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1 Abstract

Silicon physical unclonable functions (PUFs) are security primitives relying on intrinsic randomness
of IC manufacturing. Strong PUFs have a very large input-output space which is essential for secure
authentication. Several proposed strong PUFs use timing races to produce a rich set of responses.
However, these PUFs are vulnerable to machine-learning attacks due to linear separability of the
output function resulting from the additive nature of timing delay along timing paths.

We introduce a novel strong silicon PUF based on the exponential current-voltage behavior in
subthreshold region of FET operation which injects strong nonlinearity into the response of the PUF.
The PUF, which we term subthreshold current array (SCA) PUF, is implemented as a two-dimensional
n X k transistor array with all devices subject to stochastic variability operating in subthreshold region.
Our PUF is fundamentally different from earlier attempts to inject nonlinearity via digital control
techniques, which could also be used with SCA-PUF. Voltages produced by nominally identical arrays
are compared to produce a random binary response.

SCA-PUF shows excellent security properties. The average inter-class Hamming distance, a mea-
sure of uniqueness, is 50.3%. The average intra-class Hamming distance, a measure of response stability,
is 0.6%. Crucially, we demonstrate that the introduced PUF is much less vulnerable to modeling at-
tacks. Using a machine-learning technique of support-vector machine with radial basis function kernel
for best nonlinear learnability, we observe that “information leakage” (rate of error reduction with
learning) is much lower than for delay-based PUFs. Over a wide range of the number of observed
challenge-response pairs, the error rate is 3 — 35X higher than for earlier designs.

2 Introduction

Many electronic systems require solutions for security, unique identification, and authentication. As a
low cost solution, physical unclonable functions (PUFs) have been proposed [1, 2]. PUFs are pseudo-
random functions that exploit the randomness inherent in the scaled CMOS technologies to generate
random output strings. In response to an input challenge a PUF generates a binary response. Because
of the randomness of the input-to-output mapping, different PUFs generate a different response for
the same challenge. The set of challenge-response pairs (CRPs) defines the behavior of a PUF and
provides an ability to uniquely identify it.

Multiple realizations of PUFs have been proposed [1, 3-9]. The key distinction among different
PUF constructions is between strong and weak PUFs. The distinction is based on the rate at which
the number of CRPs grows with the size of the physical realization of a PUF [10]. Weak PUFs are
characterized by a small number of CRPs. Strong PUF's are systems with a large number of CRPs,
and in an ideal case, the CRP set size grows exponentially with the size of the PUF. The exponential
size of the CRP set makes it impossible to record the responses for a PUF of a reasonable size.



Strong PUFs are essential for public authentication security protocols in which the number of CRPs
needs to be large such that the same CRPs are not re-used for authentication (preventing the adversary
from simply capturing the CRPs transmitted in plain text and using them for subsequent attacks).
However, for a strong PUF to be an effective security primitive, the CRPs need to be unpredictable:
given a certain set of known challenge-response pairs, it should not be possible to predict the unobserved
CRPs with any reasonable probability. If that is not the case, an adversary can stage an attack based
on building a model of the PUF. A number of strong PUFs have been proposed in the literature over
the years. However, the unpredictability of responses in published strong PUFs has been shown to
be limited. The earliest example of a strong silicon PUF is the arbiter-based PUF proposed in [1].
It exploits variation in path delays between gate stages in two parallel propagation paths to generate
a binary response by using an arbiter. The arbiter-based PUF has been shown to be vulnerable
to model-building attacks [11, 12]. In such attacks, machine-learning techniques, such as regression,
neural networks, support vector machines, are used to construct a model of the internal parameters of
a PUF based on the observed instances. Attempts to remediate this vulnerability resulted in several
variants of the arbiter-based PUF [4, 5]. These approaches attempt to improve unpredictability by
using digital techniques. In [8], an XOR gate is used to scramble outputs of two parallel arbiter-based
PUFs. In [5], a feed-forward path is introduced within the arbiter-PUF circuit as a way to inject
nonlinearity. Unfortunately, recent work [11] shows that all of the derivatives of the arbiter-based
PUF are also vulnerable to model-building attacks, even though the improved versions require a larger
number of observed CRPs for building a model.

In weak PUFs, the number of CRPs typically grows linearly with the PUF physical size. That
implicitly means that each CRP depends on a single, and not shared, realization of a random physical
property. That makes it impossible to build a model of such a PUF. Several constructions have been
demonstrated. The SRAM-based PUF produces a unique chip signature by relying on threshold voltage
mismatch between cell transistors which leads to a cell settling into a random state upon powering up
the array [6, 7]. The ring oscillator PUF proposed in [8] generates a response based on the random
frequency difference between pairs of ring oscillators.

This paper introduces a novel intrinsic strong silicon PUF based on the essential nonlinearity
of terminal current-voltage behavior of field-effect transistors (FETs) at the nanometer scale. The
fundamental principle is reliance on the subthreshold regime of the FET operation, where current is
an exponential function of threshold voltage, which exhibits strong random intrinsic variability. An
additional nonlinearity is due to the exponential dependence of threshold voltage (1) on drain-to-
source voltage due to drain-induced barrier (DIBL) effect, and (2) on body-to-source voltage due to
body effect. Both of these are used to create coupling between FETSs in the array, further improving
nonlinearity and unpredictability. The new PUF shows excellent security properties.

3 New Source of Nonlinearity: FET Subthreshold Current

We develop a principled approach to significantly improving PUF resilience against machine-learning
attacks. It has been recognized that the limitations of strong arbiter-based PUFs in terms of un-
predictability are due to their linear additive dependence on partial delays in generating a response.
Machine-learning methods are particularly effective in constructing models of such functions. Machine-
learning algorithms for classification are tasked with classifying an object given a set of its attributes.
In supervised learning setting, the algorithm is first given a set of training examples in which both
the attributes and the label is available. If the space being learned is naturally linearly separable, it is
easy for the learning algorithm to derive a classification rule with low prediction error.
Unfortunately, the known silicon realizations of PUF's have utilized output functions that are linear,
or nearly linear, in the base random variables. In fact, delay-based functions are intrinsically poorly
suited for this task as (1) segment delay is near-linear in threshold voltage, and (2) path delays are
naturally additive, and, thus, linear, in segment delays. Most strong silicon PUFs known thus far have
been derived from the original work on arbiter PUFs for which the output can be described as a linear



function of the delays of individual stages, as formalized in [13]. Attempts to introduce nonlinearity in
the arbiter-based PUF, such as using feed-forward paths or XORing the outputs introduce nonlinearity
through digital means. Empirical results of model-building attacks show that the added nonlinearity
helps but is insufficient in that low prediction errors can still be achieved. A distinct limitation of at
least some digital techniques, those based on XORing outputs, is that PUF instability increases along
with the improvement in unpredictability [11].

In order to aid the discussion, we introduce a formal distinction between the ways of injecting
nonlinearity. For most silicon PUFs, a random bit is produced by evaluating sgn(f(x) — f(y)), where
x, y are vectors of realizations of a random physical parameter. Function f(-) maps the underlying
realizations of physical parameters, e.g. threshold voltages, to a measurable circuit-level quantity, e.g.
delay or voltage. If function f(-) is expressible entirely in terms of real-valued functions we call it a
fully continuous random function (FCRF), otherwise we call it a mixed continuous-discrete random
function (MCDRF'). With that distinction in place, we point out that the above digital techniques of
achieving nonlinearity still use delay races as a building block for PUFs with the underlying mechanism
of generating pseudo-random behavior remaining linear. Thus, both the XOR PUF and the FF PUF
start with a “native” FCRF-based PUF and ultimately use the mixed continuous-discrete random
function to achieve nonlinearity. Given that the known digital techniques can be equally applied
to other underlying (“native”) FCRF-based PUFs, the question becomes: can strong silicon PUFs
utilizing fully continuous random functions be constructed that are significantly more secure than the
FCRF-based delay PUF? We provide an affirmative answer in this paper.

The key for engineering a secure silicon PUF is identifying an output function that would be
nonlinear in random variables. We introduce a highly unpredictable PUF that uses the strongly non-
linear I-V terminal dependencies to generate PUF responses. Its central feature is that it moves away
from the delay/digital implementation paradigm towards the current/analog one, thereby realizing
the necessary degree of nonlinearity over a space of permutations. Because it doesn’t rely on digital
techniques for injecting the nonlinearity, it does not compromise the stability in the output response
to environmental variations.

The output function should ideally have two properties: (1) be nonlinear in random parameters,
and (2) introduce the coupling effect in which two or more random variables interact in producing
the output. Both of these properties are enabled if the binary output is produced by comparing two
voltages produced by a suitably arranged network of FETs operating in subthreshold region. The key
to our analysis is the equation relating the subthreshold current to FET terminal voltages [14]:

Vgs —Vin (Vas:Vbs) —nVigs
Igs :1510%(1710 = )
Vgs = Vin +AVas+7 Vs —nVis (1)
=Igl0— s  (1-107%5 )

where 145 is the drain-to-source subthreshold current, I's is the nominal current, Vg, is the gate-
to-source voltage, Vyj, is the transistor threshold voltage, V45 is the drain-to-source voltage, Vy is the
body-to-source voltage, and A, 7y, and n are the coefficients of drain-induced barrier lowering and body-
bias, and the subthreshold coefficient respectively. Crucially, the current is exponentially dependent
on the threshold voltage V;;,. This is important because V;j, exhibits large and spatially-uncorrelated
variability due to random dopant fluctuation (RDF). In nanometer scale CMOS devices, RDF is very
significant and grows with transistor scaling [14, 15]. Equation 1 also captures the impact of physical
mechanisms of drain-induced barrier lowering and of body effect which lead to a dependence of V;; on
Vis and Vj,. In the second part of the equation, we use a linear expansion of V;j, in terms of Vs and
Vis to enable closed-form analysis.
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Figure 1: PUF architecture.

4 Subthreshold Current Array PUF

4.1 Array PUF Architecture

We now present a transistor-level realization of a subthreshold current array PUF (SCA-PUF) that
exploits the above current behavior to construct a highly secure strong PUF. Figure 1 depicts the
overall architecture of the SCA-PUF. The PUF is implemented as a two-dimensional transistor array
with all devices subject to stochastic variability operating in subthreshold region. The 2D organization
allows to maximize the reliability and security properties of the PUF, as demonstrated by experiments.

Each PUF consists of two nominally identical arrays. The array schematic is shown in Figure 2. The
array is composed of k£ columns and n rows of a unit cell. We use the term “stochastic” transistor to
refer to a device with high amount of threshold voltage variability. The unit cell consists of a stochastic
subthreshold nFET, which is a transistor with a highly variable threshold voltge that always operates
in the subthreshold region. A non-stochastic switch transistor is arranged in parallel to the stochastic
FET. The non-stochastic transistor M0 acts as a load device and operates in the subthreshold region
(its gate terminal is tied to ground). At the bottom of each column of cells is a footer transistor Miy
controlled by C;1Cya ... Cyy. Its role is to ensure that there is never a low-impedance path to ground
from V.

Both array blocks are driven with the same set of control inputs and thus in the absence of variability
produce identical voltages. The randomness of transistor threshold voltages leads to the differences in
two output voltages. The binary response is generated by comparing the output voltages produced by
the two arrays via a comparator. The size of the CRP set is 2", making it a strong PUF.

We now describe in greater detail the building block of the array, the unit cell. In each cell, which
we identify using a column index i and a row index j, an NMOS transistor Mij always operates in
the subthreshold region: its gate terminal is tied to ground. An NMOS transistor Mijz, in parallel
with Mij, acts as a switch transistor. Careful sizing of both devices is essential for correct operation.
Two requirements need to be satisfied. First, only transistor Mij is subject to significant variation
of threshold voltage due to random dopant fluctuation. This is achieved by sizing tranistors Mij
to their minimum size to maximize their threshold voltage variability according to Pelgrom’s model
[16]. Second, the subthreshold current through the switch transistor Mijx needs to be negligible
compared to the subthreshold current through Mij. At the same time, Mijz needs to have small
on-state resistance. These requirements can be met, for example, with W = 10W,,,;,, and L = 10L,,,;,,.
Because the nominal current Ig in the subthreshold region is exponentially dependent on channel
length I4s(Mijx)/14s(Mij) ~ 0 when C;; = 0.

The role of the switch transistor is to set Vys of the stochastic transistor to zero. In this case,
the impact of the stochastic transistor is effectively “removed” in that its contribution to the branch
current is eliminated. At the same time, when the switch transistor is off, because its subthreshold
current is negligible compared to the stochastic transistor, its contribution to the total current can



Figure 2: Circuit schematic of the 2D subthreshold current array.

be ignored. Depending on the control input, the stochastic transistor therefore is either part of the
pull-down network and contributes current that depends on its threshold voltage, or does not impact
total current flowing through a branch. Thus, each branch can have 2™ current values.

4.2 Analysis of Array Nonlinearity

The principle feature of the circuit we propose is that it has a highly nonlinear boundary between
the regions of PUF 1-outputs and 0O-outputs in the kn-dimensional space of V. In this section, we
more formally analyze the nonlinearity of the SCA-PUF. To enable analytical treatment, we derive
equations for two special cases: (a) a single-column array, (b) a single-row array, and (c) a simple
2D array with £ = 2 and n = 2. We aim to bring out the form of the nonlinearity involved in each
of the two special cases (a) and (b). The two special cases of the 2D array exhibit distinct forms of
nonlinearity which, when combined within a 2D array structure, form a rich nonlinear space.

First, we consider the single-row (parallel-only) array with two columns (n = 1, k = 2). To be able
to derive a closed-form equation relating V,,; to threshold voltages of two “stochastic” transistors, we
assume that Vs >100 mV. For n = 1 we can also ignore the impact of the body-bias effect. With
that, Equation 1 can be written as:

Ids o Vgs - V:‘.h + )\Vds
or () = 2 2

For convenience, we use a simplified notation where Vi; a0 = Vo and similar for others. Solving
for Ve, we get:

Vot = (HSA) log(Is) + AV — Vo — log(Io)] 3)

Applying KCL at node V¢, Ig = I11 + 121, where 11, I51 are the currents through M11 and M21,
and describing these currents using Equation 1, we can write an equation for the terminal voltage V,;:
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Figure 3: Response nonlinearity in the single-row array: nonlinearity of additive subthreshold current behavior.
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FETs.

_ S )\Vdd VE) —Vi1+AVout Va1 +2AVout
Vit = (m) [S — 5 —log (10 st 0T )] (4)

Equation 4 is a transcendental equation. The key to our construction is the nonlinearity of V,,,; in
terms of values of threshold voltages of transistors M11 and M21. The nonlinearity of Equation 4 is
explored in Figure 3.

Next we consider the single-column array (kK = 1) with only two rows (n = 2). It represents a
subthreshold current array with series-only “stochastic” transistors M11 and M12. Using Equation 1
for transistors M0, M 11 and M12 respectively, and treating the source (drain) of M11 (M12) as an
intermediate node V,,, we get:

IO o *Vout(]- + )\) - Vo + )\Vdd —nVaa+nVout
log (Is) = S + log (1 B ) (5)
Ill _ 7‘/1(1 + >\) B Vll + )‘Vout —nVout+nVe
log <[S> = S + log (1 T ) (6)
L\ —Via+ AV, —nVe
log <IS> =g + log (1 —10"s ) (7)
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Figure 5: Response nonlinearity in the 2 x 2 SCA.

We also know that Iy = I1; = I12. Unfortunately, expressing V,,: in closed form appears infeasible.
By simultaneously solving the system of Equations 5, 6 and 7 numerically, we generate Figure 4
and observe the nonlinearity of the single-column (series-only) array topology. The nonlinearity is
significant. Notably, while the nonlinear separating surface of the parallel-only array is convex, the
surface separating 0- and 1-regions in the series-only array is concave.

Finally, we consider the 2 x 2 array. We treat the source (drain) of M11 (M12) as node V, and
source (drain) of M21 (M22) as node V,,. Using Equation 1 for transistors M0-M22, we get:

log (2) _ —Vour (1 + A?g— Vo + A\Vaq + log (1 3 10—nvdds+nvom) ()
log <11151> _ —Va(1+ ) ;Vn + MWout +log (1 B 10—nvwst+nvm) (9)

log (?;) = 7_‘/21; AV + log (1 - 10 WSVI) (10)
log (?j) M Ch) ;1/12 +AVout 410 (1 - 1077"%%‘*"”’) (11)

o = +log (1 ~10 "svy) (12)

Additionally, we have I1; = I»; and Iy = Iz, and Iy = I17 + I;2. Simultaneously solving these
equations, along with the system of Equations 8-12, using a numerical package, we show the resulting
nonlinearity of V,,; in Figure 5. In the next section we show that the effect of the created strong
nonlinearities is a PUF whose input-ouput behavior is difficult to model through observation of a
partial list of CRPs.

I <122> _ —Vaa + AV,
og ==Y

5 Analysis of PUF Security Properties via Transistor-Level
Simulations

The performance of the proposed SCA-PUF was simulated using SPICE, the industry-standard transistor-
level circuit simulator, in a 45 nm technology node using the predictive technology models [17-19].
The source of randomness is in V;;, variability assumed to be caused by random dopant fluctuation
and therefore to be spatially uncorrelated. The threshold voltages are assumed to follow a normal



distribution with a standard deviation of 40 mV, a value consistent with ITRS data [20]. The results
are based on the output random string generated by the PUF having the length of 128 bits.

] Il Intra-class oo7 Il Intra-class Il Intra-class
2’:; 05 [l 1nter-class g oo (I nter-class 8 I inter-class
g § g
3 L 005 £ 04
o 04 3 3
Q Q o
2 8 o 3
S 0s 5 5
3 > 003 >
c Q S o2
g o2 2 H
2 8 o0 5
< g g
w o1 = 001 1=
w w
il o X . llll,
00 02 04 05 o8 o 00 02 04 05 ) o 00 02 04 ) ) 0
i i (nor i Hamming distance (normalized) ; i i (nor
(a) Single-row (parallel-only) array (b) Single-column (series-only) array (¢) Square 2D array

Figure 6: Inter-class and intra-class HD for three array topologies.

There are several commonly used metrics that quantify the goodness of a PUF [21]. The inter-
class Hamming distance (HD) is a measure of the ability to differentiate two different PUFs under the
same input. Ideally, each PUF produces an entirely unique response, and thus the ideal inter-class
HD normalized to the total number of bits in the output is 0.5. Intra-class HD is the measure of the
reliability of a PUF and quantifies how much response of a given PUF changes under a different set
of environmental conditions. Ideally, the intra-class HD is 0. Reliability of the PUF responses across
different environmental conditions was studied for supply voltage variation of 5% and temperature
ranging from —40°C to 85 °C. Monte-Carlo simulation sample size used to extract inter-class HD was
1000.

The previous section has shown that the nonlinear behavior implemented in the 2D subthreshold
current array is a combination of the nonlinearities of the single-row array which represents a parallel-
only combination of stochastic subthreshold FETSs, and the single-column array which represents a
series-only combination of stochastic subthreshold FETs. The series-only and the parallel-only com-
binations lead to different types of nonlinearities. In principle, the SCA-PUF can be implemented via
a variety of n x k array dimensions. For example, a PUF with the same CRP space of 2"¥ can be
implemented as either n X k or nk x 1 or 1 x nk array. The latter two types would correspond to the
parallel-only and series-only combinations. Therefore, it is important to investigate the behavior of
different possible array organizations with respect to PUF security and reliability metrics.

Figure 6 shows the histograms of the normalized intra-class and inter-class HDs. The mean values
are summarized in Table 1. We observe that the mean inter-class HD for all three cases is excellent
and is practically indistinguishable from 0.5. Intra-class HD is excellent for a parallel-only array but
is noticeably higher for the series-only array. Interestingly, when the two types of nonlinearity are
combined within the 2D array, intra-class HD is still excellent (below 0.01).

Another useful measure of the goodness of a PUF is the uniformity metric defined by [21]. In an
ideal PUF, the fraction of challenges that produces a response of 1 and of 0 should be equal. A useful,
and closely, related metric is randomness, as defined by [22], which also quantifies uniformity but in a
min-entropy sense. The histograms of the uniformity metric are shown in Figure 7. For comparison,
Table 2 summarizes the figures of merit for several published PUFs.

Model-building attacks are the tool with which an adversary may attempt to overcome the au-
thentication guarantees offered by PUFs. Therefore, the ability of a PUF to withstand model-building
attacks has been suggested as the ultimate measure of their security [11]. These attacks rely on the
power of machine-learning algorithms to model the inner parameters of PUFs through observation
of a small set of CRPs. In this paper, the effectiveness of machine-learning attacks was investigated
using a support vector machine (SVM) algorithm. Open-source LIBSVM software was used [24]. A
set of challenge inputs, along with their output responses, is used as a training set to estimate the
PUF model parameters. The estimated model is used to compute the predicted output response for
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Figure 7: Distribution of the uniformity metric for three array topologies.

Table 1: Average inter-class and intra-class Hamming distance, uniformity, and randomness for ov,, = 7
mV.

Parameter Single-row | Single-column | 2D array
Inter-class HD 0.493 0.498 0.503
Intra-class HD 0.009 0.076 0.006

Uniformity 0.514 0.507 0.514

Randomness 0.386 0.382 0.439

the non-training challenge inputs and the prediction error rate € is measured. The procedure is carried
out for several training sample sets of different size. Figures 8 and 9 show the comparison of prediction
error vs. training set size for 8 bit and 16 bit PUFs respectively. To maximize the learning ability
of the SVM algorithm, we employed a nonlinear radial basis function (RBF) kernel. Using a nonlin-
ear kernel makes SVM more effective in nonlinear classification problems. We further used a 5-fold
cross-validation scheme to select the best kernel parameters. The results indicate that the SCA-PUF
is significantly more secure than the delay based PUF. The prediction error is almost an order of
magnitude higher than for the arbiter PUF. As we argued earlier, the digital techniques of injecting
nonlinearity can be thought of as qualitatively distinct from the behavior of the “native” PUF. For
that reason we focus on comparing SCA-PUF behavior to the arbiter PUF learning behavior only.
We again note that digital control techniques could also be applied to SCA-PUF, and would further
enhance its native nonlinearity and security.

Another practical aspect that we investigate is the influence of comparator characteristics on the
overall PUF behavior. The voltage difference |AV| between the two outputs depends on the realizations
of random threshold voltages. In an ideal comparator, the binary output matches perfectly the sign
of |AV| at any magnitude. In practice, we need to take into account the effect of comparator offset
voltage. Offset voltage effectively determines the resolution of the comparator and it may also impact
the security properties of the SCA-PUF. We first investigate the distribution of the actual observed
voltage differences that the comparator needs to resolve. The mean |AV] is 14.3 mV, 48.5 mV and
14.5 mV respectively for the parallel-only, series-only, and 2D array SCA-PUFs. Figure 10 shows the
lower tail of the cumulative distribution of |AV| for three array topologies.

We study the impact of offset voltage on PUFs properties by assuming it follows a normal distribu-
tion with a mean of 0 mV and a standard deviation of several mVs. Figures 11 and 12 show the effect
of offset voltage on intra-class Hamming distance and on the randomness measure. The inter-class
Hamming distance was found to remain nearly-constant around 0.5 for all three circuit constructs.
Based on this exploration, we find that a comparator that has an offset voltage of up to oyos = 7
mV would be acceptable but a wider offset distribution would significantly deteriorate randomness.
A comparator with such offset can be designed using a strong-arm sense amplifier topology proposed
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Table 2: Average intra-class and inter-class HD for PUFs reported in the literature [23].

PUF type Inter HD (%) | Intra HD (%)

Optical PUF 49.79 25.25
Coating PUF ~50 <5
Basic arbiter PUF 23 <5
Feed-forward arbiter PUF 38 9.8

Basic Ring Oscillator PUF ~1 ~0.01

Ring Oscillator PUF w/ comparator 46.14 0.48

SRAM PUF 49.97 <12

Latch PUF 50.55 3.04
Butterfly PUF ~50 <6
Sense Amplifier PUF 50.00 6

in [25]. Achieving the offset standard deviation of about 7 mV will require either sizing the active
devices of the sense amplifier to about 100X of the minimum transistor size or using offset cancellation
techniques, both of which are easily realizable.

6 Conclusion

We introduced a novel strong silicon PUF based on the essential nonlinearity of responses produced
by the physics of field-effect transistors (FETs) at the nanometer scale. The PUF shows excellent
security properties which are superior to those reported for other strong PUFs. We demonstrate
that the introduced PUF is less vulnerable to modeling attacks and that its “information leakage” is
significantly lower than for delay-based strong PUFs.
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