
Infinite Secret Sharing – Examples∗

Alexander Dibert1 László Csirmaz1,2
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Abstract

The motivation for extending secret sharing schemes to cases when either the set of players
is infinite or the domain from which the secret and/or the shares are drawn is infinite or both, is
similar to the case when switching to abstract probability spaces from classical combinatorial
probability. It might shed new light on old problems, could connect seemingly unrelated
problems, and unify diverse phenomena.

Definitions equivalent in the finitary case could be very much different when switching to
infinity, signifying their difference. The standard requirement that qualified subsets should
be able to determine the secret has different interpretations in spite of the fact that, by
assumption, all participants have infinite computing power. The requirement that unqualified
subsets should have no, or limited information on the secret suggests that we also need some
probability distribution. In the infinite case events with zero probability are not necessarily
impossible, and we should decide whether bad events with zero probability are allowed or not.

In this paper, rather than giving precise definitions, we enlist an abundance of hopefully
interesting infinite secret sharing schemes. These schemes touch quite diverse areas of mathe-
matics such as projective geometry, stochastic processes and Hilbert spaces. Nevertheless our
main tools are from probability theory. The examples discussed here serve as foundation and
illustration to the more theory oriented companion paper [5].

Keywords: secret sharing; abstract probability space; product measure; disintegration;
stochastic process; minimal statistics; Hilbert space program.
AMS classification numbers: 60A99, 60B05, 60G15, 62F10, 94A62, 46C99, 54D10

1 Introduction

The topic of this paper is to provide several examples of secret sharing schemes where the domain of
secret, that of shares, or the set of players is infinite. This type of approach studying infinite objects
instead of finitary ones is not novel even in the realm of cryptography, see, e.g., [2, 3, 14, 15, 16].
As usual, switching to infinite means some kind of abstraction: we disregard particular and quite
frequently annoying properties of finite structures, and focus on their general properties only. An
excellent example is Probability Theory where the law of large numbers automatically leads to
continuous distributions.

The concept of secret sharing either on infinite domain or with infinitely many players is quite
straightforward. Nevertheless, the difficulty lies in the details. Natural properties fail in the
infinite case, and even exact definitions are sometimes problematic. In this paper we describe
several natural schemes which are intuitively correct. We also give counterexamples showing that
certain “natural” definitions might not achieve the desired effects.

We mainly consider probabilistic schemes, where correctness and completeness relies on some
probability measure. Even defining probability measures on arbitrary (product) space is not
without problems, see [1, 7, 18] for a general description of the problems and the definition for the
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“standard probability space.” While we do not rely on those works, a good working knowledge of
measure theory and probability spaces will definitely help understanding the basic issues.

Schemes are grouped more or less arbitrarily according to several contradictory properties: the
method used in the scheme, their similarity to each other, and the access structure they realize.
Section 2 enlists the definitions of access structure, (probabilistic) secret sharing scheme, and when
a scheme realizes a structure. Wording of definitions are sometimes vague, as we did not want to a
priori exclude schemes which otherwise would intuitively fit into this collection. Exact definitions,
as extracted from these examples, can be found in the companion paper [5]. Section 3–6 contain
schemes which illustrate the diversity of tools they use. As it is proved in [5], schemes in Sections 5,
6 and 7 are the best possible: no scheme with better security guarantee can realize the same access
structure. Section 7 introduces the notion of Hilbert space programs which is a generalization of
span programs [11] for infinitely many participants. Section 8 concludes the paper with a scheme
which is not a (probabilistic) scheme at all.

2 Definitions

In this section we define the basic notions of secret sharing, namely what access structure is, and
give an informal definition for secret sharing schemes and when it realizes an access structure.
Precise definitions are postponed to the companion paper [5].

2.1 Access structure

The set of participants, or agents, who will receive (secret) share will be denoted by P . We always
assume that P is not empty, and to avoid certain trivialities, we assume further that is has at
least two members. We allow P to be infinite as well; for the time being the reader may assume
that P is finite. Certain subsets of participants are expected to recover the secret. The collection
of these subsets is is usually denoted by the letter A ⊆ 2P , and is called access structure. Here 2P

denotes the collection of all subsets of P .

Definition 2.1. A ⊆ 2P is an access structure if it satisfies the next two properties:

1. Monotonicity: if A ∈ A and A ⊂ A′ ⊆ P , then A′ ∈ A. Intuitively, if a set is allowed
to recover the secret, then adding further members to this set should not take away this
property.

2. Nontriviality: there is at least one qualified set (and thus P ∈ A), furthermore no singleton
set is in A (in particular, the empty set is never qualified).

Subsets of P in the access structure A are called qualified, and subsets not it A are unqualified. As
P is always qualified (as there is at least on qualified set, which is always a subset of P ), and no
singleton can be qualified, access structures over P exist if and only if P has at least two elements.

Requiring monotonicity is quite natural: if a group of participants can recover the secret, then
adjoining any further members cannot take away this ability. The nontriviality means that none of
the participants should be aware of the secret, and also the secret should not be a public knowledge
(which is equivalent to the condition that the empty set is qualified).

Given any collection B of subsets of P , the smallest monotone family extending B is said to be
generated by B. It is easy to check that this is just the collection of supersets of the elements of B:

gen(B) def= {A ⊆ P : B ⊆ A for some B ∈ B }.

By the monotonicity property, an access structure is determined uniquely by any of its generators.

Definition 2.2. B ⊂ 2P is a minimal generator if no proper subcollection of B generates the same
collection. A base is a minimal generator.
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It is easy to see that B is a base if and only if no two elements in B contain each other. Saying
otherwise, B is a base if and only if it is a Sperner system [20]. A collection A can have many
generators, but if it has a base then it has unique generator: that base. This base, if exists,
consists of the minimal elements in A whose collection is denoted by A0:

A0 = {B ∈ A : no proper subset of B is in A}. (1)

When specifying an access structure by listing a collection of qualified subsets, we tacitly assume
that A is the collection generated by the given subsets. It is often desirable (or illuminating) to
give the minimal qualified subsets only. From (1) one can see that A has a base if and only if
every qualified subset contains a minimal qualified subset. This is the case, for example, if every
qualified subset contains a finite qualified subset, which always happens when P is finite. When P
is infinite the simplest example for an access structure without base is the family consisting of all
infinite subsets of P . Here the union of any two – in fact, any finitely many – unqualified subsets
is still unqualified.

For any integer k > 1 the k-threshold structure is the access structure consisting of subsets of
P with at least k elements. Frequently the number of participants is also mentioned by speaking
about an (n, k)-threshold structure; here n is the number of participants in P . As we allow P
to be infinite, this latter notation is not always appropriate. When we speak about a k-threshold
structure we always assume that k > 1 is a natural number, that the set P is known, and then
this phrase denotes the family

{A ⊆ P : |A| ≥ k}

generated by the k-element subsets of P .
A special case of a threshold structure, which generalizes to infinite sets as well, is the all-or-

nothing structure. In this case there is only one qualified set, namely all participants are necessary
to recover the secret:

{P}.

2.2 Probabilistic secret sharing scheme

A secret sharing scheme is a method to distribute some kind of information among the participants
so that qualified subsets could recover the secret’s value from their shares, while forbidden subset
should have no, or only limited, information on the secret. The following definition captures the
usual notion of secret sharing scheme without specifying exactly what “information on the secret”
means.

Definition 2.3. We say that the secret sharing scheme S realizes the access structure A, if

1. qualified subsets can recover the secret: for any A ∈ A, the collective shares assigned to
members of A determine the secret’s value;

2. unqualified subsets have no full information: if F /∈ A then the collective shares of F does
not determine the secret’s value.

Several remarks are due. First, no computational issues are considered, thus rather than
requiring any qualified subset of participants be able to recover the secret, we rather say that
the collection of shares determine the secret. This amounts to assuming infinite computational
power, which is a usual assumption in unconditional cryptography. Second, in several cases we will
only require a weaker recoverability condition. As the secret and shares come from a probability
distribution (see Definition 2.5), we’ll be quite happy if qualified subsets determine the secret with
probability 1 rather than always.

Third, in Definition 2.3 we deliberately left out what “does not determine” means, as the exact
definition might depend on the type of the scheme. It might mean “no information on the secret
at all,“ or “any secret is possible with any collection of the shares” (but perhaps with different
probabilities), or “the collective shares of F does not determine the secret uniquely with positive
probability.” We will see examples for each of these possibilities.
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This paper concentrates exclusively on schemes where every subset is either qualified or unqual-
ified. It is quite natural to separate these properties, and consider access and forbidden structures
with the possibility that certain subsets are in neither of them. Some of our examples generalize
to for these more general cases, others do not. These generalizations, whenever possible, are left
to the interested reader.

To define a secret sharing scheme, we must also define the domain of (possible) secrets, and
the domain of (possible) shares for each participant.

Definition 2.4. The domain of secrets is denoted by Xs, and the domain of shares for the
participant i ∈ P is denoted by Xi. We always assume that none of these sets is empty, and Xs

has at least two elements, i.e. there is indeed a secret to be distributed.

Sometimes, but not necessarily always, some, or all of these domains might coincide, can be
equipped with some (algebraic or geometric) structure. In classical secret sharing all domains are
finite, but we allow these domains to be infinite sets as well.

Secret sharing schemes are usually described by referring to a dealer who chooses the secret’s
value, determines the shares, and distributes (privately) the shares to the participants. The dealer
is assumed to be honest, following the instructions exactly, and disappearing after her task is
completed without leaking out any information. If the dealer is not assumed to be honest, then
participants, after receiving their shares, engage in a conversation to verify that indeed they
received a consistent set of shares. These schemes go under the name of verifiable secret sharing
[4], which is not considered in this paper.

In our schemes both the secret and the shares are chosen randomly (but not independently)
according to a given joint probability distributions. In such cases the scheme is determined by the
joint distribution of the secret and of the totality of shares. This approach is a direct generalization
of the traditional finite secret sharing methods. Using probabilities has also the advantage that
one can easily define what “no information” means: the random variable ξ gives no information
on η if and only if they are independent, that is, the probability that ξ is in U and η is in V is the
product of the two separate probabilities:

Prob(ξ ∈ U and η ∈ V ) = Prob(ξ ∈ U) · Prob(η ∈ V ).

Or, in other words, the conditional distribution ξ|η (if exists) is the same as the unconditional
distribution of ξ.

Recall that we denoted by Xi the set of the (potential) shares of the participant i ∈ P , and by
Xs the set of (possible) secrets where s is a dummy element not in P .

Definition 2.5. A probabilistic secret sharing scheme S is a probability distribution on the set
X =

∏
i∈P∪{s}Xi. Equivalently, it is a collection of random variables 〈ξi : i ∈ P ∪ {s}〉 with some

joint distribution so that ξi takes values from Xi. The share of participant p ∈ P is the value of
ξp, and the secret is the value of ξs.

Using such a scheme, the dealer simply draws the values 〈ξi : i ∈ P ∪ {s}〉 randomly according to
their joint distribution, and then tells the value ξp to participant p ∈ P , and sets the secret to ξs.
Quite frequently the same distribution can be reached first determining (or receiving) the secret
s = ξs according to its marginal distribution, and then drawing the shares from the conditional
distribution 〈ξp : p ∈ P 〉|ξs = s. To do so we need this marginal distribution to exist.

According to Definition 2.3, the secret sharing scheme S realizes the access structure A if
members of any qualified set A ∈ A can recover the secret’s value from their joint shares (at least
with probability 1), while unqualified subsets have, in some sense, limited information only about
the value of the secret. The examples will illustrate this vague definition.
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3 Schemes using uniform distribution

The first group of examples use uniform distribution. The simplest one is the uniform distribution
on the interval [0, 1), where the measurable subsets (events) are those X ⊆ [0, 1) which have
Lebesgue measure. The probability that a uniformly distributed random variable ξ is an element
of X ⊆ [0, 1) is the Lebesgue measure of X.

In the sequel we will use x (mod 1) to denote the fractional part of the real number x.

3.1 Chor-Kushilevitz scheme

Let us start with a scheme of Chor and Kushilevitz from [3], where both the secret and the shares
are uniform random reals from the unit interval.

Scheme 3.1. (Chor, Kushilevitz, [3]) Suppose there are n participants, namely P = {1, 2, . . . , n}
where n is a fixed (finite) natural number. The dealer chooses n uniform random real numbers
h1, . . . , hn from [0, 1) independently, and then she sets the secret to be (h1 + · · · + hn) (mod 1),
i.e., the fractional part of the sum. The share of participant p ∈ P is the number hp.

It is clear that all participants together can determine the secret using the same formula what the
dealer did. It is also clear that the secret is uniformly distributed in the unit interval, moreover it
is independent of any n− 1 of the shares. Thus scheme 3.1 is perfect, namely unqualified subsets
have no information of the secret: the collection of their shares is independent of the secret. The
scheme and realizes the all-or-nothing structure A = {P}.

The same joint distribution of the secret and the shares can be achieved by a slightly different
procedure. Namely, the dealer could choose the secret and n−1 out of the n shares independently
as uniform random reals from [0, 1). Finally she can set the last share from [0, 1) so that secret be
equal to the fractional part of the sum of the shares.

3.2 A perfect scheme for finitely generated structures

Let P be arbitrary (maybe infinite), and let A ⊂ 2P be any access structure generated by finite
sets. That is, every qualified set (element of A) should contain a finite qualified subset. Using a
standard trick due to Ito and al. from [8], Scheme 3.1 can be used as a building block to create a
perfect secret sharing scheme realizing A which distributes a uniform random real from the unit
interval [0, 1).

Scheme 3.2. Suppose A is generated by A0 where each element of A0 is finite. Let s ∈ [0, 1) be
a uniformly chosen random real, and for each A ∈ A0 use Scheme 3.1 to distribute s among the
members of A using uniform random [0, 1) reals in each such sub-scheme independently. In this
sub-scheme participant p ∈ A receives the share hAp ∈ [0, 1) (labeled by the minimal qualified subset
A) such that s is the fractional part of the sum

∑
p∈A h

A
p . The total share of participant p ∈ P

will be the tuple 〈hAp : p ∈ A and A ∈ A0〉.
This is indeed a prefect scheme realizing A. For the easy part: if A ⊆ P is qualified, then the
secret can be recovered from the shares members of A received. There is an A0 ⊆ A with A0 ∈ A0,
and members of A0, adding up their shares indexed by A0 and taking the fractional part of the
sum get the secret.

For the hard part: let F ⊆ P be unqualified (“independent”), we must show that their total
share is independent from the secret s. By standard probability argument [10] this happens if
and only if every finite subcollection of these values is independent of s. So let these values be
hA1
p1 , . . . , h

Ak
pk

, where each pj ∈ F , and pj ∈ Aj ∈ A0. Partition these sub-shares according to
their upper index. Fix A = Aj and let hApj1 , . . . , h

A
pj`

be all the shares in this partition. As F is
unqualified, there is a p = pA ∈ A such that the sub-share hApA is not in the partition. Consequently,
by the remark following the description of Scheme 3.1 above, the shares hApj1 , . . . , h

A
pj`

and the secret
are totally independent. For different A ∈ A0 the dealer computed the shares independently, thus
the collection of all of these finitely many sub-shares are indeed independent of the secret.
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3.3 A (not so) perfect 2-threshold scheme

Let k ≥ 2 be a (finite) natural number. By instantiating Scheme 3.2 by the generating family
A0 = {A ⊆ P : A has exactly k elements}, we see that every k-threshold structure (independently
of whether P is finite or infinite) can be realized by a perfect scheme which distributes a single real
number from the unit interval. As a share, each participant receives as many real numbers as many
minimal (k-element) qualified subsets he is in. When P is infinite, this means infinitely many real
numbers. For finite n Shamir’s k-threshold scheme [19] distributes a secret so that shares are of the
same size as the secret – in fact, they are coming from the same algebraic structure. Generalizing
Shamir’s scheme for infinitely many participants, however, raises problematic issues.

Scheme 3.3 below was proposed by Blakley and Swanson in [2]. It is a geometric version of
Shamir’s 2-threshold scheme [19] for infinitely many participants: any pair of the participants
must be able to determine the secret, but any single share should be independent from the secret.
The idea can be outlined as follows. The dealer chooses a random line t in the plane. The secret
is the value where t intersects the y axis. Each participant p has a publicly known non-zero value
xp (the participant’s “label”), and p’s share is the height where the random line intersects the
vertical line going through the point (xp, 0). Two participants can, of course, determine the line
t, and thus the secret, while a single participant knows only a single point on t, which allows the
secret to be any value whatsoever.

But this is not enough: the secret should be statistically independent of every share. Inde-
pendence can be achieved by using finite geometry, and it also lets the secret (and all shares) be
chosen uniformly. On the Euclidean plane R2 no uniform distribution exists, thus one has to look
for other possibilities. The projective plane seems to be more promising as it can be equipped nat-
urally with a finite, uniform measure. Gluing together diagonally opposite points of the surface of
the 3D-sphere gives a topological equivalent of the projective plane. “Projective lines” correspond
to main (big) circles and “projective points” correspond to diagonally opposite pairs of points.
Mapping diagonally opposite points to the main circle halfway between them gives the (projective)
duality between points and lines. The uniform distribution on projective points corresponds to
the Lebesgue-measure on measurable symmetric subsets on the surface of the sphere. By duality,
it also gives a uniform distribution on the projective lines as well. Thus one can choose projective
points and lines “uniformly and randomly.”

Scheme 3.3. (Blakley and Swanson, [2]) Let Q be a point of the projective plane, and ` be a line
passing through Q, see Figure 1. The set of participants is I − {`} where I is the set of all lines
through Q. The dealer chooses a line t randomly with uniform distribution. With probability 1 this

Q

`

t

p

secret

p’s share

Figure 1: 2-threshold scheme using projective plane

line avoids the point Q. The secret will be the intersection of t and `, and the share of participant
p is the intersection of the lines t and p.

Scheme 3.3 is a 2-threshold scheme, meaning that any two participants can recover the secret,
while a single participant has limited information on the secret. Indeed, any pair of participants
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can recover the secret line t as the unique line passing through their points, thus they can recover
the secret (as the intersection of t and `) as well.

It is clear that the secret is distributed uniformly on `, and also that participant p’s share is
uniformly distributed on his line as well. It is also clear that knowing a single share lets every
secret possible. One may be tempted to assume that the conditional distribution of the secret given
the share of participant p is also uniform. Unfortunately, this is not the case. Fixing the share of

0−π/2 π/2

d=π/18
d=π/9

d=π/4

d=π/2

Figure 2: Conditional distribution of the secret in Scheme 3.3 for different distances

p to be some point R, the conditional distribution of the secret line t (now it goes through R) is
rotationally symmetric. Thus the conditional distribution of the secret, that is, the intersection of
t and ` depends (only) on the distance d between R and `, and its density function is depicted on
Figure 2 for different values of d. When the distance is the maximal d = π/2, then the distribution
is uniform (straight line). The smaller the distance the larger the bump at zero (the closest point
of ` to R). Nevertheless, the minimum is always positive, thus whatever p’s share is, thus the
secret can be in any arc of ` with positive probability.

3.4 A perfect 2-threshold scheme

As noted above, the lack of uniform distribution on the real line prevents a straightforward appli-
cation of Shamir’s scheme [19] for the case when the secret is a real number. There are, however,
some clever tricks to overcome this difficulty. Scheme 3.4 is a perfect 2-threshold scheme with
continuum many participants where the secret is a uniformly chosen real number from the unit
interval. Unfortunately we were unable to generalize this construction to a k-threshold scheme for
any k bigger than 2.

Recall that x (mod 1) denotes the fractional part of the real number x.

Scheme 3.4. (Csirmaz, Ligeti, Tardos, [6]) In this scheme the secret s is a uniform real number
chosen from the unit interval [0, 1), and participants are indexed by positive real numbers between
0 and 1. The dealer, after choosing the secret s as described, chooses a uniform random real r from
[0, 1) independently from s. Participant with index p ∈ (0, 1) will receive the share sp = r + s · p
(mod 1).

First note that each participant receives a uniform random number from the interval [0, 1) which is
independent of the secret. This is so as the “randomization” value r is independent from the secret
(and from the participant). Thus no participant has any information on the secret whatsoever,
i.e., the scheme is perfect. Second, if 0 < p < q < 1 are the indices of two participants, then the
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fractional part of the difference of their shares is

s · (q − p) (mod 1). (2)

They also know that s is between zero and one, q−p is between 0 and 1, thus s · (q−p) is between
0 and 1. By (2) they know the fractional part of this product, consequently they know the exact
value as well as it equals to its fractional part. From here determining the secret is a simple matter
of division.

In an intuitive sense this scheme is also ideal. The shares and the secret are very much alike,
and we did not squeeze extra information into the shares using some tricky encoding.

3.5 An “all-or-nothing” scheme

All-or-nothing schemes realize the simplest possible access structure, namely the one where the
only qualified subset consists of all participants: A = {P}. When P is finite, say has n elements,
then Scheme 3.1 of Chor and Kushilevitz is, in fact, an all-or-nothing scheme distributing a real
number. Thus all-or-nothing schemes exist for every finite set of participants. Scheme 3.5 below
is an all-or-nothing one where P has countably many elements and the secret is a real number.

Scheme 3.5. (Csirmaz, Ligeti, Tardos, [6]) Let the set of participants be labeled by the positive
integers N+ = {1, 2, . . .}. Participant i ∈ N+ receives hi, an independent, uniformly distributed
real number from [0, 1). Finally the dealer computes the secret as

s =
∞∑
i=1

hi
2i
.

The distribution of the secret is depicted on Figure 3.
We claim that Scheme 3.5 realizes the access structure A = {P}. First, it is clear that all

participants together can determine the secret: they simply use the same formula what the dealer
did.

0.50 1

Figure 3: Distribution of the secret in Scheme 3.5

Second, suppose participant with label i ≥ 1 is missing, i.e., only the shares of F = P − {i}
are known. As i’s contribution to the secret is a uniform value from an interval of length 2−i,
members of F only know that s is within a certain interval (which interval can be computed from
their shares), and the secret has a uniform distribution within that interval. Consequently F can
compute the secret up to an interval of length 2−i, and the conditional distribution of the secret
in that interval is uniform. Thus, in some sense, unqualified subsets have limited information on
the secret. But this “limited information” can be quite big: an unqualified subset can narrow
down the value of the secret to a tiny interval. Scheme 4.4 realizes the same access structure
(namely, A = {P}), and has the advantage that unqualified subsets – based on their shares –
cannot exclude any secret value whatsoever.
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4 Schemes with Gaussian distribution

While there is no uniform distribution on the reals, there is a natural, and much used one: the
Gaussian or normal distribution. As usual, N(µ, σ2) denotes the normal distribution with expected
value µ and variance σ2, its density function is

1√
2πσ2

e−
(x−µ)2

2σ2 .

A standard normal variable has expected value µ = 0 and variance σ2 = 1. If ξi is normal with
parameters µi and σi, and ξ1, . . . , ξm are independent, then the linear combination

∑
λiξi is also

normally distributed with expected value
(∑

λiµi
)

and variance
(∑

λ2
iσ

2
i

)
.

4.1 A k-threshold scheme over the reals

Scheme 4.1. Let k ≥ 2 be a fixed positive integer. Participants are identified by non-zero real
numbers R−{0}. The dealer sets the share of participants x1 = 1/k, x2 = 2/k, . . . , xk = k/k = 1
to be independent standard normal values. Next, she computes the unique polynomial f(x) of
degree at most k− 1 for which f(xi) is the share of xi for i = 1, 2, . . . , k. Then she sets the secret
as f(0), and p ∈ R− {0} receives the share f(p).

As a polynomial of degree at most k − 1 is determined uniquely by values it takes at k different
places, any k participant can compute f , and thus can recover the secret as well. Determining f
can be done, for example, by the Lagrange interpolation method outlined below.

Suppose we are looking for a polynomial f of degree at most k− 1 which takes the value yi at
xi for i = 1, . . . , k. Let Li(x) be the following polynomial of degree k − 1

Li(x) =
(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xk)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xk)
=

k∏
j=1
j 6=i

x− xj
xi − xj

,

which takes 1 at xi and zero at xj when j 6= i. The polynomial we are seeking for is

f(x) =
k∑
i=1

yiLi(x), (3)

as it takes yi at xi, and has degree at most k− 1. Equation (3) can also be used to determine the
value of f at any particular place x without computing the coefficients of f first.

In Scheme 4.1 the dealer has chosen the values f(1/k), f(2/k), . . . , f(k/k). Therefore she can
compute the share of p using Lagrange interpolation (3) as follows:

f(p) =
k∑
i=1

( k∏
j=1
j 6=i

p− j/k
(i− j)/k

)
f(i/k) =

k∑
i=1

λp,if(i/k),

where the constants λp,i depend only on p (and i and k), but they do not depend on the actual
values of f(i/k). Thus f(p) is a linear combination of independent standard normal variables,
consequently it also follows a Gaussian distribution with expected value 0 and variance

σ2
p =

k∑
i=1

λ2
p,i =

k∑
i=1

∏
j 6=i

(kp− j)2

(i− j)2
.

In particular, the secret, namely the value of f at 0, has expected value 0 and variance

σ2
0 =

k∑
i=1

∏
j 6=i

j2

(i− j)2
=

k∑
i=1

(
k

i

)2

=
(

2k
k

)
− 1 ≈ 22k

√
πk
. (4)
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The joint distribution of the shares of k − 1 participants p1, . . . , pk−1 is a (k − 1)-dimensional
Gaussian distribution; these shares, however, are not necessarily independent. Nevertheless, the
conditional distribution of the secret, given the shares f(p1) = h1, . . . , f(pk−1) = hk−1 is again
Gaussian. Indeed, the probability that f(pj) = hj and f(0) = s (namely the value of the density
function at this point) can be computed as follows. Using (3) we can compute f(1/k), . . . , f(k/k)
from the values hj and s as

f(`/k) = s
( k−1∏
j=1

`/k − pj
0− pj

)
+
( k−1∑
i=1

hi
`/k − 0
pi − 0

∏
j 6=i

`/k − pj
pi − pj

)
= s · a` − b`,

here ` = 1, . . . , k, and the constants a` and b` do not depend on s. Thus

Prob
(
f(0) = s, f(p1) = h1, . . . , f(pk−1) = hk−1

)
=

= Prob
(
f(1/k) = sa1 − b1, . . . , f(k/k) = sak − bk

)
=

=
1

(2π)k/2
exp

(
− 1

2 ((sa1 − b1)2 + · · ·+ (sak − bk)2)
)

=

= C · exp
(
− 1

2 (As−B)2
)
, (5)

where

A2 = a2
1 + · · · a2

k =
k∑
`=1

(`/k − p1)2 · · · (`/k − pk−1)2

p2
1 · · · p2

k−1

,

AB = a1b1 + · · · akbk,

and C is again some constant not depending on s. According to (5), the conditional distribution
of the secret is indeed normal with expected value B/A and variance A−2. The variance depends
only on who the participants p1, . . . , pk−1 are, but does not depend on the value of their shares.
If one of the participants is quite close to zero, then we expect his share to be close to the secret
as well, and this intuition is justified by the small value of the variance A−2. Also, if all p` are
really small, then in the formulas above we can replace `/k − pj by `/k, and the expected value
of the conditional distribution of the secret can be approximated as

B

A
=
AB

A2
≈
k−1∑
i=1

hi
∏
j 6=i

0− pj
pi − pj

,

which is the value at zero of the smallest degree polynomial going through the shared values of
these k − 1 participants, while the variance is

A−2 ≈
p2
1 · · · p2

k−1∑k
`=1(`/k)2k−2

≈ p2
1 · · · p2

k−1.

On the other hand, if all participants are well above 1, i.e., pj � 1, then we can bound the
conditional variance A−2 from below. As ` ≤ k,

(`/k − pj)2

p2
j

=
(

1− `

kpj

)2

< 1,

therefore

A−2 =

(
k∑
`=1

(`/k − p1)2 · · · (`/k − pk−1)2

p2
1 · · · p2

k−1

)−1

>
1
k
. (6)

The variance is asymptotically 1/k as the values of pj tend to infinity; and the expected value is

AB

A2
≈
k−1∑
i=1

hi
k

2pi

∏
j 6=i

0− pj
pi − pj

,
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once again the value at zero of the smallest degree polynomial going through the “corrected” values
h̃i = hik/(2pi). Consequently this scheme is far away from being “perfect,” which would require
that the conditional distribution of the secret be the same as the unconditional one. Nevertheless,
the scheme offers quite good security guarantees, namely any k − 1 participants, whatever their
shares are, cannot exclude any interval, or in fact any set with positive Lebesgue measure, from
R as the possible value of the secret.

4.2 An almost perfect threshold scheme

Using a trick inspired by the Ajtai-Dwork cryptosystem [17], we can make the previous threshold
Scheme 4.1 “almost perfect.” In designing their cryptosystem, Ajtai and Dwork used the fact that
the fractional part of a normal variable with large enough variance is almost uniformly distributed.
The density function of the distribution of the fractional part of a normal variable with variance
σ2 can be computed using the Poisson summation formula

1√
2πσ2

+∞∑
k=−∞

e−
(x−k)2

2σ2 =
+∞∑
`=−∞

cos(2πx`)e−2π2σ2`2 , 0 ≤ x < 1. (7)

On figure 4 this density function is depicted for three different values of σ. For each σ it takes the

10

σ = 3

σ = 1.5

σ = 1

Figure 4: Distribution of the fractional part of a normal variable

smallest value at 1/2, and the largest value at 0 (and 1). The larger the variance the closer the
distribution to the uniform one. In fact, as formula (7) indicates, the deviation from the uniform
distribution is of order exp(−2π2σ2), thus choosing, e.g., σ = 10 the distribution is practically
indistinguishable from the uniform one.

The trick is that instead of using a normally distributed random variable ξ ∈ N(m,σ2), we will
use its fractional part η = ξ (mod 1). The density function of η differs from the density function
of the uniform distribution by about exp(−2π2σ2). With this trick in mind we make the following
changes to Scheme 4.1. First, the secret will not be the value of the interpolating polynomial f
at zero, rather the fractional part of it. If f(0) has large enough variance, then its fractional part
is almost uniform in the unit interval. Second, we restrict participants to values larger than 1 to
make sure that the conditional distribution of the secret has variance separated from zero. Third,
to make sure that f(0) has variance large enough, f(1/k), . . . , f(k/k) will be chosen independently
from N(0, σ2) with some large enough σ.

Scheme 4.2. Let k ≥ 2 be a fixed positive integer, λ > 1 be a “security” parameter, and set σ =
λ ·
√
k. Participants are labeled by real numbers above 1. The dealer chooses k normally distributed

random reals ξi from N(0, σ2) independently, and determines the smallest degree polynomial f with
f(i/k) = ξi. Then she sets the secret to be the fractional part of f(0), and gives participant p > 1
the share f(p).

As with Scheme 4.1 any subset of k participants can recover the polynomial f , thus the secret as
well. According to equation (4), f(0) has variance

σ2 ·
k∑
i=1

(
k

i

)2

> λ2 · k · 2k,

11



and from (6) it follows that the variance of the conditional distribution of f(0) given k − 1 shares
is bigger than

σ2 · 1
k

= λ2.

Consequently the density function of the fractional part of f(0), i.e., that of the secret, differs from
the uniform one by less than 2 exp(−2π2λ2) both in the unconditional and in the conditional case.
Therefore these density functions differ from each other by less than 4 exp(−2π2λ2) everywhere.
Choosing, e.g., λ = 10, the two distributions are practically indistinguishable, unqualified subsets
have (uniformly) arbitrary small information on the secret.

With could slightly twist Scheme 4.2 to realize the infinite subsets of participants indexed by
positive real numbers above 1. Shares they receive will form a graph of a polynomial, but in
this case the degree of the polynomial has no a priori bound. As usual, the secret is the value
of the polynomial at zero (or, rather, its fractional part). Infinitely many points determine the
polynomial – and the secret – unambiguously, while given finitely many shares only, the ratio of
the unconditional and conditional probability of the secret is bounded.

Scheme 4.3. Fix the “security parameter” λ > 1. Participants are labeled by real numbers above
1. The dealer chooses the integer k ≥ 2 randomly so that k is chosen with probability 2−k+1, then
she executes Scheme 4.2 with k and λ.

Clearly both the secret and the shares are random variables with some well-determined distribution
which depends on λ. The secret is from the unit interval with a distribution quite close to the
uniform one. Any infinite set of participants can determine the polynomial f whatever its degree
is, thus they can determine the secret as well.

With probability 2−k+1 the polynomial will be of degree k−1, thus k participants can determine
the secret uniquely with probability 1− 2−k+1. With probability 2−k+1, however, f has degree at
least k, and the conditional distribution of the secret is quite close to the uniform one (say bigger
than 1/2 everywhere). Consequently, no matter what the shares of these k participants are, the
density function of the conditional distribution of the secret given these shares is at least 2−k over
the whole unit interval. Consequently they have at least that much uncertainty about the value
of the secret.

4.3 Gaussian “all-or-nothing” scheme

Scheme 3.5 realized an infinite “all-or-nothing” access structure: all participants were necessary
to recover the secret exactly. When the i’th participant’s share was missing, others could narrow
down the secret to an interval of length 2−i only. Here we present an alternate scheme realizing the
same structure, based on a Gaussian probability distribution on `2 in which unqualified subsets
cannot exclude any positive set as the possible value of the secret.

Suppose 〈ξi ∈ N(0, σ2
i ) : i ∈ N+〉 is a sequence of independent normal variables. This defines a

(Gaussian) probability measure on the infinite sequences: to choose such a sequence “randomly,”
simply take a realization of the sequence 〈ξi : i ∈ N+〉. If, in addition, σ2 =

∑
i σ

2
i < ∞, then,

with probability 1, the sum
∑
ξi converges, and has normal distribution N(0, σ2). Fix such σi

values. Shares will be generated according to the above measure, and the secret will be the sum
of the distributed vector.

Scheme 4.4. Fix the values σi such that
∑
σ2
i < ∞. Participants are labeled by the set N+ of

positive integers. The share hi of i ∈ N+ is a normally distributed real number from N(0, σ2
i )

where shares are chosen independently. Finally the dealer computes the secret as s =
∑
i hi.

As remarked above, with this choice of the variances, the sum
∑
i hi is convergent with probability

1, thus this is a correct scheme. Evidently, all participants together can determine the secret by
adding up their shares. On the other hand, participant i contributes a normally distributed value
to the secret which is independent of all other shares, thus leaving him out the others cannot
exclude any set of reals with positive measure as the secret’s value. Indeed: given the shares of a
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maximal unqualified set F = N+ − {i}, the conditional distribution of s given all these shares is
N(m,σ2

i ), where m =
∑
j 6=i hj , the sum of the shares of the members of F .

Using the Ajtai-Dwork trick, namely taking the secret to be the fractional part of the value to be
recovered, this scheme can also be turned into a scheme with stronger “hiding” property. Namely,
given the shares of an unqualified set F , the density function of the conditional distribution of the
secret is not only positive wherever the unconditional secret distribution has positive density, but
the two distributions are only a “constant apart:”

c · (unconditional density) ≤ (conditional density) ≤ 1
c
· (unconditional density) (8)

for some positive constant c = cF depending on the unqualified set F .

We remark that in [5] it is shown that infinite “all-or-nothing” structures cannot be realized
by perfect schemes, thus this improved scheme provides the strongest possible security guarantee
for this particular access structure.

5 Stochastic processes

Schemes in this section are based on the heavy weight champion of probability theory, the Wiener
process. A Wiener process W (t) is a randomly generated function defined on the interval [0, 1]
which is the limiting process of the scaled sum of infinitely many independent identically dis-
tributed random variables. Among its several properties, we will use the following ones.

1. W (0) = 0 and for 0 < t ≤ 1, W (t) is normally distributed with expected value 0 and
variation t;

2. W (t)−W (s) is normal with expected value 0 and variance |t− s|;

3. W (t) has independent increments, that is when t1 < t2 < s1 < s2 then W (t2) −W (t1) and
W (s2)−W (s1) are independent;

4. the expected value of W (t)W (s) is min(t, s);

5. W (t) is continuous, and has unlimited variance (with probability 1);

6. the integral
∫ t
0
W (s) ds is normally distributed with expected value 0 and variation t3/3.

All but the last properties are standard ones, see, e.g., [10]. To see why the last property holds, we
first remark that W (s) has expected value 0, thus by Fubini’s theorem the integral has expected
value zero as well. The variance can be computed as follows:

E
[(∫ t

0

W (s) ds
)2] = E

[ ∫ t

0

∫ t

0

W (s)W (s′) ds ds′
]

=

=
∫ t

0

∫ t

0

E
[
W (s)W (s′)

]
ds ds′ =

∫ t

0

∫ t

0

min(s, s′) ds ds′ = t3/3,

as was claimed.

5.1 Dense subsets

Scheme 5.1. The participants are labeled by real numbers from the unit interval [0, 1]. The dealer
chooses a Wiener process W (t), and tells participant p ∈ [0, 1] the share W (p). Finally, she sets
the secret to be

∫ 1

0
W (t) dt.
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This scheme realizes the dense subsets of the unit interval. Indeed, W (t) is continuous (with
probability 1), thus knowing its value on a dense subset determines the function everywhere, and
then the participants can integrate the function to determine the secret. If F ⊆ [0, 1] is not dense,
then there is a subinterval [a, b] disjoint from F , we may assume that F is just the complement of
this interval. Now the secret can be written as the sum∫

I

W (t) dt =
∫

[a,b]

W (t) dt+
∫
I−[a,b]

W (t) dt

Both integrals on the right hand side are normally distributed with variance (b − a)3/3 and
1/3− (b− a)3/3 respectively. The independent increments property of the Wiener process tells us
that these summands are independent, thus members of F know the secret only up to a normally
distributed value with positive variance which is independent of their shares.

Scheme 5.1 can be restricted to any dense subset of [0, 1], in particular to the set of dyadic
rationals in (0, 1), which, in turn, can be identified with the nodes of the infinite binary tree T .
A set D of the nodes is dense in T if every node has an extension in D, or said otherwise, no
spanned subtree of T avoids D.

Scheme 5.2. Participants are nodes of the infinite binary tree T labeled by finite {−1,+1} se-
quences, including the empty sequence for the root. This scheme realizes the dense subsets of T .
The dealer chooses a Wiener process W (t), and sets the secret to be

∫ 1

0
W (t) dt. Participant with

label 〈ε1, ε2, . . . , εk〉 where εi = ±1 receives the value of W (t) at

t =
1
2

+
1
2

k∑
i=1

εi
2i
.

Both the secret and all shares are normally distributed values. Dense subsets of the participants
can recover the process W (t), thus its integral as well. Subsets missing a whole subtree miss a
whole interval from [0, 1], thus have limited information on the secret.

5.2 Convergent sequences

Rather than setting the secret to be the integral of the Wiener process, we could set the secret
to be simply W (1). If participants receive W (t) for other values of t, then a subset A ⊆ [0, 1)
can recover the secret if and only if 1 is in the closure of A. Indeed, W (t) is continuous at a.
Furthermore, if A is separated from 1, i.e., there is a whole interval between A and 1, then by
the independent increments property, W (1) has an increment (a normally distributed value) with
variance equal to the length of that interval, which is independent of the values known to members
of A. Consequently A has only a limited information on the secret, and secret’s value can be in
any interval with positive probability. Thus Scheme 5.3 below realizes those subsets of P which
have 1 in their closure:

Scheme 5.3. The set of participants is P ⊆ [0, 1) such that 1 is in the closure of P . The dealer
chooses a Wiener process W (t), sets the secret to be W (1) and tells participant p ∈ P the value
W (p).

If we choose P = {1 − 1/i : i ∈ N+} then qualified subsets are exactly the infinite subsets of P .
Thus we got a scheme realizing all infinite subsets of a countable set, see also 6.1.

Schemes in this section can also be turned into a stronger scheme with “up to a constant
hiding” property (8) by setting the secret to be its fractional part.

6 Statistical methods

Recovering the secret can be considered a statistical problem: participants have values which
are “measurements” and the are interested in an estimate on the “unknown parameter” s. The
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simplest case is when shares are “measurements” of the secret up to an error term with standard
normal distribution.

Scheme 6.1. The dealer chooses the secret s ∈ N(0, 1). The share of participant i ∈ P is s+ ξi
where the hiding value ξi ∈ N(0, 1) is chosen independently from all other values.

When n participants put together their values, they have n independent measurements of the
secret. In this case the best statistics, namely the best estimate of the unknown value s is the
average of their values, see [12]. The conditional distribution of the secret assuming their shares
hi is normal with expected value h̄ (sample mean), and variance 1/n. Thus finite subsets are
unqualified: they have limited information on the secret.

Infinite subsets, however, can determine s with probability 1: their sample mean has expected
value equal to the secret, and has variance zero, thus is must be equal (with probability 1) to the
secret.

Consequently, Scheme 6.1 realizes all infinite subsets of any (infinite) set P of participants,
with the same security guarantees as did Scheme 4.3 or Scheme 5.3. Those schemes, however,
worked only when P was countably infinite.

In our second scheme each participant i ∈ P has a publicly known obfuscating value 1 ≤ ri < 10.

Scheme 6.2. The dealer chooses the secret s ∈ N(0, 1), and the obfuscating value η ∈ N(0, 1).
The share of participant i ∈ P is (s+ ri · η + ξi) with ξi ∈ N(0, 1), where all random variables (s,
η, and ξi) are chosen independently.

Suppose A ⊆ P is an infinite subset of participants whose obfuscating values have the only limit
point r. Then the sample mean of their shares will be s + r · η (as the sample mean is normally
distributed with this expected value and zero variance). Consequently a subset A ⊆ P can
determine the secret if the set of their obfuscating values has at least two different limit points r
and t: they can find out the numbers r, t, a = (s+ r · η) and b = (s+ t · η), and then compute the
secret as (t · a− r · b)/(t− r).

It is also clear that if A ⊆ P is finite, then the conditional distribution of the secret, given the
shares of A is normal with positive variance (in fact, the variance is at least 1/n when A has n
elements), thus finite subsets are unqualified.

The question is when A ⊆ P is infinite and their obfuscating numbers have a single limit value,
when will A be qualified? To answer this question, let us look at the conditional distribution of the
secret given n shares h1, . . . , hn with obfuscating values r1, . . . , rn. As η and ξi are independent
standard normal,

Prob(s = x, η = y, s+ riη + ξi = hi) =
1

(
√

2π)n+2
e−x

2/2 e−y
2/2

n∏
i=1

e−(hi−x−ri·y)2/2.

Thus the conditional density function of s given the shares h1, . . . , hn is the integral of this function
by y. Concentrating on the exponent only,

x2 + y2 +
n∑
i=1

(hi − x− ri · y)2 =

= x2 + (1 +
∑
r2i )y

2 + 2y
∑
ri(hi − x) +

∑
(hi − x)2 =

= (1 +
∑
r2i )(y +A)2 − (1 +

∑
r2i )A

2 + x2 +
∑

(hi − x)2,

where

A =
∑
ri(hi − x)

1 +
∑
r2i

.
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When integrating, the value of the first term becomes a constant (its value does not depend on
A, thus on x), therefore the exponent of the density function of the conditional distribution is

−(1 +
∑
r2i )A

2 + x2 +
∑

(hi − x)2 =

= x2

n+ 1−
(∑

ri
)2

1 +
∑
r2i

+Bx+ C =

= x2

1 +
1 +

∑
(ri − r̄)2

r̄2 + 1
n

(
1 +

∑
(ri − r̄)2

)
+Bx+ C,

where r̄ is the average (mean) of the ri’s, and B, C are expressions which do not depend on x.
Consequently, the conditional distribution of the secret, given the shares hi, is normally distributed
with variance σ2, where

1
σ2

= 1 +
1 +

∑
(ri − r̄)2

r̄2 + 1
n

(
1 +

∑
(ri − r̄)2

) . (9)

If A ⊆ P is infinite and the obfuscating numbers of A has the single limit r, then, again, the
conditional distribution of the secret is normally distributed, and the variance can be computed
from equation (9), but in this case the average r̄ coincides with the limit r. The subset A can
determine the secret if and only if the variance σ2 is zero. And this happens, if and only if∑

i

(ri − r)2 =∞.

(Note that, by assumption, r ≥ 1.) ThusA ⊆ P with a single limit r is a) unqualified if
∑

(ri−r)2 <
∞, and in this case the conditional distribution of the secret is normal with a positive variance;
and b) A is qualified if the sum

∑
(ri − r)2 diverges.

∗
Let P be the set of lattice points in the positive quadrant, that is the set of point with positive

integer coordinates. A ray is a half line starting from the origin. We consider only those rays
which are in the positive quadrant. The angle or argument of the lattice point p ∈ P is the angle
between the ray going through p and the positive x axis. All these angles are between 0 and π/2.
A strip of width d is a subset of S ⊆ P for which there is a ray lying in the first quadrant – the
direction of the strip – so that a lattice point is in S if and only if it is at distance at most d/2
from the ray. Strips with different directions have only finitely many lattice points in common.
Considering all strips of width, say, 10, is the standard way to construct continuum many infinite
subsets of a countable set (P in this case) so that any two of them has finite intersection, see [13].

Scheme 6.3. The set P of participants in this scheme is the set of lattice points of the positive
quadrant. The dealer chooses the secret s ∈ N(0, 1), and the obfuscating value η ∈ N(0, 1). The
share of participant p with angle ϕ is (s + (1 + ϕ)η + ξp), where ξp ∈ N(0, 1), and, as before, all
random variables are chosen independently.

We claim first that every strip is unqualified. Indeed, let ϕ be the the angle of the direction of
the strip S, and let d > 5 be its width. For each natural number j > 0, there are at most 100d
lattice points within the strip with distance between j and j + 1 from the origin. Each of these
lattice points have angles between ϕ − d/j and ϕ + d/j. Consequently the obfuscating numbers
of the lattice points in this strip have a single limit value, namely r = (1 + ϕ), and∑

p∈S
(rp − r)2 <

∑
j>0

(100d) · (d/j)2 = 100d3
∑
j>0

1
j2

< +∞.

As has been shown previously, this means that S is unqualified.
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On the other hand, the union of any two strips with different directions is qualified. Indeed, in
this case the obfuscating numbers of the subset have two different limit points, which is a sufficient
condition for a subset to be qualified.

Thus Scheme 6.3 realizes an access structure over a countable set of participants in which there
are continuum many unqualified subsets such that the union of any two of them is qualified.

7 Hilbert space program

Span programs, introduced by Karchmer and Wigderson in [11], provide a general framework for
defining and investigating (finite) linear secret sharing schemes. Instead of random variables span
programs are defined on (finite dimensional) vector spaces. Let V be such a vector space, and fix
u ∈ V t as the goal vector. Every participant p ∈ P is assigned a linear subspace Lp ⊆ V. A
collection of participants is qualified, if the linear span of their subspaces contain the goal vector,
and unqualified otherwise.

If V is finite, that is the underlying field F is finite, then there is a natural way to convert a
span program into a secret sharing scheme. Choose r ∈ V randomly with uniform distribution.
The secret will be the inner product r · u. If Lp is k-dimensional and is spanned by x1, . . . , xk,
then p’s share is the k-tuple 〈r ·x1, . . . , r ·xk〉. In this way qualified subsets can recover the secret,
and the shares of an unqualified subset give no information on the secret: the r · u inner product
can be any element of F with the same probability.

A generalization of this notion to infinitely many participants is the Hilbert space program

Definition 7.1. Let H be a (real) Hilbert space, and fix u ∈ H as the goal. In a Hilbert space
program each participant p ∈ P is assigned a subspace Lp ⊆ H. A collection of participants is
qualified, if the goal vector is in the closure of the linear span of their subspaces, and unqualified
otherwise.

Just as in the case of span programs, every Hilbert space program can be turned into a secret
sharing scheme. The idea is that make H a Gaussian space [9]. Let B be an orthonormal basis
of the Hilbert space H, and choose the standard normal variables ξe ∈ N(0, 1) for each e ∈ B
independently. Every element x ∈ H can be written uniquely as x =

∑
{λe(x)e : e ∈ B}, where

λe(x) is just the inner product of x and e.. To the element x associate the random variable
ξx =

∑
{λe(x)ξe}. This will be a centered Gaussian random variable with variance ‖x‖2.

Set the secret to be the value of ξu, the random variable assigned to the goal u ∈ H. If
participant p got the subspace Lp, then let Bp ⊆ Lp a base in it, and p’s share will be the values
of ξb for b ∈ Bp. It is clear that qualified subsets can determine the secret. Indeed, they can
use the linear combination which produces the goal from their vectors. Next suppose A ⊆ P is
unqualified. Let L ⊆ H be the closure of the subspace spanned by the family {Lp : p ∈ A}. Let
v be the orthogonal projection of u into L, and let w = u − v. As the goal is not in L, w 6= 0.
Then v and w are orthogonal, and u = v +w. This means that the secret ξu is the sum of ξv and
ξw, and that ξv and ξw are uncorrelated, thus independent. But w is also orthogonal to the whole
subspace L, thus ξw is independent of all shares in A. Consequently the conditional distribution of
the secret, given all shares of A, is normal with variance ‖w‖2, that is A has that much uncertainty
about the secret’s value.

Schemes 4.1, 4.4, 5.1, 5.2, 5.3, 6.1, and 6.2 are all instances of this general construction. For
example, in Scheme 6.2 the Hilbert space is separable, i.e., it has a countable orthonormal base.
Each participant gets a one-dimensional subspace. The coordinates of the goal and the vectors

17



which span these subspaces are

goal: 1 0 0 0 0 0 0 . . .

shares: 1 r1 1 0 0 0 0 . . .
1 r2 0 1 0 0 0 . . .
1 r3 0 0 1 0 0 . . .
1 r4 0 0 0 1 0 . . .
. . .

In formula (9) we actually computed the orthogonal component of the goal to the subspace spanned
by n share vectors.

8 An esoteric scheme

In this section we present a scheme which can be best described as one which defies our intuition
what a probabilistic scheme should be.

As the full set of participants is always qualified, one might be tempted to define the secret as
a function of the collective set of shares assigned to the participants. Everyone together should
be able to determine the secret, so why the dealer bothers with determining the secret separately
rather than computing it from the shares she assigned to the participants? Scheme 8.1 shows that
this approach might lead to problems.

Scheme 8.1. Let us split the unit interval [0, 1) into countably many subsets Xi indexed by the
set of integers Z such that all Xi has outer measure 1 and inner measure zero. Let moreover fix
the positive probabilities pj for j ∈ Z with

∑
j∈Z pj = 1. In this scheme there are two participants:

P = {a, b}. Participant a receives a uniform random real r from the unit interval, and participant
b receives the integer j ∈ Z with probability pj. Finally the dealer computes the secret s ∈ Z as
follows: she finds the index i ∈ Z for which r ∈ Xi, and then sets s = i+ j.

From the scheme it is clear that recovering the secret participant a uses only the index i for which
his number is in the set Xi. So why don’t we give him this index rather than the uniform random
real r? The answer is that this index i has no probability distribution. In fact, in this scheme the
secret is not a random variable, thus the scheme is not a probabilistic scheme at all!
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