) and
rĈ = x̃0, in which case S aborts with failure.

5. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = B̂ in which case S
aborts with failure.

6. M outputs (s, skey) where skey = (a, b, c, Â, B̂,X0, Y0): If s 6= s∗ or if s′ is not the origin-session
for session s∗, then S aborts. Else, S outputs b.

Analysis of event B3. S’s simulation of M ’s environment is perfect except with negligible prob-

ability. The probability that M selects s∗ as the test-session and s′ as its origin-session is 1
(qs)2

.

Assuming that this is indeed the case, S does not abort in Step 6. With probability 1
N , S assigns

the public key B to the peer of the test-session B̂. Under event B3, M does not issue a corrupt(B̂)
query, and so S does not abort in Step 5. Under event K, except with negligible probability of
guessing CDH(X0, B), S is successful as described in Step 6. Hence, if event B3 occurs, then the
success probability of S is given by P (S) ≥ 1

N(qs)2
P (B3).

Event (TO)c ∧DLc ∧K. If there is no origin-session for the test-session, then there is also no
matching session for the test-session. Hence ((TO)c ∧DLc ∧K) ⊆ ((TM)c ∧DLc ∧K) (where TM
denotes the event that there exists a matching session for the test-session). So event (TO)c∧DLc∧K
can be dealth with in a similar way as before. Note that,

– M outputs (s, skey) where skey = (a, b, c, Â, B̂,X0, Y0): If s 6= s∗, then S aborts. Else, S outputs

b (assuming that the test-session s∗ is given by Ts∗ = (Â, B̂, I, X0, Y) to solve the CDH
instance (X0, B))

– S keeps consistency between send and H1 queries,

similar to the simulation related to Event B3. ut

Applying the SIG’ transformation on the NAXOS’ protocol yields the protocol SIG′(NAXOS′),
depicted in Figure 6.

Proposition 4. The SIG′(NAXOS′) protocol has strong partnering in the eCK-PFS security ex-
periment, under the assumption that H1 and H2 are modeled as independent random oracles.

Proof. Suppose otherwise. Namely, suppose that there exist two sessions s and s′ of SIG′(NAXOS′)
that hold the same session key but are not matching. Since the session key in SIG′(NAXOS′) is
derived by applying a random oracle, except with negligible probability, the input to the random
oracle in both sessions must be the same. Since they are not matching sessions, either sactor 6= s′peer
or speer 6= s′actor or ssent 6= s′recv or srecv 6= s′sent or srole = s′role .

30

Â: (a,A), (skÂ, pkÂ)

rÂ, X = gH1(rÂ,a)

X,σ
Â
=Signsk

Â
(X[,B̂])

−−−−−−−−−−−−−−−−−−→
Y,σ

B̂
=Signsk

B̂
(Y [,X,Â])

←−−−−−−−−−−−−−−−−−−−−

B̂: (b,B), (skB̂ , pkB̂)

rB̂ , Y = gH1(rB̂ ,b)

K
Â

= H2(Y a,B
H1(r

Â
,a)

, Y
H1(r

Â
,a)

, Â, B̂, X, σ
Â
, Y, σ

B̂
) K

B̂
= H2(A

H1(r
B̂
,b)
, Xb,X

H1(r
B̂
,b)
, Â, B̂, X, σ

Â
, Y, σ

B̂
)

Fig. 6. SIG′(NAXOS′) protocol

– First suppose srole 6= s′role . Then either the identifiers or the transcripts of the two sessions do
not correspond.
• If the identifiers do not correspond, then, as they are inputs to the random oracle, except

with negligible probability, the outputs of the random oracle will be different, contradicting
that the two sessions hold the same session key.
• If the transcripts do not correspond, then, as they are inputs to the random oracle, except

with negligible probability, the outputs of the random oracle will be different, contradicting
that the two sessions hold the same session key.

– Second suppose srole = s′role . As the identifiers are inputs to the random oracle, we must have
that sactor = s′actor and speer = s′peer , as otherwise the outputs to the random oracle will be
different, except with negligible probability. Except with negligible probability, two distinct
sessions will have different random coins (ephemeral secret keys), and hence the Diffie-Hellman
exponentials contained in ssent and s′sent will be different (except with negligible probability).
Thus, as srole = s′role , the Diffie-Hellman exponent computed in both sessions will be used in the
computation of the first (if s and s′ are both executing responder roles) respectively the second
(if s and s′ are both executing initiator roles) component of the call to H2, where speer = s′peer ,
and these values are different, so except with negligible probability, the outputs of the random
oracle will be different, contradicting that the two sessions hold the same session key.

ut

Proposition 5. The session string decision problem for SIG′(NAXOS′) is polynomial-time re-
ducible to the decisional problem of the Diffie–Hellman relation φ.

Proof. Let D be a polynomial-time algorithm that can distinguish real SIG′(NAXOS′) session strings
(gya, gbx, gyx, id, id′, gx, σ1, g

y, σ2) from random session strings (gr1 , gr2 , gr3 , id, id′, gx, σ1, g
y, σ2), for

randomly chosen a, b, x, y, r1, r2, r3 ∈r Zq, id and id′ are arbitrary binary strings.
We claim that there exists an algorithm ED that can distinguish real Diffie–Hellman triples

(gu, gv, guv) from random triples (gu, gv, gw) for randomly chosen u, v, w ∈r Zq.
Using D construct ED as follows. Let (U, V,W) be a Diffie–Hellman challenge. Pick arbitrary

id, id′. Do one of the following, each with equal probability:

1. Set A← U and Y ← V . Choose x, b ∈r Zq.
Run D on the session string (W,Xb, Y x, id, id′, gx, σ1, Y, σ2).

2. Set X ← U and B ← V . Choose a, y ∈r Zq.
Run D on the session string (gay,W,Xy, id, id′, X, σ1, g

y, σ2).
3. Set X ← U and Y ← V . Choose a, b ∈r Zq.

Run D on the session string (Y a, Xb,W, id, id′, X, σ1, Y, σ2).

ED outputs the result of D.
Note that in each of the above cases, if (U, V,W) is a real Diffie–Hellman triple, then D is run

on a real SIG′(NAXOS′) session string, whereas if (U, V,W) is a random triple, then D is run on a
random session string. Thus, if D is a distinguisher for SIG′(NAXOS′) session strings, then ED is
a distinguisher for the Diffie–Hellman relation. ut

Combining Proposition 3, Proposition 4, and Proposition 5 with Theorem 2, we obtain the
following result.

31

Corollary 2. Under the GAP-CDH assumption in the cyclic group G of prime order p, using a
deterministic SUF-CMA signature scheme, the SIG′(NAXOS′) protocol is secure in the eCK-PFS
model, when H1, H2 are modeled as independent random oracles.

D Summary of changes

Version 2.0, October 2017

– Fixed a missing assumption: As observed in [23], the signature scheme in Theorem 1 needs to
be unique. Without this assumption there would be a minor gap in the proof, but no concrete
attack.

– Cleanup of proof details.
– Added an alternative generic construction to achieve security in our eCK-PFS model in

Appendix C.

