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Abstract. As hardware capabilities increase, low-power devices such
as smartphones represent a natural environment for the efficient imple-
mentation of cryptographic pairings. Few works in the literature have
considered such platforms despite their growing importance in a post-
PC world. In this paper, we investigate the efficient computation of the
Optimal-Ate pairing over Barreto-Naehrig curves in software at differ-
ent security levels on ARM processors. We exploit state-of-the-art tech-
niques and propose new optimizations to speed up the computation in
the tower field and curve arithmetic. In particular, we extend the concept
of lazy reduction to inversion in extension fields, analyze an efficient al-
ternative for the sparse multiplication used inside the Miller’s algorithm
and reduce further the cost of point/line evaluation formulas in affine
and projective homogeneous coordinates. In addition, we study the effi-
ciency of using M-type sextic twists in the pairing computation and carry
out a detailed comparison between affine and projective coordinate sys-
tems. Our implementations on various mass-market smartphones and
tablets significantly improve the state-of-the-art of pairing computation
on ARM-powered devices, outperforming by at least a factor of 3.7 the
best previous results in the literature.

Keywords: Optimal-Ate pairing, Barreto-Naehrig curves, ARM proces-
sor, pairing implementation.

1 Introduction

In the past decade, bilinear pairings have found a range of constructive appli-
cations in areas such as identity-based encryption and short signatures. Natu-
? This work was partially carried out while this author was a postdoctoral researcher
in the Department of Combinatorics and Optimization at the University of Waterloo.



rally, implementing such protocols requires efficient computation of the pair-
ing function. Considerable work has been done to compute fast pairings on
PCs [3,6,8,15,17]. Most recently, Aranha et al. [3] have computed the O-Ate
pairing at the 128-bit security level in under 2 million cycles on various 64-bit
PC processors. In contrast, relatively few articles [1,10] have considered efficient
software implementations of pairings on ARM-based platforms such as hand-
held smartphones and tablets. These platforms are widely predicted to become
a dominant computing platform in the near future. Therefore, efficient imple-
mentation of pairing-based protocols for these devices is crucial for deployment
of pairing-based cryptography in a mobile world and represents a natural area
of research.

In this paper, we investigate efficient pairing computations at multiple se-
curity levels across different generations of ARM-based processors. We extend
the work of Aranha et al. [3] to different BN curves and higher security levels.
In addition, we make several further optimizations and analyze different options
available for implementation at various stages of the pairing computation. We
summarize our contributions as follows:

– Firstly, we extend the concept of lazy reduction employed by Aranha et
al. [3] (see also Longa [13, Chapter 6]) to inversion in extension fields. We
also optimize the sparse multiplication algorithm in the degree 12 extension.

– We examine different choices of towers for extension field arithmetic over
various prime fields including BN-254, BN-446, and BN-638 [8]. We deter-
mine the most efficient implementation of extension fields in the context of
pairing computation over BN-curves from the various choices available.

– The M-type sextic twist [16] has been largely ignored for use in pairing com-
putations, most likely due to the inefficient untwisting map. We demonstrate
that by computing the pairing on the twisted curve, we can bypass the inef-
ficient untwisting. As a result, for the purposes of optimization one can use
either M-type or D-type twists, thus roughly doubling the available choice
of curves.

– Finally, we implement the proposed algorithms for computing the O-Ate
pairing over BN curves on different ARM-based platforms and compare our
measured timing results to their counterparts in the literature. Our exper-
imental results are 3 to 5 times faster than the fastest available in prior
literature, depending on the security level.

Acar et al. [1] have recently raised the question of whether affine coordinates or
projective coordinates are a better choice for curve arithmetic in the context of
software implementation of pairings. Their conclusion is that affine coordinates
are faster at all security levels at or above 128 bits on the ARM platform. In con-
trast, our results (Section 6.2) demonstrate a clear advantage for homogeneous
projective coordinates at the 128-bit security level, although affine coordinates
remain faster at the 256-bit security level. We believe that our findings are more
reliable since they represent a more realistic amount of optimization of the un-
derlying field arithmetic implementation. We stress that, except for the work
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described in Section 6.1, our code does not contain any hand-optimized assem-
bly or any overly aggressive optimizations that would compromise portability or
maintainability.

The rest of this paper is organized as follows. In Section 2, we provide some
background on the O-Ate pairing. In Section 3, we discuss the representation
of extension fields. In Section 4, we describe arithmetic on BN curves including
point addition and doubling presented in different coordinates. We provide oper-
ation counts for our algorithms in Section 5. In Section 6, we present the results
of our implementation of the proposed scheme for computing O-Ate pairings on
different ARM processors, and compare them with prior work.

2 Preliminaries

Barreto and Naehrig [4] describe a family of pairing friendly curves E : y2 = x3+b
of order n with embedding degree 12 defined over a prime field Fq where q and
n are given by the polynomials:

q = 36x4 + 36x3 + 24x2 + 6x+ 1

n = 36x4 + 36x3 + 18x2 + 6x+ 1, (1)

for some integer x such that both q and n are prime and b ∈ F∗q such that b+ 1
is a quadratic residue.

Let Πq : E → E be the q-power Frobenius. Set G1 = E[n] ∩ ker(Πq − [1])
and G2 = E[n] ∩ ker(Πq − [q]). It is known that points in G1 have coordinates
in Fq, and points in G2 have coordinates in Fq12 . The Optimal-Ate or O-Ate
pairing [18] on E is defined by:

aopt : G2 ×G1 → µn, (Q,P )→ f6x+2,Q(P ) · h(P ) (2)

where h(P ) = l[6x+2]Q,qQ(P )l[6x+2]Q+qQ,−q2Q(P ) and f6x+2,Q(P ) is the appro-
priate Miller function. Also, lQ1,Q2

(P ) is the line arising in the addition of Q1

and Q2 at point P . This function can be computed using Miller’s algorithm [14].
A modified version of the algorithm from [14] which uses a NAF representation
of x is given in Algorithm 1.

Let ξ be a quadratic and cubic non-residue over Fq2 . Then the curves E′ :
y2 = x3 + b

ξ (D-type) and E′′ : y2 = x3 + bξ (M-type) are sextic twists of E over
Fq2 , and exactly one of them has order dividing n [3]. For this twist, the image G′2
of G2 under the twisting isomorphism lies entirely in E′(Fq2). Instead of using a
degree 12 extension, the point Q can now be represented using only elements in
a quadratic extension field. In addition, when performing curve arithmetic and
computing the line function in the Miller loop, one can perform the arithmetic
in G′2 and then map the result to G2, which considerably speeds up operations
in the Miller loop.
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Algorithm 1 Miller’s Algorithm for the O-Ate Pairing [14].
Input: Points P,Q ∈ E[n] and integer n = (nl−1, nl−2, · · · , n1, n0)2 ∈ N.

Output: fn,P (Q)
qk−1

n .
1: T ← P, f ← 1
2: for i = l − 2 down to 0 do
3: f ← f2 · lT,T (Q)
4: T ← 2T
5: if li 6= 0 then
6: f ← f · lT,P (Q)
7: T ← T + P
8: end if
9: end for
10: f ← f

qk−1
n

11: return f

2.1 Notations and Definitions

Throughout this paper, lower case variables denote single-precision integers, up-
per case variables denote double-precision integers. The operation × represents
multiplication without reduction, and ⊗ represents multiplication with reduc-
tion. The quantities m, s, a, i, and r denote the times for multiplication, squar-
ing, addition, inversion, and modular reduction in Fq, respectively. Likewise,
m̃, s̃, ã, ĩ, and r̃ denote times for multiplication, squaring, addition, inversion,
and reduction in Fq2 , respectively, and mu, su, m̃u, and s̃u denote times for mul-
tiplication and squaring without reduction in the corresponding fields. Finally,
mb, mi, mξ, and mv denote times for multiplication by the quantities b, i, ξ,
and v from Section 3.

3 Representation of Extension Fields

Efficient implementation of the underlying extension fields is crucial to achieve
fast pairing results. The IEEE P1363.3 standard [9] recommends using towers
to represent Fqk . For primes q congruent to 3 mod 8, we employ the following
construction of Benger and Scott [5] to construct tower fields:

Property 1. For approximately 2/3rds of the BN-primes q ≡ 3 mod 8, the poly-
nomial y6 − α, α = 1 +

√
−1 is irreducible over Fq2 = Fq(

√
−1).

This gives the following towering scheme:
Fq2 = Fq[i]/(i2 − β), where β = −1.

Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w2 − v).

Based on this scheme, multiplication by i requires one negation over Fq, and
multiplication by ξ requires only one addition over Fq2 . For primes congruent to
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7 mod 8, we use the following construction which can be proven using the same
ideas as those in Benger and Scott [5]:

Property 2. For approximately 2/3rds of the BN-primes q ≡ 7 mod 8, the poly-
nomial y6 − α, α = 1 +

√
−2 is irreducible over Fq2 = Fq(

√
−2).

This gives the following towering scheme:
Fq2 = Fq[i]/(i2 − β), where β = −2.

Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w2 − v).

All things being equal, the towering scheme derived from Property 1 is slightly
faster for a given bit size. However, in practice, desirable BN-curves are rare, and
it is sometimes necessary to use primes q ≡ 7 mod 8 in order to optimize other
aspects such as the Hamming weight of x. In particular, the curves BN-446
and BN-638 [8] have q ≡ 7 mod 8. In such cases, Property 1 does not apply, so
we use the towering scheme derived from Property 2. We also considered other
approaches to construct tower extensions as suggested in [8], but found the above
schemes consistently resulted in faster pairings compared to the other options.

3.1 Finite Field Operations and Lazy Reduction

Aranha et al. [3] proposed a lazy reduction scheme for efficient pairing compu-
tation in tower-friendly fields and curve arithmetic using projective coordinates.
We extensively exploit their method and extend it to field inversion and curve
arithmetic over affine coordinates. The proposed schemes using lazy reduction
for inversion are given in Algorithms 2, 3 and 4 for Fq2 , Fq6 and Fq12 , respectively.
The total savings with lazy reduction vs. no lazy reduction are one Fq-reduction
in Fq2 -inversion, and 36 Fq-reductions in Fq12 -inversion (improving upon [3] by
16 Fq-reductions). Interestingly enough, if one applies the lazy reduction tech-
nique to the recent Fq12 inversion algorithm of Pereira et al. [8], it replaces two
m̃u by two s̃u but requires five more r̃ operations, which ultimately makes it
slower in practice in comparison with the proposed scheme.

Algorithm 2 Inversion over Fq2 employing lazy reduction technique
Input: a = a0 + a1i; a0, a1 ∈ Fq; β is a quadratic non-residue over Fq
Output: c = a−1 ∈ Fq2
T0 ← a0 × a0
T1 ← −β · (a1 × a1)
T0 ← T0 + T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −(a1 ⊗ t0)
return c = c0 + c1i
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Algorithm 3 Inversion over Fq6 employing lazy reduction technique
Input: a = a0 + a1v + a2v

2; a0, a1, a2 ∈ Fq2
Output: c = a−1 ∈ Fq6
T0 ← a0 × a0
t0 ← ξa1
T1 ← t0 × a2
T0 ← T0 − T1

t1 ← T0 mod p
T0 ← a2 × a2
T0 ← ξT0

T1 ← a0 × a1
T0 ← T0 − T1

t2 ← T0 mod p
T0 ← a1 × a1
T1 ← a0 × a2
T0 ← T0 − T1

t3 ← T0 mod p
T0 ← t0 × t3
T1 ← a0 × t1
T0 ← T0 + T1

t0 ← ξa2
T1 ← t0 × t2
T0 ← T0 + T1

t0 ← T0 mod p
t0 ← t−1

0

c0 ← t1 ⊗ t0
c1 ← t2 ⊗ t0
c2 ← t3 ⊗ t0
return c = c1 + c2v + c3v

2

Algorithm 4 Inversion over Fq12 employing lazy reduction technique
Input: a = a0 + a1w; a0, a1 ∈ Fq6
Output: c = a−1 ∈ Fq12
T0 ← a0 × a0
T1 ← v · (a1 × a1)
T0 ← T0 − T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −a1 ⊗ t0
return c = c0 + c1w

The line function in the Miller loop evaluates to a sparse Fq12 element con-
taining only three of the six basis elements over Fq2 . Thus, when multiplying
the line function output with fi,Q(P ), one can utilize the sparseness property to
avoid full Fq12 arithmetic (Algorithm 5). For the BN-254 curve [8], our sparse
multiplication algorithm requires 13m̃ and 44ã when a D-type twist is involved.
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Algorithm 5 D-type sparse-dense multiplication in Fq12
Input: a = a0 + a1w + a2vw; a0, a1, a2 ∈ Fq2 , b = b0 + b1w; b0, b1 ∈ Fq6
Output: ab ∈ Fq12
A0 ← a0 × b0[0], A1 ← a0 × b0[1], A2 ← a0 × b0[2]
A← A0 +A1v +A2v

2

B ← Fq6SparseMul(a1w + a2vw, b1)
c0 ← a0 + a1, c1 ← a2, c2 ← 0
c← c0 + c1v + c2v

2

d← b0 + b1
E ← Fq6SparseMul(c, d)
F ← E − (A+B)
G← Bv
H ← A+G
c0 ← H mod p
c1 ← F mod p
return c = c0 + c1w

Algorithm 6 Fq6SparseMul, used in Algorithm 5
Input: a = a0 + a1v; a0, a1 ∈ Fq2 , b = b0 + b1v + b2v

2; b0, b1, b2 ∈ Fq2
Output: ab ∈ Fq6
A← a0 × b0, B ← a1 × b1
C ← a1 × b2ξ
D ← A+ C
e← a0 + a1, f ← b0 + b1
E ← e× f
G← E − (A+B)
H ← a0 × b2
I ← H +B
return D +Gv + Iv2

A similar dense-sparse multiplication algorithm works for M-type twists, and re-
quires an extra multiplication by v. We note that our approach requires 13 fewer
additions over Fq2 compared to the one used in [3] (lazy reduction versions).

3.2 Mapping from the Twisted Curve to the Original Curve

Suppose we take ξ (from the towering scheme) to be the cubic and quadratic non-
residue used to generate the sextic twist of the BN-curve E. After manipulating
points on the twisted curve, they need to be mapped to the original curve. In
the case of a D-type twist, the untwisting isomorphism is given by:

Ψ : (x, y)→ (ξ
1
3x, ξ

1
2 y) = (w2x,w3y), (3)

where both w2 and w3 are basis elements, and hence the untwisting map is
almost free. If one uses a M-type twist the untwisting isomorphism is given as
follows:

Ψ : (x, y)→ (ξ−
2
3x, ξ−

1
2 y) = (ξ−1w4x, ξ−1w3y). (4)
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Untwisting of (4) is not efficient as the one given in (3). However, if we compute
the pairing value on the twisted curve instead of the original curve, then we
do not need to use the untwisting map. Instead, we require the inverse map
which is almost free. Therefore, we compute the pairing on the original curve E
when a D-type twist is involved, and on the twisted curve E′ when an M-type
twist is involved. Using this approach, we have found that both twist types are
equivalent in performance up to point/line evaluation. The advantage of being
able to consider both twist types is the immediate availability of many more
useful curves for pairing computation.

3.3 Final Exponentiation Scheme

We use the final exponentiation scheme proposed in [7], which represents the
current state-of-the-art for BN curves. In this scheme, first q12−1

n is factored into
q6 − 1, q2 + 1, and q4−q2+1

n . The first two factors are easy to exponentiate. The
remaining exponentiation q4−q2+1

n can be performed in the cyclotomic subgroup.
Using the fact that any fixed non-degenerate power of a pairing is a pairing, we
raise to a multiple of the remaining factor. Recall that q and n are polynomials
in x, and hence so is the final factor. We denote this polynomial as d(x). In [7]
it is shown that

2x(6x2 + 3x+ 1)d(x) = λ3q
3 + λ2q

2 + λ1q + λ01 + 6x+ 12x2 + 12x3

+ (4x+ 6x2 + 12x3)p(x) + (6x+ 6x2 + 12x3)p(x)2

+ (−1 + 4x+ 6x2 + 12x3)p(x)3, (5)

where

λ3(x) = −1 + 4x+ 6x2 + 12x3,

λ2(x) = 6x+ 6x2 + 12x3

λ1(x) = 4x+ 6x2 + 12x3

λ0(x) = 1 + 6x+ 12x2 + 12x3. (6)

To compute (6), the following exponentiations are performed:

f 7→ fx 7→ f2x 7→ f4x 7→ f6x 7→ f6x
2

7→ f12x
2

7→ f12x
3

. (7)

The cost of computing (7) is 3 exponentiations by x, 3 squarings and 1 multipli-
cation. We then compute the terms a = f12x

3

f6x
2

f6x and b = a(f2x)−1, which
require 3 multiplications. The final pairing value is obtained as

af6x
2

fbpap
2

(bf−1)p
3

, (8)

which costs 6 multiplications and 6 Frobenius operations. In total, this method
requires 3 exponentiations by x, 3 squarings, 10 multiplications, and 3 Frobe-
nius operations. In comparison, the technique used in [3] requires 3 additional
multiplications and an additional squaring, and thus is slightly slower.
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4 Curve Arithmetic

In this section, we discuss our optimizations to curve arithmetic over affine and
homogeneous projective coordinates. We also evaluated other coordinate systems
such as Jacobian coordinates but found that none were faster than homogeneous
coordinates for our application.

4.1 Affine Coordinates

Let the points T = (x, y) and Q = (x2, y2) ∈ E′(Fq) be given in affine coordi-
nates, and let T +Q = (x3, y3) be the sum of the points T and Q. When T = Q
we have

m =
3x2

2y

x3 = m2 − 2x

y3 = (mx− y)−mx3

For D-type twists, the secant or tangent line evaluated at P = (xP , yP ) is given
by:

l2Ψ(T )(P ) = yP −mxPw + (mx− y)w3. (9)

To compute the above, we precompute x̄P = −xP (to save the cost of comput-
ing the negation on-the-fly) and use the following sequence of operations which
requires 1̃i, 3m̃, 2s̃, 7ã, and 2m if T = Q. In comparison, the doubling formula
in Lauter et al. [12] costs 3 additional ã.

A =
1

2y
B = 3x2 C = AB D = 2x x3 = C2 −D

E = Cx− y y3 = E − Cx3 F = Cx̄P

l2Ψ(T )(P ) = yP + Fw + Ew3

Similarly, when T 6= Q we use the following sequence of operations which
requires 1̃i, 3m̃, 1s̃, 6ã, and 2m – saving 2ã compared to the addition formula
in Lauter et al. [12].

A =
1

y2 − y
B = x2 − x C = AB D = x+ x2 x3 = C2 −D

E = Cx− y y3 = E − Cx3 F = Cx̄P

l2Ψ(T )(P ) = yP + Fw + Ew3

In an M-type twist, the tangent line evaluated at Ψ(P ) = (xPw
2, yPw

3) is
given by:

l2T (Ψ(P )) = yPw
3 −mxPw2 + (mx− y), (10)

and can be computed in a similar way.
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4.2 Homogeneous Coordinates

During the first iteration of the Miller loop, the Z-coordinate of the point Q has
value equal to 1. We use this fact to eliminate a multiplication and three squar-
ings using a special first doubling routine in the first iteration. Recently, Arahna
et al. [3], presented optimized formulas for point doubling/line evaluation. We
note that the twisting point P given by (xP /w

2, yP /w
3) is better represented by

(xPw, yP ), which is obtained by multiplying by w3. This eliminates the multipli-
cation by ξ and gives the following revised formula. Let T = (X,Y, Z) ∈ E′(Fq2)
be in homogeneous coordinates. Then 2T = (X3, Y3, Z3) is given by:

X3 =
XY

2
(Y 2 − 9b′Z2)

Y3 =

[
1

2
(Y 2 + 9b′Z2)

]2
− 27b′2Z4

Z3 = 2Y 3Z

In the case of a D-type twist, the corresponding line function evaluated at P =
(xP , yP ) is given by:

l2Ψ(T )(P ) = −2Y ZyP + 3X2xPw + (3b′Z2 − Y 2)w3

We compute this value using the following sequence of operations.

A =
XY

2
B = Y 2 C = Z2 E = 3b′C F = 3E X3 = A · (B − F )

G =
B + f

2
Y3 = G2 − 3E2 H = (Y + Z)2 − (B + C) Z3 = B ·H

l2Ψ(T )(P ) = HȳP + 3X2xPw + (E −B)w3

Aranha et al. [3] observe m̃− s̃ ≈ 3ã and hence computing XY directly is faster
than using (X + Y )2, Y 2 and X2 on a PC. However, on ARM processors, we
have m̃− s̃ ≈ 6ã. Thus, the latter technique is more efficient on ARM processors.
The overall cost of point doubling and line evaluation is 2m̃, 7s̃, 22ã, and 4m,
assuming that the cost of division by two and multiplication by b′ are equivalent
to the cost of addition. Similarly, we compute point addition and line function
evaluation using the following sequence of operations which uses 11m̃, 2s̃, 8ã,
and 4m (saving 2 Fq2 additions over [3]). Note that x̄P and ȳP are precomputed
to save again the cost of computing −xP and −yP .

A = Y2Z B = X2Z θ = Y −A λ = X −B C = θ2

D = λ2 E = λ3 F = ZC G = XD H = E + F − 2G

X3 = λH I = Y E Y3 = θ(G−H)− I Z3 = ZE J = θX2 − λY2
lΨ(T+Q)(P ) = λȳP + θx̄Pw + Jw3

In the case of an M-type twist the corresponding line computation can be com-
puted using the same sequences of operations as above. As in [3], we also use
lazy reduction techniques to optimize the above formulae (see Table 1).
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Table 1. Operation counts for 254-bit, 446-bit, and 638-bit prime fields

E′(Fp2) Arith. 254-bit 446-bit/638-bit
Doubl/Eval (Proj) 2m̃u + 7s̃u + 8r̃ + 25ã+ 4m 2m̃u + 7s̃u + 8r̃ + 34ã+ a+ 4m

Doubl/Eval (Affi) ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã+ 2m ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã+ 2m

Add./Eval (Pro) 11m̃u + 2s̃u + 11r̃ + 10ã+ 4m 11m̃u + 2s̃u + 11r̃ + 10ã+ 4m

Add/Eval (Affi) ĩ+ 3m̃u + s̃u + 4r̃ + 6ã+ 2m ĩ+ 2m̃u + s̃u + 3r̃ + 6ã+ 2m

First doubl./Eval 3m̃u + 4s̃u + 7r̃ + 14ã+ 4m 3m̃u + 4s̃u + 7r̃ + 23ã+ a+ 4m

p-power Frob. 2m̃+ 2a 8m̃+ 2a

p2- power Frob. 4m 16m̃+ 4a

Fp2 Arith. 254-bit 446-bit/638-bit
Add/Subtr./Nega. ã = 2a ã = 2a

Mult. m̃ = m̃u + r̃ = 3mu + 2r + 8a m̃ = m̃u + r̃ = 3mu + 2r + 10a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a s̃ = s̃u + r̃ = 2mu + 2r + 5a

Mult. by β mb = a mb = 2a

Mult. by ξ mξ = 2a mξ = 3a

Inversion ĩ = i+ 2mu + 2su + 3r + 3a ĩ = i+ 2mu + 2su + 3r + 5a

Fp12 Arith. 254-bit 446-bit/638-bit
Multi. 18m̃u + 110ã+ 6r̃ 18m̃u + 117ã+ 6r̃

Sparse Mult. 13m̃u + 6r̃ + 48ã 13m̃u + 6r̃ + 54ã

Sparser Mult. 6m̃u + 6r̃ + 13ã 6m̃u + 6r̃ + 14ã

Affi. Sparse Mult. 10m̃u + 6r̃ + 47ã+ 6mu + a 10m̃u + 53ã+ 6r̃ + 6mu + a

Squaring 12m̃u + 6r̃ + 73ã 12m̃u + 6r̃ + 78ã

Cyclotomic Sqr. 9s̃u + 46ã+ 6r̃ 9s̃u + 49ã+ a+ 6r̃

Simult. Decomp. 9m̃+ 6s̃+ 22ã+ ĩ
9m̃+ 6s̃+ 24ã+ ĩ (BN-446)
16m̃+ 9s̃+ 35ã+ ĩ (BN-638)

p-power Frob. 5m̃+ 6a 5m̃+ 6a

p2-power Frob. 10m+ 2ã 10m+ 2ã

Expon. by x

45m̃u + 666s̃u + 467r̃u+

45m̃u + 378s̃u+ 3943ã+ ĩ (BN-446)
275r̃ + 2164ã+ ĩ 70m̃+ 948s̃+ 675r̃+

5606ã+ 158a+ ĩ (BN-638)
Inversion 25m̃u + 9s̃u + 16r̃ + 121ã+ ĩ 25m̃u + 9s̃u + 18r̃ + 138ã+ ĩ

Compressed Sqr. 6s̃u + 31ã+ 4r̃ 6s̃u + 33ã+ a+ 4r̃

5 Operation Counts

We provide here detailed operation counts for our algorithms on the BN-254,
BN-446, and BN-638 curves used in Acar et. al [1] and defined in [8]. Table 1
provides the operation counts for all component operations. Numbers for BN-446
and BN-638 are the same except where indicated.

For BN-254, using the techniques described above, the projective pairing
Miller loop executes one negation in Fq, one first doubling with line evaluation,
63 point doublings with line evaluations, 6 point additions with line evalua-
tions, one p-power Frobenius in E′(Fp2), one p2-power Frobenius in E′(Fp2), 66
sparse multiplications, 63 squarings in Fp2 , 1 negation in E′(Fp2), 2 sparser (i.e.
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Table 2. Cost of the computation of O-Ate pairings using various coordinates

Curve Coord. Cost
Proj. Miller loop 1841m̃u + 457s̃u + 1371r̃ + 9516ã+ 284m+ 3a

BN-254 Affi. Miller loop 70̃i+ 1658m̃u + 134s̃u + 942r̃ + 8292ã+ 540m+ 132a

Final exponen. 386m̃u + 1164s̃u + 943r̃ + 4̃i+ 7989ã+ 30m+ 15a

Proj. Miller loop 3151m̃u + 793s̃u + 2345r̃ + 18595ã+ 472m+ 117a

BN-446 Affi. Miller loop 118̃i+ 2872m̃u + 230s̃u + 1610r̃ + 15612ã+ 920m+ 230a

Final exponen. 386m̃u + 2034s̃u + 1519r̃ + 4̃i+ 13374ã+ 30m+ 345a

Proj. Miller loop 4548m̃u + 1140s̃u + 3557r̃ + 27198ã+ 676m+ 166a

BN-638 Affi. Miller loop 169̃i+ 4143m̃u + 330s̃u + 2324r̃ + 22574ã+ 1340m+ 333a

Final exponen. 436m̃u + 2880s̃u + 2143r̃ + 4̃i+ 18528ã+ 30m+ 489a

sparse-sparse) multiplications [3], and 1 multiplication in Fp12 . Using Table 1,
we compute the total number of operations required in the Miller loop using
homogeneous projective coordinates to be

ML254P = a+ 3m̃u + 7r̃ + 14ã+ 4m+ 63(2m̃u + 7s̃u + 8r̃ + 25ã+ 4m) +

6(11m̃u + 2s̃u + 11r̃ + 10ã+ 4m) + 2m̃+ 2a+ 4m+ 66(m̃u + 6r̃ + 48ã) +

63(12m̃u + 6r̃ + 73ã) + ã+ 2(6m̃u + 6r̃ + 13ã) + 18m̃u + 110ã+ 6r̃

= 1841m̃u + 457s̃u + 1371r̃ + 9516ã+ 284m+ 3a.

Similarly, we also compute the Miller loop operation costs for BN-446 and BN-
638 and for projective and affine coordinates, and give the results in Table 2.

We also compute the operation count for the final exponentiation. For BN-
254, the final exponentiation requires 6 conjugations in Fp12 , one negation in
E′(Fp2), one inversion in Fp12 , 12 multiplications in Fp12 , two p-power Frobenius
in Fp12 , 3 p2-power Frobenius in Fp12 , 3 exponentiations by x, and 3 cyclotomic
squarings. Based on these costs, we compute the total number of operations
required in the final exponentiation and give the result in Table 2. Similarly, we
also compute the final exponentiation operation cost for BN-446 and BN-638.
The total operation count for the pairing computation is the cost of the Miller
loop plus the final exponentiation.

6 Implementation Results

To evaluate the performance of the proposed schemes for computing the O-Ate
pairing in practice, we implemented them on various ARM processors. We used
the following platforms in our experiments.

− A Marvell Kirkwood 6281 ARMv5 CPU processor (Feroceon 88FR131) op-
erating at 1.2 GHz. In terms of registers it has 16 32-bit registers r0 to r15
of which two are for the stack pointer and program counter, leaving only 14
32-bit registers for general use.
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− An iPad 2 (Apple A5) using an ARMv7 Cortex-A9 MPCore processor op-
erating at 1.0 GHz clock frequency. It has 16 128-bit vector registers which
are available as 32 64-bit vector registers, as these registers share physical
space with the 128-bit vector registers.

− A Samsung Galaxy Nexus (1.2 GHz TI OMAP 4460 ARM Cortex-A9). The
CPU microarchitecture is identical to the Apple A5. We included it to ex-
amine whether different implementations of the Cortex-A9 core have com-
parable performance in this application.

Our software is based on version 0.2.3 of the RELIC toolkit [2], with the
GMP 5.0.2 backend, modified to include our optimizations. Except for the work
described in Section 6.1, all of our software is platform-independent C code, and
the same source package runs unmodified on all the above ARM platforms as
well as both x86 and x86-64 Linux and Windows PCs. Our implementation also
supports and includes BN curves at additional security levels beyond the three
presented here. For each platform, we used the standard operating system and
development environment that ships with the device, namely Debian Squeeze
(native C compiler), XCode 4.3.0, and Android NDK (r7c) for the Kirkwood,
iPad, and Galaxy Nexus respectively.

We present the results of our experiments in Table 3. For ease of compari-
son we have also included the numbers from [1] in Table 3. Roughly speaking,
our timings are over three times faster than the results appearing in [1], which
itself represents the fastest reported times prior to our work. Specifically, exam-
ining our iPad results, which were obtained on an identical micro-architecture
and clock speed, we find that our implementation is 3.7, 3.7, and 5.4 times
faster on BN-254, BN-446, and BN-638, respectively. Some, but not all, of the
improvement can be attributed to faster field arithmetic; for example, Fq-field
multiplication on the RELIC toolkit is roughly 1.4 times as fast on the iPad
2 compared to [1]. A more detailed comparison based on operation counts is
difficult because [1] does not provide any operation counts, and also because our
strategy and our operation counts rely on lazy reduction, which does not play a
role in [1].

6.1 Assembly Optimization

In order to investigate the potential performance gains available from hand op-
timized machine code, we implemented the two most commonly used field arith-
metic operations (addition and multiplication) for the BN-254 curve in ARM
assembly instructions. Due to the curve-specific and platform-specific nature of
this endeavor, we performed this work only for the BN-254 curve and only on
the Linux platforms (Marvell Kirkwood and Galaxy Nexus).

The main advantage of assembly language is that it provides more control
for lower level arithmetic computations. Although the available C compilers are
quite good, they still produce inefficient code since in the C language it is in-
feasible to express instruction priorities. Moreover, one can use hand-optimized
assembly code to decompose larger computations into small pieces suitable for
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Table 3. Timings for affine and projective pairings on different ARM processors and comparisons
with prior literature. Times for the Miller loop (ML) in each row reflect those of the faster pairing.

Marvell Kirkwood (ARM v5) Feroceon 88FR131 at 1.2 GHz [This work]
Field Lang Operation Timing [µs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit ASM 0.12 1.49 1.12 17.53 11.8 0.28 4.08 3.44 23.57 9,722 6,176 16,076 15,898

C
0.18 1.74 1.02 17.40 10.0 0.35 4.96 4.01 24.01 11,877 7,550 19,427 19,509

446-bit 0.20 3.79 2.25 34.67 9.1 0.38 10.74 8.57 48.90 42,857 23,137 65,994 65,958
638-bit 0.27 6.82 3.83 52.33 7.7 0.51 18.23 14.93 77.11 98,044 51,351 149,395 153,713

iPad 2 (ARM v7) Apple A5 Cortex-A9 at 1.0 GHz [This work]
Field Lang Operation Timing [µs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.16 1.28 0.93 13.44 10.5 0.25 3.48 2.88 19.19 8,338 5,483 14,604 13,821
446-bit C 0.16 2.92 1.62 27.15 9.3 0.26 8.03 6.46 37.95 32,087 17,180 49,365 49,267
638-bit 0.20 5.58 2.92 43.62 7.8 0.34 15.07 12.09 64.68 79,056 40,572 119,628 123,410

Galaxy Nexus (ARM v7) TI OMAP 4460 Cortex-A9 at 1.2 GHz [This work]
Field Lang Operation Timing [µs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit ASM 0.05 0.93 0.55 9.42 10.1 0.10 2.46 2.07 13.79 6,147 3,758 10,573 9,905

C
0.07 0.98 0.53 9.62 9.8 0.13 2.81 2.11 14.05 6,859 4,382 11,839 11,241

446-bit 0.12 2.36 1.27 23.08 9.8 0.22 6.29 5.17 32.27 25,792 13,752 39,886 39,544
638-bit 0.19 4.87 3.05 38.45 7.9 0.45 12.20 10.39 56.78 65,698 33,658 99,356 99,466

NVidia Tegra 2 (ARM v7) Cortex-A9 at 1.0 GHz [1]
Field Lang Operation Timing [µs]
Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.67 1.72 n/a 18.35 10.7 1.42 8.18 5.20 26.61 26,320 24,690 51,010 55,190
446-bit C 1.17 4.01 n/a 35.85 8.9 2.37 17.24 10.84 54.23 97,530 86,750 184,280 195,560
638-bit 1.71 8.22 n/a 56.09 6.8 3.48 31.81 20.55 91.92 236,480 413,370 649,850 768,060

vectorization. We employ the following techniques to optimize our implementa-
tion in assembly:

− Loop unrolling: since the maximum number of bits of the operands are
known, it makes sense to unroll all loops in order to provide us the ability
to avoid conditional branches (which basically eliminates branch prediction
misses in the pipeline), reorder the instructions, and insert carry propagate
codes at desired points.

− Instruction re-ordering: by careful reordering of non-dependent instructions
(in terms of data and processing units), it is possible to minimize the number
of pipeline stalls and therefore execute the code faster. Two of the most
frequent multi-cycle instructions used in our code are word multiplication
and memory reads. Each 32-bit word multiplication takes between 3 and 6
cycles and each memory read needs 2 cycles. By applying loop unrolling, it
is possible to load the data required for the next multiplication while the
pipeline is performing the current multiplication. Also, lots of register clean-
ups and carry propagation codes are performed while the pipeline is doing a
multiplication.

− Register allocation: all of the available registers were used extensively in
order to eliminate the need to access memory for fetching the operands or
store partial results. This improves overall performance considerably.
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− Multiple stores: ARM processors are capable of loading and storing multi-
ple words from or to the memory by one instruction. By storing the final
result at once instead of writing a word back to memory each time when a
new result is ready, we minimize the number of memory access instructions.
Also, we do some register clean-ups (cost-free) when the pipeline is perform-
ing the multiple store instruction. It is worth mentioning that while it was
possible to write 8 words at once, only 4 words are written to memory at
each time because the available non-dependent instructions to re-order after
the multiple store instruction are limited.

Table 3 includes our measurements of pairing computation times using our as-
sembly implementation alongside the results for the C implementation. We find
that the BN-254 pairing using hand-optimized assembly code is roughly 20%
faster than the C implementation. In all cases, the projective pairing benefits
more than the affine pairing, because we did not hand-optimize the inversion
routine in assembly.

6.2 Affine vs. Homogeneous Coordinates

Acar et al. [1] assert that on ARM processors, small inversion to multiplication
(I/M) ratios over Fq render it more efficient to compute a pairing using affine
coordinates. If we are using a prime q congruent to 3 mod 8, then compared
to a projective doubling step, an affine doubling step costs an extra ĩ and an
unreduced multiplication, and saves 5s̃u + 3r̃+ 16.5ã+ 2m. Compared to a first
doubling, it costs an extra ĩ and saves 2s̃u+2r̃+6.5ã+2m. An addition step costs
an extra ĩ and saves 8m̃u + s̃u + 7r̃+ 3ã+ 2m; and a dense-sparse multiplication
needs an additional 6m and saves 3m̃u + 3r̃+ 0.5ã. Thus, the difference between
an affine and projective pairing is 70i− 659mu − 396r − 4417a.

From Table 3, we observe that the two pairings are roughly equal in perfor-
mance at about the 446-bit field size. At this field size, we have m ≈ 1.5r and
m ≈ 15a. Plugging these estimates into the expression 70i−659mu−396r−4417a,
we find that an affine pairing is expected to be faster than a projective pairing
whenever the I/M ratio in the base field falls below about 10.0. The results of
Table 3 indicate that our I/M ratios cross this point slightly above 446 bits.
We observe that both affine and projective pairings achieve similar performance
in our implementation on ARM processors, with an advantage in the range of
1%-6% for projective coordinates on BN-254, and a slight advantage for affine
coordinates on BN-638, with slightly better results for projective coordinates on
BN-446. These results overturn those of Acar et al. [1] which show too much
advantage in favor of affine coordinates (well above 5%). However, there are
situations in which affine coordinates would be preferable even at the 128-bit
security level (e.g., products of pairings). Different conclusions may hold for
assembly-optimized variants at higher security levels, which are not included in
our analysis.
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7 Conclusions

In this paper, we present high speed implementation results of the Optimal-Ate
pairing on BN curves for different security levels. We extend the concept of lazy
reduction to inversion in extension fields and optimize the sparse multiplica-
tion algorithm in the degree 12 extension. Our work indicates that D-type and
M-type twists achieve equivalent performance for point/line evaluation compu-
tation, with only a very slight advantage in favor of D-type when computing
sparse multiplications. In addition, we include an efficient method from [7] to
perform final exponentiation and reduce its computation time. Finally, we mea-
sure the Optimal-Ate pairing over BN curves on different ARM-based platforms
and compare the timing results to the leading ones available in the open liter-
ature. Our timing results are over three times faster than the previous fastest
results appearing in [1]. Although the authors in [1] find affine coordinates to be
faster on ARM in all cases, based on our measurements we conclude that homo-
geneous projective coordinates are unambiguously faster than affine coordinates
for O-Ate pairings at the 128-bit security level when higher levels of optimization
are used.
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